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Summary. In this paper, we investigate a possibility of Grey wolf optimization algo-
rithm simulation by 2D P colonies. We introduce a new kind of 2D P colony equipped
with a blackboard. It is used by agents to store information that is reachable by all the
agents from every place in the environment.
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1 Introduction

2D P colonies are kind of P colonies, very simple membrane systems inspired by
colonies of formal grammars. The interested reader is referred to [8] for detailed
information on membrane systems (P systems) and to [4] and [3] for more infor-
mation to grammar systems theory. For more details on P colonies consult the
survey [2].

2D P colony consists of a finite number of agents - finite collections of objects
in a cell - and their joint shared environment. The environment of 2D P colony is
represented by a 2D grid of square cells. In each cell, there is a multiset of objects.
The agents have programs consisting of rules. These rules are of three types: they
may change the objects of the agents and they can be used for interacting with
the joint shared environment of the agents and movement rule. The direction of
the movement of the agent is determined by the contents of cells surrounding the
cell in which the agent is placed. The program can contain at most one motion
rule. To achieve the greatest simplicity in agent behaviour, one other condition
was set. If the agent moves, it cannot communicate with the environment. So if
the program contains a motion rule, then the other rule is an evolution rule. The
number of objects inside each agent is set by definition and it is usually a very
small number: 1, 2 or 3.

When the agent is moving around the 2D environment it has no information
about the states and placements of the other agents. For remote information ex-
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change, we add the agents the possibility to store and read the information from
a blackboard. It is a table with an unchangeable structure given by definition.
Agents can change values inside cells but not captions and the number of rows or
columns.

Grey wolf optimization algorithm (GWO) is a meta-heuristic optimization tech-
nology. Its principle is to imitate the behaviour of grey wolves in nature to hunt
cooperatively. Four types of grey wolves such as alpha, beta, delta, and omega are
used for simulating the leadership hierarchy. In addition, the three main steps of
hunting, searching for prey, encircling prey, and attacking prey, are implemented.
The algorithm was introduced by Mirjalili et al. in 2014 in [9].

2 Grey wolf optimization algorithm

This section is to explain the way the GWO works. Grey wolf optimization algo-
rithm is inspired by social dynamics found in packs of grey wolves and by their
ability to dynamically create hierarchies in which every member has a clearly de-
fined role. We distinguish the following wolves:

• Alpha male and female make up the dominant pair. The pack follows their lead
during hunts, while locating a place to sleep, and so on. The most important
attributes are their organisational abilities and discipline.

• Beta wolves support and respect the Alpha pair during its decisions.
• Delta wolves are subservient to Alpha and Beta wolves, follow their orders,

and control Omega wolves. There are three types of Delta wolves: scouts –
they observe the surrounding area and warn the pack, sentinels – they protect
the pack when endangered and caretakers – they provide aid to old and sick
wolves.

• Omega wolves help to filter the pack’s aggression and frustrations by serving
as scapegoats.

In GWO, the agents (wolves) primary goal in its environment is to find and
hunt down prey, which in our case equals finding the optimal solution to the
given problem. The environment is represented by a mathematical fitness function
characterising the specific problem. A value found at the current position of the
wolf refers to the highest-quality prey located. The wolf with the best value is
ranked as Alpha, the second as Beta, third as Delta, and all the other as Omega.

The hunting technique of a wolf pack can be described in 5 steps:

• Search for prey (point A in Fig. 2.) – wolves are attempting to find the most
valuable prey with respect to the effort required to successfully hunt it.

• Exploitation of prey (point B in Fig. 2.) – wolves are attempting to draw
attention to themselves and to separate the prey from its herd.

• Encircling prey (point C in Fig. 2.) – the attempt to push the prey into a
situation it cannot escape from.

• The prey is surrounded (point D in Fig. 2.) – it can no longer escape.
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Fig. 1. wolf pack hierarchy

• Attack (point E in Fig. 2.) – wolves attack the prey’s weak spots (belly, legs,
snout) until it succumbs to fatigue. Afterwards, they bring it down and crush
its windpipe.

Fig. 2. Hunting technique of grey wolves in [6]

The algorithm is inspired by this process and smoothly transitions between
scouting and hunting phases. In the scouting phase, the pack extensively scouts
its environment through many random movements so that the algorithm does not
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get stuck in a local extreme, while in the hunting phase, the influence of random
movements is slowly reduced and pack members draw progressively closer to the
discovered extreme. To maintain the divergence between those phases, each wolf
is assigned vectors A and C.

