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Preface

The Nineteenth Brainstorming Week on Membrane Computing (BWMC) was held
in Sevilla, from January 24 to 27, 2023, hosted by the Research Group on Natural
Computing (RGNC) from the Department of Computer Science and Artificial
Intelligence of Universidad de Sevilla. The first edition of BWMC was organized
at the beginning of February 2003 in Rovira i Virgili University, Tarragona, and
all the next editions have been taking place in Sevilla since then, always at the
end of January and/or at the beginning of February.

In the style of previous meetings in this series, was conceived as a period of
active interaction among the participants, with the emphasis on exchanging ideas
and cooperation. Several “provocative” talks were delivered, mainly devoted to
open problems, research topics, announcements, conjectures waiting for proofs, or
ongoing research works in general (involving both theory and applications). Joint
work sessions were scheduled on the afternoons to allow for collaboration among
the about 30 participants – see the list in the end of this preface.

In the first day of the meeting, the third SCORE Workshop on Membrane
Computing were co-located, where the members of the SCORE Unit of Excellence
(https://score.us.es/) were introduced to the P community.

The papers included in this volume, arranged in the alphabetic order of the au-
thors, were collected in the form available at a short time after the brainstorming;
several of them are still under elaboration. The idea is that the proceedings are a
working instrument, part of the interaction started during the stay of authors in
Sevilla, meant to make possible a further cooperation, this time having a written
support.

A selection of papers from this volume will be considered for publication
in the International Journal of Neural Systems, published by World Scientific
(https://www.worldscientific.com/worldscinet/ijns).

Other papers elaborated during the 2023 edition of BWMC will be submitted
to other journals or to suitable conferences. The reader interested in the final
version of these papers is advised to check the current bibliography of membrane
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computing available in the domain website http://ppage.psystems.eu.
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The list of participants as well as their email addresses are given below, with

the aim of facilitating the further communication and interaction:
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de Andalućıa – Paidi 2020/ Proyecto (P20 00486), (ii) VII Plan Propio, Vicer-
rectorado de Investigación de la Universidad de Sevilla, (iii) Department of Com-
puter Science and Artificial Intelligence from Universidad de Sevilla, and (iv) the
Research Institute of Computer Engineering (I3US) of the University from Uni-
versidad de Sevilla.

The Editors
(Jul 2023)





Contents

Simple P Systems with Prescribed Teams of Sets of Rules
A. Alhazov, R. Freund, S. Ivanov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

P Systems with Reactive Membranes
A. Alhazov, R. Freund, S. Ivanov, D. Orellana-Mart́ın, A. Ramı́rez-de-Arellano,
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Simple P Systems with
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sergiu.ivanov@ibisc.univ-evry.fr

Summary. In this paper we consider simple P systems with prescribed teams of sets
of rules, with the application of the rule sets in the teams probably depending on some
given condition, as well as, in the general case, the different sets of rules in a prescribed
team working in different derivation modes, whereas in homogeneous systems for all sets
of rules the same derivation mode comes into action.

We prove some general results, for example, how with such simple P systems with
prescribed teams of sets of rules we can simulate label controlled P systems, where only
rules with the same label can be applied, as well as how simple purely catalytic P systems
can be mimicked by simple P systems with prescribed teams of sets of non-cooperative
rules with all sets of rules working in the sequential derivation mode and how simple
catalytic P systems can be mimicked by simple P systems with prescribed teams of sets
of non-cooperative rules with some sets of rules working in the sequential derivation mode
and only one working in the maximally parallel derivation mode.

Computational completeness of these simple P systems with prescribed teams of sets
of non-cooperative rules therefore immediately follows from the well-known results for
simple catalytic and purely catalytic P systems, respectively. On the other hand, homo-
geneous simple P systems with prescribed teams of sets of non-cooperative rules with all
teams working in the maximally parallel derivation mode have the same computational
power as ET0L systems used for multisets.

Keywords: applicability condition, computational completeness, ET0L sys-
tems, P systems, prescribed teams
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1 Introduction

A quarter of a century ago, membrane (P) systems were introduced in [12] as
a multiset-rewriting model of computing inspired by the structure – the hierar-
chical membrane structure – and the functioning of the living cell – with the
molecules/objects evolving in parallel. Since then, this area of biologically moti-
vated computing has emerged in a fascinating way. A lot of interesting theoretical
models have been developed by scientists all over the world, many of them al-
ready documented in two textbooks, see [13] and [14]. For actual information, we
refer to the P systems webpage [16] as well as to the issues of the Bulletin of
the International Membrane Computing Society and of the Journal of Membrane
Computing.

P systems traditionally operate on multisets of objects, hence, the power of
non-cooperative rules (even) when working in the maximally parallel derivation
mode is rather restricted; for example, the multiset language {b2n | n ∈ N} cannot
be obtained with non-cooperative rules by halting computations. Therefore, one
of the fundamental questions which has attracted a lot of attention in the area of
P systems is, how variants of different ways of cooperation of the rules and various
control mechanisms affect the computational power. For example, allowing for
cooperative rules rather easily boosts the power of specific variants of P systems
to computational completeness.

One of the well-known control mechanisms forcing some rules to only be applied
together (in the sequential derivation mode) are matrix grammars, in which the
rules are grouped into sequences, which in the given order must be applied one
after another. A less strict variant where the rules in a set of rules called prescribed
teams can be applied in any order was introduced in [6]. In [4], such prescribed
teams are working on different objects.

In contrast to the original model, in which the rules of a team can be applied
together only sequentially, we here consider a team as a set of sets of rules, where
each set of rules has assigned (i) its own applicability condition and (ii) its own
derivation mode in which the rules in this set have to be applied, and based on
one of these teams a suitable multiset of rules to be applied to the underlying
configuration is constructed.

In the model of (simple, i.e., only one membrane region is considered) P systems
with prescribed teams of sets of rules, the application of a team means applying
each set of rules in the chosen team to be used in the derivation mode assigned
to the set in this team, provided the applicability condition based on the features
of the underlying configuration is fulfilled. In internally homogenous systems, all
sets of rules in a team have assigned the same derivation mode, whereas in globally
homogenous systems all teams have assigned the same derivation mode for all sets
of rules in the teams. In this paper, we mainly focus on the sequential and the
maximally parallel derivation mode; investigations with other derivation modes,
as, for example considered in the formal framework for static P systems, see [9],
or others then defined in [5, 2, 3, 1], we leave for future research.
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One obvious result we are going to prove is that globally homogenous simple P
systems working in the maximally parallel derivation mode for the teams of sets of
non-cooperative rules have the same computational power as ET0L systems, i.e.,
extended tabled Lindenmayer systems. Simple P systems with prescribed teams
of sets of rules can simulate label controlled P systems, where only rules with the
same label can be applied. Moreover, simple purely catalytic P systems can be
mimicked by simple P systems with prescribed teams of sets of non-cooperative
rules with the sets of rules working in the sequential derivation mode. For the
simulation of catalytic P systems, one additional set working in the maximally
parallel derivation mode is needed. Computational completeness of these simple
P systems with prescribed teams of sets of non-cooperative rules therefore can
immediately be inferred from the well-known results for simple catalytic and purely
catalytic P systems, respectively. Furthermore, using sets of symbols as permitting
and forbidden context conditions for the sets of rules in the teams allows for an
easy direct simulation of register machines, either with using non-cooperative rules
or else insertion and deletion rules.

2 Definitions

The cardinality of a set M is denoted by |M |. For further notions and results in
formal language theory we refer to textbooks like [7] and [15].

For an alphabet V , a finite non-empty set of abstract symbols, the free monoid
generated by V under the operation of concatenation, i.e., the set containing all
possible strings over V , is denoted by V ∗. The empty string is denoted by λ, and
V ∗\{λ} is denoted by V +. For an arbitrary alphabet V = {a1, . . . , an}, the number
of occurrences of a symbol ai in a string x is denoted by |x|ai

, while the length
of a string x is denoted by |x| =

∑
ai∈V |x|ai

. The Parikh vector associated with
x with respect to a1, . . . , an is (|x|a1

, . . . , |x|an
). The Parikh image of an arbitrary

language L over {a1, . . . , an} is the set of all Parikh vectors of strings in L, and
is denoted by Ps(L). For a family of languages FL, the family of Parikh images
of languages in FL is denoted by PsFL, while for families of languages over a
one-letter (d-letter) alphabet, the corresponding sets of non-negative integers (d-
vectors with non-negative components) are denoted by NFL ( NdFL ).

A (finite) multiset over an alphabet V = {a1, . . . , an}, is a mapping f : V →
N and can be represented by ⟨af(a1)

1 , . . . , a
f(an)
n ⟩ or by any string x for which

(|x|a1
, . . . , |x|an

) = (f(a1), . . . , f(an)). In the following we will not distinguish
between a vector (m1, . . . ,mn), a multiset ⟨am1

1 , . . . , amn
n ⟩ or a string x having

(|x|a1
, . . . , |x|an

) = (m1, . . . ,mn). Fixing the sequence of symbols a1, . . . , an in an
alphabet V in advance, the representation of the multiset ⟨am1

1 , . . . , amn
n ⟩ by the

string am1
1 . . . amn

n is unique. The set of all finite multisets over an alphabet V is
denoted by V ◦. The cardinality of a set or multiset M is denoted by |M |.

The family of regular, context-free, and recursively enumerable string lan-
guages is denoted by L(REG), L(CF ), and L(RE), respectively. As PsL(REG) =
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PsL(CF ), in the area of multiset rewriting L(CF ) plays no role at all, and in the
area of membrane computing we often only get characterizations of PsL(REG)
and PsL(RE) or else PsL(ET0L), where L(ET0L) denotes the family of lan-
guages generated by extended tabled Lindenmayer systems (ET0L systems).

For further notions and results in formal language theory we refer to textbooks
like [7] and [15].

2.1 Register Machines

Register machines are well-known universal devices for computing on (or generat-
ing or accepting) sets of vectors of natural numbers. The following definitions and
propositions are given as in [1].

Definition 1. A register machine is a construct

M = (m,B, l0, lh, P )

where

• m is the number of registers,
• P is the set of instructions bijectively labeled by elements of B,
• l0 ∈ B is the initial label, and
• lh ∈ B is the final label.

The instructions of M can be of the following forms:

• p : (ADD(r), q, s); p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.
Increase the value of register r by one, and non-deterministically jump to in-
struction q or s.

• p : (SUB(r), q, s); p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.
If the value of register r is not zero then decrease the value of register r by one
(decrement case) and jump to instruction q, otherwise jump to instruction s
( zero-test case).

• lh : HALT .
Stop the execution of the register machine.

A configuration of a register machine is described by the contents of each reg-
ister and by the value of the current label, which indicates the next instruction to
be executed. M is called deterministic if the ADD-instructions all are of the form
p : (ADD(r), q).

Throughout the paper, BADD denotes the set of labels of ADD-instructions
p : (ADD(r), q, s) of arbitrary registers r, and BSUB(r) denotes the set of labels
of all SUB-instructions p : (SUB(r), q, s) of a decrementable register r. Moreover,
for any p ∈ B \ {lh}, Reg(p) denotes the register affected by the ADD- or SUB-
instruction labeled by p; for the sake of completeness, in addition Reg(lh) = 1 is
taken.
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In the accepting case, a computation starts with the input of an l-vector of
natural numbers in its first l registers and by executing the first instruction of P
(labeled by l0); it terminates with reaching the HALT -instruction. Without loss of
generality, we may assume all registers to be empty at the end of the computation.

In the generating case, a computation starts with all registers being empty and
by executing the first instruction of P (labeled by l0); it terminates with reaching
the HALT -instruction and the output of a k-vector of natural numbers in its last
k registers. Without loss of generality, we may assume all registers except the last
k output registers to be empty at the end of the computation.

In the computing case, a computation starts with the input of an l-vector of
natural numbers in its first l registers and by executing the first instruction of P
(labeled by l0); it terminates with reaching the HALT -instruction and the output
of a k-vector of natural numbers in its last k registers. Without loss of generality,
we may assume all registers except the last k output registers to be empty at the
end of the computation.

For useful results on the computational power of register machines, we refer to
[11]; for example, to prove our main theorem, we need the following formulation of
results for register machines generating or accepting recursively enumerable sets
of vectors of natural numbers with k components or computing partial recursive
relations on vectors of natural numbers:

Proposition 1. Deterministic register machines can accept any recursively enu-
merable set of vectors of natural numbers with l components using precisely l + 2
registers. Without loss of generality, we may assume that at the end of an accepting
computation all registers are empty.

Proposition 2. Register machines can generate any recursively enumerable set of
vectors of natural numbers with k components using precisely k+2 registers. With-
out loss of generality, we may assume that at the end of a generating computation
the first two registers are empty, and, moreover, on the output registers, i.e., the
last k registers, no SUB-instruction is ever used.

Proposition 3. Register machines can compute any partial recursive relation on
vectors of natural numbers with l components as input and vectors of natural num-
bers with k components as output using precisely l+2+ k registers, where without
loss of generality, we may assume that at the end of a successful computation the
first l+2 registers are empty, and, moreover, on the output registers, i.e., the last
k registers, no SUB-instruction is ever used.

In all cases it is essential that the output registers never need to be decremented.

2.2 Extended Tabled Lindenmayer Systems

An extended tabled Lindenmayer system (an ET0L system for short) is a construct

G = (V,Σ, T1, . . . , Tn, A) where
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• V is a set of objects;
• Σ ⊆ V is a set of terminal objects;
• Tj , 1 ≤ i ≤ n, called tables are finite sets of non-cooperative rules over V , i.e.,

of the form a → u with a ∈ V and u ∈ V ∗;
• A ∈ V + is the axiom.

A computation in the ET0L system G starts with the axiom A; then, in each
computation step, a table Tj is chosen and the rules in Tj are applied to the
current configuration in a parallel way. The language generated by G is the set of
all terminal strings in Σ∗ obtained in that way from the axiom A, i.e.,

L(G) = {w ∈ Σ∗ | A =⇒∗ w}.

ET0L systems can also be considered as computing models working on multi-
sets instead of strings, i.e., the axiom A is the initial multiset and the configurations
are multisets on which the non-cooperative rules in the tables work in parallel. In
the following, such ET0L systems working on multisets will be denoted as mET0L
systems. Obviously, we have L(mET0L) = PsL(ET0L).

Remark 1. As a technical detail we mention that many authors require every table
to contain at least one rule for every object in V . We observe that incomplete
tables missing a rule for some x ∈ V can easily be made complete by adding the
unit rules x → x for all x ∈ V for which so far no rule is already present in the
table.

3 Simple P Systems

Taking into account the well-known flattening process, which means that com-
putations in a P system with an arbitrary (static) membrane structure can be
simulated in a P system with only one membrane, e.g., see [8], in this paper we
only consider simple P systems, i.e., with the simplest membrane structure of only
one membrane region:

Definition 2. A simple P system is a construct

Π = (V, C, Σ,w,R, δ)

where

• V is the alphabet of objects;
• C ⊆ V is the alphabet of catalysts;
• Σ ⊆ (V \ C) is the alphabet of terminal objects;
• w ∈ V ◦ is the multiset of objects initially present in the membrane region;
• R is a finite set of evolution rules over V ; these evolution rules are multiset

rewriting rules u → v with u, v ∈ V ◦;
• δ is the derivation mode.
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A catalytic rule is of the form ca → cv, a non-cooperative rule is of the form
a → v, where c is a catalyst, a is an object from V \ C, and v is a string from
(V \C)∗. A simple P system only using catalytic and non-cooperative rules is called
catalytic, and it is called purely catalytic if only catalytic rules are used. The type
of a (simple) P system only using non-cooperative rules is abbreviated by ncoo,
the types of catalytic and purely catalytic P systems are abbreviated by cat and
pcat, respectively.

The multiset in the single membrane region of Π constitutes a configuration of
the P system. The initial configuration is given by the initial multiset w; in case of
accepting or computing P systems the input multiset w0 is assumed to be added
to w, i.e., the initial configuration then is ww0.

A transition between configurations is governed by the application of the evo-
lution rules, which is done in the given derivation mode δ. The application of a
rule u → v to a multiset M results in subtracting from M the multiset identified
by u, and then in adding the multiset identified by v. Observe that each catalyst
can be used (at most) once in every derivation step.

If no catalysts are used, we omit C and simply write Π = (V,Σ,w,R, δ).

3.1 Variants of Derivation Modes

Given a P system Π = (V, C, Σ,w,R, δ), the set of multisets of rules applicable to
a configuration C is denoted by Appl(Π,C).

The set of all multisets of rules applicable to a given configuration can be re-
stricted by imposing specific conditions, thus yielding the following basic derivation
modes (for example, see [9] for formal definitions):

• asynchronous mode (abbreviated asyn): at least one rule is applied;
• sequential mode (sequ): only one rule is applied;
• maximally parallel mode (max): a non-extendable multiset of rules is applied;
• maximally parallel mode with maximal number of rules (maxrules): a non-

extendable multiset of rules of maximal possible cardinality is applied;
• maximally parallel mode with maximal number of objects (maxobjects): a non-

extendable multiset of rules affecting as many objects as possible is applied.

If Appl(Π,C) is not empty, this set equals the set Appl(Π,C, asyn) of multisets
of rules applicable in the asynchronous derivation mode (abbreviated asyn).

In [5], these derivation modes are restricted in such a way that each rule can
be applied at most once, thus yielding the set modes sasyn, smax, smaxrules, and
smaxobjects (the sequential mode is already a set mode by definition).

In this paper we shall restrict ourselves to the derivation modes sequ and max:

The set Appl(Π,C, sequ) denotes the set of multisets of rules applicable in
the sequential derivation mode (abbreviated sequ), where in each derivation step
exactly one rule is applied.
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The standard parallel derivation mode used in P systems is the maximally
parallel derivation mode (max for short), in which only non-extendable multisets
of rules can be applied:

Appl(Π,C,max) ={R ∈ Appl(Π,C) |
there is no R′ ∈ Appl(Π,C)

such that R′ ⊃ R}.

For some new variants of derivation modes we refer to [2, 3].

3.2 Computations in a P System

The P system continues with applying multisets of rules according to the given
derivation mode until there remain no applicable rules in the single region of Π,
i.e., as usual, with all these variants of derivation modes as defined above, we
consider halting computations.

We may generate or accept or even compute functions or relations. The in-
puts/outputs may be multisets or strings, defined in the well-known way. When
the system halts, in case of computing with multisets we consider the number of
objects from Σ contained in the membrane region at the moment when the system
halts as the result of the underlying computation of Π.

We would like to emphasize that as results we only take the objects from the
terminal alphabet Σ, especially the catalysts are not counted to the result of a
computation. On the other hand, with all the proofs given in this paper, except
for the catalysts – if any – no other “garbage” remains in the membrane region at
the end of a halting computation, i.e., we could even omit Σ.

3.3 (Simple) P Systems With Label Control

We may extend the model of a simple P system to the model of a simple P system
with label control

Π = (V, C, Σ,w,B,R, δ)

by labelling each rule in R by an element from a set of labels B. Then in any
derivation step only rules labeled by the same label r ∈ B are allowed to be used
together. Such controlled P systems were investigated in [10].

Example 1. Consider the simple P system of type ncoo without catalysts

Π = (V = {a, b}, Σ = {a}, w = b, B = {1, 2},R = {1 : b → bb, 2 : b → a},max)

with the two labels 1 and 2 in B as well as the labeled rules 1 : b → bb and 2 : b → a
in R.

Applying rule 1 : b → bb n ≥ 0 times we obtain b2
n

; by applying the second rule
2 : b → a we finally obtain the terminal multiset a2

n

. Hence, L(Π) = {a2n | n ≥ 0},
a multiset language which cannot be obtained by a simple P system of type ncoo
without additional control mechanism.
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4 Simple P Systems with Prescribed Teams of Sets of Rules

We now consider a new model of simple P systems, where in one derivation step
specific sets of rules – called teams – are applied in their assigned derivation mode.
As usual, we start with a finite multiset of objects until no such team can be applied
any more.

Definition 3. A simple P system with prescribed teams of sets of rules – a PPT
system for short – is a construct

Π = (V,Σ, P, T1, . . . , Tn, A) where

• V is a set of objects;
• Σ ⊆ V is a set of terminal objects;
• P is a finite set of multiset rules, i.e., each rule is the form u → v with u ∈ V ∗

and v ∈ V +;
• each prescribed team Tj, 1 ≤ i ≤ n, is a finite set of sets of rules from P

together with the associated derivation mode δj and possibly some applicability
condition Kj, i.e., Tj = ({(Kj,i, Rj,i, δj,i) | 1 ≤ i ≤ nj}), where the Rj,i ⊆ P
are finite sets of rules from P ;

• A ∈ V ◦ is a finite multiset of initial objects from V .

As usual, a rule p ∈ P, p = u → v, is called applicable to a configuration, i.e.,
an object x ∈ V ◦, if and only if u is a subset of x. The set of all rules applicable
to x is denoted by Appl(Π,x)

The number n of teams is called the degree of Π. |Tj | is called the size of the
prescribed team Tj . If all prescribed teams have at most size s, then Π is called
a PPT system of size s. If the number of rules in the sets of rules is at most m,
then Π is called a PPT system of rule size m. Π is called a PPT system of type
(n, s,m), if it is of degree n, size s, and rule size m. Moreover, if all rules in the
sets of rules in the teams are of a specific type α (for example ncoo), we call Π a
PPT system of type (α;n, s,m).

The family of sets of multisets generated/accepted by PPT system of type
(α;n, s,m) is denoted by L(PPTgen(α;n, s,m))/L(PPTacc(α;n, s,m)). Any of the
parameters n, s,m can be replaced by ∗, if the number cannot be bounded; α can
also be omitted.

As derivation modes, we will restrict ourselves to the sequential derivation
mode sequ and the maximally parallel derivation mode max.

