
Eco-P Colonies?

Luděk Cienciala, Lucie Ciencialová,

Institute of Computer Science, Silesian University in Opava, Czech Republic
{ludek.cienciala, lucie.ciencialova}@fpf.slu.cz

Summary. Eco-P colonies are constructed as natural extension of P colonies with dy-
namical evolution of environment. P colonies are one of the kind of computational models
based on independent autonomous agents represented by membrane systems working and
evolving in a shared environment. These acts are based on the set of program associated
with every agent. There are two types of agents in eco-P colonies - senders and con-
sumers. They differ by the type of programs. The eco-P colonies have a mechanism (0L
scheme) which can change the objects in the environment. We show that eco-P colonies
with ”active” environment and with two agents consumers can generate every recursive
enumerable set of natural numbers and the family of sets of natural numbers computed
by partially blind register machine is subset of the family of sets of natural numbers
computed by eco-P colonies with ”static” environment and one agent sender and one
agent consumer.

1 Introduction

The computation model of eco-P colonies is based on two models of theoretical
computer science: membrane systems and eco-colonies. Membrane systems (P sys-
tems) were introduced by Gheorghe Păun in [9] in 1998. From this time there are
lots of types of P systems differing by type of rules, objects or by structure. More
information about P systems can reader find in [10, 11], about eco-colonies in [4].

There are three types of entities in eco-P colonies. (1) The objects are symbols,
they can be evolved or moved. (2) The agents (very simple one membrane systems)
work according to their programs. In one step the agent can consume one object
(transport it inside) or produce one object (transport it outside). Every agent
contain two objects and this number of objects inside of agent stay constant during
all the computation. (3) The environment of eco-P colony is used as communication
channel for agents. Through the environment the agents are able to affect the
behaviour of another agent. In the environment special objects occur, we call
? This research is partially supported by projects GAČR 201/09/P075, IGS 37/2009 (L.

Ciencialová) and by research plan MSM 4781305903 (L. Cienciala).

202 L. Cienciala, L. Ciencialová

them environmental and we denote them by e. There are sufficient number of
copies of the object e. The environment can change independently to the agents.
The evolution of the environment is independent from the states of agents and it
is done by parallel using context free rules of 0L scheme to all possible objects
placed in the environment.

The computation is parallel, in every step every agent nondeterministically
chooses one of its applicable programs, if it has any, and executes it. Each ob-
ject in the environment which is unused by agent is changed by 0L scheme. The
computation ends by halting when no agent has applicable program. With every
halting computation we associate the result of computation. It is the number of
copies of specific object placed in the environment at the moment of halting of
computation. We have to note, that at the end of computation some rules of 0L
scheme are still applicable.

2 Definitions

Throughout the paper we assume the reader is familiar with basic of formal au-
tomata and language theory. We introduce notation used in the paper.

We use NRE to denote the family of recursively enumerable set of natural
numbers and N to denote the set of natural numbers.

Σ is a notation for the alphabet. Let Σ∗ be set of all words over alphabet Σ
(except empty word ε). For the length of the word w ∈ Σ∗ we use notation |w|
and for the number of occurrences of symbol a ∈ Σ in w |w|a.

A multiset of objects M is a pair M(V, f), where V is an arbitrary (not nec-
essarily finite) set of objects and f is a mapping f : V → N ; f assigns to each
object in V its multiplicity in M . The set of all multisets over the set of ob-
jects V is denoted by V ◦. The set V ′ is called the support of M and denoted by
supp(M) if for all x ∈ V ′ f(x) 6= 0. The cardinality of M , denoted by card(M),
is defined by card(M) =

∑
a∈V f(a). Any multiset of objects M with the set of

objects V = {ai, . . . an} can be represented as a string w over alphabet V with
|w|ai

= f(ai); 1 ≤ i ≤ n. Obviously, all words obtained from w by permuting
the letters can also represent M , and ε represents the empty multiset.

