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Summary. We model the problem of contour approximation using Hilbert’s space filling
curve, with a novel type of parallel array rewriting rules. We further use their pattern to
introduce a special type of tissue P system, with novel features, among which is controlling
their behavior with input. We propose some further developments.

1 Introduction

Space-filling curves (SFCs) were studied by mathematicians as a curiosity, since
Peano discovered the first one in 1980 [7]. A year after this, Hilbert presented a
much simpler curve [3]. Many properties and aspects of them were studied, and
many other versions appeared in the literature, see for instance the monograph
[8]. Lately, interesting applications to problems in Computer Science have been
developed [1].

The finite approximations of the Hilbert curve can be described by words over a
four letter alphabet {u, r, d, l}, letters which stand for the four directions in which
a writing head can move in the lattice plane and draw a unit line. Formal language
instruments have been used to describe families of SFC words.

In a series of papers we have studied the generation of such words with parallel
rewriting controled by P systems, and we have proposed to model more complex
applications of them. This short paper (rather a sketch) tries to accomplish this
last purpose.

In the paper [2] we have proposed parallel array rewriting for the generation of
Hilbert words. In Section 3 we modify the rules, introducing an external control,
in order to generate contour approximations, after the ideas of [1] presented briefly
in Section 2. Section 4 illustrates the generation of tissue P systems to model the
rules.
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In Section 5 a new variant of tissue P systems where in each transition step it
can obtain inputs from external systems. Section 6 is devoted to a P system of the
above variant capable of generating a contour approximation based on the Hilbert
Curve.

Finally, in Section 7 we propose further developments of the ideas of this paper,
and in ?? we indicate a possible development for crisis management.

2 Problem presentation

In his monograph [1], Bader proposes to use SFCs to maintain data about 2D
objects. Figure 1 from his monograph illustrates the fact that, among several
possible traversals of the quadtree associated to a 2D closed contour, a traversal
based on the Hilbert SFC is more suited for applications which process the data
in the quadtree nodes, since it has the locality property.

Fig. 1. Figures extracted from monograph [1] (Ch. 1, Pg. 6)



Contour Approximation with P Systems 51

As Figure 2 illustrates, the approximation of the contour is obtained by pasting
together pieces of the Hilbert curve, of different orders. Each piece of the Hilbert
SFC is obtained in the usual manner, by repeated subdivisions of each sub-square
where necessary, that is only for those sub-squares that cross the contour (border)
of the 2D picture.

In the following, we propose to model the contour approximation generated by
this method, first with arrays, next with P systems.

3 Contour generation with array rewriting

Fig. 2. The approximation of the contour is based on the pasted pieces of the Hilbert
curve generated in the process [1]

Note: A combination of term rewriting rules with some constraints (called
control) specifying the possible rewrite positions.

Consider the alphabet of non-terminals

N̄ = {Ud,Ur,Ru,Rl, Ld, Lr,Du,Dl},

where each element is a 1× 1 array.
Denote by Γ the array morphism of the eight rewriting rules bellow:

U∗ → Ur Ud
Ru L∗ with ∗ = d, r (1)

R∗ → D∗ Rl
Ur Ru

with ∗ = u, l (2)

L∗ → Ld Dl
Lr U∗ with ∗ = d, r (3)
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D∗ → R∗ Ld
Du Dl

with ∗ = u, l (4)

Denote by F the array morphism of the eight rewriting rules below:

Ud→ d, Ur → r, Ld→ d, Lr → r,Ru→ u,Rl→ l,Du→ u,Dl→ l (5)

We have shown in [2] that F (Γn(Ur)) = the nth Hilbert word Hnr in array
representation.

We will now enlarge the set of non-terminals with one more symbol, #, standing
for the blank array, and the set of Γ rules, as follows:

U1∗ → Ur Ud
Ru L∗ with ∗ = d, r (6)

R1∗ → D∗ Rl
Ur Ru

with ∗ = u, l (7)

L1∗ → Ld Dl
Lr U∗ with ∗ = d, r (8)

D1∗ → R∗ Ld
Du Dl

with ∗ = u, l (9)

U0∗ = #0 → #0 #0

#0 #0 = #1 with ∗ = d, r (10)

R0∗ → #1 with ∗ = u, l (11)

L0∗ → #1 with ∗ = d, r (12)

D0∗ → #1 with ∗ = u, l (13)

where #0 stands for the blank 1 × 1 array. Since we will have parallel rewriting
rules, and we want to keep the growing dimension of the array, we will also have
rules

#0 → #0 #0

#0 #0 = #1 (14)

which rewrite blanks to blanks. Two succesive applications of the rule above will
produce #2, the 4× 4 array filled with blanks, and so on.

