
Alternative Space Definitions for P Systems with
Active Membranes

Artiom Alhazov1, Alberto Leporati2, Luca Manzoni3, Giancarlo Mauri2, and
Claudio Zandron2

1 Vladimir Andrunachievici Institute of Mathematics and Computer Science
Academiei 5, Chis, inău, MD-2028, Moldova
artiom@math.md

2 Dipartimento di Informatica, Sistemistica e Comunicazione (DISCo)
Università degli Studi di Milano-Bicocca
Viale Sarca 336, 20126 Milan, Italy.
{alberto.leporati,giancarlo.mauri,claudio.zandron}@unimib.it

3 Dipartimento di Matematica e Geoscienze
Università degli Studi di Trieste
lmanzoni@units.it

Summary. The first definition of space complexity for P systems was based on an hypo-
thetical real implementation by means of biochemical materials, and thus it assumes that
every single object or membrane requires some constant physical space. This is equivalent
to using a unary encoding to represent multiplicities for each object and membrane.

A different approach can also be considered, having in mind an implementation of P
systems in silico; in this case, the multiplicity of each object in each membrane can be
stored using binary numbers, thus reducing the amount of needed space. In this paper,
we give a formal definition for this alternative space complexity measure, we define the
corresponding complexity classes and we compare such classes both with standard space
complexity classes and with complexity classes defined in the framework of P systems
considering the original definition of space.

Key words: Membrane Systems, Computational Complexity, Space Complexity

1 Introduction

P systems with active membranes have been introduced in [6], considering the idea
of generating new membranes through division of existing ones. The exponential
amount of resources that can be obtained in this way, in a polynomial number of
computation steps, naturally leads to the definition of new complexity classes to
be compared with the standard ones.

10 A. Alhazov, A. Leporati, L. Manzoni, G. Mauri, C. Zandron

Initially, the research activity focused on the investigation of time complexity,
for the various classes of P systems that can be obtained by introducing different
features.

The first definition of space complexity for P systems has been introduced
in [8], and it was based on an hypothetical real implementation by means of bio-
chemical materials such as cellular membranes and chemical molecules. Under this
assumption, it was assumed that every single object or membrane requires some
constant physical space, and this is equivalent to using a unary encoding to rep-
resent multiplicities.

A different approach can also be considered, focusing the definition on the
simulative point of view. By considering an implementation of P systems in silico,
it is not strictly necessary to store information concerning every single object: the
multiplicity of each object in each membrane can be stored using binary numbers,
thus reducing the amount of needed space.

In this paper, we give a formal definition for this alternative space complex-
ity measure, we define the corresponding complexity classes and we compare such
classes both with standard space complexity classes and with complexity classes
defined in the framework of P systems considering the original definition of space
[8]. In particular, we will give partial results concerning the use of constant, poly-
nomial or exponential amount of space, respectively.

The paper is organized as follows. In Section 2 we recall some definitions con-
cerning P systems with active membranes and space requirements in P systems
computations. In Section 3, we introduce a different definition for measuring space
(which we call binary space to underline that information concerning objects is
stored in binary) and we give some results following immediately from this def-
inition. In Section 4 we compare the new binary space complexity classes with
standard complexity classes and with space complexity classes for P systems based
on the standard definition of space. Finally section 5 draws some conclusions and
presents some future research topics on this subject.

2 Basic definitions

In this section, we shortly recall some definitions that will be useful while reading
the rest of the paper. For a complete introduction to P systems, we refer the reader
to The Oxford Handbook of Membrane Computing [7].

Definition 1. A P system with active membranes having initial degree d ≥ 1 is a
tuple Π = (Γ,Λ, µ, wh1

, . . . , whd
, R), where:

• Γ is an alphabet, i.e., a finite non-empty set of symbols, usually called objects;
in the following, we assume Γ = {O1, O2, . . . , On}

• Λ is a finite set of labels for the membranes;
• µ is a membrane structure (i.e., a rooted unordered tree, usually represented by

nested brackets) consisting of d membranes, labelled by elements of Λ in a one-

Alternative Space Definitions for P Systems with Active Membranes 11

to-one way, defining regions (the space between a membrane and all membranes
immediately inside it, if any);

• wh1
, . . . , whd

, with h1, . . . , hd ∈ Λ, are strings over Γ describing the initial
multisets of objects placed in the d regions of µ;

• R is a finite set of rules over Γ .

Membranes are polarized, that is, they have an attribute called electrical charge,
which can be neutral (0), positive (+) or negative (−).

A P system can made a computation step by applying its rules to modify the
membrane structure and/or the membrane content.The following types of rules
can be used during the computation:

• Object evolution rules, of the form [a→ w]αh
They can be applied inside a membrane labelled by h, having charge α and
containing at least an occurrence of the object a; the object a is rewritten into
the multiset w (i.e., a is removed from the multiset in h and replaced by the
objects in w).

• Send-in communication rules, of the form a []αh → [b]βh
They can be applied to a membrane labelled by h, having charge α and such
that the external region contains at least an occurrence of the object a; the
object a is sent into h becoming b and, simultaneously, the charge of h is
changed to β.

• Send-out communication rules, of the form [a]αh → []βh b
They can be applied to a membrane labelled by h, having charge α and con-
taining at least an occurrence of the object a; the object a is sent out from h to
the outside region becoming b and, simultaneously, the charge of h is changed
to β.

• Dissolution rules, of the form [a]αh → b
They can be applied to a membrane labelled by h, having charge α and con-
taining at least an occurrence of the object a; the membrane h is dissolved
and its contents are left in the surrounding region unaltered, except that an
occurrence of a becomes b.

