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Agust́ın Riscos-Núñez
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Preface

The Eighteenth Brainstorming Week on Membrane Computing (BWMC) was held
in Sevilla, from February 4 to 7, 2020, hosted by the Research Group on Natural
Computing (RGNC) from the Department of Computer Science and Artificial
Intelligence of Universidad de Sevilla. The first edition of BWMC was organized
at the beginning of February 2003 in Rovira i Virgili University, Tarragona, and
all the next editions have been taking place in Sevilla since then, always at the
beginning of February.

In the style of previous meetings in this series, was conceived as a period of
active interaction among the participants, with the emphasis on exchanging ideas
and cooperation. Several “provocative” talks were delivered, mainly devoted to
open problems, research topics, announcements, conjectures waiting for proofs, or
ongoing research works in general (involving both theory and applications). Joint
work sessions were scheduled on the afternoons to allow for collaboration among
the about 25 participants – see the list in the end of this preface.

The papers included in this volume, arranged in the alphabetic order of the au-
thors, were collected in the form available at a short time after the brainstorming;
several of them are still under elaboration. The idea is that the proceedings are a
working instrument, part of the interaction started during the stay of authors in
Sevilla, meant to make possible a further cooperation, this time having a written
support.

A selection of papers from this volume will be considered for publication
in the new Journal of Membrane Computing, published by Springer-Verlag
(www.springer.com/41965).

Other papers elaborated during the 2020 edition of BWMC will be submitted
to other journals or to suitable conferences. The reader interested in the final
version of these papers is advised to check the current bibliography of membrane
computing available in the domain website http://ppage.psystems.eu.

***
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3. Daniel Cagigas-Muñiz, Universidad de Sevilla, Spain
dcagigas@us.es

4. Daniel Cascado-Caballero, Universidad de Sevilla, Spain
danicas@us.es

5. Rodica Ceterchi, University of Bucharest, Romania
rceterchi@gmail.com
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7. Lucie Ciencialová, Silesian University in Opava, Czech Republic
lucie.ciencialova@fpf.slu.cz

8. Rudolf Freund, Technological University of Vienna, Austria
rudolf.freund@tuwien.ac.at

9. Carmen Graciani, Universidad de Sevilla, Spain
cgdiaz@us.es

10. Ricardo Graciani-Dı́az, Universitat de Barcelona, Spain
graciani@fqa.ub.edu

11. Sergiu Ivanov, IBISC, Université Évry, Université Paris-Saclay, France
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Some open problems

Artiom Alhazov

Vladimir Andrunachievici Institute of Mathematics and Computer Science
Academiei 5, Chis,inău, MD-2028, Moldova
E-mail: artiom@math.md

1 Some questions from information theory

The research topic I would like to propose is COUNTING. I do not mean #P, I
mean enumerating membrane structures or configurations of a given ”size”, modulo
isomorphism or not. After finishing this email I reformulated this question as: ”how
much information is stored in a configuration of a membrane system with symbol
objects?”

Modulo isomorphism: as ”size” it is enough to specify the number m of mem-
branes and t of objects. In total: since alphabets, e.g., membrane alphabet (labels)
and object alphabet (symbols) are not bounded, the number of configurations,
even with a specified number of membranes and objects would be infinite unless
we somehow bound all alphabets. One of alternative approaches: fix the alphabets,
in particular —O—=n kinds of objects, the number m of membranes and maximal
number k of objects of each kind in each region. Then the total number of objects
is not fixed, but bounded by m*n*k.

Some preliminary results.

I One membrane, modulo isomorphism. t = 0→ 1 (empty multiset), t = 1→ 1,
t = 2 → 2(aa, ab), t = 3 → (aaa, aab, abc), t = 4 → 5, t = 5 → 7, t = 6 → 11.
Can be specified by a recurrent two-argument function. Seems to correspond
to number sequence https://oeis.org/A000041.

II Membrane structures without objects, without considering labels/polarizations,
modulo isomorphism. m = 1 → 1 (only skin), m = 2 → 1 (two nested mem-
branes), m = 3→ 2 ([ [ ] [ ] ] and [ [ [ ] ] ]), m = 4→ 4, m = 5→ 9. Seems
to correspond to number sequence https://oeis.org/A000081.
Note: with labels, already m = 2 gives 2 different configurations, [ [ ]2 ]1 and
[ [ ]1 ]1.

III One membrane, one label, one polarization, no isomorphism. Fixing the alpha-
bet size |O| = n, the number of different multisets of cardinality t is the num-
ber of t-combinations with repetitions of set O, equal to C(n+ t− 1, t), where
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C(n, k) = n!/(k!∗(n−k)!). https://en.wikipedia.org/wiki/Combination\
#Number_of_combinations_with_repetition

IV m membranes, |O| = n, at most k objects of any kind in any membrane, no
isomorphism. Then the number of different configurations would seem to be
equal to the number of different membrane structures with m membranes,
multiplied by (mn)(k+1). Correction: but even in this case it is not so simple,
because [ [ a ] [ ] ] and [ [ ][ a ] ] are the same configuration; the expression
above only holds under the assumption that there are no indistinguishable
membranes, e.g., all membranes have different labels.

Goal: to have a general formula for each typical set of parameters specifying
”size”, of all configurations of this ”size”.

If counting tree structures is difficult, start with tissue.
Why? to understand how much information is indeed stored in a configuration

of a P system, because the general impression that, with m membranes and t
objects, there are approximately exponentially many different configurations, is
too inaccurate and in some settings incorrect.

2 Some questions from simulators

Let me try to put down some of the ideas discussed last year; hopefully it will be
useful, if not programmed in the near-future, then at least as a small publication.

1. Simulator. It would be very useful for theory to have a proper tool computing
the set of all possible transitions from a given configuration. (Yes, I re-
member you are more focused on applications like zebra muscles, and you are
quite concerned that it does not scale well. However, enough theory is anyway
done, and there can be multiple simulators for PLingua. A few times I have
been so upset that I thought about programming something like that myself,
but what I do is normally not compatible, not user- friendly and definitely not
in Java) Basically, having fixed the current configuration C, for each rule r it
is easy to compute the maximal number max(r, C) of times it can be applied
in parallel. By dividing, for each object a in lhs(r), |C|a by |lhs(r)|a rounding
down, and taking the minimum. Same works in a distributed way, assuming
proper flattening, possibly on the fly. In the worst case, all possibilities are
among the combinations, for each rule r, of applying it from 0 to max(r, C)
times. It only takes to verify that the multiset union of lhs(r) times the num-
ber of applications of r, summed over all rules r, is contained in r. That would
be asynchronous mode. For any other mode, compliance is also to be checked.
Of course, for maxpar that would be non-applicability of ANY further rule to
the idle objects. Of course, in particular cases the set of possible transitions
could be computed more efficiently.

2. Semantics and membranes. The recent advances in PLingua, like defining user
rule types, seem to be quite useful. Yet, the main value I see is being able to
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specify rules other than the most usual ones in the model (and, in particular,
being able to combine rules from different models), and a comfortable way to
write them is secondary, though also nice. A thing which is often related to
syntax is how to apply it, the most needed versions being ”in max. parallelism”
and ”sequentially”. In particular, rules (a) are normally treated as parallel,
even though sequential version has been considered, while rules (b), (c), (d),
(e), . . . are normally considered sequential, even though without polarizations
alternative semantics has been studied.
Imagining rules involving more than one membrane, we need to be more pre-
cise. I proposed to indicate for each user type of rules (how exactly is a sec-
ondary question) which membranes are resources and which membranes are
context. Then, resources are lhs(r) and contexts are like promoters. Clearly,
under usual definitions a rule would be sequential with respect to resources
and parallel with respect to contexts.
If that is too difficult, usually it is enough to have implicit semantics: any
membrane written completely in lhs(r) is a reactant, a membrane written
in rhs(r) is a product, and a membrane containing ”→” is a context. Then,
[a → u] is a parallel rule, but [a] → [u] would be a sequential rule. Similarly,
it automatically follows in [[]→ [][]] that the external membrane is a context,
while internal membranes are resources, so we already know what is parallel
and what is sequential. However, if the user wants such a rule to be sequential
also w.r.t. the outer membrane, then it can be written as [[]]→ [[][]].
Unfortunately, this convention alone does not suffice for automatic deduction
of parallelism for rules like (b0), (c0). Because the context is not outside. (Yes,
they could be written as boundary rules, but this syntax is neither universal
nor compatible with traditional syntax for active membranes). But of course
something can always be invented, e.g., when specifying rule types, write ”[p”
vs ”[s” (parallel vs sequential) or ”[r” vs ”[c” (resource vs context).
Moreover, I was told that there is some problem with templates without ex-
ternal membrane, except the standard types

3. Dynamic membranes. Clearly, without explicitly indicated semantics [] → [[]]
would be a sequential membrane creation, while [a → [b]] would be a parallel
membrane creation. Then, [[a] → b] is a membrane dissolution, where the
external membrane is a context. But what is the behavior of other objects,
those not specified in the rules explicitly? The main variant is of course, upon
creation the new membrane will only contain b, and upon dissolution all the
contents of the old membrane is released in the outer membrane. But of course
there are other rules, although less studied. Last year I suggested to use some
wildcard, or mask, e.g., $1, to represent other objects (similarly, something
like #1 can represent other membranes, and for technical reasons different
characters may be chosen; I use these ones to explain the idea how to describe
semantics different from the main one).
[a$1→ $1[b]] usual parallel membrane creation
a$1→ $1[b] same without the outer context
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[a$1] → [b[$1]] create a new membrane around the existing one and send b
there
[[a$1]→ b$1] usual membrane dissolution
[[a$1]→ b] lose contents of the dissolved membrane
[a$1]→ [b$1][c$1] usual membrane division
[a$1]→ [b$1][c] create a sibling membrane, without replicating contents
[a$1]→ [$1(O)][$1(O′)] membrane separation
[a$1[$2]] → [$2[a$1]] exchange objects in two membranes if the first one con-
tains a
Then, there may be different kinds of non-elementary membrane division
[a] → [b][c] same syntax as for elementary membranes, replicate objects and
membranes. Can be written as [a$1#1]→ [b$1#1][c$1#1]
[[][]] → [[]][[]] separating submembranes. But what exactly happens to other
submembranes if there are more than these two?
[$1#1[][]]→ [$1#1[]][$1#1[]] replicating other objects and membranes
[$1#1[][]]→ [$1(O)#1[]][$1(O′)#1[]] separating objects and replicating mem-
branes
[$1#1[][]]→ [$1#1(H)[]][$1#1(H ′)[]] replicating objects and separating mem-
branes
[$1#1[][]] → [$1(O)#1(H)[]][$1(O′)#1(H ′)[]] separating objects and mem-
branes
Overall, I think there may be some reasonable consistent universal way how to
describe the precise evolution not only of dedicated objects and membranes,
but also related objects and membranes, because mass action is needed (the
first classical example of the mass action is dissolution, of course currently
programmed explicitly).

4. Tests. From time to time, researchers consider rules that were not considered
in the original model. I believe many (though not all) of these issues can be
captured by the thoughts above.

a sequential (a), parallel (b), (c), (d), (e), . . .
b where other objects and membranes go - division vs separation, outside vs

delete, . . .
c external rules: a[]→ u[], a[]→ b, a[]→ b[][], . . .
d . . .

5. Other models besides active membranes. With suitable choice of parallel/sequential
semantics made clear, r ∈ Ri can be written as [r]i. In most cases, membrane
i must be treated as context, hence, rules are parallel with respect to it.
Antiport: u[v]→ v[u]
Evolutional antiport or boundary rules: u[v]→ u′[v′]
Transitional: pretty standard, except multiple targets would be represented
as multi-membrane context, and dissolution semantics is normally assumed
parallel (multiple δ = one dissolution), not sequential.
Spiking: mostly similar, the main difference are additional regular expressions.



Some open problems 5

Promoters, inhibitors - how much is already captured by PLingua??
Priorities - is there already a well-established syntax for them?
Notice that strong and week priorities can co-exist: these are just additional
filters for the set of the next configurations (see part 1: Simulator) besides the
derivation mode. As discussed with Rudi a few days after BWMC19, filters
like priorities should be applied BEFORE the derivation mode filter.

6. Other derivation modes. A new (mostly studied in the last few years) im-
portant derivation mode for many models is set maximally-parallel. Same
as maximally parallel, but in each step each rule may be only applied once.
Technically similar to having a dedicated catalyst for each rule.
Some of the classical modes that would be most important to also have are
sequential and asynchronous. Asyn is even easier than maxpar - just remove
the maximality filter. Sequential is of course the easiest to implement.

7. New ways of rule control. Activation and blocking (I hope to soon finish for-
malizing the concept also for zero-delay).

8. One of the “worst” things that could happen. “Denying”. This is how we call
the situation where there exists at least one applicable rule, but there is no
valid multiset of rules. An example is ”> 1 mode” in the situation where only
one rule is applicable. This situation has been carefully avoided in the first
years of membrane computing, but it does not present a problem (except it
is unusual), e.g., this is similar to what happens to partially blind register
machines when they try to decrement a register containing zero, which is not
allowed by the model.
Finally, a question is - can all of this co-exist in the same context? I still think
it could. If anyone has an example of ANY membrane features that seem
incompatible, please let me know, and maybe I will be able to convince you
that there is no problem. Reminder - a universal look at P systems models:
network of cells, see a few publications on the Formal Framework for a) static
structures, b) dynamic structures, c) spiking.
R. Freund, S. Verlan: A Formal Framework for Static (Tissue) P Sys-
tems. In: Eleftherakis G., Kefalas P., Păun Gh., Rozenberg G., Salomaa A.
(eds) Membrane Computing. WMC 2007. Lecture Notes in Computer Science
4860. Springer, Berlin, Heidelberg, 2007, 271-284. https://link.springer.
com/chapter/10.1007%2F978-3-540-77312-2_17

R. Freund, I. Pérez-Hurtado, A. Riscos-Núñez, S. Verlan: A Formalization
of Membrane Systems with Dynamically Evolving Structures. In-
ternational Journal of Computer Mathematics 90(4), 801–815 (2013) https:

//doi.org/10.1080/00207160.2012.748899

S. Verlan, A. Alhazov, R. Freund, S. Ivanov: A Formal Framework for
Spiking Neural P Systems. In Proceedings of the 20th International Con-
ference on Membrane Computing, CMC20, Curtea de Arges, (Păun, Gh., Ed.).
Bibliostar, Râmnicu Vâlcea, 2019, pp. 523–535. http://membranecomputing.
net/cmc20/pdf/procCMC20.pdf#page=250
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3 Some questions from variety

1. Anti-membranes.
Reminder: rules of types []h → []j []k , []h[]h′ → λ ; could also be with objects.
A. Alhazov, R. Freund, S. Ivanov: (Tissue) P Systems with Anti-Membranes.
In Seventeenth Brainstorming Week on Membrane Computing (Orellana-
Mart́ın, D.; Păun, Gh.; Riscos-Núñez, A.; Andreu-Guzmán, J. A., Eds.),
Sevilla. RGNC report 1/2019, University of Seville, Artes Gráficas Moreno,
S.L., 2019, 29–30. http://www.gcn.us.es/files/17bwmc/029_AntiMembranes.
pdf

and
A. Alhazov, R. Freund, S. Ivanov: P Systems with Anti-Membranes. In
Proceedings of the 20th International Conference on Membrane Computing,
CMC20, Curtea de Arges, (Păun, Gh., Ed.). Bibliostar, Râmnicu Vâlcea, 2019,
249–256. http://membranecomputing.net/cmc20/pdf/procCMC20.pdf#page=
250

1) Can we still do anything non-trivial if changing membrane labels is forbid-
den?

2) Is it possible, e.g., to simulate boolean circuits?
3) What if we forbid changing labels but allow a limited (3?) number of polar-

izations? let’s say annihilation needs some form of polarization agreement
4) Descriptional complexity of a small universal NFPAMS
5) Which ingredients are needed to solve SAT with anti-membranes?
6) How we can exploit deeper membrane structures? For instance, annihi-

lation of nested membranes outside-in performs an ordered sequence of
membrane dissolutions.

7) antiMembranes for efficiency? In any way that is not a trivial translation
of the previous research from objects to membranes.

2. Channels.
For symport/antiport P systems, in tissue case, it is usually assumed that
channels do not admit any parallelism. There has been a few exceptions. 1)
Some Rudi’s talk with PPT slides many years ago, where cells were represented
by huge colored circles, I do not remember the title. 2)
A. Alhazov, R. Freund, M. Oswald: Tissue P Systems with Antiport
Rules and Small Numbers of Symbols and Cells. In: De Felice C.,
Restivo A. (eds) Developments in Language Theory. DLT 2005. Lecture Notes
in Computer Science 3572. Springer, Berlin, Heidelberg, 2005, 100-111. https:
//doi.org/10.1007/11505877_9

, where in Ot′P , primed letter t indicated that it was allowed to have distinct
channels (i, j) and (j, i). 3) A more recent paper
H. Adorna, A. Alhazov, L. Pan, B. Song: Simulating Evolutional Sym-
port/Antiport by Evolution-Communication and vice versa in Tissue
P Systems with Parallel Communication. In: Gheorghe M., Rozenberg
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G., Salomaa A., Zandron C. (eds) Membrane Computing. CMC 2017. Lec-
ture Notes in Computer Science 10725. Springer, Cham, 2018, 1-14. https:
//doi.org/10.1007/978-3-319-73359-3_1

relating evolutional symport/antiport with evolution-communication – in or-
der to make it possible having direct simulation with a slowdown by a factor
of a constant, communication needed to be massively parallel. 4) Older re-
search on neural P systems, probably by [Krishna,Rama], long time before
spiking. . . anyway, that last one was quite a different model. - Parallel VS se-
quential channels in tP systems. Improve results with mcre from NP∪co−NP
to PSPACE.

3. Global rules.
considered by A. Păun and once briefly by myself. This relates to problem
(Q6) in Gheorghe’s open problem list http://www.gcn.us.es/?q=18bwmc_

openproblems. If membrane structure is static and we do not care about de-
scriptional complexity, making all rules global does not seem to restrict us at
all: objects can always be renamed when moved, so they know where they are.
However, the total number of rules in this reduction may increase, and this
technique becomes more complicated, or even impossible, with dissolution.
BTW, this may open an interesting discussion at solving hard problems in
polytime. Besides, not all membranes are created equal: by definition, elemen-
tary membrane division is not applicable to membranes that are (currently)
non-elementary, and the skin cannot be dissolved or divided (and sometimes
it is forbidden for any object to enter it) - this trick might help distinguishing
membranes when needed, however, requiring non-determinism or complicated
simulation. On the other hand, with sufficient ingredients one working region
is already enough, so we should stay in a restricted enough settings.
A. Păun: On P Systems with Global Rules. In: Jonoska N., Seeman
N.C. (eds) DNA Computing. DNA 2001. Lecture Notes in Computer Science,
vol 2340. Springer, Berlin, Heidelberg, 2002, 329-339. https://doi.org/10.
1007/3-540-48017-X_31

A. Alhazov, R. Freund: On the Efficiency of P Systems with Active
Membranes and Two Polarizations. In: Mauri G., Păun Gh., Pérez-
Jiménez M.J., Rozenberg G., Salomaa A. (eds) Membrane Computing. WMC
2004. Lecture Notes in Computer Science, vol 3365. Springer, Berlin, Heidel-
berg, 2005, https://doi.org/10.1007/978-3-540-31837-8_8
A. Alhazov, R. Freund, S. Ivanov: Length P Systems. Fundamenta Infor-
maticae 134(1-2), 2014, 17-37. https://doi.org/10.3233/FI-2014-1088

4. Maximal consistency modes.
Reminder: here applicability does not only depend on lhs. I have heard about a
practical use of this mode in a BWMC2019 discussion from Agustin (though I
forgot which application it was for, so I would not know what reference to cite).
Usually in membrane computing rule applicability only depends on the left
side of the rule (whether all reactants are present in the current configuration,
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and, possibly, whether some additional conditions are satisfied, e.g., promoters,
inhibitors, etc.).
Consider rules changing membrane polarization. Allow to apply multiple rules
(maximal parallelism), as long as the polarization in their rhs is the same.
Let me call it “polarization agreement”. Need to be precise, probably need to
choose the polarization corresponding to at least one applied rule, if possible.
Other examples of maximal consistency:

- Parallel string rewriting without conflicts [D. Besozzi], many years ago,
reference needed.

- Rudi’s target agreement/label agreement, original reference needed.
- Any other shared resource to agree upon?

Overall, I believe this feature deserves more attention.
5. cP systems.

= P systems with complex objects, see [Nicolescu]. Reminder: prolog-like
rules using power of term rewriting and unification. Very powerful model, e.g.,
a solution of the Travelling Salesman Problem has been reported with five
rules only [CooperNicolescu ACMC2017]. Some longer time ago the colleagues
in my institute wanted to attack with P systems the problem of finding Gröbner
basis. Unfortunately, the data structures that can be represented and efficiently
processed by usual P systems are limited, and hence they are not suited well
to work, e.g., with dynamic ordered lists of strings (a solution via Turing
machine is not elegant). It turns out that cP systems are much more flexible
in representing and efficiently processing complicated data structures.
Some problems that have been addressed besides universality/computational
completeness and NP-hard problems, by usual P systems:

- sorting https://doi.org/10.1007/3-540-29937-8_8,
- dictionary search and update
http://univagora.ro/jour/index.php/ijccc/issue/download/44/pdf_

165,
- inflections
http://www.math.md/publications/csjm/issues/v17-n2/10082/,

- annotating affixes https://doi.org/10.1007/978-3-642-54239-8_7,
- firing squad synchronization problem
https://doi.org/10.1007/978-3-540-95885-7_9

(more problems and solutions can be found in Applications of Membrane Com-
puting, 2005 and Membrane Computing Handbook). Need: more problems that
are practical, well defined and sufficiently simple (simpler than Gröbner basis),
to be attacked by cP systems, but not completely trivial (needing, say, more
than two rules).
Need: more problems that are practical, well defined and sufficiently simple
(simpler than Gröbner basis), to be attacked by cP systems, but not completely
trivial (needing, say, more than two rules).
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Summary. The first definition of space complexity for P systems was based on an hypo-
thetical real implementation by means of biochemical materials, and thus it assumes that
every single object or membrane requires some constant physical space. This is equivalent
to using a unary encoding to represent multiplicities for each object and membrane.

A different approach can also be considered, having in mind an implementation of P
systems in silico; in this case, the multiplicity of each object in each membrane can be
stored using binary numbers, thus reducing the amount of needed space. In this paper,
we give a formal definition for this alternative space complexity measure, we define the
corresponding complexity classes and we compare such classes both with standard space
complexity classes and with complexity classes defined in the framework of P systems
considering the original definition of space.

Key words: Membrane Systems, Computational Complexity, Space Complexity

1 Introduction

P systems with active membranes have been introduced in [6], considering the idea
of generating new membranes through division of existing ones. The exponential
amount of resources that can be obtained in this way, in a polynomial number of
computation steps, naturally leads to the definition of new complexity classes to
be compared with the standard ones.



10 A. Alhazov, A. Leporati, L. Manzoni, G. Mauri, C. Zandron

Initially, the research activity focused on the investigation of time complexity,
for the various classes of P systems that can be obtained by introducing different
features.

The first definition of space complexity for P systems has been introduced
in [8], and it was based on an hypothetical real implementation by means of bio-
chemical materials such as cellular membranes and chemical molecules. Under this
assumption, it was assumed that every single object or membrane requires some
constant physical space, and this is equivalent to using a unary encoding to rep-
resent multiplicities.

A different approach can also be considered, focusing the definition on the
simulative point of view. By considering an implementation of P systems in silico,
it is not strictly necessary to store information concerning every single object: the
multiplicity of each object in each membrane can be stored using binary numbers,
thus reducing the amount of needed space.

In this paper, we give a formal definition for this alternative space complex-
ity measure, we define the corresponding complexity classes and we compare such
classes both with standard space complexity classes and with complexity classes
defined in the framework of P systems considering the original definition of space
[8]. In particular, we will give partial results concerning the use of constant, poly-
nomial or exponential amount of space, respectively.

The paper is organized as follows. In Section 2 we recall some definitions con-
cerning P systems with active membranes and space requirements in P systems
computations. In Section 3, we introduce a different definition for measuring space
(which we call binary space to underline that information concerning objects is
stored in binary) and we give some results following immediately from this def-
inition. In Section 4 we compare the new binary space complexity classes with
standard complexity classes and with space complexity classes for P systems based
on the standard definition of space. Finally section 5 draws some conclusions and
presents some future research topics on this subject.

2 Basic definitions

In this section, we shortly recall some definitions that will be useful while reading
the rest of the paper. For a complete introduction to P systems, we refer the reader
to The Oxford Handbook of Membrane Computing [7].

Definition 1. A P system with active membranes having initial degree d ≥ 1 is a
tuple Π = (Γ,Λ, µ, wh1

, . . . , whd
, R), where:

• Γ is an alphabet, i.e., a finite non-empty set of symbols, usually called objects;
in the following, we assume Γ = {O1, O2, . . . , On}

• Λ is a finite set of labels for the membranes;
• µ is a membrane structure (i.e., a rooted unordered tree, usually represented by

nested brackets) consisting of d membranes, labelled by elements of Λ in a one-
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to-one way, defining regions (the space between a membrane and all membranes
immediately inside it, if any);

• wh1
, . . . , whd

, with h1, . . . , hd ∈ Λ, are strings over Γ describing the initial
multisets of objects placed in the d regions of µ;

• R is a finite set of rules over Γ .

Membranes are polarized, that is, they have an attribute called electrical charge,
which can be neutral (0), positive (+) or negative (−).

A P system can made a computation step by applying its rules to modify the
membrane structure and/or the membrane content.The following types of rules
can be used during the computation:

• Object evolution rules, of the form [a→ w]αh
They can be applied inside a membrane labelled by h, having charge α and
containing at least an occurrence of the object a; the object a is rewritten into
the multiset w (i.e., a is removed from the multiset in h and replaced by the
objects in w).

• Send-in communication rules, of the form a [ ]αh → [b]βh
They can be applied to a membrane labelled by h, having charge α and such
that the external region contains at least an occurrence of the object a; the
object a is sent into h becoming b and, simultaneously, the charge of h is
changed to β.

• Send-out communication rules, of the form [a]αh → [ ]βh b
They can be applied to a membrane labelled by h, having charge α and con-
taining at least an occurrence of the object a; the object a is sent out from h to
the outside region becoming b and, simultaneously, the charge of h is changed
to β.

• Dissolution rules, of the form [a]αh → b
They can be applied to a membrane labelled by h, having charge α and con-
taining at least an occurrence of the object a; the membrane h is dissolved
and its contents are left in the surrounding region unaltered, except that an
occurrence of a becomes b.

• Elementary division rules, of the form [a]αh → [b]βh [c]
γ
h

They can be applied to a membrane labelled by h, having charge α, containing
at least an occurrence of the object a but having no other membrane inside
(in this case the membrane is said to be elementary); the membrane is divided
into two membranes having both label h and charges β and γ, respectively; the
object a is replaced, respectively, by b and c in the two new membranes, while
the other objects in the initial multiset are copied to both membranes.