The conditions Kj,i in the most general case can be any computable/recursive
features of the underlying configuration. Here we essentially will consider random
context conditions, i.e., Kj,i = (Pj,i, Q,j,i ), where Pj,i and Qj,i are finite sets of
multisets over V ; Pj,i is the set of permitting contexts andQj,i is the set of forbidden
contexts. The random context condition Kj,i = (Pj,i, Qj,i) is fulfilled by a multiset
x if and only if x contains each multiset in Pj,i, but none of the multisets in Qj,i.
If no conditions Kj,i are specified, we simply write Tj = {(Rj,i, δj,i) | 1 ≤ i ≤ nj}.
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If different derivation modes appear in a team, the whole PPT system is called
non-homogenous. The system is called locally homogenous, if for all teams, the sets
of rules in the team all are applied in the same derivation mode δj , and we write
Tj = ({Rj,i | 1 ≤ i ≤ nj}, δj), 1 ≤ j ≤ n. Finally, the system is called globally
homogenous if the derivation mode is the same δ for all Tj , and we only write
Tj = {Rj,i | 1 ≤ i ≤ nj} and specify δ by writing Π = (V,Σ, P, T1, . . . , Tn, δ, A).

Computations in a PPT system

Given a prescribed team of sets of rules

Tj = ({(Kj,i, Rj,i, δj,i) | 1 ≤ i ≤ nj})

with the derivation modes {δj,i | 1 ≤ i ≤ nj} ⊆ {sequ,max}, a derivation step
with Tj on the configuration x can be carried out in the following way:

1. we choose a multiset of rules R ∈ Appl(Π,x); the multiset of objects binded
by R is denoted by Bind(R, x), the multiset of objects in x \ Bind(R, x) is
denoted by Idle(R, x);

2. we now for all 1 ≤ i ≤ nj check whether x fulfills the applicability conditions
Kj,i;

3. each rule in R must be assigned to one of the sets Rj,i for which the applica-
bility condition Kj,i is fulfilled, yielding the multiset of rules R′

j,i; the multiset
of objects binded by the rules in R′

j,i is denoted by Bind(R,R′
j,i,K);

4. for δj,i = max we now check that R′
j,i cannot be extended by using an addi-

tional rule from Rj,i on objects from Idle(R, x);
5. for δj,i = sequ we check whether |R′

j,i| = 1; if not, then we have to check that
no rule from Rj,i can be applied to objects from Idle(R, x);

6. if all checks from above have been passed correctly, the multiset of rules R can
be applied to the current configuration x.

We emphasize that the rule sets in a team compete for the objects available in
the underlying configuration, but at the end each set of rules for itself makes its
part of the transition from the underlying configuration to the next configuration
in a correct way according to its assigned derivation mode, as no idle object could
be binded by an additional rule. Moreover, we observe that a set of rules Rj,i from
Tj can only be chosen if the applicability condition Kj,i is fulfilled by x. Finally,
a team Tj can only be applied if the multiset of rules obtained by the procedure
described above is not empty.

As some variant of the general model we may also consider prescribed teams
of sets of rules for which the applicability conditions Kj,i are the same for all
1 ≤ i ≤ nj , i.e., just one condition Kj , and then we write

Tj = (Kj , {(Rj,i, δj,i) | 1 ≤ i ≤ nj})

and can simplify the procedure for applying Tj by first checking that the current
configuration fulfills Kj .



Simple P Systems with Prescribed Teams of Sets of Rules 11

As a first example we show how label control can easily be simulated by teams
of sets of rules:

Example 2. Consider the globally homogenous PPT system of type ncoo

Π = (V = {a, b}, Σ = {a}, P, T1, T2,max, b) where

P = {b → bb, b → a}, T1 = {{b → bb}}, and T2 = {{b → a}}. Π is a globally
homogenous PPT system of type (ncoo; 2, 1, 1).

Applying team T1, i.e., the rule b → bb, in the maximally parallel way n ≥ 0
times we obtain b2

n

; by applying the second team T2, i.e., the rule b → a, in the
maximally parallel way once, we finally obtain the terminal multiset a2

n

as in
Example 1. Hence, we conclude L(Π) = {a2n | n ≥ 0} as well as

{a2
n

| n ≥ 0} ∈ L(gh(max)PPTgen(ncoo; 2, 1, 1)),

with the prefix gh(max) indicating that we consider globally homogenous PPT
systems working in the derivation mode max.

5 PPT Systems Simulating P Systems With Label Control

As can already be guessed by looking at Example 2, PPT systems can easily
simulate P systems with label control – without catalysts – which are working in
the derivation mode max by putting the rules with the same labels into one team:

Theorem 1. Every P systems with label control Π, without catalysts, and working
in the derivation mode max, can be simulated by a PPT system of type (n, 1, ∗),
where n is the number of different labels for the rules in Π.

Proof. Given a simple P system with label control, without catalysts,

Π = (V,Σ,w,B,R,max)

where each rule in R is labelled by an element from a set of labels B, B = {lj |
1 ≤ j ≤ n}, we construct a globally homogenous PPT system Ψ of degree n and
size 1, simulating (the computations of) Π:

Ψ = (V,Σ, P, T1, . . . , Tn,max,w)

where we define
P = {p | lj : p ∈ R, 1 ≤ j ≤ n}

as well as the teams Tj , 1 ≤ j ≤ n, as follows:

Tj = {{p | lj : p ∈ R}}

By definition, the size of Tj is 1, whereas the number of rules in the single set of
rules in a team can be arbitrarily large.

We observe that applying the set of rules in in the team Tj in Ψ in the maximally
parallel way has the same effect as applying exactly the rules with label lj in Π
in the maximally parallel way. ⊓⊔
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6 PPT Systems Simulating mET0L Systems

We now show that the computational power of mET0L systems equals the com-
putational power of globally homogenous PPT systems of type ncoo without ap-
plicability conditions working in the derivation mode max.

Theorem 2. Every mET0L system with n tables can be simulated by a globally
homogenous PPT system of type ncoo, degree n, and size 1 without applicability
conditions working in the derivation mode max.

Proof. The mET0L system G = (V,Σ, T ′
1, . . . , T

′
n, A) can be simulated by the

globally homogenous PPT system of type ncoo, degree n, and size 1 without ap-
plicability conditions working in the derivation mode max

Π = (V,Σ, P, T1, . . . , Tn,max,A)

where we simply take

Tj = {T ′
j \ {a → a | a ∈ Σ}}, 1 ≤ j ≤ n,

i.e., the work of the table T ′
j is simulated by the single set of rules in the team Tj

of the PPT system Π.
We observe that we have to exclude the unit rules a → a for the terminal

symbols a ∈ Σ, from the sets of rules T ′
j , 1 ≤ j ≤ n, in order to ensure that

Π halts as soon as a terminal configuration (i.e., a configuration only containing
terminal symbols) has been reached. Finally, we mention that every (useless) team
Tj of the form {∅} is to be omitted. ⊓⊔

In order to show the inverse inclusion, we need the following lemma:

Lemma 1. Every globally homogenous PPT system of degree n and size k without
applicability conditions working in the derivation mode max can be simulated by
a globally homogenous PPT system of degree n and size 1 without applicability
conditions working in the derivation mode max.

Proof. The globally homogenous PPT system of degree n and size k without ap-
plicability conditions working in the derivation mode max

Π = (V,Σ, P, T1, . . . , Tn,max,A)

with Tj = {Rj,i | 1 ≤ j ≤ nj}, 1 ≤ j ≤ n, can be simulated by the corresponding
globally homogenous PPT system of degree n and only size 1 without applicability
conditions working in the derivation mode max

Π ′ = (V,Σ, P, T ′
1, . . . , T

′
n,max,A)

where we take T ′
j = {{y | y ∈ Rj,i, 1 ≤ i ≤ nj}}. We observe that by definition the

rules in the Rj,i work in parallel on the underlying configurations in the same way
if they are grouped in the Rj,i or just in one set of rules {y | y ∈ Rj,i, 1 ≤ i ≤ nj}.
We observe that Π ′ again is of degree n, but only of size 1. ⊓⊔
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Based on this lemma, we now can show how a globally homogenous PPT system
of type ncoo, degree n without applicability conditions working in the derivation
mode max can be simulated by an mET0L system with n tables:

Theorem 3. Every globally homogenous PPT system of type ncoo, degree n, and
size k without applicability conditions working in the derivation mode max can be
simulated by an mET0L system with n tables.

Proof. According to Lemma 1, without loss of generality we may assume that the
size k is only one. Hence, we may start with a globally homogenous PPT system
of type ncoo, degree n, and size 1 without applicability conditions working in the
derivation mode max

Π = (V,Σ, P, T1, . . . , Tn,max,A)

where for the teams Tj we have Tj = {T ′
j}, 1 ≤ j ≤ n, with T ′

j being a set of
non-cooperative rules.

Then the mET0L system

G = (V,Σ, T ′
1, . . . , T

′
n, A)

simulates the (computations of the) PPT system Π, as the work of the table T ′
j

simulates the application of the team Tj of the PPT system Π with the single set
of rules T ′

j .
As a technical detail we mention that the tables T ′

j have to be extended by
unit rules x → x for every x ∈ V for which no rule is already present in it, in order
to fulfill the requirement for ET0L systems as already discussed in Remark 1. ⊓⊔

In sum, we have shown the following result (where gh(max)PPT (ncoo) denotes
the globally homogenous PPT systems of type ncoo working in the derivation mode
max):

Theorem 4. L(mET0L) = L(gh(max)PPT (ncoo)).

7 PPT Systems Simulating [Purely] Catalytic P Systems

We first consider purely catalytic P systems, which correspond to PPT systems
where all sets of non-cooperative rules in the unique team work in the sequential
derivation mode.

Theorem 5. Every purely catalytic P system with n catalysts can be simulated
by a corresponding globally homogenous PPT system of type ncoo, degree 1, and
size n without applicability conditions working in the derivation mode sequ.
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Proof. The purely catalytic P system with n catalysts

Π = (V, C, Σ,w,R,max),

i.e., C = {ck | 1 ≤ k ≤ n}, can be simulated by the globally homogenous PPT
system of type ncoo, degree 1, and size n without applicability conditions working
in the sequential derivation mode

Π = (V,Σ, P, T1, sequ, w)

with T1 = {R1,k | 1 ≤ k ≤ n} and

P = {a → u | cka → cku ∈ R for some 1 ≤ k ≤ n}

as well as
R1,k = {a → u | cka → cku ∈ R}, 1 ≤ k ≤ n.

The applicability of the unique team works by applying (at most) one rule a → u
from each R1,k, 1 ≤ k ≤ n, which corresponds to applying the corresponding rule
cka → cku in Π. ⊓⊔

Simple catalytic P systems with n catalysts can be mimicked by simple P
systems with prescribed teams of sets of rules, where as in the case of purely
catalytic P systems the work of the n catalysts is simulated by n sets of non-
cooperative rules in the team working in the sequential mode and one additional
set of non-cooperative rules simulates the set of non-catalytic rules with working
in the maximally parallel derivation mode.

Theorem 6. Every catalytic P system with n catalysts can be simulated by a cor-
responding PPT system of type ncoo, degree 1, and size n+1 without applicability
conditions with n components of the unique team working in the derivation mode
sequ and one working in the derivation mode max.

Proof. The catalytic P system with n catalysts

Π = (V, C, Σ,w,R,max),

i.e., C = {ck | 1 ≤ k ≤ n}, can be simulated by the PPT system of type ncoo,
degree 1, and size n+ 1 without applicability conditions

Π = (V,Σ, P, T1, w)

with T1 = {R1,k | 1 ≤ k ≤ n+ 1} and

P = {a → u | cka → cku ∈ R for some 1 ≤ k ≤ n} ∪ {a → u | a → u ∈ R}

as well as
R1,k = ({a → u | cka → cku ∈ R}, sequ), 1 ≤ k ≤ n,
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and
R1,n+1 = ({a → u | a → u ∈ R},max),

The application of the unique team works by applying (at most) one rule a → u
from each R1,k, 1 ≤ k ≤ n, which corresponds to applying the corresponding rule
cka → cku in Π, as well as the rules in R1,n+1 in the maximally parallel way.

Observe that in contrast to the globally homogenous PPT systems for simu-
lating purely catalytic P systems, we now have non-homogenous PPT systems, as
we have to use both derivation modes sequ and max in the unique team. ⊓⊔

According to Propositions 2 and 1, from Theorems 5 and 6 we immediately
infer the following results:

Corollary 1. For any d ≥ 1, we have

1. NdL(RE) = L(PPTgen(ncoo; 1, 3, ∗)) and
2. NdL(RE) = L(PPTacc(ncoo; 1, d+ 3, ∗));

moreover,
PsL(RE) = L(PPTgen(ncoo; 1, ∗, ∗)) = L(PPTacc(ncoo; 1, ∗, ∗)).
In all cases, the degree of the PPT systems is only 1.

8 PPT Systems Directly Simulating Register Machines

In this section we show how register machines can directly be simulated by PPT
systems in an easy way when using applicability conditions represented by sets of
permitting and forbidden contexts, see the defintion on page 9.

Theorem 7. The computations of a register machine can be simulated by a globally
homogenous PPT system of type ncoo and size 2 using permitting and forbidden
contexts as applicability conditions in the sequential derivation mode.

Proof. Consider the register machine

M = (m,B, l0, lh, R)

with BADD denoting the set of labels of ADD-instructions p : (ADD(r), q, s) of
arbitrary registers r, and BSUB(r) denoting the set of labels of all SUB-instructions
p : (SUB(r), q, s) of a decrementable register r. Moreover, for any p ∈ B \ {lh},
Reg(p) denotes the register affected by the ADD- or SUB-instruction labeled by p.

We now construct the globally homogenous PPT system of size 2 working in
the sequential derivation mode using permitting and forbidden contexts as appli-
cability conditions

Π = (V,Σ, P, T1, . . . , Tn, sequ, w).

Throughout the computation of Π, one symbol p ∈ B represents the instruction
from the register machine to be simulated next, and the number of symbols ar
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represents the contents of register r, 1 ≤ r ≤ m. Hence, we start with the axiom
w = l0w0, where w0 represents the initial contents of the registers. If the final label
lh appears, we know that the computation in M has been successful and finally
can erase lh, so that a multiset over Σ remains as the result of the computation.

Moreover, the set of symbols V only consists of the labels in B and the symbols
ar representing the registers:

V = B ∪ {ar | 1 ≤ r ≤ m}.

The set of terminal symbols Σ consists of only those symbols from the set {ar |
1 ≤ r ≤ m} which represent output registers.

We need the following simple non-cooperative rules in P for the simulation of
the instructions of M :

P = {p → qar, p → sar | p : (ADD(r), q, s) ∈ R}
∪ {p → q, p → s | p : (SUB(r), q, s) ∈ R}
∪ {ar → λ | 1 ≤ r ≤ m and r is a decrementable register}
∪ {lh → λ}

The teams of sets of rules with applicability conditions for simulating the in-
structions of the register machine defined below form the teams T1, . . . , Tn.

• p : (ADD(r), q, s), p ∈ BADD, is simulated by the team

Rp = {(({p}, ∅), {p → qar, p → sar})}
which can also be written in a simpler way as
Rp = {{p → qar, p → sar}}, because the rules in this set of rules in this team
can anyway only be applied if p is present.

• p : (SUB(r), q, s); p ∈ BSUB(r), is simulated by the team of sets of rules

Rp,1 = (({p, ar}, ∅), {{p → q}, {ar → λ}})

(both the presence of p and ar have to be checked in order to guarantee that
both rules p → q and ar → λ are applied) as well as by the team of sets of
rules

Rp,2 = {(({p}, {ar}), {p → s})}

(both the presence of p and the absence of ar have to be checked to guarantee
that we only proceed to label s if no symbol ar is present).

• lh : HALT is simulated by the team
Rh = {(({lh}, ∅), {lh → λ})},
which can also be written in a simpler way as
Rh = {{lh → λ}}.
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Only in the case of applying a team Rp,1 two rules are applied in one step,
otherwise only one rule is applied.

The application of a team is only possible if the current label symbol p appears
in the underlying configuration, and in the case of a SUB-instruction also the
presence/absence of aReg(p) is correctly given. Throughout the computation in Π
exactly one of the teams of sets of rules is applicable before finally a configuration
only containing terminal symbols is reached. ⊓⊔

9 Computational Completeness

According to Subsection 2.1, register machines are a model being computationally
complete for multisets. Hence, from Theorem 7 we immediately infer the following
result:

Theorem 8. PPT systems of type ncoo and size 2 when using applicability con-
ditions represented by sets of permitting and forbidden contexts in the sequential
derivation mode are computationally complete for multisets.

Instead of non-cooperative rules we can also use the simple rules of insertion
and deletion:

• I(a) inserts an object a in the underlying multiset (and can be interpreted as
the rule λ → a).

• D(a) deletes an object a from the underlying multiset, if at least one a is
present (and can be interpreted as the rule a → λ).

Based on the proof of Theorem 7, we easily get the following result for PPT
systems using insertion and deletion rules (called PPT systems of type InsDel for
short):

Corollary 2. PPT systems of type InsDel and size 3 when using applicability
conditions represented by sets of permitting and forbidden contexts in the sequential
derivation mode are computationally complete for multisets.

Proof. Consider the register machine

M = (m,B, l0, lh, R)

with BADD denoting the set of labels of ADD-instructions p : (ADD(r), q, s) of
arbitrary registers r, and BSUB(r) denoting the set of labels of all SUB-instructions
p : (SUB(r), q, s) of a decrementable register r. Moreover, for any p ∈ B \ {lh},
Reg(p) denotes the register affected by the ADD- or SUB-instruction labeled by p.

We now construct the globally homogenous PPT system of type InsDel and
size 3 working in the sequential derivation mode using permitting and forbidden
contexts as applicability conditions

Π = (V,Σ, P, T1, . . . , Tn, sequ, w).
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Throughout the computation of Π, one symbol p ∈ B represents the instruction
from the register machine to be simulated next, and the number of symbols ar
represents the contents of register r, 1 ≤ r ≤ m. Hence, we start with the axiom
w = l0w0, where w0 represents the initial contents of the registers. If the final label
lh appears, we know that the computation in M has been successful and finally
can erase lh, so that a multiset over Σ remains as the result of the computation.

Moreover, the set of symbols V only consists of the labels in B and the symbols
ar representing the registers:

V = B ∪ {ar | 1 ≤ r ≤ m}.

The set of terminal symbols Σ consists of only those symbols from the set {ar |
1 ≤ r ≤ m} which represent output registers.

We need the following simple insertion and deletion rules in P for the simulation
of the instructions of M :

P = {I(p), D(p) | p ∈ B}
∪ {I(ar) | 1 ≤ r ≤ m}
∪ {D(ar) | 1 ≤ r ≤ m and r is a decrementable register}

The teams of sets of rules with applicability conditions for simulating the in-
structions of the register machine defined below form the teams T1, . . . , Tn.

• p : (ADD(r), q, s), p ∈ BADD, is simulated by the team

Rp = {(({p}, ∅), {D(p)}),
(({p}, ∅), {I(q), I(s)}),
(({p}, ∅), {I(ar)})},

which in a shorter way could be written as

Rp = (({p}, ∅), {{D(p)}, {I(q), I(s)}, {I(ar)}})

as the applicability condition ({p}, ∅) is required for all sets of rules in the
team. Observe that the size of these teams now is 3!

• p : (SUB(r), q, s); p ∈ BSUB(r), is simulated by the team

Rp,1 = (({p, ar}, ∅), {{D(p)}, {I(q)}, {D(ar)}})

(again the size of these teams now is 3)

as well as by the team

Rp,2 = (({p}, {ar}), {{D(p)}, {I(s)}})
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• lh : HALT is simulated by the team

Rh = {{D(lh)}}.

Throughout the computation in Π exactly one of the teams of sets of rules
is applicable before finally a configuration only containing terminal symbols is
reached. ⊓⊔

As is well-known, catalytic and purely catalytic P systems are computationally
complete (for multisets), too. Therefore, based on the results shown in Section 7
we get the following results (compare with Corollary 1):

Corollary 3. Globally homogenous PPT systems of type ncoo and degree 1 without
applicability conditions working in the sequential derivation mode are computation-
ally complete for multisets.

Corollary 4. PPT systems of type ncoo and degree 1 without applicability condi-
tions with one set of rules in the unique team working in the maximally parallel
derivation mode and all the other sets of rules working in the sequential derivation
mode are computationally complete for multisets.

10 Conclusion

In this paper we have considered the concept of using prescribed teams of sets of
rules being applied in different derivation modes, with the applicability of a team
possibly depending on a given condition. Among other general results, we have
shown that simple purely catalytic P systems with n catalysts can be simulated
by simple P systems with one prescribed team of sets of rules with all n sets of
non-cooperative rules in this team working in the sequential derivation mode thus
simulating the work of the n catalysts, as well as that simple catalytic P systems
with n catalysts can be simulated by simple P systems with one prescribed team
of sets of non-cooperative rules, where one set of this team works in the maxi-
mally parallel derivation mode and the other n sets of rules in this team work in
the sequential mode thus again simulating the work of the n catalysts. From the
results known for simple (purely) catalytic P systems, we immediately infer the
corresponding computational completeness results for the new variants of simple
P systems, with on one hand only using non-cooperative rules and no applicability
conditions. On the other hand, we can show computational completeness for differ-
ent variants of simple P systems with prescribed teams of sets of non-cooperative
rules by directly simulating register machines, thereby using applicability condi-
tions given as sets of (atomic) promoters and inhibitors.

Throughout this paper, we have restricted ourselves to the two basic derivation
modes, i.e., the sequential one and the maximally parallel derivation mode. A
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thorough investigation of simple P systems with prescribed teams of sets of rules
using other derivation modes remains for future research. Moreover, other kinds of
rules might be used, too; for example, insertion and deletion rules instead of non-
cooperative rules as already used for simulating register machines in Corollary 2.
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Summary. Membranes are one of the key concepts in P systems and membrane comput-
ing, and a lot of research focuses on their properties and possible extensions: membrane
division, membrane dissolution, mobile membranes, etc. In this work, we explore the
possibility of using membranes for thinking about the emergence of milieu separations
at the origins of life. We propose a new variant of P systems with reactive membranes,
in which every symbol is initially surrounded by an elementary membrane, and in which
membranes can non-deterministically merge and split, leading to the formation of bigger
and more complicated membranes. We show that such non-deterministic splitting and
merging does not seem to radically affect the computational power: P systems with reac-
tive membranes and non-cooperative rules generate at least all semilinear languages, and
cooperative rules allow for simulating partially blind register machines. We briefly discuss
using P systems with reactive membranes for illustrating the emergence of autocatalytic
cycles, but actual constructions are left for future work.

