
P Systems with Limited Capacity

Artiom Alhazov1, Rudolf Freund2, and Sergiu Ivanov3

1 Vladimir Andrunachievici Institute of Mathematics and Computer Science
Academiei 5, Chis, inău, MD-2028, Moldova
artiom@math.md

2 Faculty of Informatics, TU Wien
Favoritenstraße 9–11, 1040 Wien, Austria
rudi@emcc.at

3 IBISC, Univ Évry, Paris-Saclay University
23, boulevard de France 91034 Évry, France
sergiu.ivanov@ibisc.univ-evry.fr

Summary. P systems are a model of compartmentalized multiset rewriting inspired by
the structure and functioning of the living cell. In this paper, we focus on a variant in P
systems in which membranes have limited capacity, i.e., the number of objects they may
hold is statically bounded. This feature corresponds to an important physical property
of cellular compartments. We propose several possible semantics of limited capacity and
show that one of them allows real-time simulations of partially blind register machines,
while the other one allows for obtaining computational completeness.

1 Introduction

Membrane systems were introduced in [9] as a multiset-rewriting model of com-
puting inspired by the structure and the functioning of the living cell. Among
the basic features of the original model are the hierarchical arrangement of the
membranes and the parallel evolution of the objects contained in the membrane
compartments. Usually a result is obtained if the computation halts, i.e., if no rule
is applicable any more.

In this paper we consider an additional feature also inspired by biology, namely
the limited capacity of cells to include objects – in total or of a specific kind. When
the number of cells is not bounded as in P systems with active membranes, this
biological feature of limited capacity can be kept for all cells below a given fixed
bound. On the other hand, in the standard hierarchical model with a static number
of cells, or, even if we allowed membrane dissolution, with a fixed upper bound for
the number of cells, we can only limit the number of specific objects and have to
allow an unbounded number of other objects when aiming at non-trivial theoretical
results.

34 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

When the number of cells is not bounded because of using membrane creation
and/or membrane division (together with membrane dissolution), the number of
objects in one cell/membrane can even be restricted to one, still allowing for obtain-
ing computational completeness, thereby counting the number of membranes/cells
instead of the number of objects in an output membrane/cell; for example, see
[1, 4, 3].

In this paper we now propose this new feature of limited capacity for (specific)
objects to be contained in a cell or a membrane region and several semantics of how
to treat the situation when the application of a (multiset of) rule(s) would violate
this limiting condition. We will only investigate two special variants in more detail,
both of them blocking or aborting computations which try to apply a multiset of
rules leading to a violation of the limited capacity conditions. For the first variant
we show that it allows for real-time simulations of partially blind register machines
(PBRM), while the other variant allows for obtaining computational completeness.

The development of the fascinating area of membrane computing during the
last two decades is documented in two textbooks, see [10] and [11]. For actual
information see the P systems webpage [13] and the issues of the Bulletin of the
International Membrane Computing Society and of the Journal of Membrane Com-
puting.

2 Definitions

For an alphabet V , by V ∗ we denote the free monoid generated by V under the
operation of concatenation, i.e., containing all possible strings over V. The empty
string is denoted by λ. For any a ∈ V and any string w over A, wa denotes the
number of symbols a in w.

A multiset M with underlying set A is a pair (A, f) where f : A → N is a
mapping. For a multiset M = (A, f), its support is defined as supp(M) = {x ∈
A | f(x) > 0}. A multiset is called empty or finite if its support is the empty set or
a finite set, respectively. If M = (A, f) is a finite multiset over A and supp(M) =

{a1, . . . , ak}, then it can also be represented by the string a
f(a1)
1 . . . a

f(ak)
k over

the alphabet {a1, . . . , ak}, and, moreover, all permutations of this string precisely
identify the same multiset M . For any a ∈ V and any multiset M over A, Ma

denotes the number of symbols a in w.
For further notions and results in formal language theory we refer to textbooks

like [5] and [12].

2.1 Register Machines

Register machines are well-known universal devices for computing (or generating
or accepting) sets of vectors of natural numbers.

P Systems with Limited Capacity 35

Definition 1. A register machine is a construct

M = (m,B, l0, lh, P)

where

• m is the number of registers,
• P is the set of instructions bijectively labeled by elements of B,
• l0 ∈ B is the initial label, and
• lh ∈ B is the final label.