• (Weak) Non-elementary division rules, of the form [a]αh → [b]βh [c]
γ
h

These rules operate just like division for elementary membranes, but they can
be applied to non–elementary membranes, containing membrane substructures
and having a label h. Like the objects, the substructures inside the dividing
membrane are replicated in the two new copies of it.
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A configuration of a P system with active membranes is described by the
current membrane structure (including the electrical charge of each membrane)
and the multisets located in the corresponding regions. A computation step changes
the current configuration according to the following set of principles:

• Each object and membrane can be subject to at most one rule per step, except
for object evolution rules (inside each membrane several evolution rules can be
applied simultaneously).

• The application of rules is maximally parallel : each object appearing on the
left-hand side of evolution, communication, dissolution or division rules must
be subject to exactly one of them (unless the current charge of the membrane
prohibits it). The same principle applies to each membrane that can be in-
volved in communication, dissolution, or division rules. In other words, the
only objects and membranes that do not evolve are those associated with no
rule, or only to rules that are not applicable due to the electrical charges.

• When several conflicting rules can be applied at the same time, a nondeter-
ministic choice is performed; this implies that, in general, multiple possible
configurations can be reached as the result of a computation step.

• In each computation step, all the chosen rules are applied simultaneously (in an
atomic way). However, in order to clarify the operational semantics, each com-
putation step is conventionally described as a sequence of micro-steps as follows.
First, all evolution rules are applied inside the elementary membranes, followed
by all communication, dissolution and division rules involving the membranes
themselves; this process is then repeated to the membranes containing them,
and so on towards the root (outermost membrane). In other words, the mem-
branes evolve only after their internal configuration has been updated. For
instance, before a membrane division occurs, all chosen object evolution rules
must be applied inside it; in this way, the objects that are duplicated during
the division are already the final ones.

• The outermost membrane cannot be divided or dissolved, and any object sent
out from it cannot re-enter the system again.

A halting computation of the P system Π is a finite sequence of configura-
tions C = (C0, . . . , Ck), where C0 is the initial configuration, every Ci+1 is reachable
from Ci via a single computation step, and no rules of Π are applicable in Ck. A
non-halting computation C = (Ci : i ∈ N) consists of infinitely many configura-
tions, again starting from the initial one and generated by successive computation
steps, where the applicable rules are never exhausted.

P systems can be used as language recognizers by employing two distinguished
objects yes and no; exactly one of these must be sent out from the outermost mem-
brane, and only in the last step of each computation, in order to signal acceptance
or rejection, respectively; we also assume that all computations are halting.

In order to solve decision problems (i.e., decide languages over an alphabet Σ),
we use families of recognizer P systems Π = {Πx : x ∈ Σ?}. Each input x is
associated with a P system Πx that decides the membership of x in the language



Alternative Space Definitions for P Systems with Active Membranes 13

L ⊆ Σ? by accepting or rejecting. The mapping x 7→ Πx must be efficiently
computable for each input length [4].

These families of recognizer P systems can be used to solve decision problems
as follows.

Definition 2. Let Π be a P system whose alphabet contains two distinct objects
yes and no, such that every computation of Π is halting and during each computa-
tion exactly one of the objects yes,no is sent out from the skin to signal acceptance
or rejection. If all the computations of Π agree on the result, then Π is said to be
confluent; if this is not necessarily the case, then it is said to be non-confluent and
the global result is acceptance if and only if there exists an accepting computation.

Definition 3. Let L ⊆ Σ? be a language, D a class of P systems (i.e. a set of P
systems using a specific subset of features) and let Π = {Πx | x ∈ Σ?} ⊆ D be a
family of P systems, either confluent or non-confluent. We say that Π decides L
when, for each x ∈ Σ?, x ∈ L if and only if Πx accepts.

Complexity classes for P systems are defined by imposing a uniformity con-
dition on Π and restricting the amount of time or space available for deciding a
language.

Definition 4. Consider a language L ⊆ Σ?, a class of recognizer P systems D,
and let f : N→ N be a proper complexity function (i.e. a "reasonable" one, see [5,
Definition 7.1]). We say that L belongs to the complexity class MC∗D(f) if and only
if there exists a family of confluent P systems Π = {Πx | x ∈ Σ?} ⊆ D deciding
L such that:

• Π is semi-uniform, i.e. there exists a deterministic Turing machine which, for
each input x ∈ Σ?, constructs the P system Πx in polynomial time with respect
to |x|;

• Π operates in time f , i.e. for each x ∈ Σ?, every computation of Πx halts
within f(|x|) steps.

In particular, a language L ⊆ Σ? belongs to the complexity class PMC∗D if and
only if there exists a semi-uniform family of confluent P systems Π = {Πx | x ∈
Σ?} ⊆ D deciding L in polynomial time.

The analogous complexity classes for non-confluent P systems are denoted by
NMC∗D(f) and NPMC∗D.

Another set of complexity classes is defined in terms of uniform families of
recognizer P systems:

Definition 5. Consider a language L ⊆ Σ?, a class of recognizer P systems D,
and let f : N → N be a proper complexity function. We say that L belongs to the
complexity class MCD(f) if and only if there exists a family of confluent P systems
Π = {Πx | x ∈ Σ?} ⊆ D deciding L such that:
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• Π is uniform, i.e. for each x ∈ Σ? deciding whether x ∈ L is performed as
follows: first, a polynomial-time deterministic Turing machine, given the length
n = |x| as a unary integer, constructs a P system Πn with a distinguished
input membrane; then, another polynomial-time deterministic Turing machine
computes an encoding of the string x as a multiset wx, which is finally added
to the input membrane of Πn, thus obtaining a P system Πx that accepts if
and only if x ∈ L.

• Π operates in time f , i.e. for each x ∈ Σ?, every computation of Πx halts
within f(|x|) steps.

In particular, a language L ⊆ Σ? belongs to the complexity class PMCD if and
only if there exists a uniform family of confluent P systems Π = {Πx | x ∈ Σ?} ⊆
D deciding L in polynomial time.

The analogous complexity classes for non-confluent P systems are denoted by
NMCD(f) and NPMCD.

As stated in the Introduction, the first definition of space complexity for P sys-
tems introduced in [8] considered a possible real implementation with biochemical
materials, thus assuming that every single object and membrane requires some
constant physical space. Such a definition (in the improved version from [3], tak-
ing into account also the space required by the labels for membranes and the
alphabet of symbols) is the following:

Definition 6. Considering a configuration C of a P system Π, its size |C| is the
number of membranes in the current membrane structure multiplied by log |Λ|,
plus the total number of objects from Γ they contain multiplied by log |Γ |. If C =
(C0, . . . , Ck) is a computation of Π, then the space required by C is defined as

|C| = max{|C0|, . . . , |Ck|}.

The space required by Π itself is then obtained by computing the space required by
all computations of Π and taking the supremum:

|Π| = sup{|C| : C is a computation of Π}.

Finally, let Π = {Πx : x ∈ Σ?} be a family of recognizer P systems, and let s : N→
N. We say that Π operates within space bound s if and only if |Πx| ≤ s(|x|) for
each x ∈ Σ?.

Analogously to what has been done for time complexity classes, we can define
space complexity classes. By MCSPACED(f(n)) (resp. MCSPACE∗D(f(n))) we
denote the class of languages which can be decided by uniform (resp. semi-uniform)
families of confluent P systems of type D (for example, when we refer to P systems
with active membranes, we denote this by setting D = AM), where each Πx ∈ Π
operates within space bound f(|x|).

In particular, the class of problems solvable in polynomial space by uni-
form (resp. semi-uniform) confluent systems is denoted by PMCSPACED (resp.
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PMCSPACE∗D), and the class of problems solvable in exponential space by uni-
form (resp. semi-uniform) confluent systems is denoted by EXPMCSPACED
(resp. EXPMCSPACE∗D).

The corresponding classes for non-confluent systems are NPMCSPACED
(resp. NPMCSPACE∗D) and NEXPMCSPACED (resp. NEXPMCSPACED).

3 An Alternative Definition of Space Complexity for P
Systems

In this section, we first give a different definition of space complexity for P systems
with active membranes. This definition considers the information stored in the
objects of the systems, and not the single objects themselves. In other words, we
store, using binary numbers, the multiplicity of each object in each membrane,
thus reducing the amount of needed space with respect to the definition of space
given in the previous section. We will refer to this definition of space by binary
space, and we will add a symbol B where appropriate, to distinguish between the
definitions referring to this new measure and the definitions recalled in the previous
section.

Definition 7. Consider a configuration C of a P system Π. Let us denote by
h1, h2, ..., hz the membranes of the current membrane structure (we stress the fact
that z can be smaller, equal, or greater than the initial number of membranes d,
due to dissolution and duplication of membranes), and by |Oi,j | the multiplicity of
object i within region j. The binary size |C|B of a configuration C is defined as:

|C|B = z · log |Λ|+
( z∑
j=1

n∑
i=1

dlog(|Oi,j |)e
)
· log |Γ |

that is the number of membranes in the current membrane structure multiplied by
log |Λ|, plus the number of bits required to store the amount of each object in each
membrane multiplied by log |Γ |.

If C = (C0, . . . , Ck) is a computation of Π, then the binary space required by C
is defined as

|C|B = max{|C0|B , . . . , |Ck|B}.

The binary space required by Π itself is then obtained by computing the binary
space required by all computations of Π and taking the supremum:

|Π|B = sup{|C|B : C is a computation of Π}.

Finally, let Π = {Πx : x ∈ Σ?} be a family of recognizer P systems, and let s : N→
N. We say that Π operates within binary space bound s if and only if |Πx|B ≤
s(|x|) for each x ∈ Σ?.



16 A. Alhazov, A. Leporati, L. Manzoni, G. Mauri, C. Zandron

We can thus define space complexity classes considering this new size measure
like we did in the previous section. By MCBSPACED(f(n)) we denote the class of
languages which can be decided by uniform families of confluent P systems of type
D , where each Πx ∈ Π operates within space bound f(|x|), considering this new
definition of binary space. Similarly, we can define the usual complexity classes
like we did in the previous section, simply adding a B to underline the use of this
new definition of space. For instance, the class of problems solvable in polynomial
binary space will be denoted by PMCBSPACED.

Once these notions have been defined, we are ready to state some results ob-
tained by considering various complexity classes defined in terms of binary space.
Just like it happens with the classes based on the original definition of space given
in [8], some results follow immediately from the definitions (here we state results
for semi-uniform families, but it is easy to see that they also hold in the uniform
case):

Proposition 1 The following inclusions hold:

PMCBSPACE?D ⊆ EXPMCBSPACE?D

NPMCBSPACE?D ⊆ NEXPMCBSPACE?D.

Proposition 2 MCBSPACE?D(f) ⊆ NMCBSPACE?D(f) for each f : N → N,
and in particular

PMCBSPACE?D ⊆ NPMCBSPACE?D

EXPMCBSPACE?D ⊆ NEXPMCBSPACE?D.

The results describing closure properties and providing an upper bound for
time requirements of P systems operating in bounded binary space are still valid,
too:

Proposition 3 The complexity classes PMCBSPACE?D, NPMCBSPACE?D,
EXPMCBSPACE?D, and NEXPMCBSPACE?D are all closed under polynomial-
time reductions.

Proof. Consider a language L ∈ PMCBSPACE?D and let M be the Turing ma-
chine constructing the family Π that decides L. Let L′ be reducible to L via a
polynomial-time computable function f .

We can build a Turing machine M ′ working as follows: on input x of length n,
M ′ computes f(x); then it behaves like M on input f(x), thus constructing Πf(x)

(we stress the fact that, for the corresponding result concerning the uniform case,
the construction of the P system involves two Turing machines, both operating in
polynomial time; in this case, we simulate the composition of the two machines).
Since |f(x)| is bounded by a polynomial, M ′ operates in polynomial time and
Πf(x) in polynomial binary space; it follows that Π′ = {Πf(x) | x ∈ Σ?} is a
polynomially semi-uniform family of P systems deciding L′ in polynomial binary
space. Thus L′ ∈ PMCBSPACE?D.

The proof for the three other classes is analogous.
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Proposition 4 MCBSPACE?D(f) is closed under complement for each function
f : N→ N.

Proof. By reversing the roles of objects yes and no, the complement of a language
can be decided.

4 Comparison with standard computational complexity
classes

In this section we compare the standard computational complexity classes with
the complexity classes defined in the framework of P systems working in binary
space.

Most results can be obtained as an immediate consequence of the results given
in [8], simply considering that MCSPACED(f(n)) ⊆MCBSPACED(f(n)).

Thus, recalling various results from [8], we have:

Proposition 5 Let us denote by EAM and AM0 the classes of P systems with
active membranes using only elementary membrane division and without polariza-
tions, respectively. The following results hold (we denote a result that holds for
both semi-uniform and uniform systems by [∗]):

NP ∪ coNP ⊆ EXPMCSPACE?EAM ⊆ EXPMCBSPACE?EAM

PSPACE ⊆ EXPMCSPACE?AM ⊆ EXPMCBSPACE?AM

PSPACE ⊆ EXPMCSPACEAM ⊆ EXPMCBSPACE?AM

PSPACE ⊆ EXPMCSPACE
[∗]
AM0 ⊆ EXPMCBSPACE

[∗]
AM0

An interesting research topic concerns the classes for which the inclusion
MCSPACED(f(n)) ⊆MCBSPACED(f(n)) is proper and, considering the above
inclusions, whether or not the same results can be obtained with stricter binary
space classes, by exploiting the improved information storage related to objects
with respect to the standard space definition.

Some partial results in this respect are the following:

Theorem 6 Let us denote by NAM the class of P systems with active mem-
branes that do not use membrane division. The following result holds: P =
MCSPACE?NAM(O(1)) = MCBSPACE?NAM(O(1))

Proof. The inclusion P ⊆ MCSPACE?NAM(O(1)) follows immediately from the
definition of semiuniform P systems. Consider a language L in P and a string
x; a deterministic Turing machine can create in polynomial time a P system
having a single membrane and one single object yes or no, directly answering
the question whether or not x ∈ L. The inclusion MCSPACE?NAM(O(1)) ⊆
MCBSPACE?NAM(O(1)) follows, as stated above, from the definition of binary
space.
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For the converse, we simply need to recall that a confluent P system without
membrane division can be simulated, in polynomial time, by a deterministic Turing
machine, like it was shown in [11]. It is easy to see that the proof works both
considering the standard space definition as well as the binary space definition for
P systems.

Another interesting result concerning the standard definition of space in the
framework of P systems was presented in [9], and it focuses on the type of resources
used. In particular, a solution for the PSPACE-complete problem Quantified
3SAT was given, for uniform systems using only communication rules (hence no
evolution, membrane division and dissolution rules were used), thus proving the
inclusion of PSPACE in this class. Once again, since the definition of binary space
allows a more efficient allocation of space, the result is still valid:

Proposition 7 Let AM(−ev,+com,−dis,−div) be the class of P systems with
active membranes using only communication rules (no evolution, dissolution, nor
division of membranes). Then PSPACE ⊆ PMCBSPACEAM(−ev,+com,−dis,−div) ⊆
PMCBSPACE∗AM(−ev,+com,−dis,−div).

Once again, it would be interesting to understand whether or not the result
remains valid for a smaller binary space class. In this case, the question can be
answered negatively, by considering a result presented in [10]. In the article, it was
shown that recognizer P systems with active membranes using polynomial space
characterize the complexity class PSPACE. The result holds for both confluent
and nonconfluent systems, and even in the case that non-elementary division is
used. In particular, it was pointed out that such systems can be simulated by
polynomial space Turing machines.

By considering the alternative definition for binary space, we can thus obtain
the corresponding theorem:

Theorem 8 Let Π be a nonconfluent P system with active membranes, running
in binary space S. Then, it can be simulated by a deterministic Turing machine in
space O(S).

Proof. We simulate Π by a non-deterministic Turing machine N , which can then
be reduced to polynomial deterministic space by using Savitch’s theorem [5].

The current configuration of Π can be stored explicitly by N : the membrane
structure is represented as a rooted tree, where each node is a membrane and
contains the information concerning its label, its charge, the multiset of objects in
the region, and a list of children nodes (i.e. the membranes immediately inside it).
To represent the multiset of objects inside each region, tuples of integers encoded
in binary can be used, with one entry for each object type in the alphabet.

Since the simulation algorithm is the same as in [10], it is still valid that the
space required to store further information needed to carry on the simulation is
limited by S.

It follows that the total requested amount of space for the simulation is of the
same order as the one required by Π, that is, O(S).
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It follows immediately from this theorem and from Proposition 7:

Theorem 9 Let D be a class of P systems with active membranes using at least
communication rules. Then [N]PMCBSPACE

[?]
D = PSPACE, where [N] denotes

optional nonconfluence, and [?] optional semi-uniformity.

In [2] it was shown that exponential space Turing machines can be simulated
by polynomially uniform exponential-space P systems with active membranes. In
view of this result and of Theorem 8, and of the definition of binary space, we have
the following:

Theorem 10 EXPSPACE = EXPMCBSPACEAM = EXPMCBSPACE?AM =
NEXPMCBSPACE?AM

Proof. The following inclusions hold by definition:
EXPMCBSPACEAM ⊆ EXPMCBSPACE?AM ⊆ NEXPMCBSPACE?AM,
whereas it is easy to see that the inclusionNEXPMCBSPACE?AM ⊆ EXPSPACE

is an immediate corollary of theorem 8.
Finally, the inclusion of EXPSPACE in EXPMCSPACEAM is proved in [2,

Theorem 8]. Recalling that EXPMCSPACEAM ⊆ EXPMCBSPACEAM, it fol-
lows EXPSPACE ⊆ EXPMCBSPACEAM ut

Hence, also in this case, considering binary space instead of the standard one
does not result in improved efficiency. Moreover, when we consider an exponential
amount of space, we can show that the classes coincide: in fact, considering the
theorem just proved and recalling [1, Corollary 1] proving the same results for
classes with the original definition of space for P systems, we have

Corollary 11 EXPSPACE = EXPMCSPACEAM = EXPMCSPACE?AM =
NEXPMCSPACE?AM = EXPMCBSPACEAM = EXPMCBSPACE?AM =
NEXPMCBSPACE?AM

5 Conclusions

We have proposed an alternative space complexity measure for P systems with
active membranes, where the multiplicity of each object in each membrane is stored
by using binary numbers. We have defined the corresponding complexity classes
and we have compared some of them both with standard space complexity classes
and with complexity classes defined in the framework of P systems considering the
original definition of space ([8]).

An interesting research topic is to compare such classes for different amounts of
allowed space. In particular, it would be interesting to find specific classes defined
in terms of binary space which stricly contain classes defined in terms of standard
space in the framework of P systems, thus proving that storing in an efficient way
the information concerning objects can really be exploited. We showed that, when
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an exponential amount of space is considered, these classes do not differ. Only
partial answers have been obtained for a polynomial amount of space. We expect
that the differences can be evident when considering sublinear space complexity
classes.
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artiom@math.md

2 Faculty of Informatics, TU Wien
Favoritenstraße 9–11, 1040 Wien, Austria
rudi@emcc.at
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Summary. Catalytic P systems are among the first variants of membrane systems ever
considered in this area. This variant of systems also features some prominent computa-
tional complexity questions, and in particularly the problem of using only one catalyst: is
one catalyst enough to allow for generating all recursively enumerable sets of multisets?
Several additional ingredients have been shown to be sufficient for obtaining even com-
putational completeness with only one catalyst. In this paper we show that one catalyst
is sufficient for obtaining even computational completeness if catalytic rules have weak
priority over the non-catalytic rules.

1 Introduction

Membrane systems were introduced in [8] as a multiset-rewriting model of com-
puting inspired by the structure and the functioning of the living cell. During two
decades now membrane computing has attracted the interest of many researchers,
and its development is documented in two textbooks, see [9] and [10]. For ac-
tual information see the P systems webpage [12] and the issues of the Bulletin of
the International Membrane Computing Society and of the Journal of Membrane
Computing.

One basic feature of P systems already presented in [8] is the maximally parallel
derivation mode, i.e., using non-extendable multisets of rules in every derivation
step. The result of a computation can be extracted when the system halts, i.e.,
when no rule is applicable any more. Catalysts are special symbols which allow
only one object to evolve in its context (in contrast to promoters) and in their
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basic variant never evolve themselves, i.e., a catalytic rule is of the form ca→ cv,
where c is a catalyst, a is a single object and v is a multiset of objects. In contrast,
non-catalytic rules in catalytic P systems are non-cooperative rules of the form
a→ v.

From the beginning, the question how many catalysts are needed for obtaining
computational completeness has been one of the most intriguing challenges regard-
ing (catalytic) P systems. In [3] it has already been shown that two catalysts are
enough for generating any recursively enumerable set of multisets, without any
additional ingredients like a priority relation on the rules as used in the original
definition. As already known from the beginning, without catalysts only regular
(semi-linear) sets can be generated when using the standard halting mode, i.e., a
result is extracted when the system halts with no rule being applicable any more.
As shown, for example, in [5], using various additional ingredients, i.e., additional
control mechanisms, one catalyst can be sufficient: in P systems with label selec-
tion, only rules from one set of a finite number of sets of rules in each computation
step are used; in time-varying P systems, the available sets of rules change pe-
riodically with time. On the other hand, for catalytic P systems with only one
catalyst a lower bound has been established in [6]: P systems with one catalyst
can simulate partially blind register machines, i.e., they can generate more than
just semi-linear sets.

In this paper we now return to the idea of using a priority relation on the rules,
but take only a very weak form of such a priority relation: we only require that
overall in the system catalytic rules have weak priority over non-catalytic rules.
This means that the catalyst c must not stay idle if the current configuration
contains an object a with which it may cooperate in a rule ca→ cv; all remaining
objects evolve in the maximally parallel way with non-cooperative rules. On the
other hand, if the current configuration does not contain an object a with which
the catalyst c may cooperate in a rule ca → cv, c may stay idle and all objects
evolve in the maximally parallel way with non-cooperative rules. Even without
using more than this weak priority of catalytic rules over the non-catalytic (non-
cooperative) rules, computational completeness can be established for catalytic P
systems with only one catalyst, which is the main result of our paper.

2 Definitions

For an alphabet V , by V ∗ we denote the free monoid generated by V under the
operation of concatenation, i.e., containing all possible strings over V. The empty
string is denoted by λ. A multiset M with underlying set A is a pair (A, f) where
f : A → N is a mapping. If M = (A, f) is a multiset then its support is defined
as supp(M) = {x ∈ A | f(x) > 0}. A multiset is empty (respectively finite) if its
support is the empty set (respectively a finite set). If M = (A, f) is a finite multiset
over A and supp(M) = {a1, . . . , ak}, then it can also be represented by the string

a
f(a1)
1 . . . a

f(ak)
k over the alphabet {a1, . . . , ak}, and, moreover, all permutations of
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this string precisely identify the same multiset M . For further notions and results
in formal language theory we refer to textbooks like [2] and [11].

2.1 Register Machines

Register machines are well-known universal devices for computing (or generating
or accepting) sets of vectors of natural numbers.

Definition 1. A register machine is a construct

M = (m,B, l0, lh, P )

where

• m is the number of registers,
• P is the set of instructions bijectively labeled by elements of B,
• l0 ∈ B is the initial label, and
• lh ∈ B is the final label.

The instructions of M can be of the following forms:

• p : (ADD (r) , q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.
Increase the value of register r by one, and non-deterministically jump to in-
struction q or s.

• p : (SUB (r) , q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.
If the value of register r is not zero then decrease the value of register r by one
( decrement case) and jump to instruction q, otherwise jump to instruction s
( zero-test case).

• lh : HALT .
Stop the execution of the register machine.

A configuration of a register machine is described by the contents of each reg-
ister and by the value of the current label, which indicates the next instruction to
be executed.

In the accepting case, a computation starts with the input of an l-vector of
natural numbers in its first l registers and by executing the first instruction of
P (labeled with l0); it terminates with reaching the HALT -instruction. Without
loss of generality, we may assume all registers to be empty at the end of the
computation.

In the generating case, a computation starts with all registers being empty and
by executing the first instruction of P (labeled with l0); it terminates with reaching
the HALT -instruction and the output of a k-vector of natural numbers in its last
k registers. Without loss of generality, we may assume all registers except the last
k output registers to be empty at the end of the computation.

In the computing case, a computation starts with the input of a l-vector of
natural numbers in its first l registers and by executing the first instruction of
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P (labeled with l0); it terminates with reaching the HALT -instruction and the
output of a k-vector of natural numbers in its last k registers. Without loss of
generality, we may assume all registers except the last k output registers to be
empty at the end of the computation.

A configuration of a register machine is described by the contents of each
register and by the value of the current label, which indicates the next instruction
to be executed. M is called deterministic if the ADD-instructions all are of the
form p : (ADD (r) , q).

For useful results on the computational power of register machines, we refer to
[7]; for example, to prove our main theorem, we need the following formulation of
results for register machines generating or accepting recursively enumerable sets
of vectors of natural numbers with k components or computing partial recursive
relations on vectors of natural numbers:

Proposition 1. Deterministic register machines can accept any recursively enu-
merable set of vectors of natural numbers with l components using precisely l + 2
registers. Without loss of generality, we may assume that at the end of an accepting
computation all registers are empty.

Proposition 2. Register machines can generate any recursively enumerable set of
vectors of natural numbers with k components using precisely k+2 registers. With-
out loss of generality, we may assume that at the end of an accepting computation
the first two registers are empty, and, moreover, on the output registers, i.e., the
last k registers, no SUB-instruction is ever used.

Proposition 3. Register machines can compute any partial recursive relation on
vectors of natural numbers with l components as input and vectors of natural num-
bers with k components as output using precisely l+ 2 + k registers, where without
loss of generality, we may assume that at the end of a successful computation the
first l+ 2 registers are empty, and, moreover, on the output registers, i.e., the last
k registers, no SUB-instruction is ever used.

In all cases it is essential that the output registers never need to be decremented.

2.2 Partially Blind Register Machines

We now consider one-way nondeterministic machines which have registers allowed
to hold positive or negative integers and which accept by final state with all reg-
isters being zero. Such machines are called blind if their actions depend on state
and input alone and not on the register configuration. They are called partially
blind if they block when any register is negative (i.e., only non-negative register
contents is allowed) but do not know whether or not any of the registers contains
zero.
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Definition 2. A partially blind register machine is a construct

M = (m,B, l0, lh, P )

where

• m is the number of registers,
• P is the set of instructions bijectively labeled by elements of B,
• l0 ∈ B is the initial label, and
• lh ∈ B is the final label.

The instructions of M can be of the following forms:

• p : (ADD (r) , q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.
Increase the value of register r by one, and non-deterministically jump to in-
struction q or s.

• p : (SUB (r) , q), with p ∈ B \ {lh}, q ∈ B, 1 ≤ r ≤ m.
If the value of register r is not zero then decrease the value of register r by one
and jump to instruction l2, otherwise abort the computation.