Keywords: origins of life, P systems, self-assembly, space and topology.
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1 Introduction

Membrane computing is a multiset rewriting-based theoretical construct for natu-
ral computing, originally introduced by Gh. Păun in [23], and extensively studied
ever since. The structure of a membrane system—or a P system—mimics that
of a living cell: it is a hierarchical family of nested membranes, each carrying a
multiset of abstract objects and multiset rewriting rules. The objects can be seen
as formal representations of chemical species, and the rewriting rules capture the
biochemical interactions these species may have.

Beyond the obvious abstraction arrow between biochemical species and formal
objects, membrane computing parallels biological systems in another interesting
way. In biology, centralization of functions is quite frequent (e.g., central nervous
systems, specialized organs, etc.), but not fundamental. Only as a first example,
simple organisms carry out many activities in a decentralized way, weakly orches-
trated by interference between related processes. Take unicellular organisms: a
computer scientist may be tempted to consider the genetic material as the pro-
gram for the whole cell, but it is now known (e.g. [10]) that the relationship
between the genotype and the phenotype—its manifestation—is very far from the
clear program–execution duality imbuing computer science. As an abstraction of
hierarchically structured biochemistry, P systems inherit this weakly centralized
way of functioning, which makes them a good candidate for supporting the thought
process about some grand laws of biology.

In this paper, we lay the groundwork for using P systems as a tool for thinking
about some aspects of the emergence of life. The particular question we focus
on is the emergence of milieu separations, which played an essential role as they
allowed to isolate and protect relevant processes from the environment [11]. Since
P systems already include membranes as first-class citizens, we will use them as
a framework for thinking about the emergence of complex regions from simpler
ones.

The approach we take here is to posit that every copy of a symbol a is endowed
with some elementary space—a membrane which initially only contains the multi-
set a. Two such symbols can bond by merging their membranes, thereby yielding
a more complex membrane containing 2 symbols. Such membranes can further
merge, yielding bigger and bigger regions. Dually, membranes containing multi-
ple symbols can split into a pair of simpler membranes, with the content of the
original larger membrane distributed across its children. This is in fact membrane
separation (e.g. [7, 21, 22]).

Measuring the complexity of a membrane by the number of symbols it contains
is simultaneously simple and appropriate: cooperative evolution rules are allowed,
so more symbols means more applicable rules and therefore more interactions. In
the setup we establish in this paper, all membranes share the same common set
of evolution rules. The rules can naturally be seen as defining a chemistry, while
membrane merging and splitting can on the other hand be seen as some lower-
level ground laws governing who may interact with whom, i.e. the topology of
the interactions. The resulting abstract structures featuring merging and splitting
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membranes are therefore systems in which objects interact based on the non-
deterministic variations in their neighborhoods. We call such structures P systems
with reactive membranes.

Before using P systems with reactive membranes as a formal tool, a number of
important details have to be sorted out. In particular, we show that the definition
of membrane splitting and merging turns out rather nontrivial. Choosing when to
recover and how to interpret the result also impacts the form of the computations
of a P system with reactive membranes, and also what kind of results one can
expect. Finally, this P system variant as informally introduced above and defined
in Section 3 is very basic and may be extended in many ways, as we briefly show
in Section 5.

Note that we do not pretend to faithfully model in any way the processes which
happened at the origins of life. Rather, we acknowledge the exceptional complexity
of these processes, as well as the impossibility to experimentally verify any of
the related hypotheses (e.g., [17]). The intended role of P systems with reactive
membranes is to serve as a formal vehicle for an otherwise abstract thought process,
to help verify the latter in a basic way, and to help the researcher to deal with
complex questions. This approach is similar in spirit to the works [26, 27], in which
sign Boolean networks are used with a similar purpose.

P systems with reactive membranes are naturally part of the lineage of P sys-
tems with active membranes, and feature similarities with other variants in this
family. Among closely related variants are P systems with mobile membranes, in
which membranes are allowed to move across the membrane structure, and thereby
change their immediate neighbors [8, 9, 20]. Another variant are P systems with
vesicles of multisets, in which multisets are contained in vesicles, which are con-
tained in membranes, implying that entire multisets of symbols can travel between
different membranes, thereby activating different sets of rules [5, 15]. A key speci-
ficity of P systems with reactive membranes setting them apart from the other
variants is that membrane splitting and merging is global, compulsory, and inde-
pendent of the contents of the membranes or of the rules. This feature introduces
a basic form of space, through which the entities travel and in which they interact
in their immediate neighborhood. On the other hand, such compulsory splitting
and merging modulates the computational power in interesting ways.

This paper is structured as follows. In Section 2 we recall some basic concepts
from formal languages and P systems. In Section 3 we introduce P systems with
reactive membranes, and define the precise semantics of splitting and merging of
membranes. In Section 4 we present some first results concerning the computa-
tional power of P systems with reactive membranes, with non-cooperative and
cooperative rules. In Section 5 we give some examples of possible extensions to the
new variant. Finally, in Section 6, we discuss the potential of reactive membranes
for illustrating some processes which happened at the origins of life, as well as
some aspects of their computational power.
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2 Preliminaries

For an alphabet V , a finite non-empty set of abstract symbols, the free monoid
generated by V under the operation of concatenation, i.e., the set containing all
possible strings over V , is denoted by V ∗. The empty string is denoted by λ, and
V ∗\{λ} is denoted by V +.

For two natural numbers a, b ∈ N, a ≤ b, we use the notation [a..b] to refer to
the interval of natural numbers between a and b, both included: [a..b] = {a, a +
1, . . . , b}.

Given a finite set A, a multiset over A is a function w : A → N, assigning the
number of times an element of A appears in w. The infinite set of all multisets over
A is denoted by A◦. The family of finite sets of finite multisets over A is denoted
by Pfin(A

◦).
To spell out a multiset w, we will generally write any string containing exactly

the same symbols with the same multiplicities. For example, the strings aab, aba,
ba2 will be used to refer to the same multiset w with the property w(a) = 2,
w(b) = 1, and w(c) = 0 for all c ∈ A \ {a, b}. We denote the empty multiset by Λ,
i.e. ∀a ∈ A : Λ(a) = 0, and its string representation is λ, the empty string.

Given two multisets w1 and w2 over A, their multiset union w1 ∪w2 is defined
as (w1 ∪ w2)(a) = w1(a) + w2(a), for all a ∈ A. As their multiset intersection
w1 ∩w2 we define (w1 ∩w2)(a) = min{w1(a), w2(a)}. A restriction of the multiset
w : A → N to the subset B ⊆ A is the multiset w|B : A → N with the property
that w|B(a) = w(a) if a ∈ B and w|B(a) = 0 otherwise.

The family of regular, context-free, and recursively enumerable string languages
is denoted by L(REG), L(CF ), and L(RE), respectively. For a family of languages
FL, the family of Parikh images of languages in FL is denoted by PsFL. As
PsL(REG) = PsL(CF ), in the area of multiset rewriting L(CF ) plays no role at
all, and in the area of membrane computing we often only get characterizations of
PsL(REG) and PsL(RE).

For further notions and results in formal language theory we refer to textbooks
like [12] and [25].

In the rest of this section, we briefly recall P systems and the related concepts.
For more extensive overviews, we refer the reader to [18, 24].

A (transition) P system is a construct

Π = (O, T, µ, w1, . . . , wn, R1, . . . Rn, δ, hi, ho) where

• O is the alphabet of objects,
• T ⊆ O is the alphabet of terminal objects,
• µ is themembrane structure injectivley labelled by the numbers from {1, . . . , n}

and usually given by a sequence of correctly nested brackets,
• wi are the multisets giving the initial contents of each membrane i, 1 ≤ i ≤ n,
• Ri is the finite set of rules associated with membrane i, 1 ≤ i ≤ n,
• δ is the derivation mode, and
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• hi and ho are the labels of the input membrane and the output membrane,
respectively; 1 ≤ hi ≤ n, 1 ≤ ho ≤ n).

Taking into account the well-known flattening process, which means that com-
putations in a P system with an arbitrary (static) membrane structure can be
simulated in a P system with only one membrane, e.g., see [14], often only simple
P systems are considered, i.e., with the simplest membrane structure of only one
membrane region, and then we write:

Π = (O, T,w1, R1, δ)

Quite often, the rules associated with membranes are multiset rewriting rules
(or special cases of such rules). Multiset rewriting rules have the form u → v, with
u ∈ O◦ \ {λ} and v ∈ O◦, where O◦ is the set of multisets over O, and λ(a) = 0,
for all a ∈ O. If |u| = 1, the rule u → v is called non-cooperative, otherwise it
is called cooperative. In communication P systems, rules are additionally allowed
to send symbols to the neighbouring membranes. In this case, for rules in Ri,
v ∈ (O × Tar i)

◦, where Tar i contains the symbols out (corresponding to sending
the symbol to the parent membrane), here (indicating that the symbol should be
kept in membrane i), and inj (indicating that the symbol should be sent into the
child membrane j of membrane i). When writing out the multisets over O×Tar i,
the indication here is often omitted.

In P systems, rules are often applied in the maximally parallel way: in one
derivation step, only a non-extendable multiset of rules can be applied. The rules
are not allowed to consume the same instance of a symbol twice, which creates
competition for objects and may lead to non-deterministic choice between the max-
imal collections of rules applicable in one step. The maximally parallel derivation
mode is generally denoted by the symbol max. Other derivation modes include
the sequential derivation mode sequ in which exactly one rule is applied in every
step, the set maximally parallel derivation mode smax only allowing multisets of
rules in which every rule has multiplicity 1, as well as the asynchronous derivation
mode asyn under which no restriction is imposed on the applied multiset of rules.
We refer to the works [3, 4, 6, 16] for an in-depth discussion of the matter.

A computation of a P system is traditionally considered to be a sequence of
configurations it can successively visit, stopping at the halting configuration. A
halting configuration is a configuration in which no rule can be applied any more,
in any membrane. The result of a computation in a P system Π as defined above is
the contents of the output membrane ho projected over the terminal alphabet T .

We will use the notations N(Π) and Ps(Π) to respectively refer to the number
language and the language of multisets generated by Π. The notation OPn(δ, τ)
will refer to the family of P systems with at most nmembranes, operating under the
derivation mode δ and relying on the rules of type τ , where τ = coo if cooperative
rules are allowed and τ = ncoo if all rules are non-cooperative. Finally, we use the
notations NOPn(δ, τ) and PsOPn(δ, τ) to refer to the family of number languages
and multiset languages, respectively, generated by the P systems in the family
OPn(δ, τ).
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Example 1. Figure 1 shows the graphical representation of the P system formally
given by

Π = ({a, b, c, d}, {a, d}, [1[2]2]1, R1, R2, 1, 1),
R2 = {a → aa, b → b (c, out)},
R1 = ∅.

a → aa
b → b (c, out)

ab
2

d

1

Fig. 1. An example of a simple P system.

In the maximally parallel mode, the inner membrane 2 of Π will apply as many
instances of the rules as possible, thereby doubling the number of a, and ejecting
a copy of c into the surrounding (skin) membrane in each step. The symbol d in
the skin membrane is not used. Therefore, after k steps of evolution, membrane 2

will contain the multiset a2
k

b and membrane 1 the multiset ckd. Since all rules are
always applicable in Π, this P system never halts. ⊓⊔

3 Reactive Membranes

A P system with reactive membranes is the following construct:

Π = (O, T,W0, R, δ) where

• O is the alphabet of objects,
• T ⊆ O is the alphabet of terminal objects,
• W0 ∈ Pfin(O

◦) is the (finite) initial set of multisets over O,
• R ⊆ O◦ ×O◦ is the set of evolution rules, and
• δ is the derivation mode.

We will require that at least one of the sides of all rules in R be non-empty, i.e.

∀u → v ∈ R : u ̸= λ ∨ v ̸= λ.

We immediately stress two major features of this definition. On the one hand,
we do not include any membrane structure. Indeed, as W0 hints, we simply use
individual multisets to represent the contents of the individual membranes, without
explicitly representing the membranes themselves. Incidentally, this means that
membranes do not nest in this model. On the other hand, the evolution of all
symbols in all multisets is governed by the same common set of rules R.
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A configuration of Π is any set of multisets over O. Similarly to networked
models of computing like networks of evolutionary processors (e.g. [19]) or tissue
P systems with vesicles of multisets [5], a computation step in P systems with
reactive membranes consists of two stages:

1. splitting and merging,
2. evolution.

Informally, the splitting and merging stage implements the non-deterministic
evolution of the membranes—individual multisets under this definition—as de-
scribed in the introduction: any two multisets may merge, and any multiset may
split in two. The evolution stage consists in applying the evolution rules in R
to every multiset of the configuration, according to the mode δ. In the following
paragraphs we give a formal description of both stages, applied to a configuration
Wi ∈ Pfin(O

◦).

Splitting and merging stage

1. Non-deterministically partition Wi into 3 subsets:

Wi = Mi ∪ Si ∪ Ii

such that |Mi| is even, and the sets Si, Mi, and Ii are mutually disjoint, i.e.,
Si ∩Mi = Si ∩ Ii = Mi ∩ Ii = ∅. The multisets in Mi will be merged pairwise,
the multisets in Si will be split, and the multisets in Ii will remain intact.

2. Partition Mi into a set of disjoint pairs. Non-deterministically pick a bijection
φ : [1..|Mi|] → Mi and construct the following set:

M̂i = {(φ(2k − 1), φ(2k)) | 1 ≤ k ≤ |Mi|/2}.

Then define M ′
i = {w1 ∪ w2 | (w1, w2) ∈ M̂i}.

3. Define split(w) to be the set of all possible ways to split the multiset w into
two multisets:

split(w) = {(w1, w2) | w1 ∪ w2 = w,w1, w2 ∈ O◦}.

Define the set of all possible ways of splitting the multisets in Si:

Ŝi =
∏
w∈Si

split(w).

Non-deterministically pick S′
i ∈ Ŝi.

4. Compute the new intermediate configuration as

W ′
i = M ′

i ∪ flatten(S′
i) ∪ Ii,

where flatten(S′
i) = {w1, w2 | (w1, w2) ∈ S′

i}.

In the above presentation we describe merging before splitting, but the order of
the two substeps does not matter, since they occur on disjoint sets Mi and Si. Fur-
thermore, we stress that multiple intermediate configurations W ′

i may be obtained
from the same configuration Wi.
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Evolution stage

The evolution stage is defined in the conventional way by applying the rules in R
to every multiset in W ′

i individually, according to the derivation mode δ:

Wi = {w′ ∈ W ′
i | w

δ,R
==⇒ w′},

where w′ is a multiset derived from w by applying the rules in R under the mode δ.

A configurationW is halting if no rules are applicable in the evolution stage, for
any intermediate configuration W ′ which can be obtained from W in the splitting
and merging stage. An n-step halting computation of a P system with reactive
membranes Π is a finite sequence of configurations (Wi)0≤i≤n such that Wi+1 is
obtained from Wi by the computation step described above, and Wn is a halting
configuration.

As the result of a computation in a P system with reactive membranes Π as
defined above we take all the terminal objects appearing in the membranes present
in a halting configuration Wn:( ⋃

w∈Wn

w

)∣∣∣∣∣
T

=
⋃

w∈Wn

w|T .

To conclude the introduction of P systems with reactive membranes, we
again stress that the splitting and merging of multisets (or membranes) is non-
deterministic, imposed in every computation step, and independent of the features
of the configuration or of the rules in R. More concretely, the rules in R cannot
directly influence which symbols will appear next to which after the splitting and
merging stage.

Example 2. Consider the following P system with reactive membranes:

Π = (O, T,W0, R,max), where
O = {a, b, c, d, e, f},
T = {d, f},
W0 = {a, b, c},
R = {ab → d, abc → f, a → e}.

For the first step of the computation, Π may decide to not split or merge any
multisets (M0 = S0 = ∅, I0 = W0), meaning that the evolution rules will be
applied directly to singleton multisets a, b, and c. While no rules are applicable to
b or c individually, the rule a → e will have to be applied to a, yielding the next
configuration W1 = {b, c, e}. We can immediately conclude that the rules ab → d
and abc → f will never be applicable any more later in this computation, as there
is no way to reintroduce a. In sum, this halting computation yields the result Λ.
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Suppose now that Π decides to merge the multisets a and b in the first
step, yielding the intermediate configuration W ′

0 = {ab, c}. In this case a non-
deterministic choice will appear in the evolution stage between applying the rule
ab → d or a → e (both singleton sets of rules are non-extendable). As a conse-
quence, the following two possibilities exist for the second configuration: {d, c} and
{eb, c}. In sum, these halting computations yield the results d and Λ, respectively.

Finally, note that the rule abc → f will never be applicable with W0 = {a, b, c},
since putting a, b, and c together in one membrane requires at least two mergers,
and a will necessarily be consumed by a → e or ab → d along the way. On the
other hand, if we put together a, b and c in one multiset from the start, or even if
we put ab together and c apart, the rule abc → f will have a chance to be applied.
In particular, in the case in which the initial configuration is {ab, c} it suffices
to consider the branch of the computation along which Π decides to merge the
two multisets in the first splitting and merging stage. In sum, with the initial sets
{ab, c} and {a, b, c} we can get the results Λ, d, and f . ⊓⊔

As indicated by the example discussed above, it makes a difference in how
many multisets the initial multiset of objects is divided. Thus, we will use the
notation RenOP (δ, τ) to refer to the family of P systems with reactive membranes
starting with n initial multisets, running under the mode δ and using rules of
type τ ∈ {coo,ncoo}, as well as the notations NRenOP (δ, τ) and PsRenOP (δ, τ)
to refer to the family of number languages and multiset languages, respectively,
generated by the P systems with reactive membranes from RenOP (δ, τ).

Whereas on the one hand the previous example shows the effect of having
more than one initial membrane, prohibiting the application of some evolution
rules, the next example shows that the halting condition can be fulfilled due to
the fact that symbols are distributed over several membranes, although some rule
could be applied if all symbols on its left-hand side could be put into the same
membrane by a merge operation. As merging can only combine the contents of
two membranes, we can already get the situation that a rule with three symbols
in its left-hand side cannot be applied any more.

Example 3. Consider the following P system with reactive membranes:

Π = (O, T,W0, R,max), where
O = {ai, a′i, a′′i | 1 ≤ i ≤ 3} ∪ {f},
T = {a′′1 , a′′2 , a′′3 , f},
W0 = {a1a2a3},
R = {ai → a′i, a

′
i → a′′i , a

′′
1a

′′
2a

′′
3 → f}.

If in the first two steps of the computation, Π decides to not split or merge
any multisets, from W0 = {a1a2a3} with applying the rules {ai → a′i | 1 ≤ i ≤ 3},
after the first evolution step we obtain W1 = {a′1a′2a′3}, and by then applying
the rules {a′i → a′′i | 1 ≤ i ≤ 3}, after the second evolution step we obtain
W2 = {a′′1a′′2a′′3}. Keeping {a′′1a′′2a′′3} in the same membrane then allows for applying
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the rule a′′1a
′′
2a

′′
3 → f , thus obtaining the terminal result W3 = {f}, as W3 is a

halting configuration.
Yet with two splits, but still applying the rules {ai → a′i | 1 ≤ i ≤ 3} in the

first evolution step and the rules {a′i → a′′i | 1 ≤ i ≤ 3} in the second evolution
step, we get a two-step halting computation

{a1a2a3} =⇒ {a′1, a′2a′3} =⇒ {a′′1 , a′′2 , a′′3}

yielding the terminal result a′′1a
′′
2a

′′
3 .

We also mention that with having T = {f} only, this halting computation
yields the result Λ. ⊓⊔

4 Computational Power: First Results

In this section, we list some first results regarding the computational power of
P systems with reactive membranes. We start by remarking that the halting con-
dition can checked in an easier way when the system only includes non-cooperative
rules.

Remark 1. When using only non-cooperative rules, the halting condition for a con-
figuration W can be checked without considering all possible splits and mergers
and then the non-applicability of the rules in all membranes; instead it suffices
to check the non-applicability of the rules to the flatten(W ), i.e., to the union of
multisets in all the membranes of W .

The following result even holds for non-cooperative rules and cooperative rules.

Lemma 1. For every Re1OP (δ, τ) system there exist an equivalent RenOP (δ, τ)
system, for every n > 1.

Proof. Given a P system with reactive membranes using rules of type τ

Π ′ = (O, T, {w}, R, δ),

an equivalent P system with reactive membranes using rules of type τ with n
initial membranes is

Π ′ = (O, T, {w,w2 = Λ, . . . , wn = Λ}, R, δ).

In an empty membrane Λ, no non-cooperative rules or cooperative rules are appli-
cable. Moreover, merging a membrane X with Λ yields X again, so no additional
applications of rules can happen.

Now we show that splitting and merging do not affect the (results of the)
computations in a P system with reactive membranes at all, no matter which
derivation mode is used, when only non-cooperative rules are used. Hence, we get
a characterization of PsL(REG):
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Theorem 1. For any δ1, δ2 ∈ {asyn, seq,max, smax} and Y ∈ {N,Ps} as well
as any n ≥ 1,

Y RenOP (δ1,ncoo) = Y OP1(δ2,ncoo) = Y L(REG).

Proof. The equality Y OP1(δ2,ncoo) = Y L(REG) is folklore, e.g., see [24]. The
main idea for proving this result is that the evolution of symbols by applying
non-cooperative rules can be described by a derivation tree, but for the resulting
terminal objects it is completely irrelevant when the symbols evolve.

A similar argument now can be used here to argue that for any δ1 ∈
{asyn, seq,max, smax},

Y RenOP (δ1, ncoo) = Y OP1(asyn, ncoo) = Y L(REG).

(⇒) Given a P system with reactive membranes

Π ′ = (O, T, {w}, R, δ1),

we can easily define the equivalent simple P system

Π = (O, T,w,R, asyn).