The instructions of M can be of the following forms:

• p : (ADD (r) , q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.
Increase the value of register r by one, and non-deterministically jump to in-
struction q or s.

• p : (SUB (r) , q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.
If the value of register r is not zero then decrease the value of register r by one
(decrement case) and jump to instruction q, otherwise jump to instruction s
(zero-test case).

• lh : HALT .
Stop the execution of the register machine.

A configuration of a register machine is described by the contents of each reg-
ister and by the value of the current label, which indicates the next instruction to
be executed.

In the accepting case, a computation starts with the input of an l-vector of
natural numbers in its first l registers and by executing the first instruction of
P (labeled with l0); it terminates with reaching the HALT -instruction. Without
loss of generality, we may assume all registers to be empty at the end of the
computation.

In the generating case, a computation starts with all registers being empty and
by executing the first instruction of P (labeled with l0); it terminates with reaching
the HALT -instruction and the output of a k-vector of natural numbers in its last
k registers. Without loss of generality, we may assume all registers except the last
k output registers to be empty at the end of the computation.

In the computing case, a computation starts with the input of a l-vector of
natural numbers in its first l registers and by executing the first instruction of
P (labeled with l0); it terminates with reaching the HALT -instruction and the
output of a k-vector of natural numbers in its last k registers. Without loss of
generality, we may assume all registers except the last k output registers to be
empty at the end of the computation.

A configuration of a register machine is described by the contents of each
register and by the value of the current label, which indicates the next instruction
to be executed. M is called deterministic if the ADD-instructions all are of the
form p : (ADD (r) , q).

36 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

For useful results on the computational power of register machines, we refer
to [8]; for example, for proving computational completeness results for specific
variants of P systems, usually the following formulations of results for register
machines generating or accepting recursively enumerable sets of vectors of natural
numbers with k components or computing partial recursive relations on vectors of
natural numbers are helpful:

Proposition 1. Deterministic register machines can accept any recursively enu-
merable set of vectors of natural numbers with l components using precisely l + 2
registers. Without loss of generality, we may assume that at the end of an accepting
computation all registers are empty.

Proposition 2. Register machines can generate any recursively enumerable set of
vectors of natural numbers with k components using precisely k+2 registers. With-
out loss of generality, we may assume that at the end of an accepting computation
the first two registers are empty, and, moreover, on the output registers, i.e., the
last k registers, no SUB-instruction is ever used.

Proposition 3. Register machines can compute any partial recursive relation on
vectors of natural numbers with l components as input and vectors of natural num-
bers with k components as output using precisely l+ 2 + k registers, where without
loss of generality, we may assume that at the end of a successful computation the
first l+ 2 registers are empty, and, moreover, on the output registers, i.e., the last
k registers, no SUB-instruction is ever used.

In all cases it is essential that the output registers never need to be decremented.

2.2 Partially Blind Register Machines

We now consider one-way nondeterministic machines which have registers allowed
to hold positive or negative integers and which accept by final state with all reg-
isters being zero. Such machines are called blind if their actions depend on state
and input alone and not on the register configuration. They are called partially
blind if they block when any register is negative (i.e., only non-negative register
contents is allowed) but do not know whether or not any of the registers contains
zero.

Definition 2. A partially blind register machine is a construct

M = (m,B, l0, lh, P)

where

• m is the number of registers,
• P is the set of instructions bijectively labeled by elements of B,
• l0 ∈ B is the initial label, and

P Systems with Limited Capacity 37

• lh ∈ B is the final label.

The instructions of M can be of the following forms:

• p : (ADD (r) , q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.
Increase the value of register r by one, and non-deterministically jump to in-
struction q or s.

• p : (SUB (r) , q), with p ∈ B \ {lh}, q ∈ B, 1 ≤ r ≤ m.
If the value of register r is not zero then decrease the value of register r by one
and jump to instruction l2, otherwise abort the computation.

• lh : HALT .
Stop the execution of the register machine.

Again, a configuration of a partially blind register machine is described by the
contents of each register and by the value of the current label, which indicates the
next instruction to be executed.

A computation works as for a register machine, yet with the restriction that a
computation is aborted if one tries to decrement a register which is zero. Moreover,
computing, accepting or generating now also requires all registers (except output
registers) to be empty at the end of the computation.