A is a vector with components rand (−1, 1) ∗ a,

where rand(−1, 1) generates a random number between −1 and 1 and where

a = 2−
(

2i

imax

)
while i is the algorithms current iteration, and imax is the maximum number of
iterations. It is random value between −2 and 2. You can see its impact in the
Fig. 3.

With growing iterations, it is more likely that its value will be between -1 and
1. That makes it more likely for a wolf to be hunting.

Fig. 3. Vector A and its impact in 1D

Another component supporting the scouting phase is vector

C = rand(0, 2),

where rand(0, 2), generates a random number between 0 and 2. Vector C is similar
to vector A, but iterations don’t influence it. It helps the wolves behave more
naturally. Similarly, in nature, wolves encounter various obstacles which prevent
them from approaching prey comfortably.

The vectors A and C encourage wolves to prefer scouting, or hunting, and so
to avoid local optima regardless of the algorithms current iteration.

Wolves’ positions within the environment are updated based upon the esti-
mated location of the prey using Alpha, Beta, and Delta wolves as guides.

Let Xj(i) be a positional vector of wolf j in i-th iteration. Positional vector of
wolf j is updated as follows:

Xj (i+ 1) =
X1 + X2 + X3

3
,
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where i is the algorithms current iteration and X1, X2, X3 are new potential
position vectors of Alpha, Beta, and Delta wolves obtained from following formulas:

X1 = Xα (i)−A1 ∗Dα

X2 = Xβ (i)−A2 ∗Dβ

X3 = Xδ (i)−A3 ∗Dδ

where Xα(i), Xβ(i), Xδ(i) are the position vectors of Alpha, Beta, and Delta
wolves representing positions within the environment that are closest to the op-
timum in i-th iteration. Vectors A1,A2,A3 are calculated in the same way as
vector Dα,Dβ,Dδ are vectors defining the distance of the wolf j position from
the prey as follows:

Dα = |C1 ∗Xα (i)−Xj (i)|
Dβ = |C2 ∗Xβ (i)−Xj (i)|
Dδ = |C3 ∗Xδ (i)−Xj (i)|

where |X| is the vector whose components are the absolute values of the compo-
nents of X. Vectors C1,C2,C3 are computed in the same way as vector A and
influences the weight of the preys estimated position Xα,Xβ,Xδ (increasing or
decreasing it).

If wolves have the tendency to move closer towards prey, they will begin to
encircle it (wolves approach from various directions), as you can see it in Fig. 4.

Fig. 4. Positional updates of Omega wolves as it is described by the mathematical
formula
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2.1 Algorithm pseudocode

In this subsection we describe the algorithm in pseudocode. Algorithms inputs
are dimensions of the problems environment, boundaries of the problems envi-
ronment, fitness function characterising the problem, size of the pack (number of
wolves/agents), number of iterations of the algorithm, termination criteria and
criteria of the fitness function.

Fig. 5. Algorithm steps

The algorithms pseudocode follows:

• In the first step, agents (wolves) are randomly spread out across the environ-
ment.

• In each iteration i:
– calculate the fitness value of each agent and determine the social hierarchy

– Fig. 5. part 1. The agent with the best value (closest to the optimum) is
Alpha, second best is Beta, third best is Delta, and all others are Omega.

– calculate the best solution found thus far by Alpha, Beta and Delta (Xα(i),
Xβ(i) , Xδ(i) and average it – Fig. 5. part 2,

– update positions of all the wolves Xj(i + 1), while random vectors A and
C are updated for each one – Fig. 5. part 3,

– check the termination criterion – Fig. 5. part 4. Iterations terminate when
fitness function value reaches a preset value.
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3 2D P Colonies

In this section, we recall the definition of 2D P colonies and other terms related
to them.

Definition 1. A 2D P colony is a construct
Π = (A, e,Env,B1, . . . , Bk, f), k ≥ 1, where

• A is an alphabet of the colony, its elements are called objects,
• e ∈ A is the basic environmental object of the 2D P colony,
• Env is a pair (m×n,wE), where m×n,m, n ∈ N is the size of the environment

and wE is the initial contents of environment, it is a matrix of size m × n of
multisets of objects over A− {e}.