• lh : HALT .
Stop the execution of the register machine.

Again, a configuration of a partially blind register machine is described by the
contents of each register and by the value of the current label, which indicates the
next instruction to be executed.

A computation works as for a register machine, yet with the restriction that a
computation is aborted if one tries to decrement a register which is zero. Moreover,
computing, accepting or generating now also requires all registers (except output
registers) to be empty at the end of the computation.

Example 1. In [6] it was shown that the vector set

S = {(n,m) | 0 ≤ n, n ≤ m ≤ 2n}

(which is not semi-linear) can be generated by a P system with only one catalyst
and 19 rules.

2.3 Catalytic P Systems

As in [6], the following definition cites Definition 4.1 in Chapter 4 of [10].

Definition 3. An extended catalytic P system of degree m ≥ 1 is a construct

Π = (O,C, µ,w1, . . . , wm, R1, . . . , Rm, i0)

where

• O is the alphabet of objects;
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• C ⊆ O is the alphabet of catalysts;
• µ is a membrane structure of degree m with membranes labeled in a one-to-one

manner with the natural numbers 1, . . . ,m;
• w1, . . . , wm ∈ O∗ are the multisets of objects initially present in the m regions

of µ;
• Ri, 1 ≤ i ≤ m, are finite sets of evolution rules over O associated with the

regions 1, 2, . . . ,m of µ; these evolution rules are of the forms ca → cv or
a→ v, where c is a catalyst, a is an object from O \ C, and v is a string from
((O \ C)× {here, out, in})∗;

• i0 ∈ {0, 1, . . . ,m} indicates the output region of Π.

The membrane structure and the multisets in Π constitute a configuration of
the P system; the initial configuration is given by the initial multisets w1, . . . , wm.
A transition between configurations is governed by the application of the evolution
rules, which is done in the maximally parallel way, i.e., only applicable multisets
of rules which cannot be extended by further rules are to be applied to the objects
in all membrane regions.

The application of a rule u→ v in a region containing a multiset M results in
subtracting from M the multiset identified by u, and then in adding the multiset
identified by v. The objects can eventually be transported through membranes due
to the targets in and out. We refer to [10] for further details and examples.

The P system continues with applying multisets of rules in the maximally
parallel way until there remain no applicable rules in any region of Π. Then the
system halts. We consider the number of objects from O\C contained in the output
region i0 at the moment when the system halts as the result of the underlying
computation of Π. The system is called extended since the catalytic objects in C
are not counted to the result of a computation. Yet as often done in the literature,
in the following we will omit the term extended and just speak of catalytic P
systems, especially as we will restrict ourselves to P systems with only one catalyst.

The set of results of all computations possible in Π is called the set of natural
numbers generated by Π and it is denoted by N(Π) if we only count the total
number of objects in the output membrane; if we distinguish between the multi-
plicities of different objects, we obtain a set of vectors of natural numbers denoted
by Ps(Π).

Remark 1. As in this paper we only consider catalytic P systems with only one
catalyst, without loss of generality, we can restrict ourselves to one-membrane
catalytic P systems with the single catalyst in the skin membrane, by taking into
account the well-known flattening process, e.g., see [4].

Remark 2. Finally, we make the convention that a one-membrane catalytic P sys-
tem with the single catalyst in the skin membrane and with internal output in
the skin membrane, not taking into account the single catalyst c for the results,
throughout the rest of the paper will be described without specifying the trivial
membrane structure or the output region (assumed to be the skin membrane), i.e.,
we will just write
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Π = (O, {c}, w,R)

where O is the set of objects, c is the single catalyst, w is the initial input specifying
the initial configuration, and R is the set of rules.

As already mentioned earlier, the following result was shown in [6], establishing
a lower bound for the computational power of catalytic P systems with only one
catalyst:

Proposition 4. Catalytic P systems with only one catalyst have at least the com-
putational power of partially blind register machines.

3 Weak Priority of Catalytic Rules

In this paper we now study catalytic P systems with only one catalyst in which
the catalytic rules have weak priority over the non-catalytic rules.

Example 2. To illustrate this weak priority of catalytic rules over the non-catalytic
rules, consider the rules ca→ cb and a→ d. If the current configuration contains
k > 0 copies of a, then the catalytic rule ca → cb must be applied to one of the
copies, while the rest of objects a may be taken up by the non-catalytic rule a→ d.
In particular, if k = 1, only ca→ cb may be applied.

We would like to highlight the fact that weak priority of catalytic rules is much
weaker than the general weak priority, as the priority relation is only constrained
by the types of rules.

Remark 3. The reverse weak priority, i.e., non-catalytic rules having priority over
catalytic rules, is useless, since it is equivalent to removing all catalytic rules for
which there are non-catalytic rules with the same symbol on the left-hand side of
the rule. In that way we just end up with an even restricted variant of P systems
with only one catalyst.

3.1 Computational Completeness with Weak Priority

In this section, we show that catalytic P systems with one catalyst only and with
weak priority of catalytic rules are computationally complete.

Theorem 1. Catalytic P systems with only one catalyst and with weak priority of
catalytic rules over the non-cooperative rules are computationally complete.

Proof. Given an arbitrary register machine M = (m,B, l0, lh, P ) we will con-
struct a corresponding catalytic P system with one membrane and one catalyst
Π = (O, {c}, w,R) simulating M . Without loss of generality, we may assume that,
depending on its use as an accepting or generating or computing device, the regis-
ter machine M , as stated in Proposition 1, Proposition 2, and Proposition 3, fulfills
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the condition that on the output registers we never apply any SUB-instruction. The
following proof is given for the most general case of a register machine computing
any partial recursive relation on vectors of natural numbers with l components as
input and vectors of natural numbers with k components as output using precisely
l+2+k registers, where without loss of generality, we may assume that at the end
of a successful computation the first l + 2 registers are empty, and, moreover, on
the output registers, i.e., the last k registers, no SUB-instruction is ever used. In
fact, the proof works for any number n of decrementable registers, no matter how
many of them are the l input registers and the working registers, respectively.

The main idea behind our construction is that all the symbols except the cat-
alyst c and the output symbols (representing the contents of the output registers)
go through a cycle of length 2n where n is the number of decrementable registers of
the simulated register machine. When the symbols are traversing the r-th section
of the n sections of length 2, they “know” that they are to probably simulate a
SUB-instruction on register r of the register machine M .

The alphabet O of symbols includes register symbols (ar, 2i − 1), (ar, 2i) for
every decrementable register r of the register machine and only the register symbol
ar for each of the k output registers r, m − k + 1 ≤ r ≤ m, the state symbols
(p, 2i − 1), (p, 2i), 1 ≤ i ≤ n, for every ADD-instruction of the register machine
as well as, for p ∈ BSUB(r) the state symbols (p, 2i − 1), (p, 2i) for 1 ≤ i ≤ r
as well as (p, 2j − 1)− and (p, 2j)0 for r + 1 ≤ j ≤ n for every SUB-instruction
p : (SUB(r), q, s) of the register machine, i.e., p ∈ BSUB(r), where BSUB(r) denotes
the set of labels of all SUB-instruction p : (SUB(r), q, s) of decrementable registers
r. Moreover, we use decrement witness symbols λr for every decrementable register
r, as well as the catalyst c and the trap symbol #. Observing that n = m− k, in
total we get the following set of objects:

O = {ar | n+ 1 ≤ r ≤ m}
∪ {(ar, i) | 1 ≤ r ≤ n, 1 ≤ i ≤ 2n}
∪ {λr | 1 ≤ r ≤ n}
∪ {(p, i) | p ∈ BADD, 1 ≤ i ≤ 2n}
∪ {(p, i) | p ∈ BSUB(r), 1 ≤ i ≤ 2r}
∪ {(p, i)−, (p, i)0 | p ∈ BSUB(r), 2r + 1 ≤ i ≤ 2n}
∪ {c,#}.

BADD denotes the set of labels of ADD-instructions.

The starting configuration of Π is

w = c(l0, 1)α0,

where l0 is the starting label of the machine and α0 is the multiset encoding the
initial values of the registers.
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All register symbols ar, 1 ≤ r ≤ n, representing the contents of decrementable
registers, are equipped with the rules evolving them throughout the whole cycle:

(ar, i)→ (ar, i+ 1), 1 ≤ r ≤ 2n− 1; (ar, 2n)→ (ar, 1). (1)

The construction also includes the trap rule # → #: once the trap symbol #
is introduced, it will always keep the system busy and prevent it from halting and
thus from producing a result.

For simulating ADD-instructions we also need the following rules:

Increment p : (ADD(r), q, s):

The (variants of the) symbol p cycles together with all the other symbols,
always involving the catalyst:

c(p, i)→ c(p, i+ 1), 1 ≤ i ≤ 2n− 1. (2)

At the end of the cycle, the register is incremented and the non-deterministic
jump to q or s occurs: for r being a decrementable register, we take

c(p, 2n)→ c(q, 1)(ar, 1), c(p, 2n)→ c(s, 1)(ar, 1), (3)

whereas for r being a register never to be decremented, we take

c(p, 2n)→ c(q, 1)ar, c(p, 2n)→ c(s, 1)ar (4)

The output symbols need not undergo the cycle, in fact, they must not do that
because otherwise the computation would never stop. When the computation of
the register machine halts, only output symbols will be present, as we have assumed
that at the end of a computation all decrementable registers will be empty, i.e.,
no cycling symbols will be present any more in the P system. Finally, we have to
mention that if q or s is the final label lh, then we take λ instead, which means
that also the P system will halt, because, as already explained above, the only
symbols left in the configuration will be output symbols, for which no rules exist.

The state symbol is not allowed to evolve without the catalyst:

(p, i)→ #, 1 ≤ i ≤ 2n. (5)

Hence, in that way it is guaranteed that the catalyst cannot be used in another
way, i.e., affecting a symbol (ar, i) as explained below during the simulation of a
SUB-instruction on register r.

Decrement and zero-test p : (SUB(r), q, s):

The simulation of a SUB instruction is carried out in two steps of the cycle,
i.e., in steps 2r − 1 and 2r.

Before reaching simulation phase r, i.e., step 2r − 1, the state symbol goes
through the cycle, necessarily involving the catalyst:
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c(p, i)→ c(p, i+ 1) > (p, i)→ #, 1 ≤ i < 2r − 1. (6)

Although by the definition of the P systems with priority of catalytic rules, the
catalytic rule has priority over the non-catalytic rule for (p, i), we indicate the
general priority relation by the sign < (or > for the reverse relation) in order to
make the situation even clearer.

In the first step of the simulation phase r, i.e., in step 2r− 1, the state symbol
releases the catalyst to try to perform the decrement and to produce a witness
symbol if register r is not empty:

(p, 2r − 1)→ (p, 2r), c(ar, 2r − 1)→ cλr. (7)

Note that due to the counters identifying the position of the register symbols
in the cycle, it is guaranteed that the catalytic rule transforming (ar, 2r− 1) picks
the correct register symbol. Furthermore, due to the priority of the catalytic rules,
one of the the register symbols (ar, 2r − 1) must be transformed by the catalytic
rule if present, instead of continuing along its cycle.

In the second step of simulation phase r, i.e., in step 2r, the detection of the
possible decrement happens. The outcome is stored in the state symbol:

cλr → c > λr → #,

(p, 2r)→ (p, 2r + 1)− < c(p, 2r)→ c(p, 2r + 1)0.
(8)

If in the first step of the simulation phase the catalyst did manage to decrement
the register, it produced λr. Thus, in the second step, the catalyst must erase λr,
because otherwise this symbol will trap the computation (and because catalytic
rules have priority). This means that the catalyst is not available to produce
(p, 2r+1)0, and the rule (p, 2r)→ (p, 2r+1)− must be applied due to the maximally
parallel mode. If, on the other hand, the decrement did not succeed in the previous
step, both rules (p, 2r)→ (p, 2r+ 1)− and c(p, 2r)→ c(p, 2r+ 1)0 can be applied,
but due to the priority of the catalytic rules, the second rule must be preferred,
thus producing (p, 2r+1)0. Therefore, the superscript of the state symbol correctly
reflects the outcome of the decrement: it is − if the decrement succeeded, and 0 if
it did not.

After the simulation of the decrement, the state symbols evolve to the end of
the cycle and produce the corresponding next state symbols:

(p, i)− → (p, i+ 1)−, r + 2 ≤ i ≤ n, (p, n+ 1)− → (q, 1),

(p, i)0 → (p, i+ 1)0, r + 2 ≤ i ≤ n, (p, n+ 1)0 → (s, 1).
(9)

If the register r is the last decrementable one, i.e., r = n, then equations 8
and 9 together read as follows:

cλn → c > λn → #,

(p, n+ 1)→ (q, 1) < c(p, n+ 1)→ c(s, 1).
(10)
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Finally, we again mention that if q or s is the final label lh, then we take λ in-
stead, which means that not only the register machine but also the P system halts,
because, as already explained above, the only symbols left in the configuration will
be output symbols, for which no rules exist. ut

We would also like to emphasize that the simulation is what may be called
toxic/trap-deterministic: the only non-deterministic choice happens between a rule
producing a trap symbol # and another one which does not introduce #. This
means that the appearance of the trap symbol may immediately abort the com-
putation, which is the concept used for toxic P systems as introduced in [1]. Using
the trap symbol # as such a toxic object, the only successful computations are
simulating register machines in a quasi-deterministic way with a look-ahead of one,
i.e., considering all possible configurations computable from a given one, there is
at most one successful continuation of the computation.

For future research it remains a challenging question whether the length of the
cycle now being 2n can still be reduced.

4 Conclusion

In this paper we revisited a classic problem of computational complexity in mem-
brane computing: can catalytic P systems with only one catalyst already generate
all recursively enumerable sets of multisets? This problem has been standing tall
for many years, and nobody has yet managed to give it a positive or a negative
answer. In this paper, we come closer to showing computational completeness: we
give a construction that simulates an arbitrary register machine with a very weak
ingredient—the weak priority of catalytic rules over non-catalytic rules.

On the other hand, we still conjecture that P systems with one catalyst and no
additional control mechanisms cannot reach computational completeness. Finding
an answer to the question of characterizing the computational power of P systems
with one catalyst therefore still remains one of the biggest challenges in the theory
of P systems, although the result established in our paper has made the gap be-
tween the computational power of P systems with one catalyst and computational
completeness smaller again.

The result obtained in this paper can also be extended to P systems deal-
ing with strings, following the definitions and notions used in [6], thus showing
computational completeness for computing with strings.
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3 IBISC, Univ Évry, Paris-Saclay University
23, boulevard de France 91034 Évry, France
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Summary. P systems are a model of compartmentalized multiset rewriting inspired by
the structure and functioning of the living cell. In this paper, we focus on a variant in P
systems in which membranes have limited capacity, i.e., the number of objects they may
hold is statically bounded. This feature corresponds to an important physical property
of cellular compartments. We propose several possible semantics of limited capacity and
show that one of them allows real-time simulations of partially blind register machines,
while the other one allows for obtaining computational completeness.

1 Introduction

Membrane systems were introduced in [9] as a multiset-rewriting model of com-
puting inspired by the structure and the functioning of the living cell. Among
the basic features of the original model are the hierarchical arrangement of the
membranes and the parallel evolution of the objects contained in the membrane
compartments. Usually a result is obtained if the computation halts, i.e., if no rule
is applicable any more.

In this paper we consider an additional feature also inspired by biology, namely
the limited capacity of cells to include objects – in total or of a specific kind. When
the number of cells is not bounded as in P systems with active membranes, this
biological feature of limited capacity can be kept for all cells below a given fixed
bound. On the other hand, in the standard hierarchical model with a static number
of cells, or, even if we allowed membrane dissolution, with a fixed upper bound for
the number of cells, we can only limit the number of specific objects and have to
allow an unbounded number of other objects when aiming at non-trivial theoretical
results.
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When the number of cells is not bounded because of using membrane creation
and/or membrane division (together with membrane dissolution), the number of
objects in one cell/membrane can even be restricted to one, still allowing for obtain-
ing computational completeness, thereby counting the number of membranes/cells
instead of the number of objects in an output membrane/cell; for example, see
[1, 4, 3].

In this paper we now propose this new feature of limited capacity for (specific)
objects to be contained in a cell or a membrane region and several semantics of how
to treat the situation when the application of a (multiset of) rule(s) would violate
this limiting condition. We will only investigate two special variants in more detail,
both of them blocking or aborting computations which try to apply a multiset of
rules leading to a violation of the limited capacity conditions. For the first variant
we show that it allows for real-time simulations of partially blind register machines
(PBRM), while the other variant allows for obtaining computational completeness.

The development of the fascinating area of membrane computing during the
last two decades is documented in two textbooks, see [10] and [11]. For actual
information see the P systems webpage [13] and the issues of the Bulletin of the
International Membrane Computing Society and of the Journal of Membrane Com-
puting.

2 Definitions

For an alphabet V , by V ∗ we denote the free monoid generated by V under the
operation of concatenation, i.e., containing all possible strings over V. The empty
string is denoted by λ. For any a ∈ V and any string w over A, wa denotes the
number of symbols a in w.

A multiset M with underlying set A is a pair (A, f) where f : A → N is a
mapping. For a multiset M = (A, f), its support is defined as supp(M) = {x ∈
A | f(x) > 0}. A multiset is called empty or finite if its support is the empty set or
a finite set, respectively. If M = (A, f) is a finite multiset over A and supp(M) =

{a1, . . . , ak}, then it can also be represented by the string a
f(a1)
1 . . . a

f(ak)
k over

the alphabet {a1, . . . , ak}, and, moreover, all permutations of this string precisely
identify the same multiset M . For any a ∈ V and any multiset M over A, Ma

denotes the number of symbols a in w.
For further notions and results in formal language theory we refer to textbooks

like [5] and [12].

2.1 Register Machines

Register machines are well-known universal devices for computing (or generating
or accepting) sets of vectors of natural numbers.
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Definition 1. A register machine is a construct

M = (m,B, l0, lh, P )

where

• m is the number of registers,
• P is the set of instructions bijectively labeled by elements of B,
• l0 ∈ B is the initial label, and
• lh ∈ B is the final label.

The instructions of M can be of the following forms:

• p : (ADD (r) , q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.
Increase the value of register r by one, and non-deterministically jump to in-
struction q or s.

• p : (SUB (r) , q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.
If the value of register r is not zero then decrease the value of register r by one
( decrement case) and jump to instruction q, otherwise jump to instruction s
( zero-test case).

• lh : HALT .
Stop the execution of the register machine.

A configuration of a register machine is described by the contents of each reg-
ister and by the value of the current label, which indicates the next instruction to
be executed.

In the accepting case, a computation starts with the input of an l-vector of
natural numbers in its first l registers and by executing the first instruction of
P (labeled with l0); it terminates with reaching the HALT -instruction. Without
loss of generality, we may assume all registers to be empty at the end of the
computation.

In the generating case, a computation starts with all registers being empty and
by executing the first instruction of P (labeled with l0); it terminates with reaching
the HALT -instruction and the output of a k-vector of natural numbers in its last
k registers. Without loss of generality, we may assume all registers except the last
k output registers to be empty at the end of the computation.

In the computing case, a computation starts with the input of a l-vector of
natural numbers in its first l registers and by executing the first instruction of
P (labeled with l0); it terminates with reaching the HALT -instruction and the
output of a k-vector of natural numbers in its last k registers. Without loss of
generality, we may assume all registers except the last k output registers to be
empty at the end of the computation.

A configuration of a register machine is described by the contents of each
register and by the value of the current label, which indicates the next instruction
to be executed. M is called deterministic if the ADD-instructions all are of the
form p : (ADD (r) , q).
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For useful results on the computational power of register machines, we refer
to [8]; for example, for proving computational completeness results for specific
variants of P systems, usually the following formulations of results for register
machines generating or accepting recursively enumerable sets of vectors of natural
numbers with k components or computing partial recursive relations on vectors of
natural numbers are helpful:

Proposition 1. Deterministic register machines can accept any recursively enu-
merable set of vectors of natural numbers with l components using precisely l + 2
registers. Without loss of generality, we may assume that at the end of an accepting
computation all registers are empty.

Proposition 2. Register machines can generate any recursively enumerable set of
vectors of natural numbers with k components using precisely k+2 registers. With-
out loss of generality, we may assume that at the end of an accepting computation
the first two registers are empty, and, moreover, on the output registers, i.e., the
last k registers, no SUB-instruction is ever used.

Proposition 3. Register machines can compute any partial recursive relation on
vectors of natural numbers with l components as input and vectors of natural num-
bers with k components as output using precisely l+ 2 + k registers, where without
loss of generality, we may assume that at the end of a successful computation the
first l+ 2 registers are empty, and, moreover, on the output registers, i.e., the last
k registers, no SUB-instruction is ever used.

In all cases it is essential that the output registers never need to be decremented.

2.2 Partially Blind Register Machines

We now consider one-way nondeterministic machines which have registers allowed
to hold positive or negative integers and which accept by final state with all reg-
isters being zero. Such machines are called blind if their actions depend on state
and input alone and not on the register configuration. They are called partially
blind if they block when any register is negative (i.e., only non-negative register
contents is allowed) but do not know whether or not any of the registers contains
zero.

Definition 2. A partially blind register machine is a construct

M = (m,B, l0, lh, P )

where

• m is the number of registers,
• P is the set of instructions bijectively labeled by elements of B,
• l0 ∈ B is the initial label, and
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• lh ∈ B is the final label.

The instructions of M can be of the following forms:

• p : (ADD (r) , q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.
Increase the value of register r by one, and non-deterministically jump to in-
struction q or s.

• p : (SUB (r) , q), with p ∈ B \ {lh}, q ∈ B, 1 ≤ r ≤ m.
If the value of register r is not zero then decrease the value of register r by one
and jump to instruction l2, otherwise abort the computation.

• lh : HALT .
Stop the execution of the register machine.

Again, a configuration of a partially blind register machine is described by the
contents of each register and by the value of the current label, which indicates the
next instruction to be executed.

A computation works as for a register machine, yet with the restriction that a
computation is aborted if one tries to decrement a register which is zero. Moreover,
computing, accepting or generating now also requires all registers (except output
registers) to be empty at the end of the computation.

2.3 P Systems

The standard model of hierarchical P systems can be defined as follows, for exam-
ple, see [11] for several variants:

Definition 3. A (hierarchical) P system of degree m ≥ 1 is a construct

Π = (O,µ,w1, . . . , wm, R1, . . . , Rm, i0)

where

• O is the alphabet of objects;
• µ is a membrane structure of degree m with membranes labeled in a one-to-one

manner with the natural numbers 1, . . . ,m;
• w1, . . . , wm ∈ O∗ are the multisets of objects initially present in the m regions

of µ;
• Ri, 1 ≤ i ≤ m, are finite sets of evolution rules over O associated with the

regions 1, 2, . . . ,m of µ; these evolution rules are of the forms u → v where
and u is a multiset over O and v is a string from ((O \C)× {here, out, in})∗;

• i0 ∈ {0, 1, . . . ,m} indicates the output region of Π.

The membrane structure and the multisets in Π constitute a configuration of
the P system; the initial configuration is given by the initial multisets w1, . . . , wm.
A transition between configurations is governed by the application of the evolution
rules, which is done in the maximally parallel way, i.e., only applicable multisets
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of rules which cannot be extended by further rules are to be applied to the objects
in all membrane regions.

The application of a rule u→ v in a region containing a multiset M results in
subtracting from M the multiset identified by u, and then in adding the multiset
identified by v. The objects can eventually be transported through membranes due
to the targets in and out.

The P system continues with applying multisets of rules in the maximally
parallel way until there remain no applicable rules in any region of Π. Then the
system halts. We consider the number of objects from O contained in the output
region i0 at the moment when the system halts as the result of the underlying
computation of Π. The set of results of all computations possible in Π is called
the set of natural numbers generated by Π and it is denoted by N(Π) if we
only count the total number of objects in the output membrane; if we distinguish
between the multiplicities of different objects, we obtain a set of vectors of natural
numbers denoted by Ps(Π). We refer to [11] for further details and examples.

A special variant of P systems uses so-called catalysts, which are objects which
allow other objects to evolve, but never evolve themselves.

Definition 4. A catalytic P system of degree m ≥ 1 is a construct

Π = (O,C, µ,w1, . . . , wm, R1, . . . , Rm, i0)

where C ⊆ O is the alphabet of catalysts; the evolution rules are of the forms
ca → cv or a → v, where c is a catalyst, a is an object from O \ C, and v is
a string from ((O \ C) × {here, out, in})∗; the other ingredients are defined as
for hierarchical P systems in Definition 3. A catalytic P system is called purely
catalytic if all rules are catalytic ones.

Since the beginning, the question how many catalysts are needed in catalytic
and purely catalytic P systems for obtaining computational completeness has been
a challenging theoretical question. The following result was shown in [7], establish-
ing a lower bound for the computational power of catalytic P systems with only
one catalyst:

Proposition 4. Catalytic P systems with only one catalyst have at least the com-
putational power of partially blind register machines.

Example 1. In [7] it was shown that the vector set

S = {(n,m) | 0 ≤ n, n ≤ m ≤ 2n}

(which is not semi-linear) can be generated by some (even extended version of a)
PBRM and therefore by a P system with only one catalyst and 19 rules.

As already shown in [6], register machines with n ≥ 2 decrementable registers
can be simulated by catalytic P systems with n catalysts and by purely catalytic
P systems with n+ 1 catalysts.
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3 Limited Capacity

In most of the variants of P systems considered in the literature the number of
objects in a membrane region is not limited. In this paper, we propose a variant
in which the number of objects a membrane may contain is bounded, with the
bound already being given in the definition of the system.

In this paper we consider two variants of limiting the capacity – limiting the
total capacity of objects in a cell and only limiting the capacity of specific objects
in a cell, respectively.

Definition 5. A P system with per-membrane limited capacity is the following
construct:

Π = (O,µ,w1, . . . , wn, k1, . . . , kn, R1, . . . Rn, i0),

where ki ∈ N ∪ {∞} is the total capacity of membrane i, 1 ≤ i ≤ n, meaning
that, for |vi| denoting the contents of memrane i in the current configuration, the
condition |vi| ≤ ki must always be enforced, unless ki =∞. The other components
of the tuple are as in Subsection 2.3.

Definition 6. A P system with per-symbol limited capacity is the following con-
struct:

Π = (O,µ,w1, . . . , wn,K1, . . . ,Kn, R1, . . . Rn, i0),

where Ki : O → N ∪ {∞} are functions defining the per-symbol capacity of mem-
brane i. The condition wa ≤ K(a) must therefore be enforced at all times, for any
a ∈ O, unless K(a) =∞.

In this paper, we will focus on P systems with per-symbol limited capacity.

Remark 1. We immediately remark that the flattening technique which is folklore
in the membrane computing community can be applied in the case of P systems
with per-symbol limited capacity. Without loss of generality, we therefore in Sec-
tion 4 will only consider 1-membrane systems, which can be written in a simplified
version as follows with omitting the trivial membrane structure and taking the
skin membrane 1 as the output membrane:

Π = (O,w,K,R) and Π = (O,C,w,K,R) for catalytic P systems.