The mechanism of evolution in the environment is based on 0L schemes. It is
a pair (Σ,P), where Σ is the alphabet of 0L scheme and P is the set of context
free rules, it fulfilled following condition ∀a ∈ Σ ∃α ∈ Σ∗ such that (a→ α) ∈ P .
For w1, w2 ∈ Σ∗ we write w1 ⇒ w2 if w1 = a1a1 . . . an, w2 = α2α2 . . . αn, for
ai → αi ∈ P, 1 ≤ i ≤ n.

A register machine[8] is the construct M = (m,H, l0, lh, P) where:
- m is a number of registers, H is a set of instruction labels,
- l0 is an initial/start label, lh is the final label,
- P is a finite set of instructions injectively labelled with the elements

from the given set H.
The instructions of the register machine are of the following forms:

Eco-P Colonies 203

l1 : (ADD(r), l2, l3) Add 1 to the contents of the register r and proceed to
the instruction (labelled with) l2 or l3.

l1 : (SUB(r), l2, l3) If the register r is not empty, then subtract 1 from its
contents and go to instruction l2, otherwise proceed to instruction l3.

lh : HALT Stop the machine. The final label lh is only assigned to this in-
struction.

Without loss of generality, one can assume that in each ADD-instruction l1 :
(ADD(r), l2, l3) and in each conditional SUB-instruction l1 : (SUB(r), l2, l3) the
labels l1, l2, l3 are mutually distinct. The register machine M computes a set N(M)
of numbers in the following way: we start with all registers empty (hence storing
the number zero) with the instruction with label l0 and we proceed to apply
the instructions as indicated by the labels (and made possible by the contents of
registers). If we reach the halt instruction, then the number stored at that time in
the register 1 is said to be computed by M and hence it is introduced in N(M).
(Because of the nondeterminism in choosing the continuation of the computation
in the case of ADD-instructions, N(M) can be an infinite set.) The family of sets
of numbers computed by register machines is denoted by NRM . It is known (see
e.g.[7]) that in this way we can compute all sets of numbers which are Turing
computable NRE.
Theorem 1. [8] NRM = NRE.

Moreover, we call a register machine partially blind, if we interpret a subtract
instruction in the following way: l1 : (S(r); l2; l3) - if register r is not empty,
then subtract one from its contents and go to instruction l2 or to instruction l3;
if register r is empty when attempting to decrement register r, then the program
ends without yielding a result. When the register machine reaches the final state,
the result obtained in the first register is only taken into account if the remaining
registers are empty. The family of sets of non-negative integers generated by par-
tially blind register machines is denoted by NRMpb. The partially blind register
machine accepts a proper subset of NRE.
Theorem 2. NRMpb ⊂ NRM .

3 Eco-P colony

In this part we define the eco-P colony, the step and the result of the computation
of eco-P colony.

Definition 1. The eco-P colony is structure
Π = (A, e, f, VE , DE , B1, . . . , Bn), where

• A is the alphabet of the colony, its elements are called objects,
• e is the basic (environmental) object of the colony, e ∈ A,
• f is final object of the colony, f ∈ A,
• VE is the initial content of the environment, VE ∈ (A− {e})◦,
• DE is 0L scheme (A,PE), where PE is the set of context free rules,

204 L. Cienciala, L. Ciencialová

• Bi, 1 ≤ i ≤ n, are the agents, every agent is the structure Bi = (Oi, Pi), where
Oi is the multiset over A, it defines the initial state (content) of the agent Bi

and |Oi| = 2 and Pi = {pi,1, . . . , pi,ki} is the finite set of programs of two types:
(1) generating 〈a→ bc, d out〉 - the program is applicable if agent contents ob-
jects a and d. Object a is used for generation of new content of the agent and
object d agent sends to the environment.
(2) consuming 〈ab→ c, d in〉 - the program is applicable if the agent contents
objects a and b. These objects are evolved to one new object c and object d the
agent imports from the environment.

Every agent has only one type of programs. The agent with generating programs
is called sender and the agent with consuming programs is called consumer.