Even distributing the contents of a single membrane over several membranes,
even at the beginning with having several initial multisets, does not effect
the applicability of the non-cooperative rules. Yet we have to mention that
using the sequential derivation mode in several membranes yields a kind of
parallelism like smax, but also this has no effect on the results of computa-
tions, especially as, according to Remark 1, halting only depends on the non-
applicabiltiy of all rules to the symbols in all the multisets of the underlying
configuration.

(⇐) Given a simple P system

Π = (O, T,w,R, asyn),

we can easily define the equivalent P system with reactive membranes

Π ′ = (O, T, {w}, R, asyn).

Any derivation of the 1-membrane transition P system Π operating under the
the asynchronous derivation mode can be directly simulated by the P system
with reactive membranes Π ′ which uses the same rules for the evolution stage,
but then always chooses to not split or merge any membranes, i.e. Mi and Si

from the splitting and merging stage are always empty. As we are only using
non-cooperative rules, the applicability of all the (multisets of) rules applied
in Π is also guaranteed in Π ′.
Finally we can apply Lemma 1 to get an equivalent P system with reactive
membranes with n initial membranes.
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In sum we see that P systems with reactive membranes behave as the corre-
sponding transition P system when only non-cooperative rules are used. ⊓⊔

Finally, P systems with reactive membranes working under the maximally par-
allel mode and using cooperative rules can simulate partially blind register ma-
chines. As a reminder, we mention that partially blind register machines (PBRM)
have programs consisting of the following two types of instructions for increment-
ing and decrementing a register:

• (p,ADD(r), q, s): in state p increment register r and jump to state q or state s;
• (p, SUB(r), q): in state p try to decrement register r; if successful, jump to

state q, otherwise abort the computation without producing a result.

Partially blind register machines feature a final zero check: the register machine
only halts with producing a result if all non-output registers are empty when the
machine reaches the halting instruction uniquely labeled by h.

We will refer to the set of multiset languages generated by partially blind
register machines by PsPBRM .

Theorem 2. For any δ ∈ {asyn, sequ,max, smax},

PsPBRM ⊆ PsRe1OP (δ, coo).

Proof (Sketch). The main idea of the proof is that throughout the simulation of the
partially blind register machine, the configurations of the P system with reactive
membranes Π always contains exactly one instance of the symbol representing
the label of the instruction to be carried out next. The contents of a register r is
represented by the total number of symbols ar in the configurations of Π.

The increment instruction (p,ADD(r), q, s) can be simulated directly by the
rules p → qar and p → sar.

The decrement instruction (p,SUB(r), q) can be simulated by the following two
rules: par → q, p → p. Moreover, for every register symbol ar with r not being an
output register, we add the unit rules ar → ar.

Indeed, if p and a copy of ar find themselves in the same membrane, then a
successful decrement is simulated: the total number of copies of ar in the system
is reduced by one.

If there are no copies of ar left in the system, then p only has the chance to
be used with the unit rule p → p; observe that in any derivation mode at least
one rule has to be applied if the system is not halting, i.e., as long as there still
is a rule which can be applied to some symbol. In this case, either p → p and/or
some unit rule ar → ar can be applied in every future derivation step, hence, the
computation will never halt.

If copies of ar do appear in the system, but not in the membrane containing
p, then p can use the unit rule p → p, and in any derivation mode either only this
rule and/or other unit rules ar → ar can be applied. If in some future step, p and
ar appear in the same membrane, possibly par → q can be applied. Otherwise,
again we obtain just non-halting computation branches.
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However, there must exist another branch in which no splits and mergers have
happened at all, i.e., p and ar are together, and in which the simulation therefore
will be able to proceed correctly. The same alternative holds if p and ar share the
same membrane, but the system non-deterministically would choose to only apply
p → p rather than par → p.

As soon as the halting label h appears, we have to use the final rule h → λ. The
final zero check is simulated by the unit rules ar → ar for all non-output registers r,
which keep the computation to go on forever if at least one such symbol ar is still
present. Observe that this argument does not depend on the distribution of the
symbols in the membranes of a configuration.

In sum, we conclude that the P system with reactive membranesΠ can simulate
the computations of the given partially blind register machine correctly, but on
the other hand cannot yield more results. ⊓⊔

Finally, we remark that the construction we show here is non-deterministic,
even if the simulated partially blind register machine is deterministic, i.e., all
increment instructions are of the form (p,ADD(r), q, q), which in a simpler way
can be written as (p,ADD(r), q).

5 Extensions

Given the motivation to use P systems with reactive membranes for thinking about
the emergence of space and space separations in abiotic environments, and also
the richness of the ecosystem of P systems variants, multiple extensions can be
proposed.

A natural one to be considered would be limiting the size of individual mem-
branes, as real membranes do not generally grow very big. Limitations on the
number of symbols have already been considered in P systems [2], but combined
with constant splitting and merging this ingredient may have a drastically different
impact. It would be necessary to decide what happens when a membrane attains
its maximal capacity. The approach in [2] is to prevent it to accept new symbols,
but in the context of reactive membranes it may be appropriate to bias the split-
ting and merging stage of the computational step to force such full membranes
to split. The contribution of such limitations to the computational power is yet
unclear, but probably in some strong relation to the size of the left-hand sides of
the evolution rules.

An extension in the spirit of generalized P systems [13] would be to subject the
rules to splitting and merging. With such an extension, membranes would contain
objects and rules, and splitting and merging would affect not only which symbols
can interact, but also which rules will ensure their interaction.

Finally, splitting and merging could also be applied to rules: for example, a
rule u → v could split into two rules u → α and α → v, which could later merge
back into u → v. Similarly to splitting and merging of membranes, splitting and
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merging of rules delays some interactions. Relevance to thinking about the origins
of life and the computational power of this variant remain to be explored.

6 Conclusion and Perspectives

This paper is a first attempt at using P systems for thinking about the origins of
life, and in particular about the emergence of individual compartments separated
by membranes. We introduced P systems with reactive membranes, in which ev-
ery symbol is conceptually surrounded by elementary membranes, which then can
merge to form bigger membranes, or split. Mimicking biochemistry, the set of rules
is common to all membranes—the differences in the processes in different mem-
branes should come from the symbols. Cooperative rules are allowed, and probably
even necessary to meaningfully implement distinctions between membranes.

It is still an open research direction to actually illustrate some processes be-
lieved to have happened during abiogenesis in P systems with reactive membranes.
Perhaps the most promising would be to implement autocatalytic cycles (e.g. [11]).
The next step would be to implement self-replication, as suggested by José M. Sem-
pere in a discussion. Indeed, in P systems with reactive membranes the membrane
structure emerges spontaneously, which makes them a promising candidate for
implementing self-replication of something other than symbol objects.

A parallel research direction which we started to explore in this paper is the
computational power of P systems with reactive membranes. We have shown here
that splitting and merging does not affect the computational power of P systems
with reactive membranes using non-cooperative rules—P systems with reactive
membranes using non-cooperative rules have the same computational power as
simple P systems provided we only start with one singleton multiset, no matter
which derivation mode we use. Based on this result, we have shown that P systems
with reactive membranes can characterize the family of Parikh sets of semilinear
languages when using only non-cooperative rules in any derivation mode.

Finally, when cooperative rules are allowed, P systems with reactive membranes
can generate all multiset languages generated by partially blind register machines.

Several questions still remain to be addressed, in particular: can splitting and
merging augment the computational power? It would indeed be surprising, but it
has already been shown that non-deterministic shuffling of rule right-hand sides
allows for generating non-semilinear languages [1], meaning that random shuffling
of symbol neighborhoods as described in this paper may boost the power of the
variant in some specific cases.

A subtle aspect which we do not discuss in depth in this paper is the halting
condition and the procedure for retrieving the result. There is an asymmetry be-
tween these two: halting occurs when no more evolution rules are applicable after
all possible splits and mergers. On the other hand, getting out the result essentially
happens by merging all membranes into a single one.

Since the computational results we give in this paper seem to depend directly
on the halting condition and on the procedure for obtaining the result, it would
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be relevant to explore how slight variations in these two affect the computational
power of P systems with reactive membranes.

Finally, in Section 5 we have suggested several possible extensions of the new
variant. A formal exploration of the computational power of such extensions would
be quite relevant. Even more importantly, it would be very relevant to identify
which extensions are more useful for using P systems with reactive membranes in
thinking about the origins of life.
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Summary. Inspired by the programming game Core Wars, we propose in this work a
framework and the organisation of king of the hill-style tournaments between P systems.
We call these tournaments Queens of the Hill and the individual contestants valkyries.
The goal of each valkyrie is to dissolve as many membranes of as many other valkyries as
possible, while at the same time resisting the attacks. Valkyries are transition P systems
with cooperative rules, target indication, and rudimentary matter–anti-matter annihi-
lation rules. These ingredients are sufficient for computational completeness, but the
context of Queens of the Hill reduces the relevance of this statement. We give some ten-
tative examples of strategies and discuss their advantages and drawbacks. Finally, we
describe how Queens of the Hill can be used as a teaching exercise, and also a tool to
federate the students’ creativity to push the frontiers of membrane computing.

Keywords: Core Wars, membrane dissolution, anti-matter, interaction.

1 Core Wars

To cite [11], “Core War (or Core Wars) is a programming game where assembly
programs try to destroy each other in the memory of a simulated computer.” In
Core Wars, programmers design programs—called warriors—with two goals in
mind:

1. kill as many other programs as possible,
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2. survive for as long as possible against the attacks of the other programs.

In the most basic setup, all programs are loaded in the same shared memory
space, and only feature instruction segments, i.e. their memory only contains code,
and data is stored as part of some of the instructions. No memory protection is
available for the instructions, so all programs can write anywhere, including to the
instruction segments of competitors, which is the primary way of attacking. The
simplest warrior is called the Imp and only consists of a single instruction in the
special assembly language called Redcode:

MOV 0, 1

The numbers correspond to addresses in the memory space relative to the current
instruction, so 0 refers to the current instruction slot, and 1 refers to the next
one. This program copies its only instruction to the next memory slot, which then
copies itself to the next one, etc. The Imp therefore ends up populating the whole
memory with copies of itself.

As small and impressive as it is, the Imp will never actually win, because it just
reproduces itself, possibly over the code of the competitors, but it never kills any
competitor. To kill a process, Redcode features the special instruction DAT. When
it is executed, the current process is killed. A simple winning code would throw DAT

over the whole memory, while simultaneously avoiding to run this instruction in
its own execution. This is what the warrior called the Dwarf does, whose detailed
presentation is given in [11].

Multiple servers exist continuously running Code Wars tournaments in the
king of the hill mode (see section “Climbing the hill” in [11]): 10 to 30 warriors
are loaded in the same shared memory space and are run sequentially, on a sin-
gle virtual processor, which interleaves the execution of the instructions of every
warrior. The score of a warrior in a match roughly corresponds to the number of
other warriors it has killed. The warrior with the highest score is the current king
of the hill, and the warrior with the lowest score falls off the hill: it is replaced by
a new warrior.

2 Queens of the Hill

In this submission we propose a framework for running king of the hill style tour-
naments between P systems. We refer to such tournaments as (P) Queens of the
Hill, and we call individual contestants valkyries. In this section, we propose the
formal framework to be used for the valkyries as well as the rules for Queens of
the Hill tournaments.

2.1 Valkyries

Our choice of the P system variant for the valkyries is guided by the following two
principles: ability to interact with the other contestants and ease of programming.
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We choose here a variation on what is sometimes called transition P systems, which
is partially inspired by P automata with matter–anti-matter annihilation rules as
shown in [5] and by P colonies [2]. As a reminder, the original P automata rely on
antiport rules exclusively [3].

We define a (valkyrie) P system as the following tuple:

Π = (O,µ,w1, . . . , wn, R1, . . . , Rn), where

• O = Σ ∪∆k is a finite alphabet of objects,
• ∆k = {δt, δ̄t | 1 ≤ t ≤ k} ∪ {δ} for some fixed k ∈ N,
• µ is the hierarchical membrane structure bijectively labeled by the numbers

from 1 to n and usually presented as a sequence of correctly nested brackets,
• wi is the initial multiset in membrane i, 1 ≤ i ≤ n,
• Ri is the finite set of rules in membrane i, 1 ≤ i ≤ n.

The rules in Ri feature full cooperation and may use target indications. More
precisely, a rule in Ri has the form u → v, where u ∈ Σ◦, u ̸= λ, is a non-empty
multiset over Σ, and v ∈ (O×Tar)◦ is a multiset of symbols over O, each equipped
with target indications Tar = {in, here, out}. A symbol appearing with the indi-
cation in in v will be sent into a non-deterministically chosen inner membrane of
membrane i, a symbol with the indication here will remain in membrane i, and a
symbol with the indication out will be sent to the parent membrane. If membrane i
does not have any inner membranes, the symbols with target indication in will be
kept in membrane i, i.e. the target indications in and here are equivalent in the
case of elementary membranes. For readability, we will always omit the indication
here, i.e. instead of writing (a, here)(a, here)(b, out) we will write aa(b, out).

The symbol δ ∈ ∆k has the special semantics of dissolving the membrane in
which it appears. More formally, once δ is introduced into membrane i, all of its
objects and inner membranes are moved to its parent membrane, and membrane i
is removed from the system—non-elementary membrane dissolution is allowed.
Membrane dissolution happens at the end of a computation step, and all intro-
duced copies of δ are removed from the system after all dissolutions are performed.
It follows incidentally that introducing any number of copies of δ in a membrane
produces exactly the same as effect as introducing one copy of δ. Dissolution of
the outermost (skin) membrane is forbidden, i.e. introducing a copy of δ into the
skin membrane will have no effect and the symbol δ will be immediately removed.

All sets Ri, 1 ≤ i ≤ n, also include the following rules:

Rδ
k = {δt → δt−1 | 2 ≤ t ≤ k} ∪ {δ1 → δ}
∪ {δtδ̄t → λ | 1 ≤ t ≤ k}.

Informally, the symbol δt is equipped with a timer which triggers the dissolution
of the containing membrane after t steps. The rules δtδ̄t → λ have weak priority,
meaning that if both a copy of δt and δ̄t are present, then they must be erased
(annihilate), preempting the evolution rule for δt.
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Since the left-hand sides of the rules in Ri\Rδ
k are multisets over Σ, these rules

cannot directly detect or rewrite the symbols in ∆k. However, they can produce
the anti-symbol δ̄t to force the annihilation of a symbol δt if it is present in the
current membrane.

The rules are applied in the maximally parallel way, with weak priority of the
annihilation rules δtδ̄t → λ. A computation steps proceeds in the classical fashion,
by first non-deterministically choosing a non-extendable multiset of rules to apply,
applying it, and performing all the necessary dissolutions. A halting configuration
is a configuration in which no more rules are applicable. We can consider halting
computations of P systems, but due to the continual nature of the tournament,
we will generally consider infinite or time-limited computations instead.

Example 1. Consider the following valkyrie P system:

Π = (O, [1[2[3]3]2]1, d, bδ̄1, a, R1, R2, R3),

O = {a, b, c, d} ∪∆2,

R1 = {d → d, d → d(δ2, in)} ∪Rδ
2,

R2 = {bc → b} ∪Rδ
2,

R3 = {a → aa(c, out), a → δ} ∪Rδ
2.

As a reminder, ∆2 = {δ2, δ1, δ} ∪ {δ̄1, δ̄2} and Rδ
2 = {δ2 → δ1, δ1 → δ} ∪ {δ2δ̄2 →

λ, δ1δ̄1 → λ}. Figure 1 gives a graphical illustration of the P system above. For
conciseness, we omit the rules in Rδ

2 from such graphical illustrations.

a → aa(c, out)
a → δ

a
3

bc → b

bδ̄1

2

d → d
d → d(δ2, in)

d

1

Fig. 1. A simple valkyrie P system. The rules from Rδ
2 are not represented.

The rule a → aa(c, out) in membrane 3 doubles some of the a, and also ejects
the corresponding number of c in membrane 2. The remaining copies of a are used
to produce δ, which will dissolve membrane 3, copying all instances of a it contains
into the parent membrane 2. The symbol b in membrane 2 will progressively erase
all the copies of c ejected by membrane 1.

The symbol d in the skin may choose between simply maintaining itself, or
also injecting δ2 into membrane 2. The first copy of δ2 injected into 2 will undergo
the evolution rule δ2 → δ1, and will afterwards annihilate with δ̄1 already present
there from the start. However, the second copy of δ2 the rule d → d(δ2, in) will
inject into membrane 2 will be free to produce δ in two steps thereby dissolving
membrane 2. If by this time the rule a → δ has not yet been applied in membrane 3,
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membrane 3 will become the direct inner membrane of membrane 1, so the next
application of the rule d → d(δ2, in) will send δ2 in membrane 3, leading to its
dissolution in two steps. Therefore, this valkyrie P system always converges to
a cycle of configurations in which there is only the skin membrane containing a
copy of d, a copy of b, possibly some copies of c, some copies of a, as well as a
symbol from {δ2, δ1}, which always ticks down to δ without any effect, since the
dissolution of the skin membrane is disallowed. ⊓⊔

2.2 Tournament Setup

The setup of Queens of the Hill tournaments is partially inspired by P colonies [2]:
a set of valkyrie P systems is grouped together in a big skin membrane, which
always sends back in whatever is sent out. More formally, we define an m-Queens
of the Hill tournament as the following tuple:

Q = (O,Π1, . . . ,Πm),

where O = Σ ∪ ∆k and Πj is a valkyrie P system as defined in Section 2.1. All
P systems Πj share the same sets of symbols Σ and O. The tournament Q is a
P system obtained by placing all Πj into a common outer membrane 0 with the
empty initial multiset and with the following set of rules:

R0 = {a → (a, in) | a ∈ O} ∪Rδ
k.

In other words, R0 always sends in whatever symbols are sent out from the in-
dividual valkyries, but due to non-determinism these symbols do not necessarily
end up in the valkyrie which produced them. Note that R0 contains 2 rules for
symbols δt: such a symbol may be sent in, or it may evolve into δt−1. As before,
if the corresponding anti-symbol δ̄t is also present, the annihilation rule δtδ̄t → λ
will have to be applied. Finally note that R0 is the only set of rules in which the
left-hand sides are allowed to include δt.

Π1

(1, 1)

Πm

(m, 1)

. . .

{a → (a, in) | a ∈ O} ∪Rδ
k

0

Fig. 2. An informal picture of an m-Queens of the Hill tournament Q. The skin mem-
branes of the valkyries Πj are relabelled as (j, 1).

A Queens of the Hill tournament obeys the same semantics as valkyrie P sys-
tems defined in Section 2.1. In particular, this means that the dissolution of the
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skin membranes of a valkyrie Πj is allowed, because at this time it is surrounded
by the bigger skin membrane of the whole tournament Q. To preserve consistent
membrane labelling, a membrane i in the valkyrie P system Πj is renamed into
membrane (j, i) in the tournament Q.

2.3 Tournament Organization

An m-Queens of the Hill tournament runs all the valkyries in the maximally paral-
lel mode multiple times and for a limited number of steps. At the end, the score of
each valkyrie is computed from the number of its membranes that was dissolved.
Non-determinism in the computations is resolved probabilistically, as it is done in
the P-Lingua framework [4, 6]: at every non-deterministic branching point, one of
the branches is chosen under the uniform probability distribution.

More concretely, the tournament runs in the following way:

1. Run the computation for N steps, resolving non-determinism according to the
uniform probability distribution.

2. Repeat Step 1 M times.

The score of a valkyrie is computed according to the following formula:

score(Πj) =
1

|Πj |

(
|Πj | −

1

M

M∑
i=1

dissi(Πj)

)
,

where dissi(Πj) is the number of membranes of Πj that were dissolved during
the i-th computation (i-th run of Step 1 above), and |Πj | is the total number of
membranes in Πj .

Example 2. Suppose that Πj has 5 membranes, |Πj | = 5, and take M = 3. Further
suppose that 2, 3, and 4 membranes of Πj were dissolved respectively in the
first, second, and third computations, i.e. diss1(Πj) = 2, diss2(Πj) = 3, and
diss3(Πj) = 4. Then the score of Πj in this tournament will be:

1

5

(
5− 2 + 3 + 4

3

)
=

2

5
.

Informally, the score of a valkyrie is how many membranes on average it retains
by the end of a computation of the tournament, normalized by its total number
of membranes. ⊓⊔

A valkyrie has the highest score of 1 if none of its membranes is ever dissolved
in the tournament. It has the lowest score of 0 if all its membranes are always
dissolved.
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2.4 Tournament Parameters

Table 1 summarizes the parameters governing a Queens of the Hill tournament
that were introduced in the previous sections. The values of these parameters may
have a significant impact on the strategies adopted by the individual valkyries.
Smaller values of |Σ| reduce the richness of the behaviors of a valkyrie and make it
less robust to perturbations coming from the skin membrane 0, i.e. from the other
valkyries. Larger values of k mean more opportunities for the symbols δt to be
captured. Larger values of m mean lower probability of receiving a symbol δt after
emitting it into the skin membrane 0. Shorter computation lengths N mean that
lightning attacks may be more feasible, while smaller values for M mean fewer
computations in a tournament, which increases the contribution of randomness to
the outcome.

|Σ| 10 The number of working symbols.
k 5 The maximal value of the index t in δt.
m 10–20 The number of entrants in the tournament.
N 1000 The length of a computation in the tournament.
M 50 The total number of computations in the tournament.

Table 1. A summary of the parameters governing a Queens of the Hill tournament,
together with the possible values for these parameters.

3 A Note on Computational Complexity

Valkyrie P systems as defined in Section 2 are quite obviously computationally
complete, even with a subset of the ingredients. In particular, full cooperation
together with the maximally parallel mode suffice to simulate arbitrary register
machines. We refer the reader to the first publication in membrane computing [15]
for the very first proofs, as well as to the more recent [10, 16] for a sample of the
wide variety of techniques for proving computational completeness of P system
variants. For the record and for the sake of the discussion of the possible strate-
gies in Queens of the Hill tournament, we briefly recall a proof of computational
completeness of P systems as defined above.

A (deterministic) register machine is an abstract computational device con-
sisting essentially of a finite set of registers and a program. The registers can
contain natural numbers or zero. The program consists of the following two types
of instructions:

• (p,ADD(r), q): in state p, increment register r and go to state q;
• (p, SUB(r), q, s): in state p, check the value of register r; if its value is strictly

positive, decrement it and go to state q; otherwise go to state s.
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Register machines are famously computationally complete. We refer the reader
to [13] for a much more in-depth discussion.