3.1 Semantics of Limited Capacity

What should happen if a membrane is about to exceed its capacity (total or per-
symbol)? Multiple kinds of behaviors may be considered, for example the following
variants:
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1. Blocking behavior: Prohibit the application of (multisets of) rules which would
produce more objects. Attempting to apply such rules blocks the system, and
yields no result.

2. Destructive behavior: Completely remove the offending membrane from the
system, together with its contents.

3. Dissolutive behavior : Dissolve the offending membrane, dumping its contents
into its parent membrane; in this case, (one of) the parent membrane(s) must
allow for more objects, as otherwise the whole system would be dissolved.

4. Separation behavior: Divide the offending membrane separating its contents
across the child membranes. Since every child membrane only receives a part
of the contents of the parent, the capacity constraints may be satisfied.

The separation behavior may be useful for P systems with active membranes,
whereas the first three behaviors may also be applied for hierarchical P systems.

In this paper, we focus on the blocking behavior, see 1. Yet there are still at
least two possible semantics for the blocking behavior itself under the maximally
parallel derivation mode:

Semantics 1: Take all the applicable multisets of rules in the maximally parallel
derivation mode, but discard all those multisets which would violate the con-
straints.

Semantics 2: Take all the applicable multisets of rules in the asynchronous deriva-
tion mode, discard the multisets which would violate the constraints, and then
pick the non-extendable, i.e., maximal multisets out of these applicable mul-
tisets of rules.

To illustrate the difference between these two semantics, consider the following
1-membrane system with limited capacity:

a→ c
b→ c

ab

It can formally be written as

Πab = ({a, b}, ab,Kab, {a→ c, b→ c})

where Kab(c) = 1 and Kab(a) = Kab(b) =∞.

In the case of Semantics 1, no multisets of rules not violating the constraint of
limiting the capacity of symbols c in the resulting configuration would be applica-
ble, and the P system will block/abort this computation.
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On the other hand, under Semantics 2, Πab would be allowed to apply either
a→ c or b→ c, but not both.

4 Computational Power

In this section we investigate the computational power of P systems with limited
per-symbol capacity: when operating with Semantics 1, they at least can simulate
partially blind register machines in real time; when operating with Semantics 2,
they can simulate any register machines and therefore are computationally com-
plete.

4.1 Semantics 1 Allows for Simulating a PBRM in Real Time

In this subsection, we will show that P systems with limited per-symbol capac-
ity operating under Semantics 1 can simulate partially blind register machines
(PBRM) in real time: an instruction of the register machine is simulated in one
step of the P system. An additional cleanup procedure at the end of the computa-
tion takes 3 more steps. In comparison with the result stated in [7] showing that P
systems with one catalyst can simulate partially blind register machines (without
any further ingredients), we here obtain a real-time simulation, whereas the result
there needs a cycle of n+ 3 for each step of the register machine, with n being the
number of decrementable registers.

Theorem 1. Catalytic P systems with one catalyst and per-symbol limited capacity
operating with Semantics 1 can simulate partially blind register machines (PBRM)
in real time, plus three additional cleanup steps at the end of the computation.

Proof. Consider an arbitrary partially blind register machine

M = (m,B, l0, lh, P ) .

The following proof is given for the most general case of a partially blind register
machine computing a partial recursive function on vectors of natural numbers with
l components as input and vectors of natural numbers with k components as output
using n of decrementable registers, no matter how many of them are the first l
input registers and the working registers, respectively. Moreover, we may assume
that on the output registers, i.e., the last k registers, no SUB-instruction is ever
used. On the other hand, the computation of the PBRM yields a result if and only
if at the end of the computation all registers except the output registers are empty.

We now construct the P system

Π = (O, {c}, w0,K,R)

with per-symbol limited capacity operating under Semantics 1 and simulating the
PBRM M .
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The set of objects of the construction includes register symbols ar for repre-
senting the contents of register r, the catalyst c, and the state symbols p ∈ B.
Moreover, we use decrement witness symbols λr for every decrementable register
r, 1 ≤ r ≤ n, as well as the catalyst c and the trap symbol # and, finally, the
additional symbols a0, λ0, lh′ . As we will see later, a0 can be interpreted as a reg-
ister symbol for an additional decrementable register 0, which during the whole
computation has the value 1, i.e., in every configuration we have exactly one copy
of a0, and it is only eliminated in the final cleanup procedure.

Now let BSUB(r) denote the set of labels of SUB-instruction p : (SUB(r), q) of
decrementable registers r, BSUB =

⋃
1≤r≤nBSUB(r), and BADD denote the set of

labels of ADD-instructions, i.e., B = BADD ∪BSUB.

Observing that n = m− k, in total we get the following set of objects:

O = {ar | 0 ≤ r ≤ m} ∪B ∪ {lh′} ∪D ∪ {c,#},
D = {λr | 0 ≤ r ≤ n}.

The capacity of the symbols in D is limited to 1, while all other symbols may
appear in an unlimited number of copies:

K(λr) = 1, 0 ≤ r ≤ n,
K(x) = ∞, x ∈ O \D.

Moreover, let D∅ denote the multiset containing exactly one copy of each object
in D and Dr the multiset containing exactly one copy of each object in D except
λr.

Then the starting configuration of the P system is defined as

w0 = c l0D∅ a0 α0,

where α0 is the multiset encoding the initial values of the registers.

The set of rules now is going to be described in several parts below.

First, we want all symbols in D to disappear after one step:
λr → λ ∈ R for all 0 ≤ r ≤ n.
We also include the traditional trap rule #→ # ∈ R.

Increment p : (ADD(r), q, s):

To simulate the ADD instruction p : (ADD(r), q, s) without letting the cata-
lyst block the system or do unwanted decrements, the catalyst is forced to process
the state symbol:

cp→ cqarD∅ cp→ csarD∅ p→ #.
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When the label of an ADD instruction is present in the configuration, the
catalyst cannot act on any of the register symbols ar, 0 ≤ r ≤ m, because this
would leave the state symbol p to be transformed to # due to the maximally
parallel derivation mode. This evolution will not violate the capacity constraints,
but introducing the trap symbol will prevent the system from ever halting. There-
fore, the catalyst must be used in one of the two rules simulating the increment.
Incidentally, these rules also replenish the supply of the symbols from D.

Decrement p : (SUB(r), q) (no zero test):

Consider the configuration c pD∅ a0 α, where α is a string of register symbols
describing the current contents of the registers. The following rules have to be
applied in this configuration:

p→ qDr car → cλr.

All the symbols from D∅ from the current configuration will disappear in the
next configuration. The rule p → qDr will reintroduce almost all of the symbols,
except for the particular λr corresponding to the register to be decremented. This
allows car → cλr to be applied in the current step, because in the next config-
uration there is still room for λr. All catalytic rules involving a wrong λr′ (and
therefore a wrong ar′) cannot be applied, because they would introduce a second
instance of λr′ , thus blocking the system.

Therefore, the only possible evolution from the configuration c pD∅ a0 α is to
the configuration c q D∅ a0 β where β = α− ar. Note that if the expected register
symbol ar is not present in α, then there will be no non-extendable multiset of rules
including the correct car → cλp, because then at least the rule ca0 → cλ0 described
below would become applicable, thus blocking (aborting) the computation without
producing any result. This behavior corresponds to a crash in the PBRM when it
tries to decrement a register which is already empty.

Final zero test, cleanup, and halting:

The simulation of the decrement instruction on register r only works correctly
when there are still some register symbols ar left. Indeed, as already mentioned
above, in order to force the computation in the P system to abort if a decrement on
an empty register would be tried, we at least would have the rule ca0 → cλ0, but
as long as the decrement symbol λ0 is re-introduced by applying a rule p → qDr

simulating a decrement on register r, the computation in the P system will be
forced to crash as two symbols λ0 are not allowed in a configuration.

On the other hand, if finally, the PBRM has reached a configuration with all
decrementable registers r, 1 ≤ r ≤ n being empty, we have to allow for a final zero
test: in this case the rule ca0 → cλ0 is welcome to be applied if we have reached
the final (halting) label lh:

lh → lh′Dλ0
ca0 → cλ0
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The additional label lh′ is used to check whether all decrementable registers
are empty as required for a computation of the PBRM to be successful:

lh′ → Dλ0
car → c#λ0, 1 ≤ r ≤ n

In this step, the catalyst is free to use one of the rules car → c#λ0 for any
non-empty register r without violating the limiting condition for λ0, hence, the
trap symbol # is introduced if and only if any of the decrementable registers is
not empty.

If all decrementable registers have been empty, in the final step, the system
will just erase the symbols of Dλ0

, which will disappear and the system will halt
with only symbols ar for the output registers n+ 1 ≤ r ≤ m.

This final cleanup phase takes one step to erase a0, one more step to test the
presence of register symbols ar, 1 ≤ r ≤ n, and one final step to erase the last
symbols of Dλ0

. Hence, in a successful computation this final phase takes three
steps.

In the case of the simulation of a non-successful computation of the PBRM,
there may be many more steps applying rules car → c#λ0, possibly already in the
second step, but with the trap rule # → # ∈ R causing an infinite computation
we need not take care about this situation in detail. ut

Remark 2 (Trapping by limited capacity). Instead of having the rule # → # to
implement the trap symbol as a guarantee for an infinite computation and thus
for any computation introducing it to not be successful, we can limit its capacity to
1 and use rules of the form u→ v## instead of u→ v#. Alternatively, we could
limit the capacity of # to 0, meaning that even having to pick the rule u → v#
will already block the evolution. This means that, if all non-extendable multisets
of rules contain a rule of the form u → v#, then we must discard all multisets,
thereby blocking the evolution without producing any result. This blocking of
computations reflects the concept of using toxic objects as introduced in [2].

4.2 Semantics 2 Allows for Computational Completeness

In this subsection, we show that (purely catalytic) P systems with limited per-
symbol capacity are computationally complete when operating with Semantics 2
without any additional ingredients.

Remark 3 (Simulating catalytic rules). We first observe that when operating with
Semantics 2 we can limit the parallelism of a non-cooperative rule by producing
a marker symbol whose capacity is limited to one. For example, consider the rule
p : a→ uλp together with the rule λp → λ and the limiting condition K(λp) = 1,
i.e., the symbol λp may not appear in more than one copy. Then, in any multiset
of rules allowed to be applied λp may appear in at most one copy. This effectively
prohibits applying p more than once in any step.
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Moreover, we can ensure that the rules compete for the marker symbol just as
catalytic rules would compete for a catalyst. For example, consider two catalytic
rules ca → cu and cb → cv. These two rules cannot be applied at the same time,
even if both a and b are present, because the catalyst is only present in a single
copy. We can ensure the same mutual exclusion by having the symbol λc with the
capacity limited to 1 (K(λc) = 1), and the rules a→ uλc and b→ vλc.

Remark 4 (No catalysts needed). As elaborated in Remark 3, catalytic rules can be
replaced by non-cooperative rules, i.e., P systems with per-symbol limited capacity
operating with Semantics 2 do not need catalysts for simulating purely catalytic
P systems.

All together, these observations imply the following results:

Theorem 2. P systems with per-symbol limited capacity operating with Seman-
tics 2 without catalysts can simulate purely catalytic P systems.

Since purely catalytic P systems are computationally complete, for example
see [6], we immediately derive the following corollary.

Corollary 1. P systems with per-symbol limited capacity operating with Semantics
2 are computationally complete, even without using catalysts.

Remark 5 (Trapping by limited capacity). When following the proofs as given in [6]
for simulating register machines by [purely] catalytic P systems, often rules intro-
ducing the trap symbol # as well as the rule # → # are used to guarantee an
infinite computation and thus any computation introducing it to not be success-
ful. As already explained in Remark 2, we can avoid these rules by limiting the
capacity of the trap symbol to 1 and use rules of the form u → v## instead of
u→ v#, or alternatively, limit the capacity of # to 0, meaning that even having
to pick the rule u→ v# will already block the computation.

5 Conclusion

In this paper, we have introduced the idea of bounding the number of symbols
that may appear in the membranes of a P systems. This is a quite natural restric-
tion to consider, given that actual biological membranes are of limited capacity,
too. We defined limited total and per-symbol capacities, and defined two possible
semantics for handling the overflow. We then showed that Semantics 1 allows non-
cooperative P systems to simulate partially blind register machines in real time,
with 3 additional cleanup steps at the end of the computation. We also showed
that non-cooperative P systems operating under Semantics 2 of limited capacity
directly simulate purely catalytic P systems (in real time), yet without needing
catalysts, and therefore are computationally complete.
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This paper only scratches the surface of the study of P systems with limited
capacity. One immediate open problem is that of computational completeness of
(catalytic, purely catalytic) P systems with limited capacity operating with Se-
mantics 1 or else characterizing the computational power of these systems.

Furthermore, Section 3 gives three more different behaviors which P systems
may adopt when their membranes overflow. In particular, the separation and the
dissolutive behaviors may even better represent the phenomena one would expect
to observe in overfull membranes in biological cells.
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sal P systems without priorities: two catalysts are sufficient. Theoretical Computer
Science, 330(2):251–266, 2005.
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Summary. We model the problem of contour approximation using Hilbert’s space filling
curve, with a novel type of parallel array rewriting rules. We further use their pattern to
introduce a special type of tissue P system, with novel features, among which is controlling
their behavior with input. We propose some further developments.

1 Introduction

Space-filling curves (SFCs) were studied by mathematicians as a curiosity, since
Peano discovered the first one in 1980 [7]. A year after this, Hilbert presented a
much simpler curve [3]. Many properties and aspects of them were studied, and
many other versions appeared in the literature, see for instance the monograph
[8]. Lately, interesting applications to problems in Computer Science have been
developed [1].

The finite approximations of the Hilbert curve can be described by words over a
four letter alphabet {u, r, d, l}, letters which stand for the four directions in which
a writing head can move in the lattice plane and draw a unit line. Formal language
instruments have been used to describe families of SFC words.

In a series of papers we have studied the generation of such words with parallel
rewriting controled by P systems, and we have proposed to model more complex
applications of them. This short paper (rather a sketch) tries to accomplish this
last purpose.

In the paper [2] we have proposed parallel array rewriting for the generation of
Hilbert words. In Section 3 we modify the rules, introducing an external control,
in order to generate contour approximations, after the ideas of [1] presented briefly
in Section 2. Section 4 illustrates the generation of tissue P systems to model the
rules.
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In Section 5 a new variant of tissue P systems where in each transition step it
can obtain inputs from external systems. Section 6 is devoted to a P system of the
above variant capable of generating a contour approximation based on the Hilbert
Curve.

Finally, in Section 7 we propose further developments of the ideas of this paper,
and in ?? we indicate a possible development for crisis management.

2 Problem presentation

In his monograph [1], Bader proposes to use SFCs to maintain data about 2D
objects. Figure 1 from his monograph illustrates the fact that, among several
possible traversals of the quadtree associated to a 2D closed contour, a traversal
based on the Hilbert SFC is more suited for applications which process the data
in the quadtree nodes, since it has the locality property.

Fig. 1. Figures extracted from monograph [1] (Ch. 1, Pg. 6)
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As Figure 2 illustrates, the approximation of the contour is obtained by pasting
together pieces of the Hilbert curve, of different orders. Each piece of the Hilbert
SFC is obtained in the usual manner, by repeated subdivisions of each sub-square
where necessary, that is only for those sub-squares that cross the contour (border)
of the 2D picture.

In the following, we propose to model the contour approximation generated by
this method, first with arrays, next with P systems.

3 Contour generation with array rewriting

Fig. 2. The approximation of the contour is based on the pasted pieces of the Hilbert
curve generated in the process [1]

Note: A combination of term rewriting rules with some constraints (called
control) specifying the possible rewrite positions.

Consider the alphabet of non-terminals

N̄ = {Ud,Ur,Ru,Rl, Ld, Lr,Du,Dl},

where each element is a 1× 1 array.
Denote by Γ the array morphism of the eight rewriting rules bellow:

U∗ → Ur Ud
Ru L∗ with ∗ = d, r (1)

R∗ → D∗ Rl
Ur Ru

with ∗ = u, l (2)

L∗ → Ld Dl
Lr U∗ with ∗ = d, r (3)
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D∗ → R∗ Ld
Du Dl

with ∗ = u, l (4)

Denote by F the array morphism of the eight rewriting rules below:

Ud→ d, Ur → r, Ld→ d, Lr → r,Ru→ u,Rl→ l,Du→ u,Dl→ l (5)

We have shown in [2] that F (Γn(Ur)) = the nth Hilbert word Hnr in array
representation.

We will now enlarge the set of non-terminals with one more symbol, #, standing
for the blank array, and the set of Γ rules, as follows:

U1∗ → Ur Ud
Ru L∗ with ∗ = d, r (6)

R1∗ → D∗ Rl
Ur Ru

with ∗ = u, l (7)

L1∗ → Ld Dl
Lr U∗ with ∗ = d, r (8)

D1∗ → R∗ Ld
Du Dl

with ∗ = u, l (9)

U0∗ = #0 → #0 #0

#0 #0 = #1 with ∗ = d, r (10)

R0∗ → #1 with ∗ = u, l (11)

L0∗ → #1 with ∗ = d, r (12)

D0∗ → #1 with ∗ = u, l (13)

where #0 stands for the blank 1 × 1 array. Since we will have parallel rewriting
rules, and we want to keep the growing dimension of the array, we will also have
rules

#0 → #0 #0

#0 #0 = #1 (14)

which rewrite blanks to blanks. Two succesive applications of the rule above will
produce #2, the 4× 4 array filled with blanks, and so on.

(The notation #n will be useful when we pass to the string representation.)
Each application of array rewriting rules (6)-(9) will correspond to a division

of a square into four subsquares.
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A division step will be followed by a recognizer step: each subsquare ’checks’
whether it intersects the contour, in which case it gets a 1 superscript, or not, in
which case it gets a 0 superscript, and will be rewritten accordingly at the next
derivation.

Let us illustrate this with the case of the Figure 2 above:

U1∗ → Ur Ud
Ru L∗  

U1r U1d
R1u L1∗ →

Ur Ud Ur Ud
Ru Lr Ru Ld
Du Rl Ld Dl
Ur Ru Lr U∗

 

U1r U1d U1r U0d
R1u L0r R1u L0d
D1u R1l L1d D1l
U0r R1u L1r U1∗

→

→

Ur Ud Ur Ud Ur Ud #0 #0

Ru Lr Ru Ld Ru Lr #0 #0

Du Rl #0 #0 Du Rl #0 #0

Ur Ru #0 #0 Ur Ru #0 #0

Ru Ld Dl Rl Ld Dl Rl Ld
Du Dl Ur Ru Lr Ud Du Dl
#0 #0 Du Rl Ld Dl Ur Ud
#0 #0 Ur Ru Lr Ur Ru L∗

 

Ur Ud Ur Ud U0r U0d #0 #0

Ru L0r R0u Ld Ru L0r #0 #0

Du R0l #0 #0 Du R0l #0 #0

Ur R0u #0 #0 Ur R0u #0 #0

Ru Ld D0l R0l Ld Dl Rl L0d
D0u Dl Ur R0u L0r U0d Du D0l
#0 #0 Du Rl L0d D0l Ur U0d
#0 #0 U0r Ru Lr Ur Ru L0∗

→ · · ·

After 3rd division-recognizer steps.
We generate the nw subsquare of the picture, illustrated below.
We have marked only the 0 superscript of non-terminals, for more clarity.

Fig. 3. Detail of the nw subsquare of the initial picture.

4 Membrane division rules

We will introduce dynamic P systems, which ’grow’ by repeated membrane division
rules, which will correspond to the subdivisions of the squares.
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4.1 In string format

We have from [2] the linearization procedure which allows to pass from the 2D
array representation to the linear one.

[U ]→ [Ru]sw[Ur]nw[Ud]ne[L∗]se [R]→ [Ur]sw[Ru]se[Rl]ne[D]nw

[L]→ [Dl]ne[Ld]nw[Lr]sw[U ]se [D]→ [Ld]ne[Dl]se[Du]sw[R]nw

4.2 In 2D array format

Each nonterminal array is in a membrane which has the possibility of dividing
itself into 4 membranes organized in a tissue manner.

The array rewriting rules become division rules for membranes, resulting in
tissue P systems:

[U1∗]→ [Ur] [Ud]
[Ru] [L∗] with ∗ = d, r (15)

[R1∗]→ [D∗] [Rl]
[Ur] [Ru]

with ∗ = u, l (16)

[L1∗]→ [Ld] [Dl]
[Lr] [U∗] with ∗ = d, r (17)

[D1∗]→ [R∗] [Ld]
[Du] [Dl]

with ∗ = u, l (18)

An example of 3 succesive subdivisions, which will finally lead to the picture:

[U1∗]→ [Ur] [Ud]
[Ru] [L∗]  

[U1r] [U1d]
[R1u] [L1∗] →

[Ur] [Ud] [Ur] [Ud]
[Ru] [Lr] [Ru] [Ld]
[Du] [Rl] [Ld] [Dl]
[Ur] [Ru] [Lr] [U∗]

 

[U1r] [U1d] [U1r] [U0d]
[R1u] [L0r] [R1u] [L0d]
[D1u] [R1l] [L1d] [D1l]
[U0r] [R1u] [L1r] [U1∗]

→

→

[Ur] [Ud] [Ur] [Ud] [Ur] [Ud] [#0] [#0]
[Ru] [Lr] [Ru] [Ld] [Ru] [Lr] [#0] [#0]
[Du] [Rl] [#0] [#0] [Du] [Rl] [#0] [#0]
[Ur] [Ru] [#0] [#0] [Ur] [Ru] [#0] [#0]
[Ru] [Ld] [Dl] [Rl] [Ld] [Dl] [Rl] [Ld]
[Du] [Dl] [Ur] [Ru] [Lr] [Ud] [Du] [Dl]
[#0] [#0] [Du] [Rl] [Ld] [Dl] [Ur] [Ud]
[#0] [#0] [Ur] [Ru] [Lr] [Ur] [Ru] [L∗]

 

[Ur] [Ud] [Ur] [Ud] [U0r] [U0d] [#0] [#0]
[Ru] [L0r] R0u Ld Ru L0r #0 #0

[Du] [R0l] [#0] [#0] [Du] [R0l] [#0] [#0]
[Ur] [R0u] [#0] [#0] [Ur] [R0u] [#0] [#0]
[Ru] [Ld] [D0l] [R0l] [Ld] [Dl] [Rl] [L0d]
[D0u] [Dl] [Ur] [R0u] [L0r] [U0d] [Du] [D0l]
[#0] [#0] [Du] [Rl] [L0d] [D0l] [Ur] [U0d]
[#0] [#0] [U0r] [Ru] [Lr] [Ur] [Ru] [L0∗]

→ · · ·

With labels on membranes:

[U ]→ [Ru]sw[Ur]nw[Ud]ne[L∗]se [R]→ [Ur]sw[Ru]se[Rl]ne[D]nw
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[L]→ [Dl]ne[Ld]nw[Lr]sw[U ]se [D]→ [Ld]ne[Dl]se[Du]sw[R]nw

[U1∗]→ [Ur]nw [Ud]ne
[Ru]sw [L∗]se

with ∗ = d, r (19)

[R1∗]→ [D∗]nw [Rl]ne
[Ur]sw [Ru]se

with ∗ = u, l (20)

[L1∗]→ [Ld]nw [Dl]ne
[Lr]sw [U∗]se

with ∗ = d, r (21)

[D1∗]→ [R∗]nw [Ld]ne
[Du]sw [Dl]se

with ∗ = u, l (22)

4.3 Labels for membranes, and memory

In the above we have used labels {sw, nw, ne, se} standing for the obvious notation
for corners of a square: southwest, northwest, etc.

Of course, binary labels could be used instead, with interesting properties. For
instance:

sw = 00, nw = 01, ne = 11, se = 10.

This has the property that any 2 adjacent squares have labels differing in only 1
bit (Gray code on 2 bits). Many binary codes can be associated to SFCs.

We will concatenate (properly!) labels at every derivation step, such
that each membrane: on one hand inherits the label of its ’parent’, and gets a
label stating what ’son’ it is. In this way, membranes have memory. Division
rules (with labels) will be of the form:

[ ]α → [ ]α00 [ ]α01 [ ]α11 [ ]α10

5 Tissue P systems with evolutional communication rules,
extended division rules and external inputs

Definition 1. Let Π = (Γ,H,M1, . . . ,Mq,R, I) be a tissue P system with evolu-
tional communication rules, extended division and r external inputs rules of degree
q, where:

1. Γ is a finite alphabet;
2. H is the set of labels {1, . . . , q};
3.M1, . . . ,Mq are multisets over Γ ;
4. R is the set of rules of the following forms:

a) [u ]h1 [ v ]h2 → [ v′ ]h1 [u′ ]h2 , h1, h2 ∈ H,u, v, u′, v′ ∈ Mf (Γ ), |u| + |v| >
0, |u| = 0 → |u′| = 0, |v| = 0 → |v′| = 0 (evolutional communication
rules);
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b) [ a ]h → [ a1 ]h1
. . . [ as ]hs

, h, h1, . . . , hs ∈ H, a, a1, . . . , as ∈ Γ (extended di-
vision rules);

5. I be a set of elements (Γi, Hi,Ri), 1 ≤ i ≤ r such that:
a) Γi ⊆ Γ ;
b) Hi ∩H = ∅ ∧Hi ∩Hj = ∅, i 6= j.
c) Ri is the set of rules of the following form:

i. [u ]h1
[ v ]h2

→ [ ]h1
[u′ ]h2

, h1 ∈ Hi, h2 ∈ H,u ∈ Mf (Γi), v, u
′ ∈

Mf (Γ ), |u| > 0 (evolutional communication rules);

A tissue P system with communication rules, extended division rules and r inputs

Π = (Γ,H,M1, . . . ,Mq,R, I)

of degree q can be viewed as a set of q cells such that M1, . . . ,Mq represent the
multisets of objects initially placed in the q cells of the system.

A rule of the type [u ]h1 [ v ]h2 → [ v′ ]h1 [u′ ]h2 is called an evolutional com-
munication rule. A rule of the type [ a ]h → [ a1 ]h1

. . . [ as ]hs
is called an ex-

tended division rule. The length of evolutional communication rules is defined
by |u|+ |v|+ |u′|+ |v′|. The length of extended division rules is defined by s+ 1.
These rules were introduced in [9], and more deeply investigated in [4, 5, 6]

An instantaneous description or a configuration at an instant t of a tissue
P system with evolutional communication rules and extended division rules is
described by the cells present and the corresponding multisets of objects over Γ
associated with all the cells present in the system (not in the inputs). The initial
configuration is ((1,M1), . . . , (q,Mq)).