An initial configuration of eco-P colony is (n+ 1)-tuple (O1, . . . , On, VE) of
the multisets of objects placed in eco-P colony at the beginning of the computation,
where Oi (1 ≤ i ≤ n) is content of the agent Bi and VE is the multiset of object in
the environment different from e. In general, the configuration of the eco-P colony
Π is defined as (n + 1)-tuple (w1, . . . , wn, wE), where wi represents all objects
inside of i-th agent, |wi| = 2, 1 ≤ i ≤ n, wE ∈ (A−{e})◦ is composed by objects
different from e placed in the environment.

The computation of eco-P colonies is maximally parallel. It means that in
every step the maximum number of agents works. Each agent who can use one or
more of its program must be active. If the agent has more applicable programs, it
nondeterministically chooses one program and executes it.

Let the programs of each Pi be labelled in a one-to-one manner by labels in a
set lab (Pi) in such a way that lab (Pi) ∩ lab (Pj) = ∅ for i 6= j, 1 ≤ i, j ≤ n.

To define the step of computation we have to introduce following four func-
tions: whatsin, demand , putout ,newin. The first two functions assign the multisets
of objects needed to execution of the program. The last two functions assign the
multisets of objects placed inside and outside of agent after execution of given
program. Formally, let 〈ab→ c, d in〉 be consuming program and 〈a→ bc, d out〉
be generating program, than we define functions:

whatsin(pk) =
〈
{ab} for consuming program pk

{ad} for generating program pk

demand(pk) =
〈
{d} for consuming program pk

∅ for generating program pk

newin(pk) =
〈
{cd} for consuming program pk

{bc} for generating program pk

putout(pk) =
〈
∅ for consuming program pk

{d} for generating program pk

Passing from the configuration to another one is defined as
(w1, . . . , wn, wE)⇒ (w′1, . . . , w

′
n, w

′
E) ,

where the following conditions are fulfilled:
1. The set of the labels of programs P with |P | ≤ n is constructed in the way that

Eco-P Colonies 205

• p, p′ ∈ P , p 6= p′, p ∈ lab (Pj),
p′ ∈ lab (Pi) , i 6= j,

• for every p ∈ P , p ∈ lab (Pj),
whatsin (p) = wj and

⋃
p∈P

demand (p) ⊆ wE .

2. The set P of selected labels of programs is maximal, it means that there is no
other program with label r ∈

⋃
1≤i≤n lab (Pi), r /∈ P , which can be add to the set

P such that previous conditions will be fulfilled.
Generally for every j, 1 ≤ j ≤ n, for which there exists p ∈ P , such that p ∈
lab (Pj), let w′j = newin (p). If there is no p ∈ P , p ∈ lab (Pj) for some j, 1 ≤ j ≤ n,
let w′j = wj . Let wE −

⋃
p∈P

demand (p) ⇒DE
w′′E be the step of derivation in 0L

scheme (A,PE) and then w′E = w′′E ∪
⋃

p∈P

putout (p) .

The union and ”-” are operations over multisets.
The configuration is final if the set P cannot be chosen to be other than the

empty set. The set of the final configurations we denote by H. If the computation
halts, we can obtain a result. The result of computation is given by the number
of objects f placed in the environment at the end of the computation. The set of
the numbers computed by eco-P colony Π is defined as

N (Π) = {|wE |f | (O1, . . . , On, VE)⇒∗ (w1, . . . , wn, wE) ∈ H},
where (O1, . . . , On, VE) is the initial configuration, (w1, . . . , wn, wE) is the final
configuration, and ⇒∗ denotes reflexive and transitive closure of ⇒.

Let Π = (A, e, f, VE , DE , B1, . . . , Bn) be eco-P colony. The maximal
number of programs associated with one agent we call the height and the degree
of eco-P colony Π is the number of agents in Π.

