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Summary. In the framework of membrane computing, several frontiers of efficiency have
been found with respect to the resources that different families of P systems take to solve
a decision problem. Each of these frontiers provides a new way to tackle the P versus NP
problem. In this sense, optimal frontiers are needed in order to separate close variants of
P systems. In a previous work, an efficient solution to SAT was given in the framework
of P systems from T DC(3). In this work, we will provide an optimal solution to the SAT

problem in terms of length of the rules.
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1 Introduction

One of the most prolific fields within the framework of Membrane Computing is
computational complexity theory. The search for frontiers of efficiency has pro-
duced several results in terms of correspondences between classic computational
complexity classes and membrane computing complexity classes. In particular,
several results with tissue P systems [5] have been achieved. Recognizer tissue P
systems were introduced in [6]. In [3], it was demonstrated that the complexity
class of tissue P systems from T DC(1) are non-efficient systems through the de-
pendency graph technique. In [6], an efficient solution to the SAT problem is given
by means of a family of tissue P systems from T DC(5). In this work, we present
an optimal solution for SAT with a family of tissue P systems from T DC(2). This
implies that NP ∪ co−NP ⊆ PMCT DC(2). However, this last result is not new,
since in [9] it was presented a solution to HAM-CYCLE, a well-known NP-complete
problem, with a family of P systems from T DC(2). The novelty of this work is to
present an efficient SAT solver, given the relevance of the problem. The paper is
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organized as follows. In Section 2, some prerequisites about languages and sets are
given. The next section is devoted to introduce tissue P systems, and the complex-
ity classes associated to them. In Section 4, an efficient solution to SAT by means
of tissue P systems from T DC(2) is given, and in the next section an overview of
the computations is given. Finally, the work finishes with some conclusions.

2 Preliminaries

An alphabet Γ is a non-empty set whose elements are called symbols. A string u
over Γ is an ordered finite sequence of symbols; that is, a mapping from a natural
number n ∈ N onto Γ The number nis called the length of the string u and it is
denoted by |u| The empty string (with length 0) is denoted by λ. The set of all
strings over an alphabet Γ is denoted by Γ ∗. A language over Γ is a subset of Γ ∗.

A multiset over an alphabet Γ is an ordered (Γ, f) where f is a mapping from Γ
onto the set of natural numbers N. The support of a multiset m = (Γ, f) is defined
as supp(m) = {x ∈ Γ | f(x) > 0}. A multiset is finite (respectively, empty) if its
support is a finite (respectively, empty) set. We denote by ∅ the empty multiset.
Let m1 = (Γ, f1),m2 = (Γ, f2) be multisets over Γ , then the union of m1 and m2,
denoted by m1 + m2, is the multiset (Γ, g) where g(x) = f1(x) + f2(x) for each
x ∈ Γ . The difference of m1 and m2, denoted by m1 \m2, is the multiset (Γ, g)
where g(x) = f1(x) − f2(x) for each x ∈ Γ . We denote by M(Γ ) the set of all
multisets over Γ .

The Cantor pairing function is used to encode two natural numbers into a

single one, and is defined as follows: given x, y ∈ N, 〈x, y〉 = (x+y+1)(x+y)
2 + y

3 Tissue P systems with symport/antiport rules

Definition 1. A recognizer tissue P system with symport/antiport rules and di-
vision rules of degree q ≥ 1 is a tuple Π = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout),
where:

1. Γ , Σ and E are finite alphabets such that Σ, E ⊆ Γ and Σ ∩ E = ∅.
2.M1, . . . ,Mq are multisets over Γ \ (Σ ∪ E).
3. R is a set of rules of the following types:

(a) Communication rules: (i, u/v, j), for i, j ∈ {0, 1, . . . , q}, i 6= j, u, v ∈
M(Γ ), |u|+ |v| > 0.

(b) Division rules: [ a ]i → [ b ]i[ c ]i, for i ∈ {1, . . . , q}, a, b, c ∈ Γ .
4. iin ∈ {1, . . . , q} and iout = env.