2.3 P Systems

The standard model of hierarchical P systems can be defined as follows, for exam-
ple, see [11] for several variants:

Definition 3. A (hierarchical) P system of degree m ≥ 1 is a construct

Π = (O,µ,w1, . . . , wm, R1, . . . , Rm, i0)

where

• O is the alphabet of objects;
• µ is a membrane structure of degree m with membranes labeled in a one-to-one

manner with the natural numbers 1, . . . ,m;
• w1, . . . , wm ∈ O∗ are the multisets of objects initially present in the m regions

of µ;
• Ri, 1 ≤ i ≤ m, are finite sets of evolution rules over O associated with the

regions 1, 2, . . . ,m of µ; these evolution rules are of the forms u → v where
and u is a multiset over O and v is a string from ((O \C)× {here, out, in})∗;

• i0 ∈ {0, 1, . . . ,m} indicates the output region of Π.

The membrane structure and the multisets in Π constitute a configuration of
the P system; the initial configuration is given by the initial multisets w1, . . . , wm.
A transition between configurations is governed by the application of the evolution
rules, which is done in the maximally parallel way, i.e., only applicable multisets

38 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

of rules which cannot be extended by further rules are to be applied to the objects
in all membrane regions.

The application of a rule u→ v in a region containing a multiset M results in
subtracting from M the multiset identified by u, and then in adding the multiset
identified by v. The objects can eventually be transported through membranes due
to the targets in and out.

The P system continues with applying multisets of rules in the maximally
parallel way until there remain no applicable rules in any region of Π. Then the
system halts. We consider the number of objects from O contained in the output
region i0 at the moment when the system halts as the result of the underlying
computation of Π. The set of results of all computations possible in Π is called
the set of natural numbers generated by Π and it is denoted by N(Π) if we
only count the total number of objects in the output membrane; if we distinguish
between the multiplicities of different objects, we obtain a set of vectors of natural
numbers denoted by Ps(Π). We refer to [11] for further details and examples.

A special variant of P systems uses so-called catalysts, which are objects which
allow other objects to evolve, but never evolve themselves.

Definition 4. A catalytic P system of degree m ≥ 1 is a construct

Π = (O,C, µ,w1, . . . , wm, R1, . . . , Rm, i0)

where C ⊆ O is the alphabet of catalysts; the evolution rules are of the forms
ca → cv or a → v, where c is a catalyst, a is an object from O \ C, and v is
a string from ((O \ C) × {here, out, in})∗; the other ingredients are defined as
for hierarchical P systems in Definition 3. A catalytic P system is called purely
catalytic if all rules are catalytic ones.

Since the beginning, the question how many catalysts are needed in catalytic
and purely catalytic P systems for obtaining computational completeness has been
a challenging theoretical question. The following result was shown in [7], establish-
ing a lower bound for the computational power of catalytic P systems with only
one catalyst:

Proposition 4. Catalytic P systems with only one catalyst have at least the com-
putational power of partially blind register machines.

Example 1. In [7] it was shown that the vector set

S = {(n,m) | 0 ≤ n, n ≤ m ≤ 2n}

(which is not semi-linear) can be generated by some (even extended version of a)
PBRM and therefore by a P system with only one catalyst and 19 rules.

As already shown in [6], register machines with n ≥ 2 decrementable registers
can be simulated by catalytic P systems with n catalysts and by purely catalytic
P systems with n+ 1 catalysts.

P Systems with Limited Capacity 39

3 Limited Capacity

In most of the variants of P systems considered in the literature the number of
objects in a membrane region is not limited. In this paper, we propose a variant
in which the number of objects a membrane may contain is bounded, with the
bound already being given in the definition of the system.

In this paper we consider two variants of limiting the capacity – limiting the
total capacity of objects in a cell and only limiting the capacity of specific objects
in a cell, respectively.

Definition 5. A P system with per-membrane limited capacity is the following
construct:

Π = (O,µ,w1, . . . , wn, k1, . . . , kn, R1, . . . Rn, i0),

where ki ∈ N ∪ {∞} is the total capacity of membrane i, 1 ≤ i ≤ n, meaning
that, for |vi| denoting the contents of memrane i in the current configuration, the
condition |vi| ≤ ki must always be enforced, unless ki =∞. The other components
of the tuple are as in Subsection 2.3.