We denote NEPCOLx,y,z(n, h) the family of the sets computing by eco-
P colonies such that:

- x can be formed by two symbols: s, c. s - if there is agent sender
in eco-P colony, c - if there is agent consumer in eco-P colony,

- y = passive if the rules of 0L scheme are of type a→ a only,

- y = active if the set of rules of 0L scheme disposes of at least one rule of
another type than a→ a,

- z = ini if the environment or agents contains objects different from e,
otherwise we eliminate this notation,

- the degree of eco-P colony is at most n and

- the height is at most h.
We compare eco-P colonies with above-mentioned computation models. In [2]

the author shows that:
Theorem 3. [2] NEPCOLsc,passive(3, ∗) = NRE.

We prove that eco-P colony with active environment and with two agents con-
sumers can generate every recursive enumerable set of natural numbers.
Theorem 4. NEPCOLc,active,ini(2, ∗) = NRE.

206 L. Cienciala, L. Ciencialová

Proof. Consider register machine M = (m,H, l0, lh, P). All labels from the set H
are objects in eco-P colony. The content of register i is represented by the number
of copies of objects ai placed in the environment.

At the beginning of computation there are object l0 and auxiliary object D in
the environment. Object l0 corresponds with initial label of instruction of M .

The instruction li = (ADD(r), lj , lk) will be realized by rules:
ENV :

1 : li → arl
′
iD;

2 : l′i → lj lkD;
3 : lj → ljD;
4 : lk → lkD;

B1 :

5 :
〈
Pe→ P ; lj in

〉
;

6 :
〈
Pe→ P ; lk in

〉
;

7 :
〈
Plj → P ; e in

〉
;

8 :
〈
Plk → P ; e in

〉
;

The computation is done in such a way that 0L scheme works in the environ-
ment, it executes adding one to the content of register r (generate one copy of
object ar - the rule number 1) and generating of the objects lj and lk, labels of
all instructions which will be possibly executed in the next steps of computation
of the register machine M (the rule 2). In the next step agent consumer B1 takes
one of these objects inside the agent - the rule 5 or 6. In the next step instruction
lj or lk will be simulated.

In the eco-P colony the instruction li : (SUB(r), lj , lk) is realized by following
rules and programs:

ENV :

9 : li → li©lRi D;
10 : lRi → lPi D;
11 : lPi → lj lk D;
12 : lj → l′′jD;
13 : lk → l′′kD;
14 : l′′j → ljD;
15 : l′′k → lkD;

B1 :

16 : 〈Pe→ nr; li© in〉 ;
17 : 〈 li©nr → Lk; ar in〉 ;
18 :

〈
li©nr → R; lj in

〉
;

19 :
〈
arLk → R; lk in

〉
;

20 :
〈

lj R→ P ; e in
〉

;

21 :
〈

lk R→ P ; e in
〉

;
If there is the object li (the label of SUB-instruction) in the environment, 0L

scheme generates (using the rule no. 9) the object li©. This is the message for the
agent B1, that the agent has to try to consume one copy of object ar from the
environment (try to subtract one from the content of register r.)

If the agent is successful (agent used program 17) in the next step agent con-
sume object lk and computation will follow with instruction labelled lj because
object lj is present in the environment.

If the agent do not consume object ar (register r contents 0, there was no one
object ar in the environment), in the next step the agent take object lj from the
environment and computation will proceed with instruction labelled lk.

For the halting instruction there is rule lh → lh in 0L scheme, this rule is of
the same type as rules for other objects, which are not changed by environment
during all the computation (for example e, ar, . . .).

Eco-P Colonies 207

During the computation there are moments when the agent B1 has no ap-
plicable program. It means that computation will be terminated in such mo-
ment. To solve this problem we add one more agent to the eco-P colony (agent
B2), it has to work during all computation. The agent B2 has only one program
〈PD → P ;D in〉.