• Bi, 1 ≤ i ≤ k, are agents, each agent is a construct Bi = (oi, Pi, [o, p]) , 0 ≤
o ≤ m, 0 ≤ p ≤ n, where
– oi is a multiset over A, it determines the initial state (contents) of the

agent, |oi| = 2,
– Pi = {pi,1, . . . , pi,li} , l ≥ 1, 1 ≤ i ≤ k is a finite set of programs, where each

program contains exactly 2 rules, which are in one of the following forms
each:
· a→ b, called the evolution rule, a, b ∈ A,
· c↔ d, called the communication rule, c, d ∈ A,
· [aq,r]→ s, 0 ≤ q, r ≤ 2, s ∈ {⇐,⇒,⇑,⇓}, called the motion rule,

• f ∈ A is the final object of the colony.

A configuration of the 2D P colony is given by the state of the environment -
matrix of type m × n with multisets of objects over A − {e} as its elements, and
by the state of all agents - pairs of objects from alphabet A and the coordinates of
the agents. An initial configuration is given by the definition of the 2D P colony.

A computational step consists of three parts. The first part lies in determining
the set of applicable programs according to the current configuration of the 2D P
colony. In the second part, we have to select from this set one program for each
agent, in such a way that there is no collision between the communication rules
belonging to different programs. The third part is the execution of the chosen
programs.

A change of the configuration is triggered by the execution of programs and
it involves changing the state of the environment, contents and placement of the
agents.

A computation is non-deterministic and maximally parallel. The computation
ends by halting when there is at least one agent that has no applicable program.

The result of the computation is the number of copies of the final object placed
in the environment at the end of the computation.

The aim of introducing 2D P colonies is not studying their computational power
but monitoring their behaviour during the computation.
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4 Modeling of Grey wolf algorithm using P colonies

As for the modeling of GWO, some similarities as well as a few differences have
been found. Both are inspired by the nature, usable for solving optimisation prob-
lems, and both are multiagent system models. For comparison see the differences
/ problems:

• Environmental problem,
• Communication problem,
• Randomness problem.

These problems are described in the Table 1.

Table 1. Differences between Grey wolf algorithm and P colony tables.

Difference /
System

Grey wolf algorithm P colony

Environmental
problem

The environment is represented by
a mathematical fitness function.

The environment is repre-
sented by a multiset of symbols.

Communication
problem

The agents have the knowl-
edge of their global po-
sition in the environment.

They are communities of sim-
ple reactive agents indepen-
dently living and acting in
a joint shared environment.

Randomness
problem

Random vectors A and C
influence the movement of
wolves in the environment.

Each rule is deterministic, the
only way to implement random-
ness is to randomise the choosing
rule for identical configurations.

2D P colony definition needs to be adjusted to meet the described require-
ments. Proposed solutions for those problems are described in Table 2.
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Table 2. Proposed solution of differences / problems found

Difference /
Problem

Proposed solution

Environmental
problem

The environment will be a pair of matrix m × n and fitness func-
tion f(x), where m × n, m,nεN is the size of the environment
and f(x) is a mathematical function with the initial contents of
environment. Alphabet A will contains real numbers and envi-
ronmental symbol, A = {R}

⋃
{e}, The rules of the programs,

which guide the agents, will compare the number values of ob-
jects using operators smaller ” < ” or greater ” > ” then,
agents Bi will be defined as Bi = oi , Pi, [rx, ry], oi = 2.

Communication
problem

We extend the P system by adding the Blackboard that
saves the agents’ best fitness values and is always acces-
sible to read and write by all agents. Agents must know
their position in the environment, because the fitness value
is not enough for calculating the preys estimated position.

Randomness
problem

We will use the blackboard as means of giving feedback to agents.
Agents do not need to know their position in the environment, all
agents who can contribute to the search will send solution to the
blackboard points called receivers, and estimation of prey position is
calculated as average of distances collected by blackboard points from
wolves Alpha, Beta and Delta. Omega wolves can ping the blackboard
if changing position and get their distance from the prey. If the dis-
tance would decrease compared to the original distance, then the wolf
will move. We plan to introduce randomness by only using two black-
board receivers and rounding the wolves’ distances from the prey.
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5 Proposed model of 2D P colony with the blackboard

As for the proposed definition of 2D P colony model with the blackboard, it is
adapted to the suggestions from the previous chapter so that it allows simulation
of the Grey wolf algorithm.

5.1 Definition

Pgw = (A, e, env, B1, B2, . . . , Bn, X, f), where:

• A = {R}
⋃
{e,m, f},

• e ∈ A is the basic environmental object,
• env is a pair (m× n, f (x)), where m× n,m, n ∈ N,
• B1, B2, . . . , Bn are the agents, Bi = (Oi, Pi, [rx, ry]), where:

– Oi = 2,
– P1 = P2 = ... = Pn, Pi rules are defined below,
– rx, ry are the initial coordinates,

• X is the blackboard defined as structure in Fig. 6.,
• f is the final object, f ∈ A.