Definition 6. A P system with per-symbol limited capacity is the following con-
struct:

Π = (O,µ,w1, . . . , wn,K1, . . . ,Kn, R1, . . . Rn, i0),

where Ki : O → N ∪ {∞} are functions defining the per-symbol capacity of mem-
brane i. The condition wa ≤ K(a) must therefore be enforced at all times, for any
a ∈ O, unless K(a) =∞.

In this paper, we will focus on P systems with per-symbol limited capacity.

Remark 1. We immediately remark that the flattening technique which is folklore
in the membrane computing community can be applied in the case of P systems
with per-symbol limited capacity. Without loss of generality, we therefore in Sec-
tion 4 will only consider 1-membrane systems, which can be written in a simplified
version as follows with omitting the trivial membrane structure and taking the
skin membrane 1 as the output membrane:

Π = (O,w,K,R) and Π = (O,C,w,K,R) for catalytic P systems.

3.1 Semantics of Limited Capacity

What should happen if a membrane is about to exceed its capacity (total or per-
symbol)? Multiple kinds of behaviors may be considered, for example the following
variants:

40 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

1. Blocking behavior: Prohibit the application of (multisets of) rules which would
produce more objects. Attempting to apply such rules blocks the system, and
yields no result.

2. Destructive behavior: Completely remove the offending membrane from the
system, together with its contents.

3. Dissolutive behavior : Dissolve the offending membrane, dumping its contents
into its parent membrane; in this case, (one of) the parent membrane(s) must
allow for more objects, as otherwise the whole system would be dissolved.

4. Separation behavior: Divide the offending membrane separating its contents
across the child membranes. Since every child membrane only receives a part
of the contents of the parent, the capacity constraints may be satisfied.

The separation behavior may be useful for P systems with active membranes,
whereas the first three behaviors may also be applied for hierarchical P systems.

In this paper, we focus on the blocking behavior, see 1. Yet there are still at
least two possible semantics for the blocking behavior itself under the maximally
parallel derivation mode:

Semantics 1: Take all the applicable multisets of rules in the maximally parallel
derivation mode, but discard all those multisets which would violate the con-
straints.

Semantics 2: Take all the applicable multisets of rules in the asynchronous deriva-
tion mode, discard the multisets which would violate the constraints, and then
pick the non-extendable, i.e., maximal multisets out of these applicable mul-
tisets of rules.

To illustrate the difference between these two semantics, consider the following
1-membrane system with limited capacity:

a→ c
b→ c

ab

It can formally be written as

Πab = ({a, b}, ab,Kab, {a→ c, b→ c})

where Kab(c) = 1 and Kab(a) = Kab(b) =∞.

In the case of Semantics 1, no multisets of rules not violating the constraint of
limiting the capacity of symbols c in the resulting configuration would be applica-
ble, and the P system will block/abort this computation.

P Systems with Limited Capacity 41

On the other hand, under Semantics 2, Πab would be allowed to apply either
a→ c or b→ c, but not both.

4 Computational Power

In this section we investigate the computational power of P systems with limited
per-symbol capacity: when operating with Semantics 1, they at least can simulate
partially blind register machines in real time; when operating with Semantics 2,
they can simulate any register machines and therefore are computationally com-
plete.

4.1 Semantics 1 Allows for Simulating a PBRM in Real Time

In this subsection, we will show that P systems with limited per-symbol capac-
ity operating under Semantics 1 can simulate partially blind register machines
(PBRM) in real time: an instruction of the register machine is simulated in one
step of the P system. An additional cleanup procedure at the end of the computa-
tion takes 3 more steps. In comparison with the result stated in [7] showing that P
systems with one catalyst can simulate partially blind register machines (without
any further ingredients), we here obtain a real-time simulation, whereas the result
there needs a cycle of n+ 3 for each step of the register machine, with n being the
number of decrementable registers.

Theorem 1. Catalytic P systems with one catalyst and per-symbol limited capacity
operating with Semantics 1 can simulate partially blind register machines (PBRM)
in real time, plus three additional cleanup steps at the end of the computation.

Proof. Consider an arbitrary partially blind register machine

M = (m,B, l0, lh, P) .