A recognizer tissue P system with symport/antiport rules and division rules
Π = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout) of degree q ≥ 1 can be viewed as a se
of q cells, labelled by 1, . . . , q with an environment labelled by 0 such that: (a)
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M1, . . .Mqare the multisets of objects initially placed in the q cells of the sys-
tem; (b) E is the set of objects located initially placed in the environment of
the system, all of them appearing in an arbitrary number of copies; and (c)
iin ∈ {1, . . . , q}, iout = env represent distinguished cells where objects of the in-
stance are introduced and which will encode the output of the system, respectively.

When applying a rule (i, u/v, j), the objects of the multiset represented by u
are sent from region i to region j and, simultaneously, the objects of multiset v are
sent from region j to region i. The length of the communication rule (i, u/v, j) is
defined as |u|+ |v|, that is, the total number of objects which appear in the rule.

A communication rule (i, u/v, j) is called a symport rule if u = λ or v = λ. A
symport rule (i, u/λ; j), with i 6= 0, j 6= 0 provides a virtual arc from cell i to cell
j. A communication rule (i, u/v, j) is called an antiport rule if u 6= λ and v 6= λ.
An antiport rule (i, u/v, j), with i 6= 0, j 6= 0, provides two arcs: one from cell i
to cell j and another one from cell j to cell i. Thus, every tissue P systems has
an underlying directed graph whose nodes are the cells of the system and the arcs
are obtained from communication rules. In this context, the environment can be
considered as a virtual node of the graph such that their connections are defined
by communication rules of the form (i, u/v, j), with i = 0 or j = 0.

When applying a division rule [ a ]i → [ b ]i[ c ]i, cell i is duplicated into two
new cells with the same label. Object a dissapears and an object b is created in
the first new cell and an object c is created in the second new cell. The rest of the
objects within the cell i are duplicated in the two new cells.

The rules of a system like the one above are used in a non-deterministic max-
imally parallel manner as it is customary in Membrane Computing. At each step,
all communication rules which can be applied will be applied in a maximally par-
allel way (at each step we apply a multiset of rules which is maximal, no further
applicable rule can be added). Only a single division rule can be applied to each
cell. If a division rule is applied to a cell, we say that this cell is is “blocked”, and
no communication rules can be applied to that cell in that computational step.

An instantaneous description or a configuration at any instant of a tissue P
system is described by all multisets of objects over Γ associated with all the
cells present in the system, and the multiset of objects over Γ \ E associated
with the environment at that moment. Bearing in mind that the objects from E
have infinite copies in the environment, they are not properly changed along the
computation. The initial configuration is (M1, . . . ,Mq; ∅). A configuration is a
halting configuration if no rule of the system is applicable to it.

Let us fix a tissue P system with symport/antiport rules Π. We say that con-
figuration Ci yields configuration Ci+1 in one transition step, denoted Ci ⇒Π Ci+1,
if we can pass from Ci to Ci+1 by applying the rules from R following the previous
remarks. A computation of Π is a (finite or infinite) sequence of configurations
such that: (a) the first term of the sequence is an initial configuration of the system;
(b) each non-initial configuration of the sequence is obtained from the previous
configuration by applying the rules of the system in a maximally parallel manner
with the restrictions previously mentioned; and (c) if the sequence is finite (called
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halting computation), then the last term of the sequence is a halting configura-
tion. All computations start from an initial configuration and proceed as stated
above;only halting computations give a result, which is encoded by the objects
present in the environment in the halting configuration. Given that they are rec-
ognizer P systems, all computations halt and return the same output. We denote
a recognizer membrane system Π with the input multiset m in the input region
as Π +m.

3.1 Complexity classes associated to tissue P systems

Let R be a class of recognizer membrane systems. We say that PMCR is the
class of problems solvable efficiently in a uniform way by means of a family of
recognizer membrane systems from R. The class of recognizer tissue P systems
with symport/antiport rules with length at most k and division rules is denoted
by T DC(k), k ≥ 1. For more information about computational complexity theory
in the framework of membrane computing, we refer the reader to [7, 8].