One-membrane valkyrie P systems can simulate both types of register machine
instructions, even without dissolution or anti-matter rules. Classically, the alpha-
bet Σ will include one symbol per state p of the register machine, and the value
of register r will be represented by the multiplicity of symbol ar. The instruction
(p,ADD(r), q) can be directly simulated by the rule p → qar. The simulation of
(p, SUB(r), q, s) is more intricate, as usual, and relies on non-determinism and
maximal parallelism: the symbol p non-deterministically guesses whether the reg-
ister is empty, and a trap symbol is produced if the guess is wrong. The following
table lists the rules for both branches, arranged by steps:

Decrement Zero test

1. p → p̄1p̂1 p → p̃1ṗ1
2. p̄1ar → p̄2, p̂1 → p̂2 ṗ1ar → #, p̃1 → p̃2
3. p̂2p̄2 → q, p̂2p̄1 → # p̃2ṗ1 → s

The decrement branch begins by splitting the state symbol p into p̄1 and p̂1.
The symbol p̄1 erases a copy of ar if it is present in the system and evolves into
p̄2. It does not evolve if no copies of ar are present. At the same time, p̂1 evolves
into p̂2. In the third step, p̂2 evolves into q in the presence of p̄2, i.e. in the case in
which the decrement was successful. If the decrement could not happen, p̂2 finds
p̄1, which produces the trap symbol.

The zero test branch begins by splitting the state symbol p into p̃1 and ṗ1. The
symbol ṗ1 must evolve into the trap symbol # if it finds a copy of ar, as ṗ1ar → #
is the only rule which may transform ṗ1. In the meantime, p̃1 evolves into p̃2. If
in the third step ṗ1 is still present in the system, this means that it did not find
any copies of ar, the register is empty, and the symbol s is produced. Otherwise
p̃2 cannot evolve, but this also means that a trap symbol was produced at step 2,
meaning that the computation will never halt.

The argument above shows that the language of valkyries in Queens of the
Hill tournaments is rich enough. However, note how this argument relies on two
essential details which are partially relevant or even irrelevant in Queens of the
Hill: non-determinism and halting. On the one hand, non-determinism is resolved
probabilistically, meaning that not all possibilities will be explored, and that some
of them may be explored multiple times. Furthermore, proofs of computational
completeness in P systems classically consider the results produced at the end of
halting computations, while in Queens of the Hill halting does not have a central
role. What is important in Queens of the Hill is communicating with the other
valkyries, i.e. attempting to dissolve as many of their membranes as possible, as
soon as possible. From this standpoint, efficiency is important, while actual compu-
tational complexity is much less relevant, as long as the valkyrie manages to attain
a relatively high score. Finally, note how |Σ| is a powerful tool for modulating the
complexity and the efficiency of individual valkyries.
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4 Tentative Strategies

The main goal of Queens of the Hill is turning P system design into a game
involving teams of students on the front line, backed by researchers collecting
and systematizing the explicit and implicit knowledge produced by the teams
designing the valkyries. In this section, we present several tentative strategies,
whose efficiency or relevance will be the subject of immediate future work.

One of the first strategies one may think of when seeing the rules of Queens
of the Hill is the Bomber: eject δt for some value of t into the skin membrane 0
and hope that none of those symbols is sent back into the same membrane. The

{a → a(δt, out) | 1 ≤ t ≤ k}
a

1

Fig. 3. The Bomber.

efficiency of the bomber decreases as the number of valkyries decreases. For ex-
ample, when there is only one other valkyrie, the probability is quite high that
the ejected δt lands back in the Bomber. Note that this probability is not exactly
1
2 , since the rule δt → δt−1 can also be applied in the skin, potentially until the
production of δ.

The Bomber can be made more robust by making it accumulate copies of δ̄t
for some values of t, so that the symbols δt coming from the skin annihilate with
the corresponding copies of δ̄t. While this strategy can deal with an occasional δ̄t,
it will be quickly overwhelmed when sharing the tournament with a considerable
population of bombers.

{a → aδ̄t(δt, out) | 1 ≤ t ≤ k}
a

1

Fig. 4. The Bar Bomber.

Another variation of the Bomber is the strategy of ejecting δ̄t in the hope of
neutralizing δt before it even gets into the valkyrie. This has the obvious disad-
vantage that it will also protect the other valkyries from δt.

In case the number of competing valkyries m—or an upper bound on m—is
known, robustly dealing with such bomber strategies is in fact not very difficult: it
suffices to ensure the presence of r(m−1) copies of δ̄1 at all times, where r ∈ N\{0}
is a natural factor which we discuss in the following paragraph. Indeed, it is not
necessary to provide for δ̄t for t > 1, as these symbols will inextricably tick down
to δ1 and will have to annihilate with δ̄1.
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{a → a(δ̄t, out)(δt, out) | 1 ≤ t ≤ k}
a

1

Fig. 5. The Anti-Bomber.

a → aδ
r(m−1)
1

aδ
r(m−1)
1

1

Fig. 6. The Delta Wall.

The idea behind the factor r is that other strategies may try to beat the
Delta Wall by having rules emitting a large number of δt. However, the more
such symbols are emitted, the lower the probability that they end up in the same
valkyrie, meaning that the Delta Wall will have a high degree of resilience, even
for smaller values of r, like 3 or even 2.

Another protective strategy consists in wrapping the valkyrie in a couple of
additional membranes. In this way, the valkyrie can tolerate several membrane
dissolutions without being thrown out of the game.

a → a(b, out)

a
2

{a → (a, out) | a ∈ Σ}
1

Fig. 7. The 2-layer Onion.

Remark that the Onion will have trouble emitting δt symbols. Firstly, the rules
in the valkyrie are not allowed to contain δt in their left-hand sides, so the rules
of the shape δt → (δt, out) are not allowed. If instead of emitting δt a different
symbol d is used, then it is necessary to convert d into δt at some moment. If
such conversion rules only appear in the outermost membrane of the Onion, then
dissolving that membrane will remove those rules. On the other hand, including
such rules in every layer of the Onion will create the possibility that an inner level
inadvertently causes the dissolution of an outer level. Therefore, a strategy which
may work best with the Onion would consist in relying on the relative scarcity
of the symbols in Σ and in trying to destabilize the other valkyries by forcing
some unexpected symbols into their membranes. For this to work, |Σ| has to be
sufficiently small.



Queens of the Hill 51

Finally, the last tentative strategy we present in this section is the Bombshell.
The idea is to have multiple inner membranes which are all released into the skin
membrane of the tournament, therefore creating a family of cooperating agents be-
longing to the same team. This allows for exceeding the total number of valkyiesm,
but comes at the price of dissolving a membrane, which will be reflected in the
final score.

Subvalkyrie1

2

Subvalkyrie2

3

Subvalkyrie3

4

δ

1

Fig. 8. The scheme of a 3-charge Bombshell.

5 Future Work and Perspectives

The immediate future work is setting up Queens of the Hill tournaments between
valkyries designed by teams of students taking a course in formal languages or in
natural computing. Queens of the Hill can be seen as a programming exercise in the
language of an unconventional model of computing with a concrete goal: attacking
all other contestants and surviving against their attacks for as long as possible.
This context can also be used to introduce questions from theoretical biology about
evolution and robustness, somewhat in the spirit of [17, 18]. We remark that such
exercises are quite widespread in teaching of multi-agent systems and autonomic
systems, as NetLogo-related resources illustrate [19].

To us as teachers and researches (enseignants-chercheurs as they say in French),
Queens of the Hill is a great opportunity to employ our students’ creativity to
push the frontiers of what can be done with P systems. In the particular setup we
describe in this paper we focus on transition P systems with non-elementary mem-
brane dissolution and some rudimentary matter-antimatter annihilation rules, a
model directly supported by P-Lingua. Obviously, other variants of P systems
and the corresponding simulator engines can be used as the underlying formal-
ism, thereby stimulating the students’ interest in these other variants. Among the
salient examples we cite kernel P systems [7, 12] and cP systems [8, 9, 14].

While valkyrie P systems are in principle computationally complete (Section 3),
individual computational steps are less expressive than register machine instruc-
tions, meaning that designing valkyries de facto explores the capabilities of a less
powerful language. Furthermore, good valkyrie design will require estimating the
probabilities of different branches of computation, which will encourage the stu-
dents to delve deeper into probability theory.

The setup we propose in this paper is at an early stage. We will most likely need
to further tune the values of the parameters in Table 1, and probably also adjust
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some aspects of the definitions of valkyrie P systems as well as of the tournament
in order to avoid trivial edge cases and incite the design of complex strategies. An
important question is the relevance of the scoring function score(Πj) introduced in
Section 2.3—other scoring functions may better capture the results of the compe-
tition. It is also possible to define scoring functions measuring the production of a
certain set of symbols, thereby shifting the focus away from membrane dissolution
entirely. One could also think about tracking the origins of the symbols, which
could in principle allow saying which valkyrie dissolved which other valkyrie. This
would require a rather fine analysis of the computations.

On a final note, we remark that while Queens of the Hill tournaments are
directly inspired by Core Wars, the P system context shuffles things up quite a
bit. In particular, data is secondary in Core Wars, and warriors interact by writing
over each other’s code. If we take the rules to be the program in P systems, then the
programs of the valkyries are immutable in the sense that individual rules cannot
be modified1. However, it is possible to instantly and entirely erase parts of their
programs by dissolving the corresponding membranes. Furthermore, P systems are
inherently non-deterministic, which we translate into a probabilistic framework,
while warriors in Core Wars are deterministic. These remarks make us believe that
Queens of the Hill tournaments have great potential waiting to be explored.
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Pérez-Jiménez on the Occasion of His 70th Birthday, volume 11270 of Lecture Notes
in Computer Science, pages 204–227. Springer, 2018.
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18. Rémi Segretain, Laurent Trilling, Nicolas Glade, and Sergiu Ivanov. Who plays
complex music? On the correlations between structural and behavioral complexity
measures in sign Boolean networks. In 21st IEEE International Conference on Bioin-
formatics and Bioengineering, BIBE 2021, Kragujevac, Serbia, October 25-27, 2021,
pages 1–6. IEEE, 2021.

19. Uri Wilensky. NetLogo. http://ccl.northwestern.edu/netlogo/. Center
for Connected Learning and Computer-Based Modeling, Northwestern University,
Evanston, IL.

http://membranecomputing.net/IMCSBulletin/index.php
http://membranecomputing.net/IMCSBulletin/index.php
https://vyznev.net/corewar/guide.html
https://vyznev.net/corewar/guide.html
http://ccl.northwestern.edu/netlogo/




A solution to the only one object problem with
dissolution rules

Julien Caselmann1, David Orellana-Mart́ın2,3

1Humboldt-Universität zu Berlin
E-mail: caselmaj@informatik.hu-berlin.de
2Research Group on Natural Computing,
Department of Computer Science and Artificial Intelligence,
Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: dorellana@us.es
3SCORE Laboratory, I3US, Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

Summary. In membrane computing, it is usual to obtain solutions to decision problems
by means of (non-)uniform families of membrane systems, where each P system of the
family can solve one or more than one instance of the problem. In this work, a new
solution to the ONLY-ONE-OBJECT problem is provided by means of a single membrane
system, that is capable of solving each instance of the problem.

Key words: Membrane Computing, computational complexity theory, only one
object problem.

1 Introduction

Membrane Computing is a relatively young compared to other areas of computer
science research and therefore still presents us with some open questions. Some
computational models inspired by biological cells have already been very successful.
The ideas of this computational framework are materialized into non-deterministic,
parallel and distributed models of computation called membrane systems (or P sys-
tems). Certain membrane systems have achieved surprising results, ranging from
a simple computation of a square number [1] to an ad-hoc solution for the SAT

problem [2]. It is still not entirely clear what exactly these membrane systems are
capable of and what is beyond their reach. In this sense, several works concern-
ing lower and upper bounds of different classes of membrane systems have been
published [3, 4]. . Numerous questions arise from that, including the famous 26
problems of Păun [5]. PMCR is the class of problems solvable in polynomial time
by membrane systems of the class R. In this area, a new way to tackle the P
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versus NP problem appears in the form of efficiency frontiers. As P versus NP
is one of the most exciting problems in complexity theory in computer science, it
is of utmost interest to find out what the connections between the classes PMC
and P, NP are.

In [6, 7, 8, 9], a new methodology for solving decision problems or demon-
strating the non-solvability of a problem by means of a single membrane system is
presented. On the one hand, a solution to the PARITY problem is given by means
of a single membrane system using transition P systems using dissolution rules
and only two objects in the left-hand side of evolution rules. On the other hand,
it is demonstrated that the ONLY-ONE-OBJECT problem cannot be solved by means
of a single P system with active membranes without polarizations and without
dissolution rules.

The rest of the work is structured as follows. In the following sections, we
present some preliminaries about languages and set theory and we recall the
model of recognizer polarizationless P systems with active membranes with dis-
solution rules. In Section 4, we briefly recall the concept of complexity classes
with single recognizer membrane systems. Section 5 is devoted to cite some of
the main uses of the dependency graph technique. Next, we propose a solution
to the ONLY-ONE-OBJECT by means of a single recognizer membrane system from
NAM0(+d,−ne). We finish the paper with some conclusions and interesting open
research lines.

2 Preliminaries

In this section, we introduce some basic concepts and recognizer polarizationless
P systems with active membranes with dissolution rules. For deeper questions
concerning formal languages and membrane systems, we refer the reader to [10,
11].

An alphabet Γ is a non-empty set and their elements are called symbols. A
string u over Γ is an ordered finite sequence of symbols, that is, a mapping from
a natural number n ∈ N onto Γ . The number n is called the length of the string u
and it is denoted by |u|. The empty string (with length 0) is denoted by λ. The set
of all strings over an alphabet Γ is denoted by Γ ∗. A language over Γ is a subset
of Γ ∗.

A multiset over an alphabet Γ is an ordered pair (Γ, f) where f is a mapping
from Γ onto the set of natural numbers N. The support of a multiset m = (Γ, f) is
defined as supp(m) = {x ∈ Γ | f(x) > 0}. A multiset is finite (respectively, empty)
if its support is a finite (respectively, empty) set. We denote by ∅ the empty
multiset. Let m1 = (Γ, f1), m2 = (Γ, f2) be multisets over Γ , then the union of m1

and m2, denoted by m1 +m2, is the multiset (Γ, g), where g(x) = f1(x) + f2(x)
for each x ∈ Γ . We denote by M(Γ ) the set of all multisets over Γ .
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3 Polarizationless P systems with active membranes

First presented in [1], a P system is a computational model inspired by a biological
cell.

Definition 1. A polarizationless P system with active membranes without division
rules of degree q ≥ 1 is a tuple

Π = (Γ,H, µ,M1, . . . ,Mq,R, iout)

where:

• Γ is a finite (working) alphabet whose elements are called objects.
• H is a finite alphabet such that H ∩ Γ = ∅ whose elements are called labels.
• q ≥ 1 is the degree of the system.
• µ is a labelled rooted tree (called membrane structure) consisting of q nodes

injectively labelled by elements of H (the root of µ is labelled by rµ).
• M1, . . . ,Mq are multisets over Γ \Σ.
• R is a finite set of rules, of the following forms:

(a) [ a → u ]h, where h ∈ H, a ∈ Γ , u ∈ M(Γ ), (object evolution rules).

(b) a [ ]h → [ c ]h, where h ∈ H \ {rµ}, a, b, c ∈ Γ (send-in communication
rules).

(c) [ a ]h → b [ ]h, where h ∈ H, a, b ∈ Γ (send-out communication rules).

(d) [ a ]h → b, where h ∈ H \ {iout, skin}, a, b ∈ Γ (dissolution rules).
• iout ∈ H ∪ {env}.

A polarizationless P system with active membranes

Π = (Γ,H, µ,M1, . . . ,Mq,R, iout)

can be viewed as a set of q membranes, labelled by elements of H, arranged in a
hierarchical structure µ given by a rooted tree (called membrane structure) whose
root is called the skin membrane, such that: (a) M1, . . . ,Mq represent the finite
multisets of objects initially placed in the q membranes of the system; (b) R is
a finite set of rules over Γ associated with the labels; and (c) iout ∈ H ∪ {env}
indicates the output region. We use the term region i to refer to membrane i in the
case i ∈ H and to refer to the “environment” of the system in the case i = env.

A membrane that does not have internal membranes (i.e. it is a leaf of the
tree structure µ) is called an elementary membrane. Otherwise, it is considered
a non-elementary membrane. The membrane that surrounds the whole system is
called skin membrane.

An instantaneous description or a configuration Ct at an instant t of a polariza-
tionless P system with active membranes is described by the following elements:
(a) the membrane structure at instant t, and (b) all multisets of objects over Γ
associated with all the membranes present in the system at that moment. The
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initial configuration of Π is described as C0 = (µ,M1, . . . ,Mq; ∅). We denote the
contents of the region h in the moment t as Ct(h).

An object evolution rule [ a → u ]h for h ∈ H, a ∈ Γ , u ∈ M(Γ ) is applicable
to a configuration Ct at an instant t, if there exists a membrane labelled by h in
Ct which contains object a. When applying such a rule, object a is consumed and
objects from multiset u are produced in that membrane.

A send-in communication rule a [ ]h → [ b ]h for h ∈ H, a, b ∈ Γ is applicable
to a configuration Ct at an instant t, if there exists a membrane labelled by h in Ct
such that h is not the label of the root of µ and its parent membrane contains object
a. When applying such a rule, object a is consumed from the parent membrane
and object b is produced in the corresponding membrane h.

A send-out communication rule [ a ]h → b [ ]h for h ∈ H, a, b ∈ Γ is applicable
to a configuration Ct at an instant t, if there exists a membrane labelled by h in Ct
such that it contains object a. When applying such a rule, object a is consumed
from such membrane h and object b is produced in the parent of such membrane.

A dissolution rule [ a ]h → b for h ∈ H \ {iout}, a, b ∈ Γ is applicable to
a configuration Ct at an instant t, if there exists a membrane labelled by h in
Ct, different from the skin membrane and the output region, such that it contains
object a. When applying such a rule, object a is consumed, membrane h is dissolved
and its objects are sent to the parent (or the first ancestor that has not been
dissolved).

A computational step is made by the application of the aforementioned rules
in the following way:

• One object can fire only one rule;
• Object evolution rules can fire in a maximal parallel way; that is, all the evo-

lution rules that can be fired will be fired;
• In each membrane, only one rule of the types (b), (c) or (d) can be fired in each

computational step;
• A computational step is divided in two microsteps: First, all the transforma-

tions of objects are made, and second, membranes that must be dissolved will
be dissolved.

If an object can fire more than one rule, then it will select one of them non-
deterministically. Ct leads to Ct+1 if the latter can be obtained from the former by
applying the rules in the previously explained way, and it is denoted by Ct ⇒Π

Ct+1. A computation of the system is a sequence of configurations C = (C0, . . . , Cn),
where C0 is the initial configuration of the membrane system, and for each Ct, t ≥ 1,
Ct−1 ⇒Π Ct. We say that the computation is finite if n ∈ N.

In [12, 13], a special type of membrane systems is introduced in order to solve
decision problems, the well-known recognizer membrane systems. A recognizer
membrane system is a membrane system from any class of P systems (e.g., cell P
systems, tissue P systems and so on) that has special requirements.

Definition 2. A recognizer polarizationless P system with active membranes with-
out division rules of degree q ≥ 1 is a tuple
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(Π,Σ, iin)

where:

• Π = (Γ,H, µ,M1, . . . ,Mq,R, iout) is a polarizationless P system with active
membranes without division rules of degree q ≥ 1 where:
– Γ has two special symbols, yes and no.
– M1, . . . ,Mq are multisets over Γ \Σ.
– iout = env is the environment of the system.

• Σ ⊊ Γ .
• iin ∈ H is the input membrane.

Let m ∈ M(Σ). We denote by Π +m the membrane system Π with input m;
that is, the membrane system Π where the multiset m is introduced in the initial
configuration in the input membrane iin. Then, the initial configuration of Π +m
is C0 = (µ,M1, . . . ,Miin +m, . . . ,Mq; ∅). We recall the concept of solvability of
decision problems by means of recognizer membrane systems:

Definition 3. Let X = (IX , θX) be a decision problem, and let cod : IX → M(Σ)
be a function that transforms an instance of X to a multiset over Σ, that will be
the input of Π. We say that Π solves an instance u ∈ IX of the decision problem
X if:

• The system Π + cod(u) sends only one object yes or one object no, but not
both, to the environment, and only in the last step of the computation; and

• The system Π + cod(u) is confluent; that is, all the computations halt and
return the same result.

4 The complexity classes PMCR and PMC1f
R

We recall the definition of various computational complexity classes in the frame-
work of membrane computing.

Definition 4. Let R be a class of recognizer membrane systems. We say that a
family of recognizer membrane systems Π = {Π(n) | n ∈ N} from R solves a
decision problem X = (IX , θX) in a uniform way if the following hold:

• There exists a pair of functions (cod, s) computable in polynomial time over IX
such that cod(u) ∈ M(Σ) (input multiset) and s(u) ∈ N (size of the instance);

• For each n ∈ N, s−1(n) ⊆ IX .
• Π is polynomially bounded, sound and complete with regard to (X, cod, s).

In this way, for solving a certain instance u ∈ IX , we need to know the answer
of the membrane system Π(s(u)) + cod(u). For more detail, we refer the reader
to [12].

In [9, 6], authors introduce the complexity class PMC1f
R as a manner to deal

with decision problems with a single recognizer membrane system.
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Definition 5. Let R be a class of recognizer membrane systems. Let X = (IX , θX)
be a decision problem such that IX is a language over a finite alphabet ΣX . We
say that problem X is solvable in polynomial time by a single membrane system Π
from R free of external resources, denoted by X ∈ PMC1f

R , if the following hold:

• The input alphabet of Π is ΣX .
• The system Π is polynomially bounded, sound and complete with regard to X

The term free of resources means that the input is directly introduced as a
multiset from the instance, without “being encoded”.