A rule [u ]h1 [ v ]h2 → [ v′ ]h1 [u′ ]h2 , h2 ∈ H is applicable to a configuration Ct
at an instant t if there exist a cell labelled by h1 containing the multiset u and
a cell labelled by h2 containing the multiset v. When applying such a rule, the
objects specified by u and v disappear from their respective cells and multisets v′

and u′ appear in h1 and h2, respectively. If |u| = 0 (respectively, |v| = 0), then
|u′| = 0 (resp., |v′| = 0) must be satisfied (this would correspond to symport rules).
If h2 ∈ H1 ∪ · · · ∪ Hr, the rule is applicable to a configuration Ct at an instant
t if there exist a cell labelled by h1 containing the multiset u and the cell of the
external input i such that h2 ∈ Hi contains the multiset v. The behaviour of the
application of the rule is similar to when h2 ∈ H.

A rule [ a ]h → [ a1 ]h1
. . . [ as ]hs

is applicable to a configuration Ct at an instant
t if there exists a cell labelled by h containing an object a. When applying such
a rule, the cell h is divided in s new cells labelled by hi(1 ≤ i ≤ s), where a is
changed to ai in the corresponding cell and the rest of the contents is replicated
in each cell.

We can think that the external inputs are independent systems that are com-
puting a function. In each computational step, they will have different contents,
that will be stated when the system is defined. In this sense, the contents of each
cell of the system has to be defined for every configuration.

The rules from R of a tissue P system with evolutional communication rules,
extended division rules and external inputs are applied in a non-deterministic
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maximally parallel manner (at each step we apply a multiset of rules which is
maximal; that is, no further applicable rule can be added), with the following
important remark: if a cell is divided, then the division rule is the only one which
is applied to that cell at that step; that is, extended division rules interrupts the
communication of that cell with others in that step. The new cells resulting from
division will be able to interact with other cells from the next step.

Let us fix a tissue P system with evolutional communication rules, extended
division rules and r inputs Π. We say that configuration Ct yields configuration
Ct+1 in one transition step, denoted by Ct ⇒Π Ct+1 if we can pass from Ct to
Ct+1 by applying the rules from R as follows: A transition step is divided in two
micro-steps.

1. First, rules from Ri, 1 ≤ i ≤ r are applied in a maximally parallel and non-
deterministic way. The “input systems” cannot receive any new contents from
the main system. This first step is denoted as Ct  C′t;

2. Second, rules fromR are applied as stated above. This is denoted as C′t → Ct+1;

We say that a transition step Ct ⇒Π Ct+1 is a transition Ct  C′t → Ct+1.
A computation of Π is a (finite or infinite) sequence of configurations such

that:

1. the first term of the sequence is the initial configuration of the system;
2. each non-initial configuration of the sequence is obtained from the previous

configuration by applying rules of the system in a maximally parallel manner
with the restrictions previously mentioned; and

3. if the sequence is finite (called halting computation) then the last term of the
sequence is a halting configuration (a configuration where no rule of the system
is applicable to it).

All computations start from an initial configuration and proceed as stated
above.

If C = (C0, . . . , Cp) of Π (p ∈ N) is a halting computation, then the length of C,
denoted by |C| is p; that is, |C| is the number of non-initial configurations which
appear in the finite sequence C. We denote by Ct(i), i ∈ H, the multiset of objects
over Γ contained in all membranes labelled by i (by applying extended division
rules different membranes with the same label can be created) at configuration Ct.
We denote C∗t the multiset Σh∈HCt(h)

6 Generating contour approximations with P systems

We will use a P system of the type introduced in Section 5. It interacts with a 2D
picture with contour as described by Figure 4

Let n be the number of iterations of the Hilbert curve we want to describe, let
L = {00, 01, 10, 11}n the set of all words of length at most 2n over {00, 01, 10, 11}
and N = {Ud,Ur,Ru,Rl, Ld, Lr,Du,Dl}. We consider the tissue P system
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1 1

1 1

1 0

1 0

1 1

0 1

1 1

1 1

Fig. 4. In each step, the external input system pic interacts with Π in such a way that
a symbol 0 or 1 is sent to the corresponding cell in the system.

Π = (Γ,H,Mλ,R, I)

with evolutional communication rules, extended division rules and 1 external input
defined as follows:

1. Working alphabet: Γ = N ∪ {Uαd, Uαr,Rαu,Rαl, Lαd, Lαr,Dαu,Dαl | α ∈
{0, 1}} ∪ {0, 1}, being λ the empty string;

2. H = {00, 01, 10, 11}∗ (that is, the set of all words over {00, 01, 10, 11}) is the
set of labels;

3. Mλ = {U1r}
4. The set R consists of the following rules:

a) Rules to divide the cells with intersections:
[U1d ]h → [Ru ]h00 [Ur ]h01 [Ud ]h11 [Ld ]h10
[U1r ]h → [Ru ]h00 [Ur ]h01 [Ud ]h11 [Lr ]h10
[R1u ]h → [Ur ]h00 [Du ]h01 [Rl ]h11 [Ru ]h10
[R1l ]h → [Ur ]h00 [Dl ]h01 [Rl ]h11 [Ru ]h10
[L1d ]h → [Lr ]h00 [Ld ]h01 [Dl ]h11 [Ud ]h10
[L1r ]h → [Lr ]h00 [Ld ]h01 [Dl ]h11 [Ur ]h10
[D1u ]h → [Du ]h00 [Ru ]h01 [Ld ]h11 [Dl ]h10
[D1l ]h → [Du ]h00 [Rl ]h01 [Ld ]h11 [Dl ]h10

b) Rules to divide the cells without intersections:
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[U0d ]h → [ # ]h00 [ # ]h01 [ # ]h11 [ # ]h10
[U0r ]h → [ # ]h00 [ # ]h01 [ # ]h11 [ # ]h10
[R0u ]h → [ # ]h00 [ # ]h01 [ # ]h11 [ # ]h10
[R0l ]h → [ # ]h00 [ # ]h01 [ # ]h11 [ # ]h10
[L0d ]h → [ # ]h00 [ # ]h01 [ # ]h11 [ # ]h10
[L0r ]h → [ # ]h00 [ # ]h01 [ # ]h11 [ # ]h10
[D0u ]h → [ # ]h00 [ # ]h01 [ # ]h11 [ # ]h10
[D0l ]h → [ # ]h00 [ # ]h01 [ # ]h11 [ # ]h10
[ #0 ]h → [ # ]h00 [ # ]h01 [ # ]h11 [ # ]h10

5. I = (Γpic, Hpic,Rpic), where:
a) Γpic = {0, 1}
b) Hpic is the set of the elements from H but with superscript pic.
c) The set Rpic consists of the following rules:

i. Rules to communicate if there is an interesection in a specific area:
[ a ]pich [Ud ]h → [ ]pich [Uad ]h
[ a ]pich [Ur ]h → [ ]pich [Uar ]h
[ a ]pich [Ru ]h → [ ]pich [Rau ]h
[ a ]pich [Rl ]h → [ ]pich [Ral ]h
[ a ]pich [Ld ]h → [ ]pich [Lad ]h
[ a ]pich [Lr ]h → [ ]pich [Lar ]h
[ a ]pich [Du ]h → [ ]pich [Dau ]h
[ a ]pich [Dl ]h → [ ]pich [Dal ]h


for a ∈ {0, 1}, h ∈ H

[ 0 ]pich [ # ]h → [ ]pich [ #0 ]h
d) The contents of a cell in this system will be 0 if there is no intersection

in the corresponding area of the picture, and 1 otherwise. In each con-
figuration there will exist the cells corresponding to the resolution of the
system.

7 Conclusions, Open problems, Suggestions for further
developments

The present paper proposes a new variant of parallel array rewriting rules, capable
to generate approximations of irregular contours, based on conecting pieces of
Hilbert words of different ’resolutions’.

It proposes also a new variant of tissue P systems with evolutional communi-
cation rules, extended division rules and external inputs. In this variant, division
rules are allowed to change the labels of the new created cells. The capability of
receive input from an external source allows these systems to get more precision
of a picture in each transition step.

Further developments are possible along several lines.

• to find means of effectively representing in a graphical manner the entire ap-
proximation, the problem being the segments which connect pieces of the SFC;
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• other variants of P systems and refinements of the proposed one
• use the external input as a catalyst to allow or forbid the system to evolve.
• making use of the array representation in string format;
• taking into account the versatility of P systems, to use this small model as a

template for complex applications, which involve the manipulation of spatial
data; an example would be looking for applications in robotics (global path
planning).
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Summary. P colonies are abstract computing devices modeling communities of very
simple reactive agents living and acting in a joint shared environment which is given with
a multiset of objects. Reaction systems were proposed as a computing device, components
of which represent basic chemical reactions that take place in shared environment given
with a set. Although P colonies operate with multisets of objects and reaction systems
work with sets, the two models can be related. In this paper, we construct a P colony
simulating interactive processes in a reaction system.

P colonies were introduced in [7] as a variant of very simple membrane systems
(P systems), inspired by so-called colonies of formal grammars. (For more infor-
mation on P systems the interested reader is referred to [9], for P colonies to [1],
and for grammatical model colony to [8].) A P colony is formed from agents and
their shared environment. Each agent is represented by a multiset of objects in a
membrane and the environment is given by multiset of objects as well. Agents are
equipped with programs composed from rules, the rules are applied to (multisets
of) objects. The number of objects inside each agent is set by definition and it is
usually a very small number - 1, 2 or 3. The environment of the P colony is used
as communication channel for agents. Through the environment, the agents are
able to affect the behavior of another agent.

The rules of the agents can be rewriting, communication or checking rules;
these three rule types were introduced in [7]. Rewriting rule a→ b allows agent to
rewrite (evolve) one object a to object b. Both objects are placed inside the agent.
Communication rule a ↔ b provides the possibility to exchange object c placed
inside the agent and object d in the environment. A checking rule is formed of two
rules r1, r2 which are of type rewriting or communication. Checking feature sets
some kind of priority between rules r1, r2. The agent tries to apply the first rule
and if it cannot be performed, the agent executes the second rule. The agents of P
colonies work in a maximally parallel manner, i.e., a maximal number of enabled
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agent performs one of its applicable program in parallel. An agent is enabled in
a computation step if it is able to apply one of its programs. If an agent is not
enabled, then its objects remain unchanged. For detailed information on operation
of P colonies, see [1].

Reaction systems (R systems, for short) are computational models of another
type. The model was introduced in [4] as a computing device, components of which
are a simile for basic chemical reactions. Roughly speaking, a reaction system is
composed of a finite set of objects that can be considered as chemicals and a finite
set of reactions. Each reaction is a triplet of sets: reactants, inhibitors and products.
Let T be a set of reactants. A reaction is applied if all reactants are present in
T , and there are no inhibitors; then reactants are replaced by the products. All
enabled reactions are applied in parallel. The final set of products is the union of
all single sets of products of each reaction which is enabled in T . The reader might
notice that a reaction can also be considered as an action of an agent.

It is easy to observe that P colonies and R systems have similarities: both of
them can be seen as multi-agent systems of very simple reactive agents. However,
there are significant differences between them. Namely, P colonies work with finite
multisets of objects and R systems operate with finite sets. Furthermore, in case
of P colonies, those objects that do not take part in any action at a computation
step, remain unchanged, but in case of R systems disappear from the available
objects.

It is an intriguing question whether or not P colonies and R systems can be
related. In this paper, we focus on construction of P colony that can simulate
interactive processes in given reaction system. The paper is structured as follows:
The second section is devoted to definitions and notations used in the paper.
The third section contains construction of P colony and the paper concludes with
possibilities of future work.

1 Definitions

Throughout the paper we assume the reader to be familiar with basics of formal
language theory. We introduce notions and notations used in the sequel.

We use N·RE to denote the family of recursively enumerable sets of natural
numbers and N to denote the set of natural numbers.

Σ is a notation for the alphabet. Let Σ∗ be set of all words over alphabet Σ
(including empty word ε). For the length of the word w ∈ Σ∗ we use notation |w|
and the number of occurrences of symbol a ∈ Σ in w is denoted by |w|a.

A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : V → N ; f assigns to each
object in V its multiplicity in M . The set of all multisets over the set of objects V
is denoted by V ∗. The set V ′ is called the support of M and denoted by supp(M)
if for all x ∈ V ′ f(x) 6= 0. The cardinality of M , denoted by card(M), is defined
by card(M) =

∑
a∈V f(a). Any multiset of objects M with the set of objects
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V = {ai, . . . an} can be represented as a string w over alphabet V with |w|ai
=

f(ai); 1 ≤ i ≤ n. Obviously, all words obtained from w by permuting the letters
can also represent M , and ε represents the empty multiset.

1.1 P Colonies

The original concept of a P colony was introduced in [7] and presented in a devel-
oped form in [6, 2].

Definition 1. A P colony of capacity k, k ≥ 1, is a construct
Π = (V, e, f, vE , B1, . . . , Bn), where

• V is an alphabet, its elements are called objects;
• e ∈ V is the basic (or environmental) object of the colony;
• f ∈ V is the final object of the colony;
• vE is a finite multiset over A− {e}, called the initial state (or initial content)

of the environment;
• Bi, 1 ≤ i ≤ n, are agents, where each agent Bi = (oi, Pi) is defined as follows:

– oi is a multiset over V consisting of k objects, the initial state (or the initial
content) of the agent;

– Pi = {pi,1, . . . , pi,ki
} is a finite set of programs, where each program consists

of k rules, which are in one of the following forms each:
· a→ b, a, b ∈ V , called an evolution rule;
· c↔ d, c, d ∈ V , called a communication rule;
· r1/r2, called a checking rule; r1, r2 are both evolution rules or both com-

munication rules.

We add some brief explanations to the components of the P colony.
The first type of rules associated to the programs of the agents, the evolution

rules, are of the form a→ b. This means that object a inside the agent is rewritten
to (evolved to be) object b.

The second type of rules, the communication rules, are of the form c ↔ d. If
a communication rule is performed, then object c inside the agent and object d
in the environment swap their location. Thus, after executing the rule, object d
appears inside the agent and object c is located in the environment.

The third type of rules are the checking rules. A checking rule is formed from
two rules of one of the two previous types. If a checking rule r1/r2 is performed,
then the rule r1 has higher priority to be executed over the rule r2. This means that
the agent checks whether or not rule r1 is applicable. If the rule can be executed,
then the agent must use this rule. If rule r1 cannot be applied, then the agent uses
rule r2.

We note that these types of rules are the basic ones; in some variants of P
colonies other types of rules have been also considered.

The program determines the activity of the agent: the agent can change its
state and/or the state of the environment.
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The environment is represented by a finite number (zero included) of copies
of non-environmental objects and a countably infinite copies of the environmental
object e.

In every step, each object inside an agent is affected by the execution of a pro-
gram. Depending on the rules in the program, the program execution may affect
the environment as well. This interaction between the agents and the environment
is the key factor of the functioning of the P colony.

An initial configuration of P colony is (n + 1)-tuple (o1, . . . , on, vE) of the
multisets of objects placed in P colony at the beginning of the computation, where
oi ( 1 ≤ i ≤ n ) is the content of the agent Bi and vE is the multiset of object in
the environment different from e. In general, the configuration of the P colony Π
is defined as (n+ 1)-tuple (w1, . . . , wn, wE), where wi represents all objects inside
of i-th agent, |wi| = c, 1 ≤ i ≤ n, wE ∈ (V − {e})∗ is composed by objects
different from e placed in the environment.

At each step of the (parallel) computation every agent attempts to find one
of its programs to use. If the number of applicable programs is higher than one,
the agent non-deterministically chooses one of them. At one step of computation,
the maximal possible number of agents have to be active, i.e., have to perform a
program.

By applying programs, the P colony passes from one configuration to another
configuration. A sequence of configurations started from the initial configuration is
called a computation. A configuration is halting if the P colony has no applicable
program. With halting computation the result is associated and it is the number
of copies of final object placed in the environment in halting configuration.

N (Π) = {|wE |f | (o1, . . . , on, vE)⇒∗ (w1, . . . , wn, wE)},

where (o1, . . . , on, vE) is the initial configuration, (w1, . . . , wn, wE) is the final con-
figuration, and ⇒∗ denotes reflexive and transitive closure of ⇒.

The number of agents in a given P colony is called the degree of Π; the maximal
number of programs of an agent of Π is called the height of Π and the number
of the objects inside an agent is the capacity of Π. The family of all sets of
numbers N(Π) computed as above by P colonies of capacity at most c ≥ 0,
degree at most n ≥ 0 and height at most h ≥ 0, using checking programs, and
working in the sequential mode is denoted by NPCOLseqK(c, n, h); whereas the
corresponding families of P colonies working in the maximally parallel way are
denoted by NPCOLparK(c, n, h). If one of the parameters n or h is not bounded,
then we replace it with ∗. If only P colonies using programs without checking rules
are considered, then we omit the K. If numerical parameter is unbounded, we
denote it by a ∗.

1.2 Reaction Systems

In the following we briefly summarize the basic notions concerning reaction systems
(R systems), introduced in [4].
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Let S be an alphabet (its elements are called molecules, or only symbols).

Definition 2. A reaction is a triple a = (R, I, P ) such that R, I, P are finite non-
empty sets with R ∩ I = ∅.

R is the reactant set of a,I is the inhibitor set of a, and P is the product set of
a; R, I, P are also denoted as Ra, Ia, Pa, respectively. We denote by rac(S) the set
of all reactions in S. The set S is usually called background set. In some papers
the definition is altered in such a way that set of inhibitors can be empty set.

Definition 3. A reaction system is an ordered pair A = (S,A), where S is a
background set and A is a nonempty finite subset of rac(S).

To describe the effect of a set of reactions on a state, we first define the effect
of a single reaction.

Definition 4. Let S be a background set, let X ⊆ S, and let a ∈ rac(S). Then a
is enabled by X, denoted by ena(X), if Ra ⊆ X and Ia∩X = ∅. The result of a on
X, denoted by resa(X), is defined by resa(X) = Pa if ena(X), and resa(X) = ∅.
otherwise.

The effect of a set of reactions on a state is cumulative, defined as follows.

Definition 5. Let S be a background set, let X ⊆ S, and let A ⊆ rac(S). The set
of reactions enabled by X is denoted by en(A,X) and it is defined by en(A,X) =
{a ∈ A | ena(X)}. The result of A on X, denoted by res(A,X), is defined by
res(A,X) = {resa(X) | a ∈ A}. The set of reactions that can generate X, denoted
by prod(A,X), is defined as prod(A,X) = {a ∈ A | Pa ⊆ X}.

The dynamic behavior of the reaction systems is captured by the notion of an
interactive process.

Definition 6. Let A = (S,A) be a reaction system. An interactive process in
A is a pair π = (γ, ϕ) of finite sequences such that γ = C0, C1, . . . , Cn−1, ϕ =
D1, . . . , Dn with n ≥ 1, where C0, . . . , Cn−1, D1, . . . , Dn ⊆ S, D1 = res(A,C0),
and Di = res(A,Di−1 ∪ Ci−1) for each 2 ≤ i ≤ n.

The sequences C0, . . . , Cn−1 and D1, . . . , Dn are the context and result se-
quences of π, respectively. Context C0 represents the initial state of π (the state
in which the interactive process is initiated), and the contexts C1, . . . , Cn−1 rep-
resent the influence of the environment to the computation. It should be noticed
that the context sequence γ = C0, C1, . . . , Cn−1 is described by a regular expres-
sion over S. The sequence sts(π) = W0, . . . ,Wn denotes the state sequence of π,
where W0 = C0 (the initial state), and Wi = Di ∪ Ci for all 1 ≤ i ≤ n. The
sequence act(π) = E0, . . . , En−1 of subsets of A such that Ei = en(A,Wi) for all
0 ≤ i ≤ n − 1 represents the activity sequence of π. Thus, the evolution can be
written as
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W0
E0−→W1

E1−→ · · · En−1−→ Wn.

If En = en(A,Wn) = ∅ then interactive process terminates.
One step of evolution – the evolution from state Wi to state Wi+1 can be seen

as transition mapping δ : 2S × 2S → 2S defined as

δ(Di, Ci) = Di+1

iff there exists (just one) set Ei ⊆ A such that Ei = en(A,Di ∪ Ci) and Di+1 =
res(Ei). For the first step of an evolution, there is transition mapping defined as
δ(∅, C0) = D1.

In some sources the set of inhibitors can be empty.

2 Dynamical Behavior: P Colonies versus R Systems

Let us examine the dynamical changes of the environment of a P colony in the
course of the computation. From this point of view we can find some similari-
ties between P colonies and R systems. For example, it is easy to see that the
change of the support of the environment (i.e. the support of the finite multiset
of non-enviromental symbols forming the environment), resembles to a reaction or
several reactions performed by a reaction system. The agents of the P colony can
exchange object(s) with the environment in a way similar to actions of reactions
in R systems. The exchange rule of the P colony must be enabled - reactants must
be included in the environment - and then products will occur in the environment
after performing reaction. We can also find some differences in behavior of these
two computing devices. The first difference is in the number of active components.
In R systems, all enabled reactions are executed while in P colonies, the number
of active agents is limited to the number of objects that are placed in the en-
vironment. Furthermore, objects not used in any action of the P colony remain
unchanged and available for further steps, but in case of reaction systems these ob-
jects disappear from the system. One other significant difference between P colony
and R system is that P colony operates with finite multisets and R system with
finite sets of objects.

In the following we construct a P colony which simulates the behavior of an
R system. Notice that a set as a notion is different from a multiset of objects
where each object appears only in (at most) one copy, however for our purposes
it is enough to define a P colony where objects of certain type appear in the
environment only in at most one copy during operation.

Thus, for given R system A = (S,A) and sequence of inputs i0, i1, . . . , in we
can construct P colony Π = (V, e, f, vE , B1, . . . , Bn) that simulates interactive
processes of A.

Instead of the formal statement and its proof, we provide the description of the
simulation steps and the main parts of the construction. In addition, we develop
an example that helps in the easier understanding.
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One step of an interactive process in A is simulated in five phases in Π:

1. Input Generation
2. Input multiplication
3. Simulation of reactions
4. Consuming phase

For each phase, we construct subset of agents that are responsible of executing
corresponding phase. Let k be the maximum of the number of reactants, l the
maximum of the number of inhibitors, and m the maximum number of products
associated with one reaction of the reactions given by R system A.

1. Generate Input

In this phase the objects (symbols) in the input set are generated. For this phase,
we construct agents called i-agents. They generate input symbols in one step.
Obviously, the number of i-agents is |S|. After generation of current input symbols,
i-agents enter a waiting phase, by generating auxiliary objects to wait for the exact
number of steps until then they generate another input. The set of programs of
i-agent corresponding to symbol aj is formed from following programs:〈

e↔ a′′j / e↔ e; i→ io
〉〈

a′′j → aj ; io → i′
〉

〈e→ aj ; io → i′o〉 if aj ∈ Ci; i ≥ 0
〈e→ e; io → i′o〉 if aj /∈ Ci; i ≥ 0
〈aj ↔ e; i′o → i′〉
〈e↔ e; i′o → i′〉

These programs are for generation of current input; the following programs are
for synchronization of agents.

〈e↔ F ; i′ → i′′〉
〈F → F1; i′′ → i′′〉
〈Fx → Fx+1; i′′ → i′′〉 for 1 ≤ x < 3 + 2k + 2m
〈Fy → D; i′′ → i′′D〉 y = 3 + 2k + 2m
〈D ↔ e; i′′ → iD〉
〈e→ Fy; iD → i′′〉 y = 5 + 2k + 2m+ 1
〈Fz → Fz+1; i′′ → i′′〉 5 + 2k + 2m+ 1 ≤ z < 2 + 2k + 2m+ 4|M |
〈Fu → E; i′′ → iE〉 u = 2 + 2k + 2m+ 4|A|
〈E ↔ e; iE → iE〉
〈e→ e; iE → (i+ 1)〉

To help the easier understanding, we demonstrate the following example.
Let A = (S,A) be reaction system with S = {a1, a2, a3} and

A = {r1 : ({a2}, ∅, {a2}); r2 : ({a1, a3}, {a2}, {a1, a2}); r3 : ({a3}, {a1}, {a1, a2})}.
Let C0 = {a1, a3} be the input. The i-agents are initialized as follows:
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0 : e 0

i-agent 1

e 0

i-agent 2

e 0

i-agent 3

env:

They execute the first program
〈
e↔ a′′j / e↔ e; i→ io

〉
.

1 : e 0o

i-agent 1

e 0o

i-agent 2

e 0o

i-agent 3

env:

In this configuration, the i-agents have applicable programs that can generate
objects corresponding to symbols from C0.

2 : a1 0′o

i-agent 1

e 0′o

i-agent 2

a3 0′o

i-agent 3

env:

After performing programs 〈aj ↔ e; 0′o → 0′〉 (i-agent 1 and 3) or 〈e↔ e; 0′o → 0′〉
(i-agent 2). All symbols in C0 are placed in the environment.

3 :

env: a1 a3

e 0′

i-agent 1

e 0′

i-agent 2

e 0′

i-agent 3

All three agents wait until object F appears in the environment.

2. Multiply Input

This phase is to multiply the input symbols to be ”accessible” for every agent that
simulates enabled reaction. Notice that in case of reaction systems all enabled
reactions should be performed in parallel. We construct a-agents that generate |A|
symbols that appear in the environment after the first phase. The programs for
this phase are:

〈aj ↔ aj / aj →W ; 1→ 1′〉
〈aj → aj ; 1′ → 2〉
〈aj ↔ e; i→ i′〉 〈W →W ; i→ i′〉 1 ≤ i ≤ |A| − 1
〈e→ aj ; i

′ → (i+ 1)〉 〈W →W ; i′ → (i+ 1)〉 1 ≤ i < |A| − 1
〈e→ aj ; i

′ → F 〉 〈W →W ; i′ → F 〉 i = |A| − 1
〈aj ↔ e; F ↔ e〉 〈W →W ; F ↔ e〉
〈e→ aj ; e→ 1〉 〈W → aj ; e→ 1〉
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The number of a-agents is |S|. In the previously given example the second
phase of simulation can be depicted as follows:

0 : a1 1

a-agent 1

a2 1

a-agent 2

a3 1

a-agent 3

env: a1 a3

1 : a1 1′

a-agent 1

W 1′

a-agent 2

a3 1′

a-agent 3

env: a1 a3

2 : a1 2

a-agent 1

W 2

a-agent 2

a3 2

a-agent 3

env: a1 a3

3 : e 2′

a-agent 1

W 2′

a-agent 2

e 2′

a-agent 3

env: a21 a
2
3

4 : a1 F

a-agent 1

W F

a-agent 2

a3 F

a-agent 3

env: a21 a
2
3

5 : e e

a-agent 1

W e

a-agent 2

e e

a-agent 3

env: a31 a
3
3 F

3

After generation of 3 copies of each kind of objects that appears in C0 all a-agents
stop working until object aj appears in the environment. When the copies of F
appear in the environment, i-agents consume them, i.e. import them from the
environment. From this step on, they rewrite their content y = 4 + 2k+ 2m times.
After y steps they are prepared to produce the next input.