4 A solution to SAT in T DC(2)

In this section, an efficient solution to the SAT problem by means of a family of
P systems will cell division and symport/antiport rules of length at most 2 is
presented.

For each pair of natural numbers n, p ∈ N, we will consider the recognizer tissue
P system with cell division and symport/antiport rules

Π(〈n, p〉) = (Γ, E , Σ,M1, . . . ,Mnp+3,R, iin, iout)

of degree np+ 3 defined as follows:

(a)

Γ = Σ ∪ E ∪ {yes, no, α, β0, γ0} ∪ {cj | 1 ≤ k ≤ p}∪
{αk | 0 ≤ k ≤ np− 1} ∪ {ai,j | 1 ≤ i ≤ n, 1 ≤ j ≤ p}∪
{Ti,j , Fi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ p}∪
{xi,j,k, xi,j,k | 1 ≤ i ≤ n, 1 ≤ j ≤ p, 0 ≤ k ≤ np}

(b)
E = {αk | np ≤ k ≤ 2np+ 2} ∪ {βk | 1 ≤ k ≤ 2np+ 4}∪
{γk | 1 ≤ k ≤ 2np+ 5} ∪ {xi,j,k, xi,j,k | 1 ≤ i ≤ n, 1 ≤ j ≤ p, np+ 1 ≤ k ≤ 2np}

(c) Σ = {xi,j,0, xi,j,0 | 1 ≤ i ≤ n, 1 ≤ j ≤ p}
(d) Mi = ∅ for 1 ≤ i ≤ np, Mnp+1 = {yes, no, β0, γ0}, Mnp+2 = {ai,j | 1 ≤ i ≤

n, 1 ≤ j ≤ p} ∪ {cj | 1 ≤ j ≤ p} ∪ {α}, Mnp+3 = {α0}.
(e) The set of rules R is the following:

1. Rules to generate p copies of the 2n true possible truth assignments. For
this, 2np partial truth assignments will be generated.
[ ai,j ]np+2 → [Ti,j ]np+2[Fi,j ]np+2

(np+ 2, Ti,jFi,j′ , /λ, env)

}
for 1 ≤ i ≤ n, 1 ≤ j, j′ ≤ p
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2. Rules to generate 2np copies of cod(ϕ).

(np+ 1, xi,j,0/λ, i+ n · (j − 1))
(np+ 1, xi,j,0/λ, i+ n · (j − 1))

}
for

1 ≤ i ≤ n,
1 ≤ j ≤ p

[xi,j,k ]i+n·(j−1) → [xi,j,k+1 ]i+n·(j−1)[xi,j,k+1 ]i+n·(j−1)
[xi,j,k ]i+n·(j−1) → [xi,j,k+1 ]i+n·(j−1)[xi,j,k+1 ]i+n·(j−1)

}
for

1 ≤ i ≤ n,
1 ≤ j ≤ p,
0 ≤ k ≤ np− 1

(i+ n · (j − 1), xi,j,k/xi,j,k+1, env)
(i+ n · (j − 1), xi,j,k/xi,j,k+1, env)

}
for

1 ≤ i ≤ n,
1 ≤ j ≤ p,
np ≤ k ≤ 2np− 1

3. Rules to check which clauses are satisfied by the truth assignment
(np+ 2, Ti,j/xi,j,2np, i+ n · (j − 1))
(np+ 2, Fi,j/xi,j,2np, i+ n · (j − 1))

}
for

1 ≤ i ≤ n,
1 ≤ j ≤ p

(np+ 2, cjxi,j,2np/λ, env)
(np+ 2, cjxi,j,2np/λ, env)

}
for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[αk ]np+3 → [αk+1 ]np+3 [αk+1 ]np+3