We construct eco-P colony Π = (A, e, f, VE , DE , B1, B2) with:
- alphabet A = {li, l′i, l′′i , li©, li , Li | for each li ∈ H} ∪ {ai | 1 ≤ i ≤

m} ∪ {e,R, P,D}
- final object f = a1,
- initial content of the environment VE = l0D, 0L scheme DE = (A,PE)
- set of rules of the environment PE = {ai → ai 1 ≤ i ≤ m} ∪ {e → e}∪

∪{the rules already mentioned above}
- and the agents B1 = (Pe, P1), B2 = (PD,P2), the sets of programs are de-

scribed above.
Eco-P colony starts its computation with object l0 in the environment and sim-

ulation of instruction labelled l0. By the rules and programs it places and deletes
from the environment the objects ar and halts its computation when object lh
appears in the environment. The result of computation is the number of copies of
object a1 placed in the environment at the end of computation. No other compu-
tation can be executed in eco-P colony. So the computation in the eco-P colony Π
correctly simulates computation in register machine.

Eco-P colonies with ”active” environment and with two agents - consumers can
generate every recursively enumerable set of natural numbers. The question is if
an eco-P colony with ”static” environment (0L scheme contains the rule of type
a→ a only) can generate it too.
Theorem 5. NEPCOLsc,passive(2, ∗) ⊇ NRMpb.

Proof. (Draft) Let us consider partially blind register machine M = (m,H, l0,
lh, P). For all labels from the set H we construct corresponding objects in eco-
P colony Π. The content of register i will be represented by the number of copies
of objects ai placed in the environment.

At the beginning of computation there are only copies environmental object e
in the environment. In eco-P colony Π there are two agents: agent B1, which is
sender, and agent B2, it is consumer.
B1

0 : 〈e→ l0e; e out〉 ;
The object l0 corresponds to the label of the first instruction realized by register

machine and it is own by agent B1.
The instruction li = (ADD(r), lj , lk) is realized by following programs:

B1

1 : 〈li → arl
′
i; e out〉 ; 2 : 〈l′i → lje; ar out〉 ; 3 : 〈l′i → lke; ar out〉 ;

The agent B1 places to the environment step by step objects: ar - adding one
to the content of register r (program 1) and object lj (program 2) or object lk
(program 3).

208 L. Cienciala, L. Ciencialová

The instruction li : (SUB(r), lj , lk) is in eco-P colony realized by following
programs:
B1

4 :
〈
li → lRi li©; e out

〉
; 5 :

〈
lRi → lR1

i e; li© out
〉

; 6 :
〈
lR1
i → lR2

i l′′i ; e out
〉

;
7 :
〈
lR2
i → lje; l′′i out

〉
; 8 :

〈
lR2
i → lke; l′′i out

〉
; 9 :

〈
lj → l′je; e out

〉
;

10 :
〈
lk → l′ie; e out

〉
; 11 :

〈
l′j → lje; e out

〉
; 12 :

〈
l′k → lke; e out

〉
;

B2

13 : 〈ee→ nr; li© in〉 ; 14 : 〈 li©nr → Li; ar in〉 ; 15 : 〈 li©nr → R; l′′i in〉 ;
16 : 〈Rl′′i → R; e in〉 ; 17 : 〈Re→ R; e in〉 ; 18 : 〈Liar → e; l′′i in〉 ;
19 : 〈l′′i e→ e; e in〉 ;

The subtracting is done in four phases: (1) It starts with object li inside agent
B1 corresponding with a label of some SUB-instruction. The agent places object
li© to the environment (programs 4 and 5). It is a message for agent B2 to try to

consume object ar from the environment. (2) The agent B2 consume object li©
(program 13) and then object ar (program 14). (3) In last step we describe at
the same time there are two applicable programs 14 and 15. The execution of the
program 15 make the computation endless. Program 17 is the only one applicable
program and it is circling. Program 15 must be used if there is no object ar in the
environment (this is the case of unsuccessful subtracting- register r stores value
zero). Because of nondeterminism there exists computation correctly decreasing
the number of copies of ar in the environment if this is possible. (4) Agent B1

work independently from agent B2. It continues the computation, it means that
it generates labels of instructions and objects ar regardless of success or failure of
removing demanded object by agent B2.