The following proof is given for the most general case of a partially blind register
machine computing a partial recursive function on vectors of natural numbers with
l components as input and vectors of natural numbers with k components as output
using n of decrementable registers, no matter how many of them are the first l
input registers and the working registers, respectively. Moreover, we may assume
that on the output registers, i.e., the last k registers, no SUB-instruction is ever
used. On the other hand, the computation of the PBRM yields a result if and only
if at the end of the computation all registers except the output registers are empty.

We now construct the P system

Π = (O, {c}, w0,K,R)

with per-symbol limited capacity operating under Semantics 1 and simulating the
PBRM M .

42 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

The set of objects of the construction includes register symbols ar for repre-
senting the contents of register r, the catalyst c, and the state symbols p ∈ B.
Moreover, we use decrement witness symbols λr for every decrementable register
r, 1 ≤ r ≤ n, as well as the catalyst c and the trap symbol # and, finally, the
additional symbols a0, λ0, lh′ . As we will see later, a0 can be interpreted as a reg-
ister symbol for an additional decrementable register 0, which during the whole
computation has the value 1, i.e., in every configuration we have exactly one copy
of a0, and it is only eliminated in the final cleanup procedure.

Now let BSUB(r) denote the set of labels of SUB-instruction p : (SUB(r), q) of
decrementable registers r, BSUB =

⋃
1≤r≤nBSUB(r), and BADD denote the set of

labels of ADD-instructions, i.e., B = BADD ∪BSUB.

Observing that n = m− k, in total we get the following set of objects:

O = {ar | 0 ≤ r ≤ m} ∪B ∪ {lh′} ∪D ∪ {c,#},
D = {λr | 0 ≤ r ≤ n}.

The capacity of the symbols in D is limited to 1, while all other symbols may
appear in an unlimited number of copies:

K(λr) = 1, 0 ≤ r ≤ n,
K(x) = ∞, x ∈ O \D.

Moreover, let D∅ denote the multiset containing exactly one copy of each object
in D and Dr the multiset containing exactly one copy of each object in D except
λr.

Then the starting configuration of the P system is defined as

w0 = c l0D∅ a0 α0,

where α0 is the multiset encoding the initial values of the registers.

The set of rules now is going to be described in several parts below.

First, we want all symbols in D to disappear after one step:
λr → λ ∈ R for all 0 ≤ r ≤ n.
We also include the traditional trap rule #→ # ∈ R.

Increment p : (ADD(r), q, s):

To simulate the ADD instruction p : (ADD(r), q, s) without letting the cata-
lyst block the system or do unwanted decrements, the catalyst is forced to process
the state symbol:

cp→ cqarD∅ cp→ csarD∅ p→ #.

P Systems with Limited Capacity 43

When the label of an ADD instruction is present in the configuration, the
catalyst cannot act on any of the register symbols ar, 0 ≤ r ≤ m, because this
would leave the state symbol p to be transformed to # due to the maximally
parallel derivation mode. This evolution will not violate the capacity constraints,
but introducing the trap symbol will prevent the system from ever halting. There-
fore, the catalyst must be used in one of the two rules simulating the increment.
Incidentally, these rules also replenish the supply of the symbols from D.

Decrement p : (SUB(r), q) (no zero test):

Consider the configuration c pD∅ a0 α, where α is a string of register symbols
describing the current contents of the registers. The following rules have to be
applied in this configuration:

p→ qDr car → cλr.

All the symbols from D∅ from the current configuration will disappear in the
next configuration. The rule p → qDr will reintroduce almost all of the symbols,
except for the particular λr corresponding to the register to be decremented. This
allows car → cλr to be applied in the current step, because in the next config-
uration there is still room for λr. All catalytic rules involving a wrong λr′ (and
therefore a wrong ar′) cannot be applied, because they would introduce a second
instance of λr′ , thus blocking the system.

Therefore, the only possible evolution from the configuration c pD∅ a0 α is to
the configuration c q D∅ a0 β where β = α− ar. Note that if the expected register
symbol ar is not present in α, then there will be no non-extendable multiset of rules
including the correct car → cλp, because then at least the rule ca0 → cλ0 described
below would become applicable, thus blocking (aborting) the computation without
producing any result. This behavior corresponds to a crash in the PBRM when it
tries to decrement a register which is already empty.