}
for 0 ≤ k ≤ np− 1

(np+ 3, αnp+k/αnp+k+1, env) for 0 ≤ k ≤ np+ 1
(np+ 1, βk/βk+1, env) for 0 ≤ k ≤ 2np+ 3
(np+ 1, γk/γk+1, env) for 0 ≤ k ≤ 2np+ 4
(np+ 2, α/α2np+2, np+ 3)
(np+ 2, α2np+2cj/λ, env) for 1 ≤ j ≤ p

4. Rules to return a negative answer
(np+ 1, β2np+4, γ2np+5/λ, np+ 3)
(np+ 1, no/β2np+4, np+ 3)
(np+ 3, no/λ, env)

5. Rules to return a positive answer
(np+ 1, β2np+4/α2np+2, np+ 2)
(np+ 1, α2np+2yes/λ, env)

(f) iin = np+ 1 and iout = env

5 An overview of the computations

In this section, we will explain a brief overview of the computations.
Let ϕ be a propositional logic formula in conjunctive normal form, where

V ar(ϕ) = {x1, . . . , xn}. Then, ϕ is of the form ϕ = C1 ∧ . . . ∧ Cp, where Cj
is a clause such that Cj = l1,j ∨ . . . lpj ,j , li,j ∈ {xi,¬xi}. The pair (cod, s) for this
family is cod(ϕ) = {xi,j | xi ∈ Cj} ∪ {xi,j | ¬xi ∈ Cj}, and s = 〈n, p〉.

For that, let us remember that the input is an instance of the SAT problem.
Let ϕ the input formula with n variables and p clauses. The tissue P system that
will give the answer to the instance is Π(〈n, p〉) + cod(ϕ).
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5.1 Generation stage

The first 2np steps will be devoted to generate both the 2n possible truth assign-
ments. For this, rules from 1 and 2 are used. On the one hand, With rules from
1, 2np cells with label np+ 2 with different truth assignments. The second rule is
fired in order to remove incompatible truth assignments in the following sense: if
two different assignments are given to the same variable, then the corresponding
objects are sent to the environment. In this way, the incompatible assignments are
removed and the remaining objects will be equivalent to a valid truth assignment.

On the other hand, rules from 2 will create 2np copies of each object from
cod(ϕ). Being li,j,0 ∈ cod(ϕ), at the end of the stage, there will be 2np cells i+ n ·
(j − 1) (1 ≤ i ≤ n, 1 ≤ j ≤ p) with an object li,j,2np in the corresponding cell.

Besides these rules, 2np cells with label np + 3 with an object α2np+2 will be
generated with rules from 3. This stage will take 2np steps.

5.2 First checking stage

In this stage, clauses validated by the truth assignments are going to be analyzed.
For this, rules from 3 are used. In particular, in the first step of the stage objects
Ti,j and Fi,j are interchanged with objects xi,j,2np and xi,j,2np, respectively. Then,
objects xi,j,2np and xi,j,2np will represent that the literal li makes true clause Cj .
Then, if an object xi,j,2np or xi,j,2np exists in a cell labelled by np + 2, it will
“remove” the corresponding object cj , sending it to the environment. When the
stage is over, cells labelled by np + 2 will contain only the objects cj such that
the clause Cj has not been satisfied by the corresponding truth assignment. This
stage takes 2 steps.

5.3 Second checking stage

The satisfiability of the input formula ϕ will be analyzed in this stage. Last two
rules from 3 will be used. In the first step, object α from cells labelled by np+ 2
will be interchanged with object α2np+2 from cells labelled by np + 3. Object
α2np+2 in cells labelled by np+ 3 is a mark to know if there are remaining objects
cj . With the last rule, any remaining object cj will “remove” object α2np+2 from
the corresponding cell np + 2. Therefore, if a truth assignment does not satisfy
the whole formula ϕ, object α2np+2 will not be present in the corresponding cell
np+ 2. This stage takes 2 steps.

5.4 Output stage

The output stage starts at the 2np+ 5 step, and takes 4 steps in the negative case
and 2 steps in the affirmative case.