(The notation #n will be useful when we pass to the string representation.)
Each application of array rewriting rules (6)-(9) will correspond to a division

of a square into four subsquares.
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A division step will be followed by a recognizer step: each subsquare ’checks’
whether it intersects the contour, in which case it gets a 1 superscript, or not, in
which case it gets a 0 superscript, and will be rewritten accordingly at the next
derivation.

Let us illustrate this with the case of the Figure 2 above:

U1∗ → Ur Ud
Ru L∗  

U1r U1d
R1u L1∗ →

Ur Ud Ur Ud
Ru Lr Ru Ld
Du Rl Ld Dl
Ur Ru Lr U∗

 

U1r U1d U1r U0d
R1u L0r R1u L0d
D1u R1l L1d D1l
U0r R1u L1r U1∗

→

→

Ur Ud Ur Ud Ur Ud #0 #0

Ru Lr Ru Ld Ru Lr #0 #0

Du Rl #0 #0 Du Rl #0 #0

Ur Ru #0 #0 Ur Ru #0 #0

Ru Ld Dl Rl Ld Dl Rl Ld
Du Dl Ur Ru Lr Ud Du Dl
#0 #0 Du Rl Ld Dl Ur Ud
#0 #0 Ur Ru Lr Ur Ru L∗

 

Ur Ud Ur Ud U0r U0d #0 #0

Ru L0r R0u Ld Ru L0r #0 #0

Du R0l #0 #0 Du R0l #0 #0

Ur R0u #0 #0 Ur R0u #0 #0

Ru Ld D0l R0l Ld Dl Rl L0d
D0u Dl Ur R0u L0r U0d Du D0l
#0 #0 Du Rl L0d D0l Ur U0d
#0 #0 U0r Ru Lr Ur Ru L0∗

→ · · ·

After 3rd division-recognizer steps.
We generate the nw subsquare of the picture, illustrated below.
We have marked only the 0 superscript of non-terminals, for more clarity.

Fig. 3. Detail of the nw subsquare of the initial picture.

4 Membrane division rules

We will introduce dynamic P systems, which ’grow’ by repeated membrane division
rules, which will correspond to the subdivisions of the squares.
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4.1 In string format

We have from [2] the linearization procedure which allows to pass from the 2D
array representation to the linear one.

[U ]→ [Ru]sw[Ur]nw[Ud]ne[L∗]se [R]→ [Ur]sw[Ru]se[Rl]ne[D]nw

[L]→ [Dl]ne[Ld]nw[Lr]sw[U ]se [D]→ [Ld]ne[Dl]se[Du]sw[R]nw

4.2 In 2D array format

Each nonterminal array is in a membrane which has the possibility of dividing
itself into 4 membranes organized in a tissue manner.

The array rewriting rules become division rules for membranes, resulting in
tissue P systems:

[U1∗]→ [Ur] [Ud]
[Ru] [L∗] with ∗ = d, r (15)

[R1∗]→ [D∗] [Rl]
[Ur] [Ru]

with ∗ = u, l (16)

[L1∗]→ [Ld] [Dl]
[Lr] [U∗] with ∗ = d, r (17)

[D1∗]→ [R∗] [Ld]
[Du] [Dl]

with ∗ = u, l (18)

An example of 3 succesive subdivisions, which will finally lead to the picture:

[U1∗]→ [Ur] [Ud]
[Ru] [L∗]  

[U1r] [U1d]
[R1u] [L1∗] →

[Ur] [Ud] [Ur] [Ud]
[Ru] [Lr] [Ru] [Ld]
[Du] [Rl] [Ld] [Dl]
[Ur] [Ru] [Lr] [U∗]

 

[U1r] [U1d] [U1r] [U0d]
[R1u] [L0r] [R1u] [L0d]
[D1u] [R1l] [L1d] [D1l]
[U0r] [R1u] [L1r] [U1∗]

→

→

[Ur] [Ud] [Ur] [Ud] [Ur] [Ud] [#0] [#0]
[Ru] [Lr] [Ru] [Ld] [Ru] [Lr] [#0] [#0]
[Du] [Rl] [#0] [#0] [Du] [Rl] [#0] [#0]
[Ur] [Ru] [#0] [#0] [Ur] [Ru] [#0] [#0]
[Ru] [Ld] [Dl] [Rl] [Ld] [Dl] [Rl] [Ld]
[Du] [Dl] [Ur] [Ru] [Lr] [Ud] [Du] [Dl]
[#0] [#0] [Du] [Rl] [Ld] [Dl] [Ur] [Ud]
[#0] [#0] [Ur] [Ru] [Lr] [Ur] [Ru] [L∗]