The class PMC1p
R is also defined in the aforementioned paper, being defined

in a similar way to PMC1f
R , but in this case the encoding of the input instance

is allowed.
From these asserts, it is trivial to see that PMC1f

R ⊆ PMC1p
R ⊆ PMCR .

5 The Origins of the Dependency Graph

The non-deterministic nature of membrane systems let a membrane system have,
instead of a single computation, a tree of computations, usually denoted by
Comp(Π). The dynamics of the system are captured by Comp(Π), being the
initial configuration the root node of the tree and there exists an edge between C
and C′ if and only if C ⇒Π C′. The configuration paths of maximum length up
to a leaf are the computations of Π and a computation terminates if and only if
the path is finite. From the definition of PMCR we know that the obtained mem-
brane systems must be confluent. Therefore, it is sufficient to consider only one
computation per problem case. An interesting question would consist on finding
the computational path of minimum length, but for this one has to measure the
degree of similarity between two configurations (e.g., by the distance metric [14]).
In this context, the dependency graph was introduced, which represents the de-
pendencies between the membrane states (configurations) and the set of rules of
the P system.

6 The Dependency Graph as a Proof Technique

From that very first application, different applications that are not related to the
first one appeared.

6.1 Non-Efficiency of specific Membrane Systems

Let us now consider polarizationless recognizer P systems with active membranes
that do not use dissolution rules. The dependency graph G is a directed graph
whose vertex set consists of the initial configuration and all membrane configura-
tions (a, h) (= alphabet object and membrane label on which it appears), for which
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a appears on the right or left side of a rule. If there is a rule leading from config-
uration 1 to configuration 2, then nodes 1 and 2 in G are connected by an edge.
Here, they use the concept of “accessibility” in the graph. The objects initially
placed in the system can be considered as the initial nodes (taking into account
the corresponding membranes). Instead of simulating the whole system, the graph
can be constructed from the definition of the recognizer membrane system and the
question is transformed to the following one:

Is there a path from the initial nodes to the node (yes, env)?

In [15], the well-known Păun’s conjecture was stated. IsP = PMCAM0(+d,−ne).
In [16], they use the concept to give a partial affirmative answer for the case where
dissolution is forbidden and division rules both for elementary and non-elementary
membranes. In that work, it is shown that P = PMCAM0(−d,+ne).

As stated above, we need to find a path from the initial nodes to the node
(yes, env). But for this purpose, we reduce the entire problem to the REACHABILITY
problem, that is stated as follows:

Given a directed graph G = (V,E) and two vertices s, t ∈ V . Is there a
path from s to t?

It is known that REACHABILITY ∈ P, thus completing the proof.

6.2 Negative Results in Membrane Computing

The dependency graph can be used to show negative results as well. For instance,
on can show:

ONLY-ONE-OBJECT /∈ PMC1f
AM0(−d,+ne) (1)

In this context, a computation is accepting if and only if there is a path in G
from s to t, with s being the initial and t the final vertex of the computation.
We will show (1) by contradiction. Let us assume there were such a P system
Π ∈ AM0(−d,+ne). Then, a path from the initial vertex to the vertex (yes, env)
that passes the vertex (a, iin) would exist, to correctly resolve the case {a}. When
we analyze the case {an}, n > 1, the following holds:

∀n > 1 : GΠ+{a} = GΠ+{an}

This holds, because the vertex set of the dependency graph is a set and not a
multiset. And because of that, a different multiplicity of the same element (n
elements a instead of a single a) does not change the graph at all. Thus, every
computation would be accepting ⇒ this contradicts our assumption.
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7 Proposed Solution for the ONLY-ONE-OBJECT Problem
Using Dissolution

As we have just seen, the ONLY-ONE-OBJECT problem cannot be solved with a P
system Π ∈ AM0(−d,+ne). However, if we allow the use of dissolution rules, the
problem is solvable. In Figure 1, we propose a P system that is in AM0(+d,−ne)
and solves ONLY-ONE-OBJECT. The system takes a multiset {an}, n ∈ N+ as input
in membrane 3 and outputs the answer to the problem (yes or no) into the system’s
surrounding. The system uses three dissolution rules: one in membrane 3 and two
in membrane 2, two of these only activate themselves if there is an a present in
the membrane. In the case n = 1, only membrane 3 will be diluted by those rules,
in the other case (n > 1), the membranes 3 and 2 are diluted. Making use of the
auxiliary element β, we can now “count“ the number of necessary computation
steps to reach membrane 1. If there is more than one a, membranes 3 and 2
will be diluted in two computation steps, so the auxiliary element β′′ will be in
membrane 1 and the system will output no. On the other hand, if there is only one
a, membrane 2 won’t be diluted using the dissolution rule [a]2 → δ, but using this
one instead: [β′′′]2 → δ. So, if there is only one a, we can increment the auxiliary
element β until it reaches β′′′. In the final step, if there is a β′′′ in membrane 1, we
output yes. It is impossible by design that are a β′′ and a β′′′ at the same time in
membrane 1, which means that the system will always output the same and the
correct answer.

8 Conclusions

Multiple use cases exist for the dependency graph in the analysis of computational
models. With that tool, we were able to show the non-efficiency of a membrane sys-
tem and the non-existence of a solution for a given problem when using a specific
membrane system (ONLY-ONE-OBJECT /∈ PMC1f

AM0(−d,+ne)). Furthermore, we pre-

sented a P system in AM0(+d,−ne) that solves the ONLY-ONE-OBJECT problem.

If we want to solve P versus NP, we should keep making efforts in exploring new
techniques to analyze the possibility and feasibility in the context of membrane
systems.
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{an}

[a]3 → δ

3 β
[β → β′]2
[β′ → β′′]2
[β′′]2 → β′′′δ
[a]2 → δ

2

[β′′]1 → no [ ]1
[β′′′]1 → yes [ ]1

1

Fig. 1. P system Π ∈ AM0(+d,−ne) solving ONLY-ONE-OBJECT
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Summary. We investigate the computational power of non-cooperating polymorphic
P systems with no additional ingredients and having a membrane structure of limited
depth. We show that any ET0L language can be generated by such systems with a
membrnae structure of depth three.
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tems, P systems with non-cooperating rules, P systems with limited depth

1 Introduction

Polymorphic P systems were introduced in [1] motivated by the idea that the pro-
gram of a computing device could be viewed as data, therefore, it could also be
changed during the course of the computation. In these types of P systems, rules
are not statically defined, but are dynamically inferred from the contents of pairs
of membranes: The contents of one member of the pair defines the multiset rep-
resenting the left-hand side of the rule, the contents of the other member defines
the right-hand side. As the membranes can contain further membranes, the con-
tents of the pairs, and this way the left- and right-hand sides of rules may change
dynamically during the computation.

The initial results presented in [1] show the power of the model. With cooper-
ating rules (rules with left-hand sides with more than one objects) any recursively
enumerable set of numbers can be generated, but non-cooperating systems (sys-
tems with rules with just one object on the left-hand side) can also generate several
interesting languages, mainly based on the fact that an exponential, even super-
exponential growth of the number of objects inside the system can be produced.

The study of non-cooperating variants of the model was continued further in
[3] with considering the case of “no ingredients”, that is, when no special features
(not even target indicators) are added to the system. The equivalence of so called
strong and weak polymorphism was shown, left polymorhism, right polymorphism,
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and general polymorphism was defined. As its main contribution, [3] presented a
hierarchy of computational power based on the depth of the membrane structure,
but the computational power of the non-cooperating variant remained unclear.

In the present work, we intend to take some initial steps in this direction by
showing that any ET0L language can be generated using non-cooperating poly-
morphic P systems (with no other ingredients) of depth three. In the following
we first review the necessary definitions, then present an example wehere a simple
ET0L system is simulated, then finally generalize the idea of the simulation to a
method for generating any ET0L language.

2 Preliminaries

In the following we breiefly define the basic notions we will use. See [6] for more
on formal language theory, and [4, 5] for details about membrane computing.

Multisets are sets with multiplicites associated with their elements. Let U be
a set. A multiset over U is a mapping M : U → N, M(a), for all a ∈ U , is the mul-
tiplicity of a in the multiset M . We can also use the form (a,M(a)). If U is finite,
U = {a1, a2, . . . an}, then {(a1,M(a1)), (a2,M(a2)), . . . , (an,M(an))} can also be

represented by a string w = a
M(a1)
1 , a

M(a2)
2 , . . . , a

M(an)
n (and all permutations of

this string).
In formal language theory, an alphabet V is a finite non-empty set of symbols,

its cardinality is denoted by |V |. A string generated by V under the operation of
concatenation is denoted by V ∗, and V + = V ∗ \ {λ} where λ denotes the empty
string.

Lindenmayer systems (or L systems) are parallel rewriting systems introduced
in 1968 by A. Lindenmayer. Several variants of L systems have been developed
since then, among these, we will use ET0L systems and languages.

A finite substitution τ over an alphabet V is a function mapping each symbol
a ∈ V into a non-empty finite language over: V : τ(a) ⊆ V ∗. We extend τ to words
by τ(λ) = {λ}, τ(w) = τ(a1)τ(a2) . . . τ(an) for w = a1a2 . . . an, and to languages
by τ(L) = {τ(w)|w ∈ L}.

An ET0L system is a 4-tuple G = (V, T, U,w) where V is an alphabet and
T ⊆ V is a terminal alphabet are finite sets, w ∈ V + is the initial word of G,
and U is a finite set of finite substitutions over V (called the tables of U). In a
computational step in G, all the symbols of the current sentential form (starting
with the axiom) are substituted (or rewritten) using one of the tables of U . The
language generated by G consists all terminal strings which can be generated
in a series of computational steps (a derivation) from the initial word, that is,
L(G) = {u ∈ T ∗ | w ⇒∗ u} where ⇒ denotes a comptutaional step, and ⇒∗ is the
reflexive and transitive closure of ⇒. The family of languages generated by ET0L
systems is denoted by L(ET0L).

It is known (see [2]) that for each ET0L system with an arbitrary number of
tables, there exists an ET0L system with only two tables generating the very same
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language. This means that every task which can be solved by an arbitrary ET0L
system can also be solved by a system using two tables. Therefore, in the following
example and model, we will assume that ET0L systems have two tables.

Moreover, since we are going to relate ET0L languages to the multiset langugaes
of P systems, the most important thing is not the string generated by the ET0L
system, but the multiplicities of different letters in the generated strings. We will
denote by N(G) the language of multisets corresponding the strings of L(G), and
by L(NET0L) the obtained class of multiset langugaes.

A membrane systms (or P system) is a tuple

Π = (O, T, µ, w1, . . . , wn, R1, . . . , Rn, ho),

where O is an alphabet of objects, T ⊆ O is the set of terminal objects, µ is
the membrane structure, wi are the multisets giving the initial contents of each
membrane 1 ≤ i ≤ n, Ri is a finite set of rules for each membrane 1 ≤ i ≤ n, and
ho is the label of the output membranes, ho ∈ {1, . . . , n}.

The membrane structure µ is usually denoted by a string of matching paren-
theses labelled by the numbers {1, . . . , n}, but it can also be represented by a tree
with its root labelled by the label of the outermost membrane, and the descendant
nodes of each node labelled by the labels of membranes enclosed by the region
corresponding to the given node. In the following, the number of nodes encoun-
tered during the traversal of the longest path from the root to a leaf in such a tree
representation will be called the depth of the membrane system. (For example, the
membrane system which only has one membrane is of depth 1, the system with
two nested membrane is of depth 2.)

The rules in Ri, 1 ≤ i ≤ n, are given as multiset rewriting rules, of the form
u → v, where u, v ∈ V ∗ are strings (understood as representations of multisets). If
in such rules, the number of objects in u (the multiset on the left side of the rules)
is greater than one, then we say that Π is a system with cooperation. Otherwise,
it is a non− cooperative system.

The rules in a given Ri are applied in the region enclosed by membrane i in
a maximally parallel way, that is, as many rules have to be applied in parallel as
possible with the restriction that each object can be rewritten by at most one rule.

2.1 The polymorphic P system model

In polymorphic membrane systems, unlike traditional membrane systems, the rules
are not directly defined. The rules are represented by the membranes. The left and
right sides of each rule are contained by a membrane. Consequently, the structure
of the polymorphic membrane system will be different.

A polymorphic P system is a tuple

Π = (O, T, µ, ws, ⟨w1L, w1R⟩ , . . . , ⟨wnL, wnR⟩ , ho),

where O is the alphabet of objects, T ⊆ O is the set of terminal objects, µ is the
membrane structure consisting 2n + 1 membranes labelled by s, 1L, 1R, . . . , nL,
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Fig. 1. The polymorphic P system Π1 of Example 1.

nR, the multiset ws is the initial contents of the skin membrane, ⟨wiL, wiR⟩ are
pairs of multisets giving the contents of membranes iL and iR, 1 ≤ i ≤ n, and
ho ∈ {1, . . . , n} is the label of the output membrane.

The depth is defined in the same way as conventional membrane systems, it is
the height of µ seen as a tree. For every 1 ≤ i ≤ n, the membranes iL and iR have
the same parent membrane, so they are located at the same depth.

The rules of Π are not given statically in the description, but are dynamically
deduced for each configuration based on the content of the membrane pairs iL
and iR. Thus, if in the configuration of the system these membranes contain the
u and v multisets, then in the next step their parent membrane is transformed as
if the u → v multiset transcription rule were added to it. If iL is empty in some
configuration, then the rule defined by the pair iL, iR is considered disabled, that
is, no rule will be inferred from the contents of iL and iR.

Similarly to [1], polymorphic membrane systems and their languages are
denoted as NOP k(polym, ncoo) and L(NOP k(polym, ncoo)) where k denotes
the depth, polym means polymorphism, and ncoo means that the system is
non− cooperative.

Now we recall an example of a simple polymorphic membrane system with
superexponential growth from [1].

Example 1. Consider the polymorphic P system

Π1 = ({a}, {a}, µ, a, ⟨a, a⟩ , ⟨a, aa⟩ , S)

having a membrane structure as illustrated in Figure 2.1.
In the initial configuration, rule 1 looks like a → a, because of the contents

of 1L and 1R, while rule 2 in membrane 1R is a → aa. In the first step, rule 1
is applied in the skin, leaving the contents of the membrane intact, and rule 2
is applied in membrane 1R doubling the number of a’s in 1R, so rule 1 will be
changed to the form a → aa. In the second step, rule 1 will transform the multiset
a in the skin into aa. and rule 2 is applied in membrane 1R and double the contents
again, so after that, rule 1 looks like a → a4. In general, after k derivation steps,

1R will be a2
k
, so rule 1 will have the form a → a2

k
. As the number of a’s in the

skin will be 2
k(k−1)

2 , the rate of growth of the contents of the skin membrane is
superexponential.
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Fig. 2. The P system Π of Example 2.

3 Polymorphic P systems with limited depth

In this section we would like to examine the relationship of languages generated
by ET0L systems and simple polymorphic P systems, where simplicity is captured
by non-cooperation and limited depth. We look at an example first.

Example 2. Consider the following ET0L system G = (V, T, U,w) with V = T =
{a1, a2}, w = a1a2, and two tables U = (P1, P2), each containing two rules

P1 = {a1 → a1a2, a2 → a2a1a1}, and

P2 = {a1 → a2, a2 → a1}.

We construct a non-cooperative polymorphic P system Π with depth 3 that
can perform the choosing between rules of P1 and P2, and therefore simulates the
operation of G.

Let O = {a1, a2, a′1, a′2, a01, a02, a11, a12, ā1, ā2, ¯̄a1, ¯̄a2, b, c, d, }, T ′ = {a′1, a′2} and

Π2 = (O, T ′, µ, ws, ⟨w1L, w1R⟩, . . . , ⟨w21L, w21R⟩, s)

where the membrane structure of Π is defined as

µ = [ [. . .]1L [. . .]1R [ ]14L [ ]14R . . . [ ]21L [ ]21R ]s

with membrane 1L containing the inner membranes [ ]2L [ ]2R . . . [ ]6L [ ]6R , and
membrane 1R containing the inner membranes [ ]7L [ ]7R . . . [ ]13L [ ]13R.

We use two types of rules in polymorphic membrane systems. The rules be-
longing to the first type do not change during the solution of the task, while the
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rules belonging to the second type can change step by step. In this example we
only have one rule that changes during the steps, rule 1. The other rules have the
same form at every step during the process.

The graphical representation of µ can be seen in Figure 2 where also the initial
membrane contents are depicted. Non-dynamical rules, that is, pairs of membranes
[ wiL ]iL, [ wiR ]iR with constant contents (contents that never change during the
computation) are given in a simplified notation as wiL → wiR.

The initial contents of the regions effected by the polymorphic nature of Π,
that is, the regions with non-constant contents are

ws = a′1a
′
2, w1L = b, w1R = b.

Step Rule 1 Skin 1L 1R Rules 14-21

1. b → b a′
1a

′
2 2 7

2. a′
1 → ā1 a′

1a
′
2 3 8

3. a′
2 → ā2 ā1a

′
2 4 9 14

4. c → c a1
1a

1
2ā2 5 13 16, 18, 20

5. b → b a0
1a

0
2a

0
2a

0
1a

0
1 2 7 or

10
19, 21

6. a′
1 → ā1 or

a′
1 → ¯̄a1

a′
1a

′
2a

′
2a

′
1a

′
1 ... ... ...

Table 1. The polymorphic system Π of example 2

The functioning of Π is demonstrated in Table 1. The first column contains the
step number. The second column contains how rule 1, defined by the membranes
1L and 1R looks like after every step. The third column contains the elements of
the skin region. The fourth, fifth, and sixth columns contain the rules we (need
to) use in the corresponding steps.

The general idea behind the functioning of Π2 is as follows. Rules 14 − 17
simulate the rewriting process of the tables of G. Those with lefthand side ā1 or
ā2 simulate the first table, those with lefthand side ¯̄a1,

¯̄b2 simulate the second table.
The objects of the skin region correspond to the sentential form of G. Rule 1 is
“dynamic”, it prepares the objects of the skin membrane for the application of the
rules 14 − 17 in the appropriate order. At the beginning of a “simulating cycle”,
rule 1 is used to rewrite a (more precisely, its variant, a′1) to ā1 or ¯̄a2, selecting
this way the table to be simulated. Then, rule 1 changes to rewrite a′2 according to
the same selection, while rules 14 − 17 proceed with the actual simulation of the
chosen table. The rest of the rules are needed to synchronize the whole process.

Table 1 shows how the rewriting of a1a2 to a1a2a2a1a1 by the first table of G is
simulated in Π. In the initial state, rule 1 looks like b → b, which is not applicable,
because we only have an a′1 and a a′2 in the skin.
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So in the first step, we have to change rule 1. In 1L we can use rule 2 (b → a′1),
which rewrites b in 1L to a′1 making rule 1 is applicable, because we can use it
to write a′1 in the skin. In parallel, we have to use rule 7 (b → ā1) or rule 10
(b → ¯̄a2) in 1R. This decision depends on which table of the ET0L system we
want to simulate. To simulate P1, we must use rule 7, and to simulate P2, we must
use rule 10. As we would like to simulate P1, we use rule 7.

As can be seen in the second row of Table 1, the form of rule 1 has changed,
and now we can use it in the skin and rewrite a′1 to ā1.

At the same time, the rules used in 1L and 1R (a′1 → a′2, ā1 → ¯̄a2, respectively),
changed the shape of rule 1 to a′2 → ¯̄a2, in order to be able to start rewriting a′2-s
in the next step.

After we used rule 1, the object(s) in the skin changed. Now, we can use rule
14 (ā1 → a11a

1
2), which simulates the first rule from the P1 ET0L table of G. The

upper indexing of the symbols on the right-hand side starts from 1, so that they
are written back into the primed form (after counting down with the indices to
zero) at the appropriate step.

Meanwhile, in step 3, rule 1 (a′2 → ¯̄a2) is also applied to rewrite a′2 (so the
second rule of table P1 of G can also be simulated), and rule 1 is changed to c → c
(so it cannot be applied in the next step).

Now, with rule 16 (¯̄a2 → a02a
0
1a

0
1), the rule a2 → a2a1a1 of G is simulated,

while rules 18 and 20 decrement the upper indices of the objects introduced by
the simulation of the previous rule, and rule 1 is changed to b → b.

Now, as can be seen in row 5. of Table 1, the system is ready to prepare the next
simulating cycle by rewriting the objects corresponding to the sentential form of G
to their primed versions, and changing rule 1 in the appropriate way. We returned
to a state that was similar to the initial state, where 1L has b and 1R also has b,
so we can choose between rule 7 and rule 10 again (to simulate another step from
the ET0L system), and in parallel, rewrite a01-s and a02-s to a′1-s and a′2-s, with
rules 19 and 21.

The simulation of the ET0L system can be completed when it returns to a state
that is similar to the initial state, so before another table is selected for simulation.
So, if 1L has b and 1R also has b, and we want to stop the mechanism, then we can
choose rule 6 instead of rule 7 or rule 10. Rule 6 shuts down the system and the
simulation ends. The reason for this is that after applying rule 6, the form of rule
1 is: d → ā1 or d → ¯̄a1, and we can’t use any of these rules in the Skin membrane,
because we don’t have a d object in Skin.

The result will be a string made from the letters {a′1, a′2, . . .} in the Skin
membrane of the system.

Now we show that the basic idea of the example above can be generalized to
arbitrary ET0L systems. Without the loss of generality, we assume that we deal
with systems having two tables.

Theorem 1. L(NET0L) ⊆ L(NOP 3(polym, ncoo)).
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Proof. Let G = (N,T, U,w) be an ET0L system and let k denote the number of
letters in the alphabet, N = {a1, a2, ..., ak}. The two tables are U = (P1, P2), and
the rules are denoted by ri,j , where index i ∈ {1, 2} denotes the index of the table,
and 1 ≤ j ≤ m is the index of the rule, with m being the maximum of |P1| and
|P2|, the number of rules in the two tables.

We denote the left- and righthand sides of the rules as ri,j : αi,j → βi,j , where
αi,j ∈ N and βi,j ∈ N∗, 1 ≤ i ≤ 2, 1 ≤ j ≤ m.