An optimal solution to the SAT problem with tissue P systems 97

- Affirmative answer: In this case, there will exist a cell labelled by np+ 2 that
will have an object α2np+2, as it represents a truth assignment that makes
true the input formula ϕ. With the application of the first rule from 5, it
will be interchanged by the object β2np+4 from cell np+ 1. At the same time,
object γ2np+5 will go inside cell labelled by 1. Since object β2np+4 has been
moved from cell np + 2, they will not interact with each other. In the next
step, as object α2np+2 is present in the cell np + 1, it will send object yes to
the environment. Then, the computation ends.

- Negative answer: In this case, all objects α2np+2 will be in the environment,
as there is no truth assignment such that it makes true all clauses from ϕ.
Therefore, in the previous stage there was at least one object cj in each cell
labelled by np+2 and it will send object α2np+2 to the environment. In the first
step of this stage, object γ2np+5 will go into cell labelled by np+1. In the next
step, objects β2np+4 and γ2np+5 will interact and be sent to a cell labelled by
np+ 3. Following that, object no will be interchanged with the object β2np+4,
and then object no will be sent to the environment. The computation stops
here.

Theorem 1. SAT ∈ PMCT DC(2)

Proof. The family of P systems previously constructed verifies the following:

• Every system of the family Π is a recognizer P system from T DC(2).
• The family Π is polynomially uniform by Turing machines because for each
n, p ∈ N, the rules of Π(〈n, p〉) of the family are recursively defined from
n, p ∈ N, and the amount of resources needed to build an element of the
family is of a polynomial order in n and p, as shown below:

– Size of the alphabet: 4n2p2 + 10np+ p+ 17 ∈ Θ(n2p2).
– Initial number of cells: np+ 3 ∈ Θ(np).
– Initial number of objects in cells: np+ p+ 6 ∈ Θ(np).
– Number of rules: 2n2p2 + np2 + 11np+ p+ 7 ∈ Θ(n2p2).
– Maximal number of objects involved in any rule: 2 ∈ Θ(1).

• The pair (cod, s) of polynomial-time computable functions defined fulfills the
following: for each input formula ϕ of SAT problem, s(ϕ) is a natural number,
cod(ϕ) is an input multiset for the system Π(s(ϕ)), and for each n ∈ N, s−1(n)
is a finite set.

• The family Π is polynomially bounded: indeed, for each input formula ϕ of
SAT problem, the deterministic P system Π(s(ϕ))+cod(ϕ) takes exactly np+7
steps, being n the number of variables in ϕ and p its number of clauses.

• The family Π is sound with regard to (X, cod, s): for each formula ϕ, if the
computation of Π(s(ϕ)) + cod(ϕ) is an accepting computation, then ϕ is sat-
isfiable.

• The family Π is complete with regard to (X, cod, s): for each input formula ϕ
such that it is satisfiable, the computation of Π(s(ϕ))+ cod(ϕ) is an accepting
computation.

Corollary 1. NP ∪ co−NP ⊆ PMCT DC(2)
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6 Conclusions

In the framework of membrane computing, as mentioned above, we search for
frontiers of efficiency as new ways to attack the P versus NP problem. For that,
it is necessary to have both results of non-efficient classes and efficient classes of
membrane systems. The thinner the frontier, the easier would be to try to adapt
an efficient solution from the efficient model to the non-efficient model.

The SAT problem is the best-known NP-complete problem, since it was the
first problem to be demonstrated to be NP-complete [1, 4], and therefore is one
of the most studied problems to solve the conjecture. SAT solvers are systems
implemented to give an answer to an input SAT instance [2]. Implementations on
high-performance computing platforms could be useful to simulate this solution
since it could provide a good alternative to current industrial SAT solvers. More
precisely, this solution only requires of 2 objects at most in communication rules,
that could be an advantage in the implementation. As future work we will continue
studying the efficiency of different variants of recognizer membrane systems.
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Membrane Computing. WMC 2009. Lecture Notes in Computer Science, 5957 (2010).
Springer, Berlin, Heidelberg, pp. 85-109.
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