 

[Ur] [Ud] [Ur] [Ud] [U0r] [U0d] [#0] [#0]
[Ru] [L0r] R0u Ld Ru L0r #0 #0

[Du] [R0l] [#0] [#0] [Du] [R0l] [#0] [#0]
[Ur] [R0u] [#0] [#0] [Ur] [R0u] [#0] [#0]
[Ru] [Ld] [D0l] [R0l] [Ld] [Dl] [Rl] [L0d]
[D0u] [Dl] [Ur] [R0u] [L0r] [U0d] [Du] [D0l]
[#0] [#0] [Du] [Rl] [L0d] [D0l] [Ur] [U0d]
[#0] [#0] [U0r] [Ru] [Lr] [Ur] [Ru] [L0∗]

→ · · ·

With labels on membranes:

[U ]→ [Ru]sw[Ur]nw[Ud]ne[L∗]se [R]→ [Ur]sw[Ru]se[Rl]ne[D]nw
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[L]→ [Dl]ne[Ld]nw[Lr]sw[U ]se [D]→ [Ld]ne[Dl]se[Du]sw[R]nw

[U1∗]→ [Ur]nw [Ud]ne
[Ru]sw [L∗]se

with ∗ = d, r (19)

[R1∗]→ [D∗]nw [Rl]ne
[Ur]sw [Ru]se

with ∗ = u, l (20)

[L1∗]→ [Ld]nw [Dl]ne
[Lr]sw [U∗]se

with ∗ = d, r (21)

[D1∗]→ [R∗]nw [Ld]ne
[Du]sw [Dl]se

with ∗ = u, l (22)

4.3 Labels for membranes, and memory

In the above we have used labels {sw, nw, ne, se} standing for the obvious notation
for corners of a square: southwest, northwest, etc.

Of course, binary labels could be used instead, with interesting properties. For
instance:

sw = 00, nw = 01, ne = 11, se = 10.

This has the property that any 2 adjacent squares have labels differing in only 1
bit (Gray code on 2 bits). Many binary codes can be associated to SFCs.

We will concatenate (properly!) labels at every derivation step, such
that each membrane: on one hand inherits the label of its ’parent’, and gets a
label stating what ’son’ it is. In this way, membranes have memory. Division
rules (with labels) will be of the form:

[ ]α → [ ]α00 [ ]α01 [ ]α11 [ ]α10

5 Tissue P systems with evolutional communication rules,
extended division rules and external inputs

Definition 1. Let Π = (Γ,H,M1, . . . ,Mq,R, I) be a tissue P system with evolu-
tional communication rules, extended division and r external inputs rules of degree
q, where:

1. Γ is a finite alphabet;
2. H is the set of labels {1, . . . , q};
3.M1, . . . ,Mq are multisets over Γ ;
4. R is the set of rules of the following forms:

a) [u ]h1 [ v ]h2 → [ v′ ]h1 [u′ ]h2 , h1, h2 ∈ H,u, v, u′, v′ ∈ Mf (Γ ), |u| + |v| >
0, |u| = 0 → |u′| = 0, |v| = 0 → |v′| = 0 (evolutional communication
rules);
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b) [ a ]h → [ a1 ]h1
. . . [ as ]hs

, h, h1, . . . , hs ∈ H, a, a1, . . . , as ∈ Γ (extended di-
vision rules);

5. I be a set of elements (Γi, Hi,Ri), 1 ≤ i ≤ r such that:
a) Γi ⊆ Γ ;
b) Hi ∩H = ∅ ∧Hi ∩Hj = ∅, i 6= j.
c) Ri is the set of rules of the following form:

i. [u ]h1
[ v ]h2

→ [ ]h1
[u′ ]h2

, h1 ∈ Hi, h2 ∈ H,u ∈ Mf (Γi), v, u
′ ∈

Mf (Γ ), |u| > 0 (evolutional communication rules);

A tissue P system with communication rules, extended division rules and r inputs

Π = (Γ,H,M1, . . . ,Mq,R, I)

of degree q can be viewed as a set of q cells such that M1, . . . ,Mq represent the
multisets of objects initially placed in the q cells of the system.