Let

O = {ai, a′i, ani , āi, ¯̄ai | 1 ≤ i, n ≤ k} ∪ {b, c, d, }, T ′ = {a′i | 1 ≤ i ≤ k}

and let
Π = (O, T ′, µ, ws, ⟨w1L, w1R⟩, . . . , ⟨wpL, wpR⟩, s)

where p = 2+(3k+6)+2m+ k(k+1)
2 , and the membrane structure of Π is defined

as
µ = [ [. . .]1L [. . .]1R [ ](3k+7)L [ ](3k+7)R . . . [ ]pL [ ]pR ]s

with membrane 1L containing the inner membranes [ ]2L [ ]2R . . . [ ]6L [ ]6R, and
membrane 1R containing the inner membranes [ ]7L [ ]7R . . . [ ]13L [ ]13R.

In 1L, the number of rules depends on the number of letters in the alphabet
of the ET0L system, we have to apply k + 2 rules for each table simulation in
succession, where k = |N |. In general, we specify the rules for k letters as

b → a′1, a′i → a′i+1, for 1 ≤ i ≤ k − 1, and a′k → c, c → b.

They perform the same task as the rules of 1L in Example 2 do for two letters.
Note that here we have used the simplified notation again for membranes with

contents that remain constant for the whole computation. (Without this simplifi-
cation we would have to write ⟨w2L, w2R⟩ and specify w2L = b, w2R = a′1 instead
of the rule b → a′1, and so on.)

Rules must be applied in 1R depending on the choice of the table, because
those rules give the right side of rule 1, which modifies the objects in the skin. So
we have to create rules for also P1 and P2, like in the example. We need

b → ā1, āi → āi+1 for 1 ≤ i ≤ k − 1, āk → c, c → b,

and
b → ¯̄a1, ¯̄ai → ¯̄ai+1 for 1 ≤ i ≤ k − 1, ¯̄ak → c, c → b.

In the skin region we have to go through the rules of a table in order, and for
this reason we do not rewrite the letters at the same time. We have to add extra
rules, which help us get back to the form a′1, a

′
2, . . . for all objects at the same step,

after rewriting the last letter.
We denote the jth rule of table 1 and table 2 with r1,j and r2,j , respectively.

In order to simplify the notation, we assume that the cardinality of the two tables
are the same, m = |P1| = |P2|. If this is not the case, |P1| < |P2| for example, then
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we consider the “missing rules” r1,j , P1| < j ≤ |P2|, to be a1 → a1. Now we add
the following rules to the skin region.

Rule set for the rules of P1, the first table of U = (P1, P2):

{āi → βk+1−i
1,j | α1,j → β1,j ∈ P1, α1,j = ai for some ai ∈ {a1, a2, . . . ak}}.

Rule set for the rules of P2 of U = (P1, P2):

{¯̄ai → βk+1−i
2,j | α2,j → β2,j ∈ P2, α2,j = ai for some ai ∈ {a1, a2, . . . ak}}.

After rewriting with the rules above, we have to use rules to count down ai-
s indexes until the last letter is transcribed, similarly as we count down in the
example. Thus, every ai gets k + 1− i indices as follows.

ani → an−1
i , a1i → a

′

i, where 2 ≤ n ≤ k + 1− i, 1 ≤ i ≤ k − 1.

To stop the system, we need to add another rule to 1L. The rule must be one
that can be applied at the end of a table simulation. For this reason, when 1L and
1R return to a state similar to the initial state, there should be an option to apply
the stopping rule, which is b → d, similar to the system of Example 2.

So we add the rule
b → d

to 1L.
After we used this rule the system shut down, because we never have d object

in the skin region. So after this step we can’t continue the rule application, the
system halts. The result will be a string consisting of the letters {a′1, a′2, . . .} in the
skin membrane of the system.

4 Conclusion

We have shown how a simple ET0L system can be simulated by a non-cooperating
polymorphic P system of depth three, and then generalized the idea to produce
any ET0L language. Our work is intended to be the initial step in the investigation
of the computing power of non-cooperating systems with limited depth. The next
topic of further study is looking for upper bounds on the computational power,
and in particular, to relate left and right polymorphism and their depth-limited
variants to the general case.
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Summary. Key agreement protocols are a central part of cryptography research. The
idea of such a protocol is to allow two or more parties to reach a shared secret by
communicating over a public channel. There are three main types of key agreement
protocols: based on hard mathematical problems, based on quantum effects and based
on neural synchronization. Although they have not been much studied until now, key
agreement protocols based on neural synchronization have several advantages. First, their
security does not involve any number theory problem which may be solved on a quantum
computer. Second, unlike quantum key agreement protocols, they do not require special
hardware which is expensive and hard to manage. Recently, a new neural key agreement
protocol based on the Anti-Spiking Neural Tree Parity Machine P system, ASNTPM P
system for short, has been proposed. Although the protocol is more efficient than the
rest of the neural key agreement protocols, no security analysis was performed.

In this paper, we study the security of the protocol based on ASNTPM P systems
from a cryptographic perspective. We analyze the running time of the protocol with
respect to the parameters of the system. We adopt multiple attacks from the neural
cryptography literature and show that the ASNTPM P system-based protocol is secure.
Through a series of experiments, we show that the running time of the protocol grows
polynomially in the system parameters while the probability that an attack will succeed
decreases exponentially.

Key words: Spiking Neural P system, Anti-spikes, ASNTPM P systems, Tree
Parity Machine, Cryptography

1 Introduction

Key agreement protocols are the basis of all modern cryptographic protocols. From
simple web traffic which is secured using the TLS protocol to the more complex
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end-to-end encrypted messaging communication platforms which are based on Sig-
nal protocol, most cryptographic systems use some sort of key agreement proto-
cols [10, 11, 42]. The main role of such protocols is to establish a shared secret
among two or more parties using public communication channels.

Currently, most key agreement protocols are based on hard number theory
problems e.g., the discrete logarithm problem (DLP), the Diffie-Hellman problem
(DHP), the decisional Diffie-Hellman problem (D-DHP), the factorization problem,
etc [15]. The disadvantage of these protocols is that they are vulnerable if a large
quantum computing is built. In [47], Peter Shor proposed a quantum algorithm
that can solve the DLP and the factorization problem in polynomial time. Until this
moment, there is no large enough quantum computer to endanger the cryptogamic
primitives and protocols deployed in the industry. However, it is expected that such
a computer will be built shortly [38].

There are three alternatives to the current key agreement protocols:

1. Post-quantum key agreement protocols
2. Quantum key agreement protocols
3. Neural key agreement protocols

The post-quantum key agreement protocols are based on hard mathematical prob-
lems for which no efficient solution is known on classical or quantum computers [4].
The disadvantage is that there is no mathematical proof that there is indeed no
solution to those problems. The quantum key agreement protocols are based on
quantum effects e.g., the collapse of the probability wave, entanglement, no-cloning
theorem, etc. [23]. Although these protocols are secure even if a large quantum
computer is built, they require specialized hardware which is hard to manage and
expensive.

There are many important applications of neural networks [1,2,16,25,27,29–32,
36,39,41]. A less known application is the construction of key agreement protocols.
The neural key agreement protocols represent an alternative to post-quantum or
quantum protocols. The idea behind these protocols is to synchronize over a public
channel two special neural networks called Tree Parity Machines, TPMs for short
[21]. Unlike post-quantum key agreement protocols, they are not based on any hard
mathematical problem so they are quantum secure. Their principal advantage over
the quantum key agreement protocols is that they do not require special hardware
and can be implemented on any classical computer.

Until recently, most TPMs were constructed using neurons modeled after the
perceptrons. In [40], the authors proposed for the first time a neural key agree-
ment protocol based on Spiking Neural P systems. They constructed a special
type of TPM called the Anti-Spiking Neural Tree Parity P system (ASNTPM P
system) and showed experimentally that their protocol is more efficient than the
classical neural key agreement protocols based on TPMs. In this paper, we study
the security of this protocol from a cryptographic perspective. We use the most
simple security model in which the attacker only eavesdrops on the communica-
tion channel. The attacker is not allowed to alter the messages exchanged by the
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legitimate parties nor to insert or delete messages. We adopt multiple attacks on
neural key agreement protocols from the literature and test whether the ASNTPM
P system-based protocol is secure against them. The paper is organized as follows:
in Section 2 we present related work and our contribution. In Section 3 we in-
troduce the definition of the model proposed by [40]. In Section 4 we analyze the
running time of the protocol with respect to the parameters of the system. In Sec-
tion 5 we discuss four different types of attacks against neural cryptography and
show experimentally that the protocol proposed in [40] is secure. Section 5 is left
for conclusions.

2 Related work

The idea of using neural synchronization to build a key agreement protocol was
first proposed in [21]. The TPM proposed by the authors was a three-layer neural
network with binary inputs. Shortly after the idea was launched, three types of
attacks were proposed in [22]. The authors showed through multiple experiments
that they can recover more the 90% of the shared key using the geometric attack. In
[28] the authors experimentally proved that increasing the range of the weight can
improve the security of the protocol. The paper provides evidence that increasing
the range increases the synchronization time polynomially while decreasing the
probability that the geometric attack will succeed exponentially. In [46] is presented
a more powerful attack than the geometric one. This attack called the majority
attack cannot be mitigated by increasing the range of the weights.

There are also other strategies for improving the security of neural key agree-
ment protocols. In [43] the authors proposed a mechanism by which the inputs of
the TPM are generated based on the current internal state of the network. In [7]
and [8] the authors presented two algorithms for perturbing the output of the TPM
in such a way that the attacker cannot recover the original information but the
two legitimate parties can synchronize. This improves the security of the protocol
because every attack uses the fact that the eavesdropper can intercept the outputs
exchanged by legitimate parties over a public channel.

In [51] and [20] the authors proposed other architectures for constructing a
TPM. In [51] the idea of using non-binary input values is presented improving the
running time of the protocol. In [20] it is shown that using vector values as inputs
can further improve the efficiency and the security of the protocol. Similarly, [12]
proposed a TPM with complex input values. In [52] the authors analyzed the
impact of non-binary input values on the security of a TPM-based key agreement
protocol. Regarding the practical aspects of neural cryptography, in [45] several
sets of parameters for TPMs were analyzed. For each set, the authors presented
the synchronization time and the security impact.

In this work, we are dealing with TPM instantiated with Spiking Neural P
systems. These systems are a special type of the membrane computing model in-
troduced in [37]. Membrane computing models have been used to solve hard prob-
lems like Hamiltonian Path in polynomial time [58]. In [6] the authors proposed a



78 Mihail Plesa

new sorting algorithm based on P systems. There are also P systems inspired by
various physical phenomena. In [5] the authors presented a P system in which the
membranes have a limited capacity and [17] presents a new model inspired by the
controlled circulation of water. Also, there are attempts to make these models in
the laboratory [26].

Spiking neural P systems were first introduced in [18]. Over time, new function-
alities inspired by various biological phenomena were added to the original model.
The most known Spiking Neural P systems are the following [9, 33–35,49,56,57]:

1. SN P systems with astrocytes
2. SN P systems with communication on request
3. SN P systems with polarizations
4. SN P systems with colored spikes
5. SN P systems with asynchronous systems
6. SN P systems with anti-spikes
7. SN P systems with a flat maximally parallel use of rules

The protocol analyzed in this paper is instantiated with a TPM based on Spiking
Neural P system with anti-spikes. Several variations of this model include Spiking
Neural P systems without the annihilating priority [55] and Spiking Neural P
systems with multiple channels [50]. Spiking Neural P systems were studied from
both a practical and a theoretical perspective. The computational power of SN P
systems with multiple channels was investigated in [24] while a formal verification
of SN P systems by mapping them to kernel P systems was made in [14, 19]. SN
P systems were also used to simulate uniform sequential computing models [3].

Apart from key agreement protocol, SN P systems have other applications in
cryptography [48,59]. In [13] the authors implemented the famous RSA algorithm
using SN P systems and in [54] the authors used a variant of SN P systems to break
the same cryptosystem by proposing a new and efficient factorization procedure
[53].

2.1 Our contribution

In this paper, we make a security analysis of the key agreement protocol proposed
in [40]. In the paper, the authors proposed a new TPM called Anti-Spiking Neural
Tree Parity Mchine which is based on SN P systems with anti-spikes. We propose
a new algorithm for computing the synchronization percentage between two AS-
NTPM P systems and also study the efficiency of the protocol with respect to the
parameters of the SN P system. Our main contribution is a series of experiments
in which we show that increasing the number of input neurons or the number of
hidden neurons can exponentially decrease the percentage of the key recovered by
the attacker. This growth in the number of neurons increases the synchronization
time only polynomially. Our experiments adopt known attacks on TPM-based key
agreement protocols in a simple security model in which the attacker can only
eavesdrop on the messages exchanged by the legitimate parties.
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3 ASNTPM P Systems

The definition of an ASNTPM P system as stated in [40] is the following:

Definition 1. An Anti-Spiking Neural Tree Parity Machine P system is defined
as the following construct:

Π = (O, {σin11 , σin12 , ..., σinKN
}, {σh1 , σh2 , ..., σhK

}, σout, N,K,L, syn0, f)

where:

1. O = {a, a} is an alphabet formed by two symbols:
a) The symbol a denotes a spike
b) The symbol a denotes an anti-spike

2. σinij
is an input neuron formed by the following tuple (nij , nij , Rij):

a) nij denotes the number of spikes from the neuron
b) nij denotes the number of anti-spikes from the neuron
c) Rij is a finite set of rules of the following forms:

i. Firing rules: bc → bc∗wij where b ∈ {a, a}, 1 ≤ c ≤ L and wij is a
positive integer that will be defined below.
If at the moment t a neuron has c spikes or anti-spikes it will fire,
consuming either c spikes or c anti-spikes and sending c ∗wij spikes or
c ∗wij anti-spikes to the hidden neuron σhiwith which it is connected.
At moment t = 0, there are no spikes or anti-spikes in the neuron i.e.,
nij = 0, nij = 0.

ii. Annlihilation rule: aa → λ
This rule indicates that at any moment t, an input neuron cannot
contain spikes and anti-spikes simultaneously. If a spike and an anti-
spike are present in an input neuron, they will annihilate each other
instantaneously.

Here, 1 ≤ i ≤ K and 1 ≤ j ≤ N .
3. σhi

is a hidden neuron formed by the following tuple (ni, ni, Ri):
a) ni denotes the number of spikes from the neuron
b) ni denotes the number of anti-spikes from the neuron
c) Ri is a finite set of rules of the following form:

i. Firing rules: rule of the form bc → b where b ∈ {a, a}, 1 ≤ c ≤ NL.
If at the moment t the neuron has c spikes it will fire consuming c
spikes and sending 1 spike to the output neuron. If at the moment t
the neuron has c anti-spikes it will fire consuming c anti-spikes and
sending 1 anti-spike to the output neuron. At moment t = 0, there are
no spikes or anti-spikes in the neuron i.e., ni = 0, ni = 0.

ii. Annlihilation rule: aa → λ
This rule indicates that at any moment t, a hidden neuron cannot
contain spikes and anti-spikes simultaneously. If a spike and an anti-
spike are present in a hidden neuron, they will annihilate each other
instantaneously.

Here, 1 ≤ i ≤ K.
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4. σout is the output neuron formed by the following tuple (nout, nout, rout):
a) nout denotes the number of spikes from the neuron
b) nout denotes the number of anti-spikes from the neuron
c) rout is an annihilation rule of the form aa → λ. The rule indicates that

the output neuron cannot hold spikes and anti-spikes simultaneously. At
moment t = 0, there are no spikes or anti-spikes in the neuron i.e., nout = 0,
nout = 0.

The output of the system is the number of spikes or anti-spikes from this
neuron.

5. synt is the set of synapses at the computational step t. A synapse is defined by
the triplet (σi, σj , wij) meaning the existence of a synapse between the neuron
σi and the neuron σj . Here, σi and σj can be input, hidden, or output neurons.
The weight on the synapse, wij ∈ ZZ+ has the role to amplify the spikes or
the anti-spikes passing through the synapse e.g., if the neuron σi fires sending
c spikes or anti-spikes to the neuron σj and the weight on the synapse is wij

then the neuron σj will receive c ∗ wij spikes or anti-spikes.
syn0 represents the set of synapses at moment t = 0. Initially, the weights
between the input and the hidden neurons are randomly chosen from the set
{1, 2, ..., L}. The weights between the hidden and the output neurons are al-
ways 1.

6. N is the number of input neurons connected to a single hidden neuron.
7. K is the number of neurons hidden neurons.
8. L represents the maximum value of a weight i.e., 0 < wij ≤ L.
9. The learning function f has the role of updating the weights on the synapses

according to (1):
synt+1 = f(synt) (1)

The exact form of the learning function f is described by the procedure from
Algorithm 3.

The system is initialized using the initialization procedure described in Algo-
rithm 1. The input consists of the ASNTPM P System and a vector of N ∗ K
elements X = (x11, x12, ..., xKN ), −L ≤ xij ≤ L, xij ̸= 0, ∀1 ≤ i ≤ K, 1 ≤ j ≤ N .
The input of the system is defined by the vector. If xij < 0 then the input neu-
ron σij will receive from the environment |xij | anti-spikes. If on the other hand,
xij > 0 then the input neuron σij will receive from the environment xij spikes.
The initialization procedure is described by Algorithm 1.

The input neurons fire sending all the spikes or all the anti-spikes to the hidden
neurons. The number of spikes or anti-spikes is amplified by the corresponding
weight of the synapse. After the annihilation rule is applied the maximum number
of times in each hidden neuron, they send one spike or one anti-spike to the output
neuron. After the annihilation rule is applied the maximum number of times in
the output neuron, it can be in one of the following states:

1. The output neuron is empty if the number of spikes received from the hidden
neurons is equal to the number of anti-spikes.
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2. The output neuron contains one spike if the number of spikes received from
the hidden neurons is greater than the number of anti-spikes.

3. The output neuron contains one anti-spike if the number of spikes received
from the hidden neurons is smaller than the number of anti-spikes.

The output of the system is the state of the output neuron. The system evolves
by the application of the learning function f which modifies the weights of the
synapses between the input and the hidden neurons. The running procedure of an
ANSTPM P System is described in Algorithm 2. A generic ASNTPM P System
is presented in Figure 1.

Fig. 1. A generic ASNTPM P System

Let N(Π,σ) be the number of spikes from neuron σ of the ASNTPM Π. Sim-
ilarly, let N(Π,σ) be the number of anti-spikes from neuron σ of the ASNTPM
Π. Here σ can be an input, a hidden, or an output neuron.

Let WΠ be the weights on the synapses of the ASNTPM Π. More exactly, WΠ

is a K×N matrix in which the element on line i and column j denoted as WΠ [i][j]
represent the weight between the hidden neuron σhi

and the input neuron σinij
.
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Algorithm 1 ASNTPM P System initialization
1: function Initialize(Π,X)
2: for i = 1; i ≤ K; i = i+ 1 do
3: for j = 1 j ≤ N j = j + 1 do
4: if X[i ∗N + j] ≤ 0 then
5: N(Π,σinij ) = |X[i ∗N + j]|
6: else
7: N(Π,σinij ) = X[i ∗N + j]
8: end if
9: WΠ [i][j]

$← [0, 2L]
10: end for
11: end for
12: for i = 1; i ≤ K; i = i+ 1 do
13: N(Π,σhi) = 0
14: N(Π,σhi) = 0
15: end for
16: N(Π,σout) = 0
17: N(Π,σout) = 0
18: end function

Algorithm 2 ASNTPM P System running
1: function Run(Π)
2: for i = 1; i ≤ K; i = i+ 1 do
3: for j = 1 j ≤ N j = j + 1 do
4: N(Π,σhi) = N(Π,σhi) +WΠ [i][j] ∗N(Π,σinij )
5: N(Π,σhi) = N(Π,σhi) +WΠ [i][j] ∗N(Π,σinij )
6: end for
7: end for
8: for i = 1; i ≤ K; i = i+ 1 do
9: N(Π,σout) = N(Π,σout) +N(Π,σhi)

10: N(Π,σout) = N(Π,σout) +N(Π,σhi)
11: end for
12: end function
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Algorithm 3 The learning function
1: function UpdateWeights(Π)
2: for i = 1; i ≤ K; i = i+ 1 do
3: if [[N(Π,σhi) = N(Π,σout)] ∨ [N(Π,σhi) = N(Π,σout)]] then
4: for j = 1 j ≤ N j = j + 1 do
5: if N(Π,σout) > 0 then
6: WΠ [i][j] =

∣∣WΠ [i][j] +N(Π,σinij )
∣∣

7: else if N(Π,σout) > 0 then
8: WΠ [i][j] =

∣∣WΠ [i][j]−N(Π,σinij )
∣∣

9: end if
10: end for
11: if WΠ [i][j] > L then
12: WΠ [i][j] = L
13: end if
14: end if
15: end for
16: end function

4 The synchronization of two ASNTPM P Systems

Two ASNTPM P Systems are synchronized if their weights are identical. To formal-
ize this idea, we introduce a new quantitative indicator called the synchronization
percentage which describes how much two ASNTPM P Systems are synchronized.
This indicator is computed by the function SynchronizationPercentage presented
in Algorithm 4.

Algorithm 4 The synchronization percentage
1: function SynchronizationPercentage(Π1, Π2)
2: total← 0
3: counter ← 0
4: for i = 1 i ≤ K i = i+ 1 do
5: for j = 1 j ≤ N j = j + 1 do
6: if WΠ1 [i][j] ̸= 2L ∧WΠ2 [i][j] ̸= 2L then
7: total← total + 1
8: if WΠ1 [i][j] = WΠ2 [i][j] then
9: counter ← counter + 1

10: end if
11: end if
12: end for
13: end for
14: return counter/total
15: end function
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A simple function for synchronizing two ASNTPM P Systems defined by the
same parameters K, N and L is presented in Algorithm 5. Since both systems
update their weights based on their mutual output, we say that the two ASNTPM
P systems are synchronizing with mutual learning.