Final zero test, cleanup, and halting:

The simulation of the decrement instruction on register r only works correctly
when there are still some register symbols ar left. Indeed, as already mentioned
above, in order to force the computation in the P system to abort if a decrement on
an empty register would be tried, we at least would have the rule ca0 → cλ0, but
as long as the decrement symbol λ0 is re-introduced by applying a rule p → qDr

simulating a decrement on register r, the computation in the P system will be
forced to crash as two symbols λ0 are not allowed in a configuration.

On the other hand, if finally, the PBRM has reached a configuration with all
decrementable registers r, 1 ≤ r ≤ n being empty, we have to allow for a final zero
test: in this case the rule ca0 → cλ0 is welcome to be applied if we have reached
the final (halting) label lh:

lh → lh′Dλ0
ca0 → cλ0

44 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

The additional label lh′ is used to check whether all decrementable registers
are empty as required for a computation of the PBRM to be successful:

lh′ → Dλ0
car → c#λ0, 1 ≤ r ≤ n

In this step, the catalyst is free to use one of the rules car → c#λ0 for any
non-empty register r without violating the limiting condition for λ0, hence, the
trap symbol # is introduced if and only if any of the decrementable registers is
not empty.

If all decrementable registers have been empty, in the final step, the system
will just erase the symbols of Dλ0

, which will disappear and the system will halt
with only symbols ar for the output registers n+ 1 ≤ r ≤ m.

This final cleanup phase takes one step to erase a0, one more step to test the
presence of register symbols ar, 1 ≤ r ≤ n, and one final step to erase the last
symbols of Dλ0

. Hence, in a successful computation this final phase takes three
steps.

In the case of the simulation of a non-successful computation of the PBRM,
there may be many more steps applying rules car → c#λ0, possibly already in the
second step, but with the trap rule # → # ∈ R causing an infinite computation
we need not take care about this situation in detail. ut

Remark 2 (Trapping by limited capacity). Instead of having the rule # → # to
implement the trap symbol as a guarantee for an infinite computation and thus
for any computation introducing it to not be successful, we can limit its capacity to
1 and use rules of the form u→ v## instead of u→ v#. Alternatively, we could
limit the capacity of # to 0, meaning that even having to pick the rule u → v#
will already block the evolution. This means that, if all non-extendable multisets
of rules contain a rule of the form u → v#, then we must discard all multisets,
thereby blocking the evolution without producing any result. This blocking of
computations reflects the concept of using toxic objects as introduced in [2].

4.2 Semantics 2 Allows for Computational Completeness

In this subsection, we show that (purely catalytic) P systems with limited per-
symbol capacity are computationally complete when operating with Semantics 2
without any additional ingredients.

Remark 3 (Simulating catalytic rules). We first observe that when operating with
Semantics 2 we can limit the parallelism of a non-cooperative rule by producing
a marker symbol whose capacity is limited to one. For example, consider the rule
p : a→ uλp together with the rule λp → λ and the limiting condition K(λp) = 1,
i.e., the symbol λp may not appear in more than one copy. Then, in any multiset
of rules allowed to be applied λp may appear in at most one copy. This effectively
prohibits applying p more than once in any step.

P Systems with Limited Capacity 45

Moreover, we can ensure that the rules compete for the marker symbol just as
catalytic rules would compete for a catalyst. For example, consider two catalytic
rules ca → cu and cb → cv. These two rules cannot be applied at the same time,
even if both a and b are present, because the catalyst is only present in a single
copy. We can ensure the same mutual exclusion by having the symbol λc with the
capacity limited to 1 (K(λc) = 1), and the rules a→ uλc and b→ vλc.

Remark 4 (No catalysts needed). As elaborated in Remark 3, catalytic rules can be
replaced by non-cooperative rules, i.e., P systems with per-symbol limited capacity
operating with Semantics 2 do not need catalysts for simulating purely catalytic
P systems.

All together, these observations imply the following results:

Theorem 2. P systems with per-symbol limited capacity operating with Seman-
tics 2 without catalysts can simulate purely catalytic P systems.

Since purely catalytic P systems are computationally complete, for example
see [6], we immediately derive the following corollary.

Corollary 1. P systems with per-symbol limited capacity operating with Semantics
2 are computationally complete, even without using catalysts.