A rule of the type [u ]h1 [ v ]h2 → [ v′ ]h1 [u′ ]h2 is called an evolutional com-
munication rule. A rule of the type [ a ]h → [ a1 ]h1

. . . [ as ]hs
is called an ex-

tended division rule. The length of evolutional communication rules is defined
by |u|+ |v|+ |u′|+ |v′|. The length of extended division rules is defined by s+ 1.
These rules were introduced in [9], and more deeply investigated in [4, 5, 6]

An instantaneous description or a configuration at an instant t of a tissue
P system with evolutional communication rules and extended division rules is
described by the cells present and the corresponding multisets of objects over Γ
associated with all the cells present in the system (not in the inputs). The initial
configuration is ((1,M1), . . . , (q,Mq)).

A rule [u ]h1 [ v ]h2 → [ v′ ]h1 [u′ ]h2 , h2 ∈ H is applicable to a configuration Ct
at an instant t if there exist a cell labelled by h1 containing the multiset u and
a cell labelled by h2 containing the multiset v. When applying such a rule, the
objects specified by u and v disappear from their respective cells and multisets v′

and u′ appear in h1 and h2, respectively. If |u| = 0 (respectively, |v| = 0), then
|u′| = 0 (resp., |v′| = 0) must be satisfied (this would correspond to symport rules).
If h2 ∈ H1 ∪ · · · ∪ Hr, the rule is applicable to a configuration Ct at an instant
t if there exist a cell labelled by h1 containing the multiset u and the cell of the
external input i such that h2 ∈ Hi contains the multiset v. The behaviour of the
application of the rule is similar to when h2 ∈ H.

A rule [ a ]h → [ a1 ]h1
. . . [ as ]hs

is applicable to a configuration Ct at an instant
t if there exists a cell labelled by h containing an object a. When applying such
a rule, the cell h is divided in s new cells labelled by hi(1 ≤ i ≤ s), where a is
changed to ai in the corresponding cell and the rest of the contents is replicated
in each cell.

We can think that the external inputs are independent systems that are com-
puting a function. In each computational step, they will have different contents,
that will be stated when the system is defined. In this sense, the contents of each
cell of the system has to be defined for every configuration.

The rules from R of a tissue P system with evolutional communication rules,
extended division rules and external inputs are applied in a non-deterministic
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maximally parallel manner (at each step we apply a multiset of rules which is
maximal; that is, no further applicable rule can be added), with the following
important remark: if a cell is divided, then the division rule is the only one which
is applied to that cell at that step; that is, extended division rules interrupts the
communication of that cell with others in that step. The new cells resulting from
division will be able to interact with other cells from the next step.

Let us fix a tissue P system with evolutional communication rules, extended
division rules and r inputs Π. We say that configuration Ct yields configuration
Ct+1 in one transition step, denoted by Ct ⇒Π Ct+1 if we can pass from Ct to
Ct+1 by applying the rules from R as follows: A transition step is divided in two
micro-steps.

1. First, rules from Ri, 1 ≤ i ≤ r are applied in a maximally parallel and non-
deterministic way. The “input systems” cannot receive any new contents from
the main system. This first step is denoted as Ct  C′t;

2. Second, rules fromR are applied as stated above. This is denoted as C′t → Ct+1;

We say that a transition step Ct ⇒Π Ct+1 is a transition Ct  C′t → Ct+1.
A computation of Π is a (finite or infinite) sequence of configurations such

that:

1. the first term of the sequence is the initial configuration of the system;
2. each non-initial configuration of the sequence is obtained from the previous

configuration by applying rules of the system in a maximally parallel manner
with the restrictions previously mentioned; and

3. if the sequence is finite (called halting computation) then the last term of the
sequence is a halting configuration (a configuration where no rule of the system
is applicable to it).

All computations start from an initial configuration and proceed as stated
above.

If C = (C0, . . . , Cp) of Π (p ∈ N) is a halting computation, then the length of C,
denoted by |C| is p; that is, |C| is the number of non-initial configurations which
appear in the finite sequence C. We denote by Ct(i), i ∈ H, the multiset of objects
over Γ contained in all membranes labelled by i (by applying extended division
rules different membranes with the same label can be created) at configuration Ct.
We denote C∗t the multiset Σh∈HCt(h)

6 Generating contour approximations with P systems

We will use a P system of the type introduced in Section 5. It interacts with a 2D
picture with contour as described by Figure 4

Let n be the number of iterations of the Hilbert curve we want to describe, let
L = {00, 01, 10, 11}n the set of all words of length at most 2n over {00, 01, 10, 11}
and N = {Ud,Ur,Ru,Rl, Ld, Lr,Du,Dl}. We consider the tissue P system
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1 1

1 1

1 0

1 0

1 1

0 1

1 1

1 1

Fig. 4. In each step, the external input system pic interacts with Π in such a way that
a symbol 0 or 1 is sent to the corresponding cell in the system.