Algorithm 5 Synchronization of two ASNTPM P Systems
1: function Synchronize(Π1, Π2)
2: while SynchronizationPercentage(Π1, Π2) ̸= 1 do
3: x

R← ZKN

4: Initialize(Π1, x)
5: Initialize(Π2, x)
6: Run(Π1)
7: Run(Π2)
8: if N(Π1, σout) = N(Π2, σout) ∨N(Π1, σout) = N(Π2, σout) then
9: UpdateWeights(Π1)

10: UpdateWeights(Π2)
11: end if
12: end while
13: end function

We study the efficiency of the function Synchronize with respect to the param-
eters K and N of the two ASNTPM P Systems. We note that both systems have
the same parameters K, N and L. We denote by T (Synchronize) the number of
steps taken by the function Synchronize.

Hypothesis 1. The number of steps taken by the function Synchronize to synchro-
nize two ASNTPM P Systems is quadratic in the parameter K of the inputs:

T (Synchronize) = 0.8K2 − 30K + 1184 (2)

Experiment. We run the algorithm for 50 times and compute the mean of the
results for each K ∈ {4, 8, 16, 32, 64, 128, 256} with L = 256 and N = 128. The
results are presented in Table 1 and Figure 2.

Table 1. The efficiency of Algorithm 5 with respect to K

K 4 8 16 32 64 128 256
T(Synchronize) 158.08 286.66 623.34 1443.48 3532.3 10253.7 47492.06
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Fig. 2. The number of iterations of Algorithm 5 with respect to K

Using the least square method with the Levenberg-Marquardt algorithm on
the values recorded during the experiment we computed the best polynomial that
fits the data and obtained (2).

Hypothesis 2. The number of steps taken by the function Synchronize to synchro-
nize two ASNTPM P Systems is linear in the parameter N of the inputs:

T (Synchronize) = 27N + 191 (3)

Experiment. We run the algorithm for 50 times and compute the mean of the
results for each N ∈ {4, 8, 16, 32, 64, 128, 256} with L = 256 and K = 64. The
results are presented in Table 2 and Figure 3.

Table 2. The efficiency of Algorithm 5 with respect to N

N 4 8 16 32 64 128 256
T(Synchronize) 277.42 483.64 744.28 1173.58 1960.0 3594.54 7441.92
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Fig. 3. The number of iterations of Algorithm 5 with respect to N

Using the least square method with the Levenberg-Marquardt algorithm on
the values recorded during the experiment we computed the best polynomial that
fits the data and obtained (3).

5 Attacks on the synchronization process

In this section, we will examine three algorithms through a series of experiments
that aim to synchronize two ASNTPMs without mutual learning. These algorithms
are inspired by various attacks on key agreement protocols based on TPMs [22,
44, 46]. All algorithms received as inputs three ASNTPMs: Π1, Π2 and Π3. The
purpose of each algorithm is to synchronize Π3 with Π1 without mutual learning
in the time frame in which Π1 and Π2 synchronize with mutual learning using
Algorithm 5.

Algorithm 6 presents the naive solution inspired by [22] while Algorithm 7
presents the geometric solution inspired by [46]. The genetic attack presented
in [44] is exponential in K so we do not include it here. We denote by ρ (Πx, Πy)
the synchronization percentage between Πx and Πy after the execution of the
synchronization algorithm.
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5.1 The naive attack

The function NaiveAttack stops execution when Π1 and Π2 are fully synchro-
nized. The algorithm returns the synchronization percentage between Π1 and Π3.
Hypotheses 3 and 4 capture the relation between the parameters K and N of the
ASNTPM P systems and ρ (Π1, Π3).

Algorithm 6 The naive attack on the synchronization process
1: function NaiveAttack(Π1, Π2, Π3)
2: while SynchronizationPercentage(Π1, Π2) ̸= 1 do
3: x

R← ZKN

4: Initialize(Π1, x)
5: Initialize(Π2, x)
6: Initialize(Π3, x)
7: Run(Π1)
8: Run(Π2)
9: Run(Π3)

10: if N(Π1, σout) = N(Π2, σout) ∨N(Π1, σout) = N(Π2, σout) then
11: UpdateWeights(Π1)
12: UpdateWeights(Π2)
13: if N(Π1, σout) = N(Π3, σout) ∨N(Π1, σout) = N(Π3, σout) then
14: UpdateWeights(Π3)
15: end if
16: end if
17: end while
18: return SynchronizationPercentage(Π1, Π3)
19: end function

Hypothesis 3. The synchronization percentage between Π1 and Π3 after running
the function NaiveAttack drops exponentially in K according to (4).

ρ (Π1, Π3) = 1.27e−0.11K + 0.04 (4)

Experiment. We run the algorithm for 50 times and compute the mean of the
results for each K ∈ {4, 8, 16, 32, 64, 128, 256} with L = 256 and N = 128. The
results are presented in Table 3 and Figure 4.

Table 3. ρ (Π1, Π3) using Algorithm 6 with respect to K

K 4 8 16 96 128 192 256
ρ (Π1, Π3) 0.83 0.53 0.23 0.06 0.05 0.04 0.02
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Fig. 4. ρ (Π1, Π3) using Algorithm 6 with respect to K

Using the least square method with the Levenberg-Marquardt algorithm on
the values recorded during the experiment we computed the best power function
that fits the data and obtained (4).

Hypothesis 4. The synchronization percentage between Π1 and Π3 after running
the function NaiveAttack drops in N according to (5).

ρ (Π1, Π3) = 0.02e−0.03N + 0.06 (5)

Experiment. We run the algorithm for 50 times and compute the mean of the
results for each N ∈ {4, 8, 16, 32, 64, 128, 256} with L = 256 and K = 64. The
results are presented in Table 4 and Figure 5.

Table 4. ρ (Π1, Π3) using Algorithm 6 with respect to N

K 4 8 16 96 128 192 256
ρ (Π1, Π3) 0.28 0.25 0.18 0.09 0.08 0.07 0.06
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Fig. 5. ρ (Π1, Π3) using Algorithm 6 with respect to N

Using the least square method with the Levenberg-Marquardt algorithm on
the values recorded during the experiment we computed the best power that fits
the data and obtained (5).

5.2 The geometric attack

Another solution for the synchronization of three ASNTPM P Systems is pre-
sented in Algorithm 7. This solution is inspired by the geometric attack on neural
cryptography presented in [22].

The idea of this solution is to interpret the weights and the input associated
with each hidden neuron as points in a N −dimensional discrete space. When the
outputs of Π1 and Π2 are the same but the output of Π3 is different then at least
one hidden neuron of Π3 has the wrong number of spikes or anti-spikes.

To correct this error, we compute the distance between the input and the
weights associated with each hidden neuron of Π3. The hidden neuron which
presents the minimum distance will have the number of spikes and anti-spikes
inverted. The output of Π3 will be set to the output of Π1 and the weights of Π3

will be updated using the new configuration.
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Although this solution is more efficient than the one presented in Algorithm 6,
the synchronization percentage still decreases as K or N increases.

Algorithm 7 The geometric solution for the synchronization of three ASNTPM
P Systems

function GeometricAttack(Π1, Π2, Π3)
while SynchronizationPercentage(Π1, Π2) ̸= 1 do

x
R← ZKN

Initialize(Π1, x)
Initialize(Π2, x)
Initialize(Π3, x)
Run(Π1)
Run(Π2)
Run(Π3)
if N(Π1, σout) = N(Π2, σout) ∨N(Π1, σout) = N(Π2, σout) then

UpdateWeights(Π1)
UpdateWeights(Π2)
if N(Π1, σout) = N(Π3, σout) ∨N(Π1, σout) = N(Π3, σout) then

UpdateWeights(Π3)
end if
if N(Π1, σout) ̸= N(Π3, σout) ∧N(Π1, σout) ̸= N(Π3, σout) then

distance = ∥WΠ3 [1]− x∥
minimum = distance
index = 1
for i = 2; i ≤ K; i = i+ 1 do

distance = ∥WΠ3 [i]− x∥
if distance < minimum then

mininum = distance
index = i

end if
end for
aux = N(Π3, σhindex)
N(Π3, σhindex) = N(Π3, σhindex)
N(Π3, σhindex) = aux
N(Π3, σoutput) = N(Π1, σoutput)
N(Π3, σoutput) = N(Π1, σoutput)
UpdateWeights(Π3)

end if
end if

end while
return SynchronizationPercentage(Π1, Π3)

end function

Hypothesis 5. The synchronization percentage between Π1 and Π3 after running
the function GeometricAttack drops in K according to (6).
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ρ (Π1, Π3) = 0.91e−0.004K (6)

Experiment. We run the algorithm for 50 times and compute the mean of the
results for each K ∈ {4, 8, 16, 32, 64, 128, 256, 512} with L = 256 and N = 128.
The results are presented in Table 5 and Figure 6.

Table 5. ρ (Π1, Π3) using Algorithm 7 with respect to K

K 4 8 16 32 64 128 256 512
ρ (Π1, Π3) 0.95 0.88 0.82 0.73 0.65 0.55 0.27 0.05

Fig. 6. ρ (Π1, Π3) using Algorithm 7 with respect to K

Using the least square method with the Levenberg-Marquardt algorithm on the
values recorded during the experiment we computed the best exponential function
that fits the data and obtained (6).

Hypothesis 6. The synchronization percentage between Π1 and Π3 after running
the function GeometricAttack drops in N according to (7).
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ρ (Π1, Π3) = 0.99e−0.003N (7)

Experiment. We run the algorithm for 50 times and compute the mean of the
results for each N ∈ {4, 8, 16, 32, 64, 128, 256, 512} with L = 256 and K = 64. The
results are presented in Table 6 and Figure 7.

Table 6. ρ (Π1, Π3) using Algorithm 7 with respect to N

N 4 8 16 32 64 128 256 512
ρ (Π1, Π3) 0.98 0.97 0.95 0.90 0.78 0.65 0.46 0.23

Fig. 7. ρ (Π1, Π3) using Algorithm 7 with respect to N

Using the least square method with the Levenberg-Marquardt algorithm on the
values recorded during the experiment we computed the best exponential function
that fits the data and obtained (6).
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5.3 The majority attack

Let the ordered set HΠ =
(
N(Π,σh1), N(Π,σh1), N(Π,σh2), N(Π,σh2), ..., N(Π,σhK

), N(Π,σhK
)
)

be the hidden state of the ASNTPM P System Π. Let S = {HΠ1
, HΠ2

, ...,HΠM
}

be the set of hidden states of M ASNTPM P Systems. We denote by FS (HΠi
)

the frequency of the element HΠi
in the set S. Given two ASNTPM P Systems

ΠA and ΠB we can synchronize them in parallel with each of the M ASNTPM
Systems Πi, for each 1 ≤ i ≤ M using the geometric solution. Similar to [46] we
could try to design a solution that uses the frequency FS (HΠi

) to synchronize ΠA

and ΠB with at least one of the M ASNTPM P Systems. However, this is not
possible given the fact that for ASNTPM P Systems there exist certain values of
K, s.a. FS (HΠi

) = 1
M , ∀1 ≤ i ≤ M . This is illustrated by hypotheses 7 and 8.

Hypothesis 7. Given two ASNTPM P Systems ΠA and ΠB and a set of M AS-
NTPM P Systems {Π1, Π2, ...,ΠM}, the mean of the frequencies FS (HΠi

) after
each iteration of GeometricAttack (ΠA, ΠB , Πi), 1 ≤ i ≤ M converges to 1

M as K
increases according to (8).

1

M

M∑
i=1

FS (HΠi
) = 1.13e−0.06K (8)

Experiment. We run GeometricAttack (ΠA, ΠB , Πi) in parallel for each 1 ≤ i ≤
M and averaged the result. The procedure was repeated 50 times and the mean
of the results were computed for each K ∈ {4, 8, 16, 32, 64, 128, 256, 512} with
L = 256, N = 128 and M = 128. The results are presented in Table 7 and Figure
8. Let µFS

= 1
M

∑M
i=1 FS (HΠi).

Table 7. The average µFS with respect to K

K 4 8 16 32 64 128 256 512
µFS 0.85 0.66 0.36 0.13 0.018 0.00786 0.0078125 0.0078125
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Fig. 8. µFS with respect to K

Using the least square method with the Levenberg-Marquardt algorithm on the
values recorded during the experiment we computed the best exponential function
that fits the data and obtained (8).

6 Conclusions and further directions of research

In this paper, we analyzed the security of the neural key agreement protocol pro-
posed in [40]. The protocol proposed by the authors is based on a new type of
TPM called the Anti-Spiking Neural Tree Parity Machine. Unlike classical TPM,
the model of the neuron used by ASNTPM is inspired by Spiking Neural P systems
with anti-spikes. We adopt four different types of attacks on TPM-based protocols:
the naive attack, the geometric attack, the majority attack and the genetic attack.
We showed through a series of experiments that increasing the number of neurons
decreases exponentially the percentage of the key recovered by the attacker. This
growth in the number of neurons implies only a polynomial increase in the run-
ning time. From a cryptographic perspective, this behavior is similar to trapdoor
problems on which the currently used cryptosystems are based.
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A further direction of research is to formalize the hard problem on which the
security of the TPM-based key agreement protocol is based. Analyzing the security
of a specific protocol is dependent on the security model. Constructing a hard
problem enables the creation of many cryptographic primitives whose security can
be proved by reduction to the underlining hard problem.

Another direction of research implies analyzing the security of the protocol us-
ing another security model in which the attacker can alter the messages exchanged
by the legitimate parties. The current protocol is insecure in such a security model
given the fact that any third party can mount a Man-in-the-Middle (MitM) attack.

The third direction of research is to construct neural key agreement protocols
for groups. This is particularly important because most applications for secure
communications are designed for group messaging.
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Summary. Virus machines are an abstract computing device capturing viral reproduc-
tion and transmission as a computation. Virus machines feature hosts containing viruses,
whose evolution is governed by the associated instruction graph, and which migrate via
the channels connecting the hosts. In this paper, we propose using virus machines as
a modelling device to represent real-world virus propagation. We start with the widely
used SIR model, numerically accounting for susceptible (S), infected (I), and recovered
(R) individuals, and propose two virus machines representing two simple situations with
respectively two and three possible locations for the agents.

Key words: Virus machines, pandemics modelling, SIR model.

1 Introduction

This work can be considered as a contribution to the area of Natural Comput-
ing, which is a field of research that investigates both human-designed computing
inspired by nature and computing that occurs in nature.

In virology, a virus is an infectious agent of small size and simple composition
that can only reproduce after infecting a host cell. All animal, plant and protist
species on the planet can be and have been infected by viruses. Indeed, biologists
estimate that we have about 350 trillion viruses living in our bodies [1], which is
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10 times the number of bacteria and cells in the human body. This leads us to
believe that it would be very interesting to study this biological structure from a
computational point of view. For more details on viruses, see [3].

This study focuses on a new computing paradigm, introduced in [2], based on
the transmissions and replications of viruses. This innovative paradigm provides
non-deterministic computing devices that consist of several biological hosts con-
nected with each another by directed channels. The viruses are contained in these
hosts and will be able to both transmit and replicate themselves passing through
these channels. This processes are controlled by several instructions, which are
attached to the channels. These systems can be considered as a heterogeneous
network that consists of:

• A virus transmission network : a weighted directed graph, wherein each node
represents a host and each arc represents a transmission channel through which
viruses can transmit between hosts or exit to the environment. In addition, each
arc has an associated weight (a natural number w > 0) , which indicates the
number of viruses that will be replicated in each transmission.

• An instruction transfer network : a weighted directed graph, wherein each node
represents a control instruction unit and each edge represents an optional in-
struction transfer path with a positive integral weight.

• An instruction-channel control network : an undirected graph, wherein each
node represents either a control instruction or a transmission channel and each
edge represents a relationship between an instruction and a channel.

The computing models of this paradigm are universal (equivalent in power to
Turing machines), demonstrated by generating Diophantine sets [4], by computing
partial recursive functions [5] and by simulating register machines [2].

2 Stochastic Virus Machines

In order to fit an extension of the Virus Machines (VM for short) with exciting
instructions for modelling SIR model, we propose that “excitation” of the hosts
can be stochastic, i.e., the weight of the channels between hosts can be a tuple
(a, p) where a is the capacity of replication if the channel is opened (as basic VM
paradigm) and p is the probability of opening that channel in case the origin host
is excited1.

3 Modelling

The basic idea of this extension is that, from now on, viruses will represent the
population and hosts will represent not only a place but also a status, so the num-

1 Notice that only one of the channels could be opened, in order to avoid further com-
plexity with the number of viruses and the meaning of the probability.
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Fig. 1. Initial configuration of a SVM.
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Fig. 2. Average halting configuration of a SVM.

ber of viruses a host is containing at some instant t, hPlaceStatus
, is the population

located at Place in compartment Status at instant t.
Specifically, for the classical SIR model (susceptible-infected-removed) we will

have two kind of hosts:

i) the hosts which contain the people who are susceptible of being infected (S),
ii) the infected population (I).

In addition, by considering that the recovered people (R) in the SIR model
is “passive” (if and only if recovered people cannot be re-infected), we can take
advantage of the passive behavior of the environment, so that the number of viruses
sent to environment represents the number of recovered people.

4 A case of study: Pandemics

A pandemic is an epidemic that occurs over a wide geographical area, affecting a
significant proportion of the population. It is characterized by the rapid spread of
an infectious disease, often caused by a novel pathogen, which has the potential
to cause severe illness or death.
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In this section, we present a SIR computational model based on Stochastic
Virus Machines. SIR in an acronym: S stands for the susceptible population, those
who are not yet infected, but may become infected; I stands for the infected
population, those who are ill and can transmit the disease, and R stands for the
dead or recovered individuals that are removed from the infected population and
cannot transmit the disease.

The SIR mathematical model for pandemics is an ODEs based model that has
been used to understand the temporal transmission dynamics of the infection:

∂S

∂t
= −p · S · I, ∂I

∂t
= p · S · I − r · I, ∂R

∂t
= r · I.

where S, I and R represent the number of individuals in the susceptible, infected
and recovered compartments respectively, p is the transmission rate, which de-
termines the rate at which susceptible individuals become infected, and r is the
recovery rate, which determines the rate at which infected individuals recover and
become immune to the disease. The parameter (pr ) is known as the basic reproduc-
tion number (R0), which represents the average number of secondary infections
produced by a single infected individual in a susceptible population. The SIR model
assumes that the population is well-mixed and that the disease spreads through
direct contact between individuals. It also assumes that individuals do not acquire
natural immunity, and that there is no vaccination or treatment available for the
disease.

Our case of study will be restricted to two physically separated places (e.g.
home and supermarket). A susceptible person can be infected either in their way
to the supermarket, or on their way back. The figure displays a global view of the
case stated above.

4.1 Design of a SVM Modelling Pandemics

In this section, the model for the exposed case of study by using SVM is presented.
A first step in the approach of a bigger example, is to start with a simple one,

let us suppose a SIR model of a population N = S0 + I0, where S0 and I0 are
the initial population of susceptible and infected people resp. and two locations
are defined: i) Home (H) and ii) Supermarket (J(amón)). Let us also suppose that
the probability of being infected is p with 0 < p ≤ 1 and the probability of being
recovered for an infected individual is 0 < r ≤ 1. We propose the SVM shown in
Figure 3.

The idea behind this machine is as follows. The population is constantly moving
back and forth from home to the supermarket. If there is an infected individual in
a place A, then there would be a probability p that a susceptible person will be
infected while going to the other place; and similarly, there would be a probability
1− p that they will not be infected. If there are no infected people in that place,
then the process is repeated for the other place, and if the other place also ran
out of infected people, it leads to a halting configuration. Meanwhile, the infected
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Fig. 3. A SVM modelling the SIR model with two locations

population can be recovered (sent to the environment) with probability r or can
go to the other place infected with probability (1− p).

From now on, let us study a more complex example. Suppose the existence of
an extra location D(isco) where the probability of being infected is even higher
than in the supermarket. The global idea for this model is presented in Figure 4,
and we will use the following notation:

• 0 ≤ pH , pJ , pD ≤ 1: the probability of travelling form home to each location
such that pH + pJ + pD = 1,

• 0 ≤ pIH , pIJ , pID ≤ 1: the probability of being infected at each location,
• 0 ≤ rH , rJ , rD ≤ 1: the probability of being recovered at each location.

The SVM modelling the SIR model is presented in two parts, the host graph in
Figure 5, and the instruction graph in Figure 6 with a legend of the hosts/channels
attached to each instruction.

4.2 Model Analysis

Now we will execute a thorough analysis of the above presented model, in order
to provide as much insight as possible, starting with the expected behavior of the
model and following with the limitations of the model, as it presents a certain bias,
a fact which will be exposed shortly.
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Fig. 4. Modules corresponding to the SIR model

Fig. 5. A SVM modelling the SIR model (Hosts)

To begin with, as this is a really small model, some of its properties can be
directly obtained, as exposed above. However, one which could be to a certain
degree intuitive but not completely clear is the bias it has for the complete removal
of the infected people in a large enough amount of time. Recall that the SIR
model, in its most basic configuration, tends to reach a balance situation when
only infected and recovered (which can not be infected again) interact, equivalent
to a halting configuration in which infected become recovered and the virus finally
disappears. This behavior is replicated by our model, as the halting configuration
is, as we have already mentioned, one in which there are no infected people.
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Fig. 6. A SVM modelling the SIR model (Instructions)

Lastly, a fact we must point out for its relevance is that, even if it is the first
known modelling of the SIR model in a SVM, expected to be used as a minimal,
educational example, and not suitable for real data analysis, an obvious problem
of the presented model is its complexity. Generally, VM are not known for their
simplicity, but when working with the stochastic variant, specially regarding the
graphical representation used in Figure 3, we can assert that another representation
is needed, in particular for more complex models.

5 Conclusion

With the aid of the Virus Machines (VM) several phenomena can be modelled, but
the reach of these models is limited, especially for the modelling of more complex
situations. With that in mind, in this article the Stochastic Virus Machines (SVM)
are presented as a non-deterministic extension for the VM, providing more tools
for modelling certain events, such as pandemics. To explore this fact, an example
of SVM following the classical SIR model is shown and analyzed, pointing out
both its suitability as an alternative for the traditional differential model and its
complexity, an issue which is yet to be addressed. More precisely, two simple cases
have been studied with interesting results, the second one can be easily extended
for more locations or kind of populations (young, elder people, etc.).
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