3. Simulation of reactions

The task of the agents in this phase is to simulate the execution of reactions per-
formed in the same step of the interactive process of the R system. The agents
executing this task are called r-agents. Because they need some timing, there is
another group of agents called t-agents. In certain steps, these t-agents gener-
ate objects that trigger the action of r-agents. The r-agents look for inhibitors,
reactants and generate ”semi-products” (a′j) of reactions. After preparation, the
search for inhibitors can be done in one step. If there is at least one inhibitor in
the environment, then the reaction is not enabled. The r-agents have a program
for each inhibitor that allows the agent to consume this inhibitor. If there is no
inhibitor in the environment, then the agent has no applicable program. The num-
ber of r-agents is the same as the number of t-agents and it equals to |A|. Let
r : (Rr, Ir, Pr) is a reaction in A. The programs for search for inhibitors are:
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r-agents
a) search for inhibitors
〈e→ e; e↔ I〉
〈e↔ aj ; I → C〉 aj ∈ Ir
〈aj → e; C → e〉
〈C → C; e↔ T 〉
〈C → e; T → e〉
〈e↔ T ; I → R〉
〈T → e; R→ R′0〉

t-agents
a) activation of r-agents
〈e→ e; i→ (i+ 1)〉 0 ≤ i < 2|A|+ 1
〈e→ e; (2|A|+ 1)→ I〉
〈e→ T ′; I ↔ e〉
〈T ′ → T ; e↔ e〉
〈T ↔ e; e→ 0′〉
〈e→ e; i′ → (i+ 1)′〉 0 ≤ i′ ≤ 2k + 2m
〈e→ e; (2k + 2m)→ 0〉

Let us return to the previous example. A has three reactions:

r1 = ({a2}, ∅, {a2})
r2 = ({a1, a3}, {a2}, {a1, a2})
r3 = ({a3}, {a1}, {a1, a2})

and C0 = {a1, a3}. Then k = 2, m = 2 and there are three copies of a1 and three
copies of a3 in the environment of the P colony. The first configuration of this
phase is:

0 : e e

r-agent 1

e e

r-agent 2

e e

r-agent 3

e 7

t-agent 1

e 7

t-agent 2

e 7

t-agent 3

env: a31 a
3
3 F

3

1 : e e

r-agent 1

e e

r-agent 2

e e

r-agent 3

e I

t-agent 1

e I

t-agent 2

e I

t-agent 3

env: a31 a
3
3

The copies of object F were consumed by i-agents (see the third program of i-
agents in the first phase).

2 : e e

r-agent 1

e e

r-agent 2

e e

r-agent 3

T ′ e

t-agent 1

T ′ e

t-agent 2

T ′ e

t-agent 3

env: a31 a
3
3 I

3

3 : e I

r-agent 1

e I

r-agent 2

e I

r-agent 3

T e

t-agent 1

T e

t-agent 2

T e

t-agent 3

env: a31 a
3
3
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4 : e I

r-agent 1

e I

r-agent 2

a1 C

r-agent 3

e 0′

t-agent 1

e 0′

t-agent 2

e 0′

t-agent 3

env: a21 a
3
3 T

3

Reaction r1 has empty inhibitor set, so the corresponding r-agent has no program
to apply in this configuration. There is one inhibitor, a2, in inhibitor set of reaction
r2 and because a2 is not present in the environment, therefore r-agent 2 has no
applicable program in current configuration. Due to the presence of a1 in C0, the
third reaction is not enabled by C0 and r-agent 3 has one program to execute. The
agent consumes object a1 from the environment.

5 : T R

r-agent 1

T R

r-agent 2

e C

r-agent 3

e 1′

t-agent 1

e 1′

t-agent 2

e 1′

t-agent 3

env: a21 a
3
3 T

6 : e R′0

r-agent 1

e R′0

r-agent 2

C T

r-agent 3

e 2′

t-agent 1

e 2′

t-agent 2

e 2′

t-agent 3

env: a21 a
3
3

Those agents which have object R inside can continue the simulation of executing
reaction by search for reactants. All reactants must be present in the environment
to enable reaction. For every reaction we make a sequence of reactants (aj)

k
j=1 in

random order. Then we can construct programs for search for reactants phase:
r-agents
b) search for reactants〈
e↔ aj / e→ F ; R′j−1 → Rj

〉
aj ∈ Rr; 1 ≤ j ≤ |Rr|〈

aj → e; Rj → R′j
〉

aj ∈ Rr; 1 ≤ j ≤ |Rr|〈
F → F ; R′j−1 → Rj

〉
1 < j ≤ k〈

F → F ; Rj → R′j
〉

1 ≤ j ≤ k〈
e→ e; R′j−1 → Rj

〉
|Rr| < j ≤ k〈

e→ e; Rj → R′j
〉

|Rr| < j ≤ k
〈F → e; R′k → e〉
In the example P colony, we develop, the search for reactants is performed as

follows:
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0 : e R′0

r-agent 1

e R′0

r-agent 2

C T

r-agent 3

env: a21 a
3
3

1 : F R1

r-agent 1

a1 R1

r-agent 2

e e

r-agent 3

env: a1 a
3
3

2 : F R′1

r-agent 1

e R′1

r-agent 2

e e

r-agent 3

env: a1 a
3
3

3 : F R2

r-agent 1

a3 R2

r-agent 2

e e

r-agent 3

env: a1 a
2
3

4 : F R′2

r-agent 1

e R′2

r-agent 2

e e

r-agent 3

env: a1 a
2
3

Only r-agents in state (e,R′k) can continue the simulation. They consumed all
the reactants and because they pass the phase a) the corresponding reaction is
enabled by Wi. In phase of products generation the r-agents will generate and put
into environment ”semi-products”, i.e. objects corresponding to products. For this
purpose, we also need a sequence of products for each reaction.

r-agents
c) generation of products
〈e→ a′1; R′k → P1〉〈
e→ a′j ; P

′
j−1 → Pj

〉
aj ∈ Pr; 1 < j ≤ |Pr|〈

e↔ a′j ; Pj → P ′j
〉

aj ∈ Pr; 1 ≤ j ≤ |Pr|〈
e→ e; P ′j−1 → Pj

〉
|Pr| < j ≤ m〈

e→ e; Pj → P ′j
〉

|Pr| < j ≤ m
〈e→ e; P ′m → e〉

0 : F R′2

r-agent 1

e R′2

r-agent 2

e e

r-agent 3

env: a1 a
2
3

1 : e e

r-agent 1

a′1 P1

r-agent 2

e e

r-agent 3

env: a1 a
2
3
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2 : e e

r-agent 1

e P ′1

r-agent 2

e e

r-agent 3

env: a′1 a1 a
2
3

3 : e e

r-agent 1

a′2 P2

r-agent 2

e e

r-agent 3

env: a′1 a1 a
2
3

4 : e e

r-agent 1

e P ′2

r-agent 2

e e

r-agent 3

env: a′1 a
′
2 a1 a

2
3

3 : e e

r-agent 1

e e

r-agent 2

e e

r-agent 3

env: a′1 a
′
2 a1 a

2
3

4. Consuming phase

In this phase all unused over-lined objects are consumed by c-agents as well as
copies of ”semi-products”. Only one copy of semi-product stays in the environment.
The number of c-agents is |S| and this phase takes at most 4|A| steps.
〈e↔ D; e→ e〉

〈
e↔ aj / e↔ a′j ; D → a′′j

〉〈
aj → e; a′′j → a′′j

〉 〈
e↔ aj / e↔ a′j ; a

′′
j → a′′j

〉〈
a′j → a′j ; a

′′
j ↔ e

〉 〈
e↔ a′j / e↔ e; a′j → e

〉
〈e↔ E; e→ e〉 〈D → e; e↔ E〉〈
a′′j → e; e↔ E

〉
〈E → e; e→ e〉

0 : e e

c-agent 1

e e

c-agent 2

e e

c-agent 3

e 0D

i-agent 1

e 0D

i-agent 2

e 0D

i-agent 3

env: a′1 a
′
2 a1 a

2
3 D

3

1 : D e

c-agent 1

D e

c-agent 2

D e

c-agent 3

F13 0′′

i-agent 1

F13 0′′

i-agent 2

F13 0′′

i-agent 3

env: a′1 a
′
2 a1 a

2
3

2 : a1 a
′′
1

c-agent 1

a′2 a
′′
2

c-agent 2

a3 a
′′
3

c-agent 3

env: a′1 a3

3 : e a′′1

c-agent 1

a′2 e

c-agent 2

e a′′3

c-agent 3

env: a′1 a
′′
2 a3
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4 : a′1 a
′′
1

c-agent 1

e e

c-agent 2

a3 a
′′
3

c-agent 3

env: a′′2

5 : a′1 e

c-agent 1

e e

c-agent 2

e a′′3

c-agent 3

env: a′′1 a
′′
2

6 : e e

c-agent 1

e e

c-agent 2

e a′′3

c-agent 3

env: a′′1 a
′′
2

· · · 9 : e e

c-agent 1

e e

c-agent 2

e a′′3

c-agent 3

env: a′′1 a
′′
2

10 : e e

c-agent 1

e e

c-agent 2

e a′′3

c-agent 3

F22 0′′

i-agent 1

F22 0′′

i-agent 2

F22 0′′

i-agent 3

env: a′′1 a
′′
2

11 : e e

c-agent 1

e e

c-agent 2

e a′′3

c-agent 3

E 0E

i-agent 1

E 0E

i-agent 2

E 0E

i-agent 3

env: a′′1 a
′′
2

12 : e e

c-agent 1

e e

c-agent 2

e a′′3

c-agent 3

e 0E

i-agent 1

e 0E

i-agent 2

e 0E

i-agent 3

env: a′′1 a
′′
2 E

3

13 : E e

c-agent 1

E e

c-agent 2

E a′′3

c-agent 3

e 1

i-agent 1

e 1

i-agent 2

e 1

i-agent 3

env: a′′1 a
′′
2

In this configuration, c-agents rewrite all objects inside them to environmental
objects. Simulation can continue with the first phase - generation of input. The
i-agents can consume objects of a type a′′j and they put into the environment
objects aj and objects of the next input (if they are not included in products of
previous step).
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3 Conclusions

In this paper we presented the result obtained by examining P colonies with con-
nection to R systems. In future research we plan further investigation of P colonies
that resemble reaction systems in terms of shared environment and computation.
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Summary. Population Dynamics P systems is a modelling framework that have
been used successfully for some important real ecosystems. This model is inherently
probabilistic, and the scheme of rules is very flexible, allowing even cooperation between
membranes. Thus, its simulation has been a challenge in the past years, leading to several
simulation algorithms. The latest one, which has been proved to be the most accurate
so far, is DCBA. The main drawback of DCBA is its complexity, requiring a very large
table to handle all competitions. In this paper, we discuss two strategies to decrease
this table, allowing a more lightweight version of DCBA that can be used in parallel
implementations.

Keywords: Membrane Computing, Population Dynamics, Parallel simulation

1 Introduction

Some very important real ecosystems have been modelled using the formal
framework called Population Dynamics P (PDP) systems [8, 6]. This framework
consists of a multienvironment P system model [11] that contains one single cell-like
P system within the nodes (environments) of a directed graph. Each of the cell-
like P systems have the same skeleton (membrane tree and evolution rules). Thus,
PDP systems have to kinds of rules: evolution (skeleton) and communication rules.
Moreover, PDP systems is a probabilistic model, in the sense that probabilities are
associated with the rules. Skeleton rules may have associated different probabilities
regarded the environment where they are located.

The very flexible pattern of skeleton rules, where object cooperation can
happen even between membranes (the active membrane and its parent), increases
the complexity when designing simulation algorithms. For this reason, several
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approaches have been made: BBB (Binomial Block Based), DNDP (Direct Non
Deterministic distribution with Probabilities) and DCBA (Direct distribution
based on Consistent Blocks Algorithm) [13, 3, 5]. These algorithms are designed to
tackled specifically the competition for resources that can happen in the models.
Specifically, different rules having overlapping but different left-hand sides compete
for objects in the multisets.

DCBA is the algorithm that has been demonstrated to show more accurate
results, according to the way the formal framework is employed for ecosystem
modelling [3]. Moreover, it is highly parallelizable, as shown in the GPU
implementation called ABCD-GPU [12, 15]. However, the algorithm has several
drawbacks:

1. it consists of four phases to simulate just one computation step;
2. the first phase uses a distribution table that does not scale well when increasing

the amount of rules and objects in the alphabet;
3. the second phase is inherently sequential;

In this paper, we discuss two different strategies to cope with the second
drawback mentioned above: adaptative DCBA and µ-DCBA (or DCBA with
partitions of rules). The former, already published in [16], is a solution where
the designer provides high-level information of the model, such as rule modules,
so that the simulator knows that DCBA must be applied locally to each module.
The latter is a novel solution, still unpublished, where the rule competition is pre-
computed (before starting the simulation), so that DCBA is applied locally to each
partition. These two methods were first mentioned in [12], but we extend these
ideas here.

The rest of the paper is structured as follows: Section 2 briefly recall the
model of PDP systems and Section 3 its definitions for DCBA; Section 4 describes
the concept of adaptative simulator and how it is applied to DCBA; Section 5
introduces the idea of µ-DCBA; and finally, Section 6 ends the document with
conclusions and future work.

2 Population Dynamics P systems

Next, we recall the formal definition of a PDP system. We also provide some
concepts required for DCBA, and the main loop of the algorithm. More information
than the one provided here can be found in [7, 9, 3].

Definition 1. A Population Dynamics P system of degree (q,m) with q ≥ 1,
m ≥ 1, and taking T ≥ 1 time units, is a tuple

Π = (G,Γ,Σ, T,RE , µ,R, {fr,j : r ∈ R, 1 ≤ j ≤ m}, {Mij : 1 ≤ i ≤ q, 1 ≤ j ≤ m})

where:
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• G = (V, S) is a directed graph. Let the vertices be V = {e1, . . . , em}, also called
environments;

• Γ is the working alphabet and Σ $ Γ is an alphabet representing the only
objects that can be present in the environments;

• T is a natural number that represents the simulation time of the system;
• RE is a finite set containing the so called communication rules, that send objects

between environments. They are of the form

(x)ej
p−−−→(y1)ej1 · · · (yh)ejh

where x, y1, . . . , yh ∈ Σ, (ej , ejl) ∈ S (1 ≤ l ≤ h) and p is a computable function
from {1, . . . , T} to [0, 1]. By default and for simplicity, we assume p = 1, in
case it is not specified for a rule. Moreover, for each rule of this form, the
following holds: (ej , ejh) ∈ S. These functions verify the following:
– For each ej ∈ V and x ∈ Σ, the sum of functions associated with the rules

whose left-hand side is (x)ej , is exactly 1.
• µ is a membrane structure with q membranes injectively labelled by 1, . . . , q.

The skin membrane is labelled by 1. An electrical charge from the set EC =
{0,+,−} is also associated with each membrane.

• R is a finite set of evolution (skeleton) rules of the form

u[ v ]αi → u′[ v′ ]α
′

i

where u, v, u′, v′ ∈ Γ ∗, i (1 ≤ i ≤ q), u + v 6= λ and α, α′ ∈ {0,+,−}. The
following restriction must hold:
– If (x)ej is the left-hand side of a rule from RE, then none of the rules of R

has a left-hand side of the form u[v]α1 , for any u, v ∈ Γ ∗ and α ∈ {0,+,−},
having x ∈ u.

• For each r ∈ R and for each j (1 ≤ j ≤ m), the function fr,j : {1, . . . , T} −→
[0, 1] is computable. These functions verify the following:
– For each u, v ∈ Γ ∗, i (1 ≤ i ≤ q), α, α′ ∈ {0,+,−} and j (1 ≤ j ≤ m)

the sum of functions associated with j and the set of rules whose left-hand
side is u[v]αi and whose right-hand side has polarization α′, is the constant
function 1.

• For each j, (1 ≤ j ≤ m), M1j , . . . ,Mqj are strings over Γ , describing the
multisets of objects initially placed within the regions in environment ej (also
known as initial configuration).

In other words, a PDP system consists of m environments e1, . . . , em linked
between them by the edges from the directed graph G. Each environment ej
contains a P system, Πj = (Γ, µ,RΠj

,M0j , . . .Mq,j), of degree q, where every
rule r ∈ R has a computable function fr,j (specific for environment j) associated
with it.

A configuration of the system at an instant t is a tuple of multisets of objects
present in the m environments and at each of the regions of each Πj , together with
the polarizations of the membranes in each P system. At the initial configuration



82 MA Mart́ınez-del-Amor et al.

of the system we assume that all environments are empty and all membranes have
a neutral polarization. As it is usual in cell-like P systems, we also assume that a
global clock exists which synchronizes all environments.

The P system can pass from one configuration to the next one by using the rules
from

⋃m
j=1RΠj ∪RE as follows: at each transition step, the rules to be applied are

selected according to the probabilities assigned to them, and all applicable rules
are simultaneously applied in a maximal way (i.e. no more rules can be further
applicable). For rules in RΠj

, the charge of the (active) membrane will be changed.
In this sense, the consistency of charges must hold: in order to apply several rules
of RΠj simultaneously to the same membrane, all the rules must have the same
electrical charge on their right-hand side.

When a communication rule (x)ej
p−−−→(y1)ej1 . . . (yh)ejh between environ-

ments is applied, object x passes from ej to ej1 , . . . , ejh possibly modified into
objects y1, . . . , yh respectively. At any moment t (1 ≤ t ≤ T ) for each object
x in environment ej , if there exist communication rules whose left-hand side is
(x)ej , then one of these rules will be applied. If more than one communication rule
can be applied to an object, the system selects one randomly, according to their
probability which is given by p(t).

3 Simulation algorithms

The simulation algorithms for PDP systems called BBB and DCBA are based on
the grouping of rules into blocks. These groups are constructed by looking the left-
hand side. Note that rules having the same left-hand side must have associated
probabilities summing 1. Specifically, DCBA works using a refined definition of
block, called consistent block, as shown in Definition 2. DNDP does not use the
concept of blocks, but it selects rules by a random loop instead.

Definition 2. Rules from R and RE are classified into consistent blocks by either
of the following:

a. the rule block associated with (i, α, α′, u, v) is Bi,α,α′,u,v = {r ∈ R : LHS(r) =
(i, α, u, v) ∧ charge(RHS(r)) = α′};

b. the rule block associated with (ej , x) is Bej ,x = {r ∈ RE : LHS(r) = (ej , x)}.

It is important to remark that the selection of rules in BBB and DCBA relies
always first on selecting blocks, calculating a multinomial random variate, and
therefore obtaining a selection of rules within each block. In this sense, we can
say that rules within a block will not compete among objects when using BBB
and DCBA, because they are selected altogether. This, again, does not hold in
DNDP, where rules are selected individually according to the probabilities. Block
competition will be defined later in Definition 3.

DCBA tackles the resource competition issue by performing a proportional
distribution of objects among competing blocks. This is done by using the
distribution table, which is a system-wide time having blocks per columns, and



Extracting Parallelism in Simulation Algorithms for PDP systems 83

pairs (object,region) per rows. Algorithm 1 shows a summary of the algorithm,
which can be depicted in [3]. It can be seen that, as usual, each loop iteration
is made by two stages: selection and execution. Selection stage consists of three
phases: Phase 1 distributes objects to the blocks in a certain proportional way,
Phase 2 ensures maximality by checking the maximal number of applications of
each block, and Phase 3 translates from block to rule applications by calculating
random numbers using a multinomial distribution. Finally, execution stage (or
Phase 4) generates the right-hand side of rules.

Algorithm 1 DCBA MAIN LOOP

Require: A PDP system Π of degree (q,m), T ≥ 1 (time units), A ≥ 1 (accuracy
parameter), and an initial configuration C0.

1: (T ) ← INITIALIZATION (Π) . (Initializes the distribution table)
2: for t ← 0 to T − 1 do . (For each transition step)
3: SELECTION: . (Selection of rules, subtracting their left-hand sides)
4: Bsel ← ∅, Rsel ← ∅
5: (T t, C′

t, Bsel) ← PHASE 1 (Π,A,Ct, T ) . (Distribution of objects)
6: (C′

t, Bsel) ← PHASE 2 (Π,C′
t, Bsel, T t) . (Ensure Maximality)

7: (Rsel) ← PHASE 3 (Π,Bsel) . (Probabilistic distribution)
8: EXECUTION: . (Execution of rules, adding their right-hand sides)
9: (Ct+1) ← PHASE 4 (Π,C′

t, Rsel)
10: end for

It is important to remark that the stages of DCBA can be performed
independently (and hence, in parallel) to each environment [14, 15]. However,
we need a synchronization point between selection and execution stages, because
communication rules might generate objects in different environments. This way,
the main loop of DCBA can be rewritten to the form in Algorithm 2.

We can finally identify two main bottlenecks in the simulation algorithms. The
first one is tackled by the adaptative

1. All algorithms (DCBA, BBB and DNDP) need to go through every defined
rule in the system at every transition step, in order to check if it is applicable.
Indeed, there is no way to know in advance which rules can be applicable in
each time step.

2. DCBA is specifically designed to cope with block competitions in an accurate
way, but it has to assume that all rules can have cross competitions (rule a
competes with rule b, and rule b with rule c, then rules a, b and c must agree
on the objects to consume).

4 Adaptative DCBA

The idea of adaptative simulators was introduced and analysed in [16]. It is inspired
in the way directives work in common programming languages. They are special
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Algorithm 2 DCBA MAIN LOOP FOR ENVIRONMENTS

Require: A PDP system Π of degree (q,m), T ≥ 1 (time units), A ≥ 1 (accuracy
parameter), and an initial configuration C0.

1: for j ← 1 to m do . (For each environment j)
2: (Tj) ← INITIALIZATION (j,Π) . (Initializes the table for environment j)
3: end for
4: for t ← 0 to T − 1 do . (For each transition step)
5: for j ← 1 to m do . (For each environment j)
6: SELECTION: . (Selection of rules for environment j)
7: Bj

sel ← ∅, R
j
sel ← ∅

8: (T t
j , C

′
t, B

j
sel) ← PHASE 1 (j,Π,A,Ct, Tj) . (Distribution of objects)

9: (C′
t, B

j
sel) ← PHASE 2 (j,Π,C′

t, B
j
sel, T

t
j ) . (Ensure Maximality)

10: (Rj
sel) ← PHASE 3 (j,Π,Bj

sel) . (Probabilistic distribution)
11: end for
12: for j ← 1 to m do . (For each environment j)
13: EXECUTION: . (Execution of rules for environment j)
14: (Ct+1) ← PHASE 4 (j,Π,C′

t, R
j
sel)

15: end for
16: end for

syntactic elements that tell extra information to the compiler, allowing to better
adapt the code for some purposes if the compiler accepts it (e.g. in OpenMP, one
call easily ask to parallelize the iterations of a loop), or just processing the code
dismissing that information (the code is still valid without the directives). This
way, a P system model designer can also provide very useful information to the
simulator, rather than just the syntactic and/or semantic elements of the P system
to simulate. For instance, P system models are usually designed bearing in mind a
global algorithmic scheme, where the computation of the P system is subdivided
into stages of specific purposes (e.g. in SAT solutions for active membranes, there
are stages for generating membranes, other stages for check-in solutions, etc.).

Specifically in PDP systems, ecosystem modellers often use algorithmic schemes
for their models [7]. This is done by first defining a cycle, which corresponds to a
certain time in the simulated ecosystem (e.g. one year). A cycle in the model is
a fixed amount of transition steps where a sequence of modules take place. These
modules reproduces certain processes such as reproduction of species, feeding,
migration, etc. Moreover, these modules consist of certain rules that are carefully
designed to model the corresponding process. Therefore, we can say that somehow,
the model designer already knows which rules can be executed in each time step.
Thus, if they are able to provide that information in form of a directive-like syntax,
the simulator can take advantage of this to dismiss rules automatically at each step.

In [16], the ABCD-GPU simulator was turned into adaptative. First, the model
designer is able to provide the information of the modules they are defining by
using the new P-Lingua 5 software [17]. This new version now includes new syntax
elements called features. They are written as @featureName = featureValue, and
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can be defined globally (for the whole system) or locally (for individual rules).
ABCD-GPU takes this information to organize the rules by modules. Of course, if
the simulator does not recognize the information provided by the features, it can
proceed and simulate the system without problems.

The simulator also pre-computes which modules are active in each step within
the cycle, so that it can easily access the rules that might be applicable at each
transition step. Furthermore, a parallel implementation can harness this to reach
more parallelism, specifically between parallel modules that can be active at certain
steps. This design helped to improve the performance by 2.5x extra when using a
P100 GPU [16].

As for environments, DCBA’s stages can be performed independently per active
module, but it requires a synchronization point. Algorithm 3 shows how it can be
re-defined to handle modules and environments. There two variables for steps: t is
the global time step of the simulation, and s is the step within a cycle. After reading
the information provided by the model designer along with the PDP system (e.g.
with P-Lingua 5), we get a map to associate rules to each module, and another to
know which modules are active in each step of the cycle. Finally, we also provide
the total amount of modules d.

5 DCBA with partitions of rules

As mentioned above, DCBA assumes that all blocks can compete for objects.
These competitions can make dependencies between blocks that are encoded in
the transition table, which takes care of distributing the resources (objects) to
the blocks that can be applied. Later on, rules within blocks will compute its
applications using a multinomial random variate. In order to decrease the size of
the distribution table, we can pre-calculate which blocks are actually competing
for resources one each other. This kind of problems have been already tackled in
the literature [1, 19]. Thus, in this paper we propose a similar concept, but adapted
for PDP systems, where rules have a more flexible pattern. If we focus in DCBA,
we can formally define the condition of block competition as shown in Definition
3.

Definition 3. Two consistent blocks B1
i1,α1,α′

1,u1,v1
and B2

i2,α2,α′
2,u2,v2

compete for

objects when both the following holds:

(a) The two blocks are mutually consistent. That is, if i1 = i2 ∧ α1 = α2 then
α′1 = α′2;

(b) Their left-hand sides overlap. That is, either of the following conditions hold:
• If i1 = i2 and α1 = α2 then u1 ∩ u2 6= ∅ or v1 ∩ v2 6= ∅;
• If i1 6= i2 but i1 is the parent membrane of i2, then v2 ∩ u1 6= ∅, or i2 is

the parent membrane of i1, then u2 ∩ v1 6= ∅.

It is important to remark that blocks from communication rules do not compete
with each other, nor with blocks from evolution rules (see the definition in



86 MA Mart́ınez-del-Amor et al.

Algorithm 3 DCBA MAIN LOOP FOR ENVIRONMENTS AND MODULES

Require: A PDP system Π of degree (q,m), T ≥ 1 (time units), A ≥ 1 (accuracy
parameter), an initial configuration C0, the number of time units per cycle c, the
amount of modules d, a structure mapping the rules and blocks per module MR, and
another structure mapping which module is active at each step in the cycle MS.