Π = (Γ,H,Mλ,R, I)

with evolutional communication rules, extended division rules and 1 external input
defined as follows:

1. Working alphabet: Γ = N ∪ {Uαd, Uαr,Rαu,Rαl, Lαd, Lαr,Dαu,Dαl | α ∈
{0, 1}} ∪ {0, 1}, being λ the empty string;

2. H = {00, 01, 10, 11}∗ (that is, the set of all words over {00, 01, 10, 11}) is the
set of labels;

3. Mλ = {U1r}
4. The set R consists of the following rules:

a) Rules to divide the cells with intersections:
[U1d ]h → [Ru ]h00 [Ur ]h01 [Ud ]h11 [Ld ]h10
[U1r ]h → [Ru ]h00 [Ur ]h01 [Ud ]h11 [Lr ]h10
[R1u ]h → [Ur ]h00 [Du ]h01 [Rl ]h11 [Ru ]h10
[R1l ]h → [Ur ]h00 [Dl ]h01 [Rl ]h11 [Ru ]h10
[L1d ]h → [Lr ]h00 [Ld ]h01 [Dl ]h11 [Ud ]h10
[L1r ]h → [Lr ]h00 [Ld ]h01 [Dl ]h11 [Ur ]h10
[D1u ]h → [Du ]h00 [Ru ]h01 [Ld ]h11 [Dl ]h10
[D1l ]h → [Du ]h00 [Rl ]h01 [Ld ]h11 [Dl ]h10

b) Rules to divide the cells without intersections:
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[U0d ]h → [ # ]h00 [ # ]h01 [ # ]h11 [ # ]h10
[U0r ]h → [ # ]h00 [ # ]h01 [ # ]h11 [ # ]h10
[R0u ]h → [ # ]h00 [ # ]h01 [ # ]h11 [ # ]h10
[R0l ]h → [ # ]h00 [ # ]h01 [ # ]h11 [ # ]h10
[L0d ]h → [ # ]h00 [ # ]h01 [ # ]h11 [ # ]h10
[L0r ]h → [ # ]h00 [ # ]h01 [ # ]h11 [ # ]h10
[D0u ]h → [ # ]h00 [ # ]h01 [ # ]h11 [ # ]h10
[D0l ]h → [ # ]h00 [ # ]h01 [ # ]h11 [ # ]h10
[ #0 ]h → [ # ]h00 [ # ]h01 [ # ]h11 [ # ]h10

5. I = (Γpic, Hpic,Rpic), where:
a) Γpic = {0, 1}
b) Hpic is the set of the elements from H but with superscript pic.
c) The set Rpic consists of the following rules:

i. Rules to communicate if there is an interesection in a specific area:
[ a ]pich [Ud ]h → [ ]pich [Uad ]h
[ a ]pich [Ur ]h → [ ]pich [Uar ]h
[ a ]pich [Ru ]h → [ ]pich [Rau ]h
[ a ]pich [Rl ]h → [ ]pich [Ral ]h
[ a ]pich [Ld ]h → [ ]pich [Lad ]h
[ a ]pich [Lr ]h → [ ]pich [Lar ]h
[ a ]pich [Du ]h → [ ]pich [Dau ]h
[ a ]pich [Dl ]h → [ ]pich [Dal ]h


for a ∈ {0, 1}, h ∈ H

[ 0 ]pich [ # ]h → [ ]pich [ #0 ]h
d) The contents of a cell in this system will be 0 if there is no intersection

in the corresponding area of the picture, and 1 otherwise. In each con-
figuration there will exist the cells corresponding to the resolution of the
system.

7 Conclusions, Open problems, Suggestions for further
developments

The present paper proposes a new variant of parallel array rewriting rules, capable
to generate approximations of irregular contours, based on conecting pieces of
Hilbert words of different ’resolutions’.

It proposes also a new variant of tissue P systems with evolutional communi-
cation rules, extended division rules and external inputs. In this variant, division
rules are allowed to change the labels of the new created cells. The capability of
receive input from an external source allows these systems to get more precision
of a picture in each transition step.

Further developments are possible along several lines.

• to find means of effectively representing in a graphical manner the entire ap-
proximation, the problem being the segments which connect pieces of the SFC;
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• other variants of P systems and refinements of the proposed one
• use the external input as a catalyst to allow or forbid the system to evolve.
• making use of the array representation in string format;
• taking into account the versatility of P systems, to use this small model as a

template for complex applications, which involve the manipulation of spatial
data; an example would be looking for applications in robotics (global path
planning).
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