Remark 5 (Trapping by limited capacity). When following the proofs as given in [6]
for simulating register machines by [purely] catalytic P systems, often rules intro-
ducing the trap symbol # as well as the rule # → # are used to guarantee an
infinite computation and thus any computation introducing it to not be success-
ful. As already explained in Remark 2, we can avoid these rules by limiting the
capacity of the trap symbol to 1 and use rules of the form u → v## instead of
u→ v#, or alternatively, limit the capacity of # to 0, meaning that even having
to pick the rule u→ v# will already block the computation.

5 Conclusion

In this paper, we have introduced the idea of bounding the number of symbols
that may appear in the membranes of a P systems. This is a quite natural restric-
tion to consider, given that actual biological membranes are of limited capacity,
too. We defined limited total and per-symbol capacities, and defined two possible
semantics for handling the overflow. We then showed that Semantics 1 allows non-
cooperative P systems to simulate partially blind register machines in real time,
with 3 additional cleanup steps at the end of the computation. We also showed
that non-cooperative P systems operating under Semantics 2 of limited capacity
directly simulate purely catalytic P systems (in real time), yet without needing
catalysts, and therefore are computationally complete.

46 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

This paper only scratches the surface of the study of P systems with limited
capacity. One immediate open problem is that of computational completeness of
(catalytic, purely catalytic) P systems with limited capacity operating with Se-
mantics 1 or else characterizing the computational power of these systems.

Furthermore, Section 3 gives three more different behaviors which P systems
may adopt when their membranes overflow. In particular, the separation and the
dissolutive behaviors may even better represent the phenomena one would expect
to observe in overfull membranes in biological cells.

Acknowledgements

The ideas, concepts, and results described in this paper have mainly been devel-
oped in the inspiring atmosphere of the 18th Brainstorming Week on Membrane
Computing during the first week of February 2020 in Sevilla.

Sergiu Ivanov is partially supported by the Paris region via the project DIM
RFSI n◦2018-03 “Modèles informatiques pour la reprogrammation cellulaire”.

References

1. Artiom Alhazov. P systems without multiplicities of symbol-objects. Inf. Process.
Lett., 100(3):124–129, 2006.

2. Artiom Alhazov and Rudolf Freund. P systems with toxic objects. In Marian Gheo-
rghe, Grzegorz Rozenberg, Arto Salomaa, Petr Sośık, and Claudio Zandron, editors,
Membrane Computing – 15th International Conference, CMC 2014, Prague, Czech
Republic, August 20–22, 2014, Revised Selected Papers, volume 8961 of Lecture Notes
in Computer Science, pages 99–125. Springer, 2014.

3. Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov. Length P systems. Fundam.
Inform., 134(1-2):17–37, 2014.

4. Artiom Alhazov, Rudolf Freund, and Agustin Riscos-Núñez. Membrane division,
restricted membrane creation and object complexity in P systems. Int. J. Comput.
Math., 83(7):529–547, 2006.

5. Jürgen Dassow and Gheorghe Păun. Regulated Rewriting in Formal Language The-
ory. Springer, 1989.

6. Rudolf Freund, Lila Kari, Marion Oswald, and Petr Sośık. Computationally univer-
sal P systems without priorities: two catalysts are sufficient. Theoretical Computer
Science, 330(2):251–266, 2005.

7. Rudolf Freund and Petr Sośık. On the power of catalytic P systems with one catalyst.
In Grzegorz Rozenberg, Arto Salomaa, José M. Sempere, and Claudio Zandron, ed-
itors, Membrane Computing – 16th International Conference, CMC 2015, Valencia,
Spain, August 17–21, 2015, Revised Selected Papers, volume 9504 of Lecture Notes
in Computer Science, pages 137–152. Springer, 2015.

8. Marvin L. Minsky. Computation. Finite and Infinite Machines. Prentice Hall, En-
glewood Cliffs, NJ, 1967.

9. Gheorghe Păun. Computing with membranes. Journal of Computer and System
Sciences, 61(1):108–143, 2000.

10. Gheorghe Păun. Membrane Computing: An Introduction. Springer, 2002.

P Systems with Limited Capacity 47

11. Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa, editors. The Oxford Hand-
book of Membrane Computing. Oxford University Press, 2010.

12. Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal Languages.
Springer, 1997.

13. The P Systems Website. http://ppage.psystems.eu/.