For instruction lh there is no program applicable in agent B1. If every subtract-
ing instruction was successfully executed agent B2 has no applicable program too.
Then computation halts. The result is the number of object a1 placed in the envi-
ronment and it corresponds to the result of successful computation in the partially
blind register machine.

We construct eco-P colony Π = (A, e, f, VE , DE , B1, B2) with alphabet A =
{li, l′i, l′′i , li©, Li, l

R
i , , l

R1
i , lR2

i | for each li ∈ H} ∪ {ai | 1 ≤ i ≤ m} ∪ {e,R}, final
object f = a1, initial state of the environment VE = ε, 0L scheme DE = (A,PE),
the set of rules of environment PE = {x → x | ∀x ∈ A} and with agents B1 =
(ee, P1), B2 = (ee, P2). The sets of programs we describe in previous paragraphs.

We prove that NRMpb is the subset of the family the sets of natural numbers
generated by eco-P colonies with one agent sender and one agent consumer.

4 Conclusions

In this paper we presented the results obtained during research of eco-P colonies -
the extended model of P colonies. We show that eco-P colonies with active environ-
ment and with two agents consumers can compute every recursively enumerable

Eco-P Colonies 209

set of natural numbers. We show that the family of the sets of natural numbers
computed by partially blind register machine is subset of the family of sets of nat-
ural numbers computed by eco-P colonies with static environment and one agent
consumer and one agent sender.

References

1. L. Cienciala, L. Ciencialová, A. Kelemenová. On the number of agents in P colonies.
In: Membrane Computing. 8th International Workshop, WMC 2007. Thessaloniki,
Greece, June 25-28, 2007. Revised Selected and Invited Papers. Edited by G. Eleft-
herakis, P. Kefalas, Gh. Păun, G. Rozenberg, A. Salomaa. Volume 4860 of Lecture
Notes in Computer Science, Springer-Verlag, Berlin-Heidelberg, 2007, 193-208.

2. L. Ciencialová, E. Csuhaj-Varjú, A. Kelemenová, G. Vaszil. On Very Simple P
Colonies, Proceeding of The seventh Brainstorming Week on Membrane Comput-
ing,Sevilla 2009.

3. E. Csuhaj-Varjú, J. Dassow, J. Kelemen, Gh. Păun. Grammar Systems – A Gram-
matical Approach to Distribution and Cooperation. Gordon and Breach, London,
1994.

4. E. Csuhaj-Varjú, J. Kelemen, A. Kelemenová, Gh. Păun: Eco-grammar Systems.
Grammatical Framework for Studying Lifelike Interactions. Artificial Life 3, 1997,
l-28.

5. E. Csuhaj-Varjú, J. Kelemen, A. Kelemenová, Gh. Păun, Gy. Vaszil. Computing with
cells in environment: P colonies. Journal of Multi-Valued Logic and Soft Computing
12:201-215, 2006.

6. J. Kelemen, A. Kelemenová. On P colonies, a biochemically inspired model of com-
putation. Proc. of the 6th International Symposium of Hungarian Researchers on
Computational Intelligence, Budapest TECH, Hungary, 2005, 40-56.

7. J. Kelemen, A. Kelemenová, Gh. Păun. Preview of P colonies: A biochemically in-
spired computing model. In: Workshop and Tutorial Proceedings. Ninth International
Conference on the Simulation and Synthesis of Living Systems (Alife IX). Edited by
M. Bedau et al. Boston Mass., 2004, 82-86.

8. M. L. Minsky. Computation: Finite and Infinite Machines. Prentice Hall, Engle-wood
Cliffs, NJ, 1967.

9. Gh. Păun. Computing with membranes. Journal of Computer and System Sciences
61, 2000, 108-143.

10. Gh. Păun. Membrane computing: An introduction. Springer-Verlag, Berlin, 2002.
11. P systems web page. January 15 2001. April 23 2009 <http://ppage.psystems.eu>