Fig. 6. Blackboard structure

The initial agents’ configuration is: (O1[e], O2[e], env[i]), where i ∈ N.
Programs Pi associated with i-th agent are:

1. (e1, e2, x) : e1, e2 ↔ x; x ∈ R

2. (x, y, e); x, y ∈ R:
a) y ← Get(BB[Alpha]) and Compare(x, y):

i. x > y: I’m new Aplha, Update(BB[Alpha]);
ii. x < y: y ← Get(BB[Beta]) and Compare(x, y):

A. x > y: I’m new Beta, Update(BB[Beta]);
B. x < y: y ← Get(BB[Delta]) and Compare(x, y):
• x > y: I’m new Delta, Update(BB[Delta]);
• x < y: I’m Omega: y ↔ e; e→ m; m↔ y;

3. (x, y,m); x, y ∈ R:
a) PingBB[i] and y ← Get(BB[i]);
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b) PingBB[i] +mv1; mv1 = (⇐,⇒,⇑,⇓) and y ← Get(BB[i]);
c) Compare(x, y);

i. x > y: Do(mv1);
ii. x < y:

A. PingBB[i] +mv2; mv2 = (⇐,⇒,⇑,⇓)−mv1; mv1 6= mv2
B. y ← Get(BB[i]) and Compare(x, y);
• x > y: Do(mv2);
• x < y: ... (try it with mv3 and mv4)

– Can’t move: y ↔ m; m→ f ; f ↔ m;

4. (x, y, f); x, y ∈ R: Stop the agent. }

Pi rules definition use the following symbols:

• ← means Get from the blackboard,
• → means Rewrite agent’s object,
• ↔ means Change agent’s object with environment object,
• ”⇐ ” = LEFT , ”⇒ ” = RIGHT , ” ⇑ ” = UP , ” ⇓ ” = DOWN

At this point it is important to focus on the use of the blackboard by the
agents. Agents can use blackboard functions:

• Get(BB[i]); i = agent’s index - agent i gets its distance from the prey (it is
calculated by the blackboard),

• Update(BB[x]) ; x = Alpha,Beta,Delta - agent update Balpha, Bbeta, or Bdelta

field value,
• Ping[BB[i]] ; i is the agent’s index - agent can ping the blackboard from some

position, its distance from the prey is recalculated.

Fig. 7. Blackboard in use

The agent concludes it is Alpha and it rewrites the corresponding blackboard
field in Fig. 7. on the left side. On the right side of Fig. 7., the agent concludes it
is Omega and it will try to move with blackboard’s assistance.
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Finally, the following derivation can be created. Fig. 8., a sequence of derivation
steps is depicted.
The first step (iteration) (point 1 in Fig. 8.) starting with two agents randomly
initialized into the environment. They are in the initial configuration - two objects
e inside the agent.
In the second iteration (point 2 in Fig. 8.), agents exchange their objects for objects
placed in the environment (computed by fitness function).
In next iterations (point 3 in Fig. 8.), agents get Alpha value from the blackboard
and try to compare it to their own value. If Alpha value is empty, the first agent
to try to compare its value will become the Alpha and update the blackboard. If
more than one agent tries to write value into the blackboard in the same position
the winner is non-deterministically chosen.
The same process is used for declaring Beta and Delta agents (point 4 in Fig.
8.). If the agent’s fitness value is lower than Delta, this agent becomes Omega.
At this point (point 5 in Fig. 8.) this agent rewrites the environmental object to
m. Afterwards, it will try to move (point 6 in Fig. 8.). Before moving, however, it
will compare the distances. The algorithm iterates until no more movement which
would improve the fitness value is possible.

6 Conclusion

In this paper we introduce extended model of 2D P colonies that can simulate
solving optimization problem by Grey wolf optimization algorithm. The model
will be improved in the near future. It is assumed that the function Compare()
can be replaced by special equivalent rules, like (x > y, e) : action. It is also
assumed that the other functions, such as Do(mv1), can be replaced by the rules
in a form closer to the common rules of P systems.

When it comes to testing the model and comparing it with the original version
of GWO, the observation of the behaviour of the modified model is the aim of
our further work. Potentially, the modified model could be faster or more efficient
(in its approach towards the divergence between scouting for prey and hunting)
compared to the original algorithm.
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Fig. 8. Example of derivation