1: for j ← 1 to m do . (For each environment j)
2: for k ← 1 to d do . (For each module k)
3: (Tj,k) ← INITIALIZATION (j,Π,k,MR) . (Creates the table for

environment j and module k)
4: end for
5: end for
6: t ← 0
7: while t < T do . (For each transition step)
8: for t ← t to t+ c− 1 do . (Looping the transition steps inside a cycle)
9: s ← t mod c . (The step within the cycle)

10: for j ← 1 to m do . (For each environment j)
11: for k ← 1 to d do . (For each module k)
12: SELECTION: . (Selection for environment j and module k)
13: if MS[k, s] then . (If module k is active in step s)
14: Bj,k

sel ← ∅, R
j,k
sel ← ∅

15: (T t
j,k, C

′
t, B

j,k
sel) ← PHASE 1 (j,Π,A,Ct, Tj,k, k,MR)

16: (C′
t, B

j,k
sel) ← PHASE 2 (j,Π,C′

t, B
j,k
sel , T

t
j,k, k,MR)

17: (Rj,k
sel) ← PHASE 3 (j,Π,Bj,k

sel , k,MR)
18: end if
19: end for
20: end for
21: for j ← 1 to m do . (For each environment j)
22: for k ← 1 to d do . (For each module k)
23: EXECUTION: . (Execution for environment j and module k)
24: if MS[k, s] then . (If module k is active in step s)
25: (Ct+1) ← PHASE 4 (j,Π,C′

t, R
j,k
sel, k,MR)

26: end if
27: end for
28: end for
29: end for
30: end while

Section 2). Let us represent the competition relationship as an undirected graph
Gc = (Vc, Ec), where Vc is the set of all rule blocks and E is the set of edges
connecting the blocks that directly compete one with each other. We will therefore
say that two blocks will compete, directly or indirectly, if there exists a path
between them. Thus, we can calculate partitions of competitions from the set of
rule blocks as depicted in Definition 4.

Definition 4. Given a set of rule blocks V = {B1, . . . , Bk}, a partition of
competition is a partition of the set V , P = {P1, . . . , Pl}, where the following holds:
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a block Bi belongs to the set Pi if and only if it competes, directly or indirectly,
with the rest of blocks in Ci, and do not compete with any of the rule blocks form
the rest of sets in P . The union of the sets in P is V.

Specifically, communication rule blocks form partitions with just one element.
It is easy to compute the partitions of competitions from the set of rule blocks by
calculating the connected components in the graph Gc. After having this, we can
redefine the DCBA algorithm to be executed locally to each partition, if it contains
more than one elements (also known as µ-DCBA). Generally, we can re-structure
the algorithm as shown in Algorithm 4.

Algorithm 4 DCBA MAIN LOOP FOR ENVIRONMENTS AND PARTITIONS

Require: A PDP system Π of degree (q,m), T ≥ 1 (time units), A ≥ 1 (accuracy
parameter), and an initial configuration C0.

1: (p, P ) ← PARTITIONS (Π) . (Compute the p partitions of rules in the map P )
2: for j ← 1 to m do . (For each environment j)
3: for i ← 1 to p do . (For each partition i)
4: (Tj,i) ← INITIALIZATION (j,Π,i,P ) . (The table for environment j and

partition i)
5: end for
6: end for
7: for t ← 0 to T − 1 do . (For each transition step)
8: for j ← 1 to m do . (For each environment j)
9: for i ← 1 to p do . (For each partition i)

10: SELECTION: . (Selection for environment j and partition i)
11: Bj,i

sel ← ∅, R
j,i
sel ← ∅

12: (T t
j,i, C

′
t, B

j,i
sel) ← PHASE 1 (j,Π,A,Ct, Tj,i, i, P )

13: (C′
t, B

j,i
sel) ← PHASE 2 (j,Π,C′

t, B
j,i
sel, T

t
j,i, i, P )

14: (Rj,i
sel) ← PHASE 3 (j,Π,Bj,i

sel, i, P )
15: end for
16: end for
17: for j ← 1 to m do . (For each environment j)
18: for i ← 1 to p do . (For each partition i)
19: EXECUTION: . (Execution for environment j and partition i)
20: (Ct+1) ← PHASE 4 (j,Π,C′

t, R
j,i
sel, i, P )

21: end for
22: end for
23: end for

Preliminary results show an improvement of around 2x of extra speedup when
using the partitions to find more parallelism on a K40c GPU with a model
of the Bearded Vulture in the Pyrenees [10, 4]. This means that the µ-DCBA
implementations usually runs twice faster than the GPU baseline simulator [15].



88 MA Mart́ınez-del-Amor et al.

6 Conclusions and Future Work

PDP systems are a formal framework for ecosystem modelling, whose applications
require efficient software simulators. In this concern, GPU-accelerated simulators
have been developed so far. However, the designed algorithms for PDP systems,
specially DCBA, have several bottlenecks. On the one hand, DCBA assumes that
all rules in the system will depend on each other when consuming the left-hand
sides. However, this is not always the case, and we can pre-compute partitions
of rules actually competing for objects. On the hand, the model designer knows
which rules will be applied at each step. An adaptative simulator should be able
to use this information to dismiss rules that are known to be non applicable in a
certain step.

We have shown how to modify DCBA main loop when implementing these
two ideas (adaptative DCBA and DCBA with partitions). These strategies lead to
extra speedups (compared with the GPU baseline simulator) of around 2x-2.5x.
Let us remark that a simulator implementing these two modes should be used
carefully:

• An adaptative simulator of PDP system should be used when deploying a
validated model. That is, when the model is already refined and validated by
the designer, and the behaviour is already known and proved to work. For
example, when using the simulator in virtual experimentation environments.

• A simulator with partitions of PDP systems (e.g. µ-DCBA) can be used
not only in virtual experimentation environments, but also in the validation
of the model. That is, when the designer is still debugging the model, this
strategy can help since it works automatically from the set of rules. However,
the performance is not as good as with adaptative simulators (according to
our preliminary results), and would require some initial pre-computation for
partitions.

Future work includes the development of a µ-DCBA in a stable simulator along
with the already existing adaptative simulator. Moreover, we plan to use these
improvements to go to the next step and implement parallel parameter calibration
methods for the models. We are also working on an automatic inclusion of the
GPU simulators inside generic simulation tools such as MeCoSim and P-Lingua,
since the only way to use these tools is by a manual protocol [18]. Finally, we are
looking into further improvements of the GPU adaptative simulators by including
features such as for object counters [2].
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(PDP) Models: A Standardized Protocol for Describing and Applying Novel Bio-
Inspired Computing Tools 8(5), e60698 (2013)

8. Colomer, M., Margalida, A., Sanuy, D., Pérez-Jiménez, M.J.: A bio-inspired
computing model as a new tool for modeling ecosystems: The avian scavengers as a
case study. Ecological Modelling 222(1), 33–47 (2011)
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Summary. In the framework of membrane computing, several frontiers of efficiency have
been found with respect to the resources that different families of P systems take to solve
a decision problem. Each of these frontiers provides a new way to tackle the P versus NP
problem. In this sense, optimal frontiers are needed in order to separate close variants of
P systems. In a previous work, an efficient solution to SAT was given in the framework
of P systems from T DC(3). In this work, we will provide an optimal solution to the SAT

problem in terms of length of the rules.

Key words: Membrane Computing, tissue P systems, symport/antiport rules,
SAT problem.

1 Introduction

One of the most prolific fields within the framework of Membrane Computing is
computational complexity theory. The search for frontiers of efficiency has pro-
duced several results in terms of correspondences between classic computational
complexity classes and membrane computing complexity classes. In particular,
several results with tissue P systems [5] have been achieved. Recognizer tissue P
systems were introduced in [6]. In [3], it was demonstrated that the complexity
class of tissue P systems from T DC(1) are non-efficient systems through the de-
pendency graph technique. In [6], an efficient solution to the SAT problem is given
by means of a family of tissue P systems from T DC(5). In this work, we present
an optimal solution for SAT with a family of tissue P systems from T DC(2). This
implies that NP ∪ co−NP ⊆ PMCT DC(2). However, this last result is not new,
since in [9] it was presented a solution to HAM-CYCLE, a well-known NP-complete
problem, with a family of P systems from T DC(2). The novelty of this work is to
present an efficient SAT solver, given the relevance of the problem. The paper is
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organized as follows. In Section 2, some prerequisites about languages and sets are
given. The next section is devoted to introduce tissue P systems, and the complex-
ity classes associated to them. In Section 4, an efficient solution to SAT by means
of tissue P systems from T DC(2) is given, and in the next section an overview of
the computations is given. Finally, the work finishes with some conclusions.

2 Preliminaries

An alphabet Γ is a non-empty set whose elements are called symbols. A string u
over Γ is an ordered finite sequence of symbols; that is, a mapping from a natural
number n ∈ N onto Γ The number nis called the length of the string u and it is
denoted by |u| The empty string (with length 0) is denoted by λ. The set of all
strings over an alphabet Γ is denoted by Γ ∗. A language over Γ is a subset of Γ ∗.

A multiset over an alphabet Γ is an ordered (Γ, f) where f is a mapping from Γ
onto the set of natural numbers N. The support of a multiset m = (Γ, f) is defined
as supp(m) = {x ∈ Γ | f(x) > 0}. A multiset is finite (respectively, empty) if its
support is a finite (respectively, empty) set. We denote by ∅ the empty multiset.
Let m1 = (Γ, f1),m2 = (Γ, f2) be multisets over Γ , then the union of m1 and m2,
denoted by m1 + m2, is the multiset (Γ, g) where g(x) = f1(x) + f2(x) for each
x ∈ Γ . The difference of m1 and m2, denoted by m1 \m2, is the multiset (Γ, g)
where g(x) = f1(x) − f2(x) for each x ∈ Γ . We denote by M(Γ ) the set of all
multisets over Γ .

The Cantor pairing function is used to encode two natural numbers into a

single one, and is defined as follows: given x, y ∈ N, 〈x, y〉 = (x+y+1)(x+y)
2 + y

3 Tissue P systems with symport/antiport rules

Definition 1. A recognizer tissue P system with symport/antiport rules and di-
vision rules of degree q ≥ 1 is a tuple Π = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout),
where:

1. Γ , Σ and E are finite alphabets such that Σ, E ⊆ Γ and Σ ∩ E = ∅.
2.M1, . . . ,Mq are multisets over Γ \ (Σ ∪ E).
3. R is a set of rules of the following types:

(a) Communication rules: (i, u/v, j), for i, j ∈ {0, 1, . . . , q}, i 6= j, u, v ∈
M(Γ ), |u|+ |v| > 0.

(b) Division rules: [ a ]i → [ b ]i[ c ]i, for i ∈ {1, . . . , q}, a, b, c ∈ Γ .
4. iin ∈ {1, . . . , q} and iout = env.

A recognizer tissue P system with symport/antiport rules and division rules
Π = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout) of degree q ≥ 1 can be viewed as a se
of q cells, labelled by 1, . . . , q with an environment labelled by 0 such that: (a)
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M1, . . .Mqare the multisets of objects initially placed in the q cells of the sys-
tem; (b) E is the set of objects located initially placed in the environment of
the system, all of them appearing in an arbitrary number of copies; and (c)
iin ∈ {1, . . . , q}, iout = env represent distinguished cells where objects of the in-
stance are introduced and which will encode the output of the system, respectively.

When applying a rule (i, u/v, j), the objects of the multiset represented by u
are sent from region i to region j and, simultaneously, the objects of multiset v are
sent from region j to region i. The length of the communication rule (i, u/v, j) is
defined as |u|+ |v|, that is, the total number of objects which appear in the rule.

A communication rule (i, u/v, j) is called a symport rule if u = λ or v = λ. A
symport rule (i, u/λ; j), with i 6= 0, j 6= 0 provides a virtual arc from cell i to cell
j. A communication rule (i, u/v, j) is called an antiport rule if u 6= λ and v 6= λ.
An antiport rule (i, u/v, j), with i 6= 0, j 6= 0, provides two arcs: one from cell i
to cell j and another one from cell j to cell i. Thus, every tissue P systems has
an underlying directed graph whose nodes are the cells of the system and the arcs
are obtained from communication rules. In this context, the environment can be
considered as a virtual node of the graph such that their connections are defined
by communication rules of the form (i, u/v, j), with i = 0 or j = 0.

When applying a division rule [ a ]i → [ b ]i[ c ]i, cell i is duplicated into two
new cells with the same label. Object a dissapears and an object b is created in
the first new cell and an object c is created in the second new cell. The rest of the
objects within the cell i are duplicated in the two new cells.

The rules of a system like the one above are used in a non-deterministic max-
imally parallel manner as it is customary in Membrane Computing. At each step,
all communication rules which can be applied will be applied in a maximally par-
allel way (at each step we apply a multiset of rules which is maximal, no further
applicable rule can be added). Only a single division rule can be applied to each
cell. If a division rule is applied to a cell, we say that this cell is is “blocked”, and
no communication rules can be applied to that cell in that computational step.

An instantaneous description or a configuration at any instant of a tissue P
system is described by all multisets of objects over Γ associated with all the
cells present in the system, and the multiset of objects over Γ \ E associated
with the environment at that moment. Bearing in mind that the objects from E
have infinite copies in the environment, they are not properly changed along the
computation. The initial configuration is (M1, . . . ,Mq; ∅). A configuration is a
halting configuration if no rule of the system is applicable to it.

Let us fix a tissue P system with symport/antiport rules Π. We say that con-
figuration Ci yields configuration Ci+1 in one transition step, denoted Ci ⇒Π Ci+1,
if we can pass from Ci to Ci+1 by applying the rules from R following the previous
remarks. A computation of Π is a (finite or infinite) sequence of configurations
such that: (a) the first term of the sequence is an initial configuration of the system;
(b) each non-initial configuration of the sequence is obtained from the previous
configuration by applying the rules of the system in a maximally parallel manner
with the restrictions previously mentioned; and (c) if the sequence is finite (called
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halting computation), then the last term of the sequence is a halting configura-
tion. All computations start from an initial configuration and proceed as stated
above;only halting computations give a result, which is encoded by the objects
present in the environment in the halting configuration. Given that they are rec-
ognizer P systems, all computations halt and return the same output. We denote
a recognizer membrane system Π with the input multiset m in the input region
as Π +m.

3.1 Complexity classes associated to tissue P systems

Let R be a class of recognizer membrane systems. We say that PMCR is the
class of problems solvable efficiently in a uniform way by means of a family of
recognizer membrane systems from R. The class of recognizer tissue P systems
with symport/antiport rules with length at most k and division rules is denoted
by T DC(k), k ≥ 1. For more information about computational complexity theory
in the framework of membrane computing, we refer the reader to [7, 8].

4 A solution to SAT in T DC(2)

In this section, an efficient solution to the SAT problem by means of a family of
P systems will cell division and symport/antiport rules of length at most 2 is
presented.

For each pair of natural numbers n, p ∈ N, we will consider the recognizer tissue
P system with cell division and symport/antiport rules

Π(〈n, p〉) = (Γ, E , Σ,M1, . . . ,Mnp+3,R, iin, iout)

of degree np+ 3 defined as follows:

(a)

Γ = Σ ∪ E ∪ {yes, no, α, β0, γ0} ∪ {cj | 1 ≤ k ≤ p}∪
{αk | 0 ≤ k ≤ np− 1} ∪ {ai,j | 1 ≤ i ≤ n, 1 ≤ j ≤ p}∪
{Ti,j , Fi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ p}∪
{xi,j,k, xi,j,k | 1 ≤ i ≤ n, 1 ≤ j ≤ p, 0 ≤ k ≤ np}

(b)
E = {αk | np ≤ k ≤ 2np+ 2} ∪ {βk | 1 ≤ k ≤ 2np+ 4}∪
{γk | 1 ≤ k ≤ 2np+ 5} ∪ {xi,j,k, xi,j,k | 1 ≤ i ≤ n, 1 ≤ j ≤ p, np+ 1 ≤ k ≤ 2np}

(c) Σ = {xi,j,0, xi,j,0 | 1 ≤ i ≤ n, 1 ≤ j ≤ p}
(d) Mi = ∅ for 1 ≤ i ≤ np, Mnp+1 = {yes, no, β0, γ0}, Mnp+2 = {ai,j | 1 ≤ i ≤

n, 1 ≤ j ≤ p} ∪ {cj | 1 ≤ j ≤ p} ∪ {α}, Mnp+3 = {α0}.
(e) The set of rules R is the following:

1. Rules to generate p copies of the 2n true possible truth assignments. For
this, 2np partial truth assignments will be generated.
[ ai,j ]np+2 → [Ti,j ]np+2[Fi,j ]np+2

(np+ 2, Ti,jFi,j′ , /λ, env)

}
for 1 ≤ i ≤ n, 1 ≤ j, j′ ≤ p
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2. Rules to generate 2np copies of cod(ϕ).

(np+ 1, xi,j,0/λ, i+ n · (j − 1))
(np+ 1, xi,j,0/λ, i+ n · (j − 1))

}
for

1 ≤ i ≤ n,
1 ≤ j ≤ p

[xi,j,k ]i+n·(j−1) → [xi,j,k+1 ]i+n·(j−1)[xi,j,k+1 ]i+n·(j−1)
[xi,j,k ]i+n·(j−1) → [xi,j,k+1 ]i+n·(j−1)[xi,j,k+1 ]i+n·(j−1)

}
for

1 ≤ i ≤ n,
1 ≤ j ≤ p,
0 ≤ k ≤ np− 1

(i+ n · (j − 1), xi,j,k/xi,j,k+1, env)
(i+ n · (j − 1), xi,j,k/xi,j,k+1, env)

}
for

1 ≤ i ≤ n,
1 ≤ j ≤ p,
np ≤ k ≤ 2np− 1

3. Rules to check which clauses are satisfied by the truth assignment
(np+ 2, Ti,j/xi,j,2np, i+ n · (j − 1))
(np+ 2, Fi,j/xi,j,2np, i+ n · (j − 1))

}
for

1 ≤ i ≤ n,
1 ≤ j ≤ p

(np+ 2, cjxi,j,2np/λ, env)
(np+ 2, cjxi,j,2np/λ, env)

}
for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[αk ]np+3 → [αk+1 ]np+3 [αk+1 ]np+3

}
for 0 ≤ k ≤ np− 1

(np+ 3, αnp+k/αnp+k+1, env) for 0 ≤ k ≤ np+ 1
(np+ 1, βk/βk+1, env) for 0 ≤ k ≤ 2np+ 3
(np+ 1, γk/γk+1, env) for 0 ≤ k ≤ 2np+ 4
(np+ 2, α/α2np+2, np+ 3)
(np+ 2, α2np+2cj/λ, env) for 1 ≤ j ≤ p

4. Rules to return a negative answer
(np+ 1, β2np+4, γ2np+5/λ, np+ 3)
(np+ 1, no/β2np+4, np+ 3)
(np+ 3, no/λ, env)

5. Rules to return a positive answer
(np+ 1, β2np+4/α2np+2, np+ 2)
(np+ 1, α2np+2yes/λ, env)

(f) iin = np+ 1 and iout = env

5 An overview of the computations

In this section, we will explain a brief overview of the computations.
Let ϕ be a propositional logic formula in conjunctive normal form, where

V ar(ϕ) = {x1, . . . , xn}. Then, ϕ is of the form ϕ = C1 ∧ . . . ∧ Cp, where Cj
is a clause such that Cj = l1,j ∨ . . . lpj ,j , li,j ∈ {xi,¬xi}. The pair (cod, s) for this
family is cod(ϕ) = {xi,j | xi ∈ Cj} ∪ {xi,j | ¬xi ∈ Cj}, and s = 〈n, p〉.

For that, let us remember that the input is an instance of the SAT problem.
Let ϕ the input formula with n variables and p clauses. The tissue P system that
will give the answer to the instance is Π(〈n, p〉) + cod(ϕ).
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5.1 Generation stage

The first 2np steps will be devoted to generate both the 2n possible truth assign-
ments. For this, rules from 1 and 2 are used. On the one hand, With rules from
1, 2np cells with label np+ 2 with different truth assignments. The second rule is
fired in order to remove incompatible truth assignments in the following sense: if
two different assignments are given to the same variable, then the corresponding
objects are sent to the environment. In this way, the incompatible assignments are
removed and the remaining objects will be equivalent to a valid truth assignment.

On the other hand, rules from 2 will create 2np copies of each object from
cod(ϕ). Being li,j,0 ∈ cod(ϕ), at the end of the stage, there will be 2np cells i+ n ·
(j − 1) (1 ≤ i ≤ n, 1 ≤ j ≤ p) with an object li,j,2np in the corresponding cell.

Besides these rules, 2np cells with label np + 3 with an object α2np+2 will be
generated with rules from 3. This stage will take 2np steps.

5.2 First checking stage

In this stage, clauses validated by the truth assignments are going to be analyzed.
For this, rules from 3 are used. In particular, in the first step of the stage objects
Ti,j and Fi,j are interchanged with objects xi,j,2np and xi,j,2np, respectively. Then,
objects xi,j,2np and xi,j,2np will represent that the literal li makes true clause Cj .
Then, if an object xi,j,2np or xi,j,2np exists in a cell labelled by np + 2, it will
“remove” the corresponding object cj , sending it to the environment. When the
stage is over, cells labelled by np + 2 will contain only the objects cj such that
the clause Cj has not been satisfied by the corresponding truth assignment. This
stage takes 2 steps.

5.3 Second checking stage

The satisfiability of the input formula ϕ will be analyzed in this stage. Last two
rules from 3 will be used. In the first step, object α from cells labelled by np+ 2
will be interchanged with object α2np+2 from cells labelled by np + 3. Object
α2np+2 in cells labelled by np+ 3 is a mark to know if there are remaining objects
cj . With the last rule, any remaining object cj will “remove” object α2np+2 from
the corresponding cell np + 2. Therefore, if a truth assignment does not satisfy
the whole formula ϕ, object α2np+2 will not be present in the corresponding cell
np+ 2. This stage takes 2 steps.

5.4 Output stage

The output stage starts at the 2np+ 5 step, and takes 4 steps in the negative case
and 2 steps in the affirmative case.
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- Affirmative answer: In this case, there will exist a cell labelled by np+ 2 that
will have an object α2np+2, as it represents a truth assignment that makes
true the input formula ϕ. With the application of the first rule from 5, it
will be interchanged by the object β2np+4 from cell np+ 1. At the same time,
object γ2np+5 will go inside cell labelled by 1. Since object β2np+4 has been
moved from cell np + 2, they will not interact with each other. In the next
step, as object α2np+2 is present in the cell np + 1, it will send object yes to
the environment. Then, the computation ends.

- Negative answer: In this case, all objects α2np+2 will be in the environment,
as there is no truth assignment such that it makes true all clauses from ϕ.
Therefore, in the previous stage there was at least one object cj in each cell
labelled by np+2 and it will send object α2np+2 to the environment. In the first
step of this stage, object γ2np+5 will go into cell labelled by np+1. In the next
step, objects β2np+4 and γ2np+5 will interact and be sent to a cell labelled by
np+ 3. Following that, object no will be interchanged with the object β2np+4,
and then object no will be sent to the environment. The computation stops
here.

Theorem 1. SAT ∈ PMCT DC(2)

Proof. The family of P systems previously constructed verifies the following:

• Every system of the family Π is a recognizer P system from T DC(2).
• The family Π is polynomially uniform by Turing machines because for each
n, p ∈ N, the rules of Π(〈n, p〉) of the family are recursively defined from
n, p ∈ N, and the amount of resources needed to build an element of the
family is of a polynomial order in n and p, as shown below:

– Size of the alphabet: 4n2p2 + 10np+ p+ 17 ∈ Θ(n2p2).
– Initial number of cells: np+ 3 ∈ Θ(np).
– Initial number of objects in cells: np+ p+ 6 ∈ Θ(np).
– Number of rules: 2n2p2 + np2 + 11np+ p+ 7 ∈ Θ(n2p2).
– Maximal number of objects involved in any rule: 2 ∈ Θ(1).

• The pair (cod, s) of polynomial-time computable functions defined fulfills the
following: for each input formula ϕ of SAT problem, s(ϕ) is a natural number,
cod(ϕ) is an input multiset for the system Π(s(ϕ)), and for each n ∈ N, s−1(n)
is a finite set.

• The family Π is polynomially bounded: indeed, for each input formula ϕ of
SAT problem, the deterministic P system Π(s(ϕ))+cod(ϕ) takes exactly np+7
steps, being n the number of variables in ϕ and p its number of clauses.

• The family Π is sound with regard to (X, cod, s): for each formula ϕ, if the
computation of Π(s(ϕ)) + cod(ϕ) is an accepting computation, then ϕ is sat-
isfiable.

• The family Π is complete with regard to (X, cod, s): for each input formula ϕ
such that it is satisfiable, the computation of Π(s(ϕ))+ cod(ϕ) is an accepting
computation.

Corollary 1. NP ∪ co−NP ⊆ PMCT DC(2)
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6 Conclusions

In the framework of membrane computing, as mentioned above, we search for
frontiers of efficiency as new ways to attack the P versus NP problem. For that,
it is necessary to have both results of non-efficient classes and efficient classes of
membrane systems. The thinner the frontier, the easier would be to try to adapt
an efficient solution from the efficient model to the non-efficient model.

The SAT problem is the best-known NP-complete problem, since it was the
first problem to be demonstrated to be NP-complete [1, 4], and therefore is one
of the most studied problems to solve the conjecture. SAT solvers are systems
implemented to give an answer to an input SAT instance [2]. Implementations on
high-performance computing platforms could be useful to simulate this solution
since it could provide a good alternative to current industrial SAT solvers. More
precisely, this solution only requires of 2 objects at most in communication rules,
that could be an advantage in the implementation. As future work we will continue
studying the efficiency of different variants of recognizer membrane systems.
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Seven Research Suggestions
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Summary. Some rather general research suggestions in membrane computing, as well
as a couple of more specific ideas are formulated.

1 Introduction

At more than two decades since membrane computing (MC) was initiated, the
achievements in this research area, in terms of publications, PhD theses, collec-
tive volumes, monographs, applications and software are considerable – see a de-
tailed overview of membrane computing in the CMC20 talk of Gexiang Zhang,
“Membrane Computing: Developmental Analysis” (to be published in Journal of
Membrane Computing).

By the way, a really important issue in this moment for the membrane com-
puting community is to “help growing” our journal. I would formulate it in a
short “triadic form”: write, read, cite! Write and submit papers to JMC, effi-
ciently participate in reviewing papers for JMC, promote the journal, especially
(for this period, before getting an impact factor from ISI) citing papers published
in JMC. Of a great help in this last direction is Bulletin of IMCS (accessible at
http://membranecomputing.net/IMCSBulletin/), where the contents of JMC is
recalled.

Coming back to the goal of the present notes, as said in the Abstract, some
suggestions are formulated, some of them rather general and only a few are more
specific. As the field is really mature, no prerequisites are provided and almost no
references, except those really necessary.

2 Two Very General Ideas

The first suggestion is somewhat classic and trivial: back to literature!
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(Q1) There are plenty of open problems and research topics formulated in the
MC literature. Some of these problems were solved, some of these research vistas
were explored, many others might be now obsolete, of no much interest, but many
enough still wait for research efforts.

For instance, I would like to recall the attention about the problems collected
in [2], also available in a preliminary form in a Brainstorming volume, [1]. I believe
that a nice and useful analysis would be to systematically examine the proposals
from this paper and see the status of each of them, thus revealing the topics which
need/deserve our attention from now on.

(Q2) The previous idea was to look to the past – now I would like to suggest
to look to the future... With the mentioning that the future started yesterday... It
is about the Fourth Industrial Revolution. The key-words describing it are of the
kind: connectivity, artificial intelligence, machine learning, cyber-systems, robots.

Which of these syntagma are “reachable” by MC, which were already ad-
dressed, which suggestions can we get from this direction? Very general questions,
but a good answer can have rather positive consequences. What about a “very dis-
tributed” P system/colony, about swarms of membranes? Much work is still needed
in the learning (deep learning?) direction. Both these issues can have nice prac-
tical applications (the same with evolutionary computing, membrane algorithms
and connected areas, making use of the “brute force” brought into the stage by
the complex systems of weak components cooperating in a cleaver manner).

3 Three “Hybridization” Suggestions

Suggestions of the forms bellow were formulated many times, in more general or
more specific terms. I recall them, with some further details.

(Q3) Systematic comparison of “basic” classes of P systems – cell-like, tissue-
like, spiking neural, and numerical, with multiset rewriting rules, active mem-
branes, symport/antiport, spiking rules, programs (production-repartition) rules,
respectively, with various specific features – catalysts, polarizations, regular ex-
pression guarding the (spiking) rules, unique object (the spike), etc.

Many combinations of these ingredients were considered – but not all of them
and not in a systematic manner.

We know, for instance, the power (also the efficiency?) of one-object cell-like
P system, or of cell-like SN P systems, but I no not remember papers examining
numerical P systems using only one variable (in each region), or using the notion
of anti-matter.

A biological detail which is not satisfactorily captured in SN P systems is the
sigmoidal function involved in the spiking operation. Maybe by borrowing the
way of evolving variables in numerical P systems and using “programs” (again:
with two parts, producing and then distributing) in SN P systems one can obtain
something of interest.
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(Q4) Bridging P and R was requested for several times and there are some at-
tempts in this direction, but for sure much more remains to be done. The two areas
are rather connected (cell-structure, evolution rules, biochemical metaphor), but
they also differ in essential details (multisets, active membranes, symport/antiport
and spiking rules, etc. in MC, zero or arbitrarily large multiplicity, no-surviving
principle, different goals than computing, etc., in reaction systems). Borrowing no-
tions investigated in R and investigating them for P (which of them make sense?
which of them are decidable?) was suggested many times.

Let me formulate one really “hybridization” idea: in R systems, the evolution
is influenced by the environment, which provides arbitrary (multi)sets of objects
to the system; what about having these objects produced by a P system – or by
several P systems. The idea is illustrated in Figure 1. Of course, the P systems
work “in the MC style” (multisets, maximal parallelism, objects that do not evolve
persist, etc.) while R is a reaction system. Plenty of questions appear: examine
the usual R questions for such a hybrid system; what about computability in this
framework? (the first question is how to define the result of a computation); what
about the case when the P systems not only send objects to the environment,
but they can also bring objects back inside? what about using simple P systems
(non-universal), or of various types? in the case of SN P systems, we will have two
possibilities: to distinguish between the spikes of various SN P systems or not –
in the latter case, the R system is supposed to get only one (type of) object from
the environment; how R systems with only one object in their alphabet behave?

Find other types of P-R hybrid systems.
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Fig. 1.

(Q5) A similarly promising topic, partially, but not enough explored, is that
of bringing to MC further notions from the quantum area.

Two immediate ideas are the following.
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1. To consider P systems with qobjects, objects having a name and a probability
associated, a number between 0 and 1: (a, α), a ∈ A, 0 ≤ α ≤ 1. Taking α as
a “standard” probability does not seem to be very productive (there are some
attempts of this kind). Maybe processing the objects with rules of the form

a→ (b, β)(c, γ), β, γ ∈ [−1, 1],

with the effect

(a, α)→ (b, α⊕ β)(c, α⊕ γ), where

α⊕ δ =

{
0, if α+ δ < 0,
α+ δ, if 0 ≤ α+ δ ≤ 1,
1, if α+ δ > 1,

might be more interesting. Maybe also a multiplicative operation can be consid-
ered. How to define a successful computation? By halting? And which could be
the result of a computation? (Maybe the distance between two prescribed events,
without halting, maybe the string of objcts which reach probability 1.) Should the
objects of the form (a, 0) be preserved in the system or they should be eliminated?

2. The second idea refers to objects as well, but also to their evolution: en-
tanglement. Define objects which have identical evolution, irrespective where they
are placed. There is no obvious definition – e.g., in the case of cooperative rules.
Should entanglement be hereditary? (Copies of the same object, having a common
ancestor, should be necessarily entangled?)

A good definition is the first step – after that, questions about computing power
and efficiency are to be formulated.

Is entanglement a further door towards efficiency? (Entanglement means, in
some sense, sending signals at an arbitrary distance in no time, which looks to be
a powerful operation.) Maybe entanglement combined with the idea of qobjects?
Maybe also imitating efficiency ideas from quantum computing?

4 Two More Precise Proposals

(Q6) There is a fundamental feature of P systems which, in some sense, is de-
parting from the (bio)chemistry: the localization of evolution rules. In theoretical-
abstract terms, the (bio)chemistry is the same everywhere, the “dictionary” of
reactions is unique. What is applicable-active in a given “reactor” (compartment
of a cell) is selected according to the local reactants, enzymes, catalysts, promoters
and inhibitors, as well as according to the reaction conditions (e.g., temperature).
This directly leads to the idea of homogeneity, of considering P systems, of any
kind, with the same set of rules in each compartment.

The idea was investigated for many classes of P systems, but not for numerical
P systems. I am also not aware of efficiency results for homogeneous P systems.
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The same for the various ways of using the rules (semantics): maximally parallel,
sequential, minimally parallel – whatever definition for these notions is chosen.

What about a sort of an additional “uniform” restriction of the following form:
if P is the homogeneous set of rules present in all compartments (instead of using
different rules in different compartments, depending on the local reactants and
“reaction conditions”), choose a subset P ′ ⊆ P (maximal?) and use it (in the
maximally parallel way, etc.) in all compartments.

Power and efficiency results should be looked for.

(Q7) Still more specific is the last question: consider SN P systems with as-
trocytes producing calcium, with calcium directly involved in the spiking activity.

Formally, the system will contain two types of cells,

astrocytes α1, . . . , αm, of the form (cpi,0 , Ai), pi,0 ≥ 0,

with the rules in Ai of the form Ec/c
s → ct, s ≥ 1, t ≥ 0, and

neurons σ1, . . . , σn, of the form (ari,0 , Ri), ri,0 ≥ 0,

with the rules in Ri of the form Ea/a
scs

′
→ at, s, s′ ≥ 1, t ≥ 0,

where Ec, Ea are regular expressions over the one-letter alphabets consisting of c
and a, respectively.

The idea is clear: producing t spikes in a neuron means consuming both s spikes
and s′ calcium units.

The synapses should link either astrocytes or neurons, as well astrocytes to
neurons (but not conversely: links (σi, αj) are not permitted).

Of course, versions are possible: with the regular expressions in neurons also
depending on the calcium units (hence over the alphabet {a, c}), with delay, with
or without the possibility of replicating calcium, when an astrocyte sends objects
c to several neurons. Now, the whole investigation program usual in the SN P
systems area should be explored: normal forms, universality, small universal sys-
tems, plasticity, homogeneity, etc. Are astrocytes of this form improving the results
known for usual SN P systems?

5 Final Remarks

This note had two main goals: to show that still there is much work to do in
membrane computing, even at this basic level (not to speak about applications,
which is by far the most promising and most important direction of research at
this stage), and to recall again and again that a very important task of all of us
at this moment is to... write-read-cite, supporting our journal JMC!...
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Recently, three variants of spiking neural P systems have been proposed: coupled
neural P systems (CNP systems) [1], dynamic threshold neural P systems (DTNP
systems) [2] and nonlinear spiking neural P systems (NSNP systems) [3]. It was
proven that the three variants are Turing universal number generating/accepting
devices and function computing devices. The potential motivation of proposing
the variants is to provide a modeling tool for real-life applications, for example,
image processing tasks. Some open problems related to the variants are listed as
follows.

Q1 As stated in the existing SNP systems, some problems that refer to these
variants can be investigated, for example, language generator, sequential and
asynchronous modes.

Q2 CNP systems and DTNP systems have all or part of spiking mechanism, cou-
pling mechanism and dynamic threshold mechanism. How to apply the two
variants to deal with some image processing tasks? for example, image fusion,
image segmentation, object segmentation, feature extraction, object detection,
and so on. Since image is two-dimensional (or three-dimensional for color im-
age), CNT (or DTNP) systems can be considered as two- dimensional (or
three-dimensional) array of neurons. Moreover, due to local spatial character-
istics of an image, local topological structure should be further considered.

Q3 NSNP systems has a nonlinear spiking mechanism. Potentially, NSNP sys-
tems as a modelling tool could have the ability to handle nonlinear problems.
Similarly, how to apply the variant to deal with these image processing tasks?

Q4 Local convolutional structures are easily introduced into these variants with
local topological structure, like convolutional neural networks (CNN). How
to use them to build deep SNP systems? How to develop the corresponding
learning algorithms?
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Summary. In this paper, we investigate a possibility of Grey wolf optimization algo-
rithm simulation by 2D P colonies. We introduce a new kind of 2D P colony equipped
with a blackboard. It is used by agents to store information that is reachable by all the
agents from every place in the environment.

Key words: 2D P colonies, blackboard, Grey wolf optimization algorithm.

1 Introduction

2D P colonies are kind of P colonies, very simple membrane systems inspired by
colonies of formal grammars. The interested reader is referred to [8] for detailed
information on membrane systems (P systems) and to [4] and [3] for more infor-
mation to grammar systems theory. For more details on P colonies consult the
survey [2].

2D P colony consists of a finite number of agents - finite collections of objects
in a cell - and their joint shared environment. The environment of 2D P colony is
represented by a 2D grid of square cells. In each cell, there is a multiset of objects.
The agents have programs consisting of rules. These rules are of three types: they
may change the objects of the agents and they can be used for interacting with
the joint shared environment of the agents and movement rule. The direction of
the movement of the agent is determined by the contents of cells surrounding the
cell in which the agent is placed. The program can contain at most one motion
rule. To achieve the greatest simplicity in agent behaviour, one other condition
was set. If the agent moves, it cannot communicate with the environment. So if
the program contains a motion rule, then the other rule is an evolution rule. The
number of objects inside each agent is set by definition and it is usually a very
small number: 1, 2 or 3.

When the agent is moving around the 2D environment it has no information
about the states and placements of the other agents. For remote information ex-
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change, we add the agents the possibility to store and read the information from
a blackboard. It is a table with an unchangeable structure given by definition.
Agents can change values inside cells but not captions and the number of rows or
columns.

Grey wolf optimization algorithm (GWO) is a meta-heuristic optimization tech-
nology. Its principle is to imitate the behaviour of grey wolves in nature to hunt
cooperatively. Four types of grey wolves such as alpha, beta, delta, and omega are
used for simulating the leadership hierarchy. In addition, the three main steps of
hunting, searching for prey, encircling prey, and attacking prey, are implemented.
The algorithm was introduced by Mirjalili et al. in 2014 in [9].

2 Grey wolf optimization algorithm

This section is to explain the way the GWO works. Grey wolf optimization algo-
rithm is inspired by social dynamics found in packs of grey wolves and by their
ability to dynamically create hierarchies in which every member has a clearly de-
fined role. We distinguish the following wolves:

• Alpha male and female make up the dominant pair. The pack follows their lead
during hunts, while locating a place to sleep, and so on. The most important
attributes are their organisational abilities and discipline.

• Beta wolves support and respect the Alpha pair during its decisions.
• Delta wolves are subservient to Alpha and Beta wolves, follow their orders,

and control Omega wolves. There are three types of Delta wolves: scouts –
they observe the surrounding area and warn the pack, sentinels – they protect
the pack when endangered and caretakers – they provide aid to old and sick
wolves.

• Omega wolves help to filter the pack’s aggression and frustrations by serving
as scapegoats.

In GWO, the agents (wolves) primary goal in its environment is to find and
hunt down prey, which in our case equals finding the optimal solution to the
given problem. The environment is represented by a mathematical fitness function
characterising the specific problem. A value found at the current position of the
wolf refers to the highest-quality prey located. The wolf with the best value is
ranked as Alpha, the second as Beta, third as Delta, and all the other as Omega.

The hunting technique of a wolf pack can be described in 5 steps:

• Search for prey (point A in Fig. 2.) – wolves are attempting to find the most
valuable prey with respect to the effort required to successfully hunt it.

• Exploitation of prey (point B in Fig. 2.) – wolves are attempting to draw
attention to themselves and to separate the prey from its herd.

• Encircling prey (point C in Fig. 2.) – the attempt to push the prey into a
situation it cannot escape from.

• The prey is surrounded (point D in Fig. 2.) – it can no longer escape.
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Fig. 1. wolf pack hierarchy

• Attack (point E in Fig. 2.) – wolves attack the prey’s weak spots (belly, legs,
snout) until it succumbs to fatigue. Afterwards, they bring it down and crush
its windpipe.

Fig. 2. Hunting technique of grey wolves in [6]

The algorithm is inspired by this process and smoothly transitions between
scouting and hunting phases. In the scouting phase, the pack extensively scouts
its environment through many random movements so that the algorithm does not
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get stuck in a local extreme, while in the hunting phase, the influence of random
movements is slowly reduced and pack members draw progressively closer to the
discovered extreme. To maintain the divergence between those phases, each wolf
is assigned vectors A and C.

A is a vector with components rand (−1, 1) ∗ a,

where rand(−1, 1) generates a random number between −1 and 1 and where

a = 2−
(

2i

imax

)
while i is the algorithms current iteration, and imax is the maximum number of
iterations. It is random value between −2 and 2. You can see its impact in the
Fig. 3.

With growing iterations, it is more likely that its value will be between -1 and
1. That makes it more likely for a wolf to be hunting.

Fig. 3. Vector A and its impact in 1D

Another component supporting the scouting phase is vector

C = rand(0, 2),

where rand(0, 2), generates a random number between 0 and 2. Vector C is similar
to vector A, but iterations don’t influence it. It helps the wolves behave more
naturally. Similarly, in nature, wolves encounter various obstacles which prevent
them from approaching prey comfortably.

The vectors A and C encourage wolves to prefer scouting, or hunting, and so
to avoid local optima regardless of the algorithms current iteration.

Wolves’ positions within the environment are updated based upon the esti-
mated location of the prey using Alpha, Beta, and Delta wolves as guides.

Let Xj(i) be a positional vector of wolf j in i-th iteration. Positional vector of
wolf j is updated as follows:

Xj (i+ 1) =
X1 + X2 + X3

3
,
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where i is the algorithms current iteration and X1, X2, X3 are new potential
position vectors of Alpha, Beta, and Delta wolves obtained from following formulas:

X1 = Xα (i)−A1 ∗Dα

X2 = Xβ (i)−A2 ∗Dβ

X3 = Xδ (i)−A3 ∗Dδ

where Xα(i), Xβ(i), Xδ(i) are the position vectors of Alpha, Beta, and Delta
wolves representing positions within the environment that are closest to the op-
timum in i-th iteration. Vectors A1,A2,A3 are calculated in the same way as
vector Dα,Dβ,Dδ are vectors defining the distance of the wolf j position from
the prey as follows:

Dα = |C1 ∗Xα (i)−Xj (i)|
Dβ = |C2 ∗Xβ (i)−Xj (i)|
Dδ = |C3 ∗Xδ (i)−Xj (i)|

where |X| is the vector whose components are the absolute values of the compo-
nents of X. Vectors C1,C2,C3 are computed in the same way as vector A and
influences the weight of the preys estimated position Xα,Xβ,Xδ (increasing or
decreasing it).

If wolves have the tendency to move closer towards prey, they will begin to
encircle it (wolves approach from various directions), as you can see it in Fig. 4.

Fig. 4. Positional updates of Omega wolves as it is described by the mathematical
formula
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2.1 Algorithm pseudocode

In this subsection we describe the algorithm in pseudocode. Algorithms inputs
are dimensions of the problems environment, boundaries of the problems envi-
ronment, fitness function characterising the problem, size of the pack (number of
wolves/agents), number of iterations of the algorithm, termination criteria and
criteria of the fitness function.

Fig. 5. Algorithm steps

The algorithms pseudocode follows:

• In the first step, agents (wolves) are randomly spread out across the environ-
ment.

• In each iteration i:
– calculate the fitness value of each agent and determine the social hierarchy

– Fig. 5. part 1. The agent with the best value (closest to the optimum) is
Alpha, second best is Beta, third best is Delta, and all others are Omega.

– calculate the best solution found thus far by Alpha, Beta and Delta (Xα(i),
Xβ(i) , Xδ(i) and average it – Fig. 5. part 2,

– update positions of all the wolves Xj(i + 1), while random vectors A and
C are updated for each one – Fig. 5. part 3,

– check the termination criterion – Fig. 5. part 4. Iterations terminate when
fitness function value reaches a preset value.
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3 2D P Colonies

In this section, we recall the definition of 2D P colonies and other terms related
to them.

Definition 1. A 2D P colony is a construct
Π = (A, e,Env,B1, . . . , Bk, f), k ≥ 1, where

• A is an alphabet of the colony, its elements are called objects,
• e ∈ A is the basic environmental object of the 2D P colony,
• Env is a pair (m×n,wE), where m×n,m, n ∈ N is the size of the environment

and wE is the initial contents of environment, it is a matrix of size m × n of
multisets of objects over A− {e}.

• Bi, 1 ≤ i ≤ k, are agents, each agent is a construct Bi = (oi, Pi, [o, p]) , 0 ≤
o ≤ m, 0 ≤ p ≤ n, where
– oi is a multiset over A, it determines the initial state (contents) of the

agent, |oi| = 2,
– Pi = {pi,1, . . . , pi,li} , l ≥ 1, 1 ≤ i ≤ k is a finite set of programs, where each

program contains exactly 2 rules, which are in one of the following forms
each:
· a→ b, called the evolution rule, a, b ∈ A,
· c↔ d, called the communication rule, c, d ∈ A,
· [aq,r]→ s, 0 ≤ q, r ≤ 2, s ∈ {⇐,⇒,⇑,⇓}, called the motion rule,

• f ∈ A is the final object of the colony.

A configuration of the 2D P colony is given by the state of the environment -
matrix of type m × n with multisets of objects over A − {e} as its elements, and
by the state of all agents - pairs of objects from alphabet A and the coordinates of
the agents. An initial configuration is given by the definition of the 2D P colony.

A computational step consists of three parts. The first part lies in determining
the set of applicable programs according to the current configuration of the 2D P
colony. In the second part, we have to select from this set one program for each
agent, in such a way that there is no collision between the communication rules
belonging to different programs. The third part is the execution of the chosen
programs.

A change of the configuration is triggered by the execution of programs and
it involves changing the state of the environment, contents and placement of the
agents.

A computation is non-deterministic and maximally parallel. The computation
ends by halting when there is at least one agent that has no applicable program.

The result of the computation is the number of copies of the final object placed
in the environment at the end of the computation.

The aim of introducing 2D P colonies is not studying their computational power
but monitoring their behaviour during the computation.



116 Daniel Valenta, Lucie Ciencialová, and Luděk Cienciala

4 Modeling of Grey wolf algorithm using P colonies

As for the modeling of GWO, some similarities as well as a few differences have
been found. Both are inspired by the nature, usable for solving optimisation prob-
lems, and both are multiagent system models. For comparison see the differences
/ problems:

• Environmental problem,
• Communication problem,
• Randomness problem.

These problems are described in the Table 1.

Table 1. Differences between Grey wolf algorithm and P colony tables.

Difference /
System

Grey wolf algorithm P colony

Environmental
problem

The environment is represented by
a mathematical fitness function.

The environment is repre-
sented by a multiset of symbols.

Communication
problem

The agents have the knowl-
edge of their global po-
sition in the environment.

They are communities of sim-
ple reactive agents indepen-
dently living and acting in
a joint shared environment.

Randomness
problem

Random vectors A and C
influence the movement of
wolves in the environment.

Each rule is deterministic, the
only way to implement random-
ness is to randomise the choosing
rule for identical configurations.

2D P colony definition needs to be adjusted to meet the described require-
ments. Proposed solutions for those problems are described in Table 2.
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Table 2. Proposed solution of differences / problems found

Difference /
Problem

Proposed solution

Environmental
problem

The environment will be a pair of matrix m × n and fitness func-
tion f(x), where m × n, m,nεN is the size of the environment
and f(x) is a mathematical function with the initial contents of
environment. Alphabet A will contains real numbers and envi-
ronmental symbol, A = {R}

⋃
{e}, The rules of the programs,

which guide the agents, will compare the number values of ob-
jects using operators smaller ” < ” or greater ” > ” then,
agents Bi will be defined as Bi = oi , Pi, [rx, ry], oi = 2.

Communication
problem

We extend the P system by adding the Blackboard that
saves the agents’ best fitness values and is always acces-
sible to read and write by all agents. Agents must know
their position in the environment, because the fitness value
is not enough for calculating the preys estimated position.

Randomness
problem

We will use the blackboard as means of giving feedback to agents.
Agents do not need to know their position in the environment, all
agents who can contribute to the search will send solution to the
blackboard points called receivers, and estimation of prey position is
calculated as average of distances collected by blackboard points from
wolves Alpha, Beta and Delta. Omega wolves can ping the blackboard
if changing position and get their distance from the prey. If the dis-
tance would decrease compared to the original distance, then the wolf
will move. We plan to introduce randomness by only using two black-
board receivers and rounding the wolves’ distances from the prey.
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5 Proposed model of 2D P colony with the blackboard

As for the proposed definition of 2D P colony model with the blackboard, it is
adapted to the suggestions from the previous chapter so that it allows simulation
of the Grey wolf algorithm.

5.1 Definition

Pgw = (A, e, env, B1, B2, . . . , Bn, X, f), where:

• A = {R}
⋃
{e,m, f},

• e ∈ A is the basic environmental object,
• env is a pair (m× n, f (x)), where m× n,m, n ∈ N,
• B1, B2, . . . , Bn are the agents, Bi = (Oi, Pi, [rx, ry]), where:

– Oi = 2,
– P1 = P2 = ... = Pn, Pi rules are defined below,
– rx, ry are the initial coordinates,

• X is the blackboard defined as structure in Fig. 6.,
• f is the final object, f ∈ A.

Fig. 6. Blackboard structure

The initial agents’ configuration is: (O1[e], O2[e], env[i]), where i ∈ N.
Programs Pi associated with i-th agent are:

1. (e1, e2, x) : e1, e2 ↔ x; x ∈ R

2. (x, y, e); x, y ∈ R:
a) y ← Get(BB[Alpha]) and Compare(x, y):

i. x > y: I’m new Aplha, Update(BB[Alpha]);
ii. x < y: y ← Get(BB[Beta]) and Compare(x, y):

A. x > y: I’m new Beta, Update(BB[Beta]);
B. x < y: y ← Get(BB[Delta]) and Compare(x, y):
• x > y: I’m new Delta, Update(BB[Delta]);
• x < y: I’m Omega: y ↔ e; e→ m; m↔ y;

3. (x, y,m); x, y ∈ R:
a) PingBB[i] and y ← Get(BB[i]);
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b) PingBB[i] +mv1; mv1 = (⇐,⇒,⇑,⇓) and y ← Get(BB[i]);
c) Compare(x, y);

i. x > y: Do(mv1);
ii. x < y:

A. PingBB[i] +mv2; mv2 = (⇐,⇒,⇑,⇓)−mv1; mv1 6= mv2
B. y ← Get(BB[i]) and Compare(x, y);
• x > y: Do(mv2);
• x < y: ... (try it with mv3 and mv4)

– Can’t move: y ↔ m; m→ f ; f ↔ m;

4. (x, y, f); x, y ∈ R: Stop the agent. }

Pi rules definition use the following symbols:

• ← means Get from the blackboard,
• → means Rewrite agent’s object,
• ↔ means Change agent’s object with environment object,
• ”⇐ ” = LEFT , ”⇒ ” = RIGHT , ” ⇑ ” = UP , ” ⇓ ” = DOWN

At this point it is important to focus on the use of the blackboard by the
agents. Agents can use blackboard functions:

• Get(BB[i]); i = agent’s index - agent i gets its distance from the prey (it is
calculated by the blackboard),

• Update(BB[x]) ; x = Alpha,Beta,Delta - agent update Balpha, Bbeta, or Bdelta

field value,
• Ping[BB[i]] ; i is the agent’s index - agent can ping the blackboard from some

position, its distance from the prey is recalculated.

Fig. 7. Blackboard in use

The agent concludes it is Alpha and it rewrites the corresponding blackboard
field in Fig. 7. on the left side. On the right side of Fig. 7., the agent concludes it
is Omega and it will try to move with blackboard’s assistance.
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Finally, the following derivation can be created. Fig. 8., a sequence of derivation
steps is depicted.
The first step (iteration) (point 1 in Fig. 8.) starting with two agents randomly
initialized into the environment. They are in the initial configuration - two objects
e inside the agent.
In the second iteration (point 2 in Fig. 8.), agents exchange their objects for objects
placed in the environment (computed by fitness function).
In next iterations (point 3 in Fig. 8.), agents get Alpha value from the blackboard
and try to compare it to their own value. If Alpha value is empty, the first agent
to try to compare its value will become the Alpha and update the blackboard. If
more than one agent tries to write value into the blackboard in the same position
the winner is non-deterministically chosen.
The same process is used for declaring Beta and Delta agents (point 4 in Fig.
8.). If the agent’s fitness value is lower than Delta, this agent becomes Omega.
At this point (point 5 in Fig. 8.) this agent rewrites the environmental object to
m. Afterwards, it will try to move (point 6 in Fig. 8.). Before moving, however, it
will compare the distances. The algorithm iterates until no more movement which
would improve the fitness value is possible.

6 Conclusion

In this paper we introduce extended model of 2D P colonies that can simulate
solving optimization problem by Grey wolf optimization algorithm. The model
will be improved in the near future. It is assumed that the function Compare()
can be replaced by special equivalent rules, like (x > y, e) : action. It is also
assumed that the other functions, such as Do(mv1), can be replaced by the rules
in a form closer to the common rules of P systems.

When it comes to testing the model and comparing it with the original version
of GWO, the observation of the behaviour of the modified model is the aim of
our further work. Potentially, the modified model could be faster or more efficient
(in its approach towards the divergence between scouting for prey and hunting)
compared to the original algorithm.
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Fig. 8. Example of derivation
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Pérez-Jiménez, Mario J., 91

Valencia-Cabrera, Luis, 91
Valenta, Daniel, 109

Zandron, Claudio, 9
Zhang, Gexiang, 49




	Extracting Parallelism in Simulation Algorithms for PDP systems
	Miguel Á. Martínez-del-Amor, Andrés Doncel-Ramírez, David Orellana-Martín, Ignacio Pérez-Hurtado