• Elementary division rules, of the form [a]αh → [b]βh [c]
γ
h

They can be applied to a membrane labelled by h, having charge α, containing
at least an occurrence of the object a but having no other membrane inside
(in this case the membrane is said to be elementary); the membrane is divided
into two membranes having both label h and charges β and γ, respectively; the
object a is replaced, respectively, by b and c in the two new membranes, while
the other objects in the initial multiset are copied to both membranes.

• (Weak) Non-elementary division rules, of the form [a]αh → [b]βh [c]
γ
h

These rules operate just like division for elementary membranes, but they can
be applied to non–elementary membranes, containing membrane substructures
and having a label h. Like the objects, the substructures inside the dividing
membrane are replicated in the two new copies of it.

12 A. Alhazov, A. Leporati, L. Manzoni, G. Mauri, C. Zandron

A configuration of a P system with active membranes is described by the
current membrane structure (including the electrical charge of each membrane)
and the multisets located in the corresponding regions. A computation step changes
the current configuration according to the following set of principles:

• Each object and membrane can be subject to at most one rule per step, except
for object evolution rules (inside each membrane several evolution rules can be
applied simultaneously).

• The application of rules is maximally parallel : each object appearing on the
left-hand side of evolution, communication, dissolution or division rules must
be subject to exactly one of them (unless the current charge of the membrane
prohibits it). The same principle applies to each membrane that can be in-
volved in communication, dissolution, or division rules. In other words, the
only objects and membranes that do not evolve are those associated with no
rule, or only to rules that are not applicable due to the electrical charges.

• When several conflicting rules can be applied at the same time, a nondeter-
ministic choice is performed; this implies that, in general, multiple possible
configurations can be reached as the result of a computation step.

• In each computation step, all the chosen rules are applied simultaneously (in an
atomic way). However, in order to clarify the operational semantics, each com-
putation step is conventionally described as a sequence of micro-steps as follows.
First, all evolution rules are applied inside the elementary membranes, followed
by all communication, dissolution and division rules involving the membranes
themselves; this process is then repeated to the membranes containing them,
and so on towards the root (outermost membrane). In other words, the mem-
branes evolve only after their internal configuration has been updated. For
instance, before a membrane division occurs, all chosen object evolution rules
must be applied inside it; in this way, the objects that are duplicated during
the division are already the final ones.

• The outermost membrane cannot be divided or dissolved, and any object sent
out from it cannot re-enter the system again.

A halting computation of the P system Π is a finite sequence of configura-
tions C = (C0, . . . , Ck), where C0 is the initial configuration, every Ci+1 is reachable
from Ci via a single computation step, and no rules of Π are applicable in Ck. A
non-halting computation C = (Ci : i ∈ N) consists of infinitely many configura-
tions, again starting from the initial one and generated by successive computation
steps, where the applicable rules are never exhausted.

P systems can be used as language recognizers by employing two distinguished
objects yes and no; exactly one of these must be sent out from the outermost mem-
brane, and only in the last step of each computation, in order to signal acceptance
or rejection, respectively; we also assume that all computations are halting.

In order to solve decision problems (i.e., decide languages over an alphabet Σ),
we use families of recognizer P systems Π = {Πx : x ∈ Σ?}. Each input x is
associated with a P system Πx that decides the membership of x in the language

Alternative Space Definitions for P Systems with Active Membranes 13

L ⊆ Σ? by accepting or rejecting. The mapping x 7→ Πx must be efficiently
computable for each input length [4].

These families of recognizer P systems can be used to solve decision problems
as follows.

Definition 2. Let Π be a P system whose alphabet contains two distinct objects
yes and no, such that every computation of Π is halting and during each computa-
tion exactly one of the objects yes,no is sent out from the skin to signal acceptance
or rejection. If all the computations of Π agree on the result, then Π is said to be
confluent; if this is not necessarily the case, then it is said to be non-confluent and
the global result is acceptance if and only if there exists an accepting computation.

Definition 3. Let L ⊆ Σ? be a language, D a class of P systems (i.e. a set of P
systems using a specific subset of features) and let Π = {Πx | x ∈ Σ?} ⊆ D be a
family of P systems, either confluent or non-confluent. We say that Π decides L
when, for each x ∈ Σ?, x ∈ L if and only if Πx accepts.

Complexity classes for P systems are defined by imposing a uniformity con-
dition on Π and restricting the amount of time or space available for deciding a
language.

Definition 4. Consider a language L ⊆ Σ?, a class of recognizer P systems D,
and let f : N→ N be a proper complexity function (i.e. a "reasonable" one, see [5,
Definition 7.1]). We say that L belongs to the complexity class MC∗D(f) if and only
if there exists a family of confluent P systems Π = {Πx | x ∈ Σ?} ⊆ D deciding
L such that:

• Π is semi-uniform, i.e. there exists a deterministic Turing machine which, for
each input x ∈ Σ?, constructs the P system Πx in polynomial time with respect
to |x|;

• Π operates in time f , i.e. for each x ∈ Σ?, every computation of Πx halts
within f(|x|) steps.

In particular, a language L ⊆ Σ? belongs to the complexity class PMC∗D if and
only if there exists a semi-uniform family of confluent P systems Π = {Πx | x ∈
Σ?} ⊆ D deciding L in polynomial time.

The analogous complexity classes for non-confluent P systems are denoted by
NMC∗D(f) and NPMC∗D.

Another set of complexity classes is defined in terms of uniform families of
recognizer P systems:

Definition 5. Consider a language L ⊆ Σ?, a class of recognizer P systems D,
and let f : N → N be a proper complexity function. We say that L belongs to the
complexity class MCD(f) if and only if there exists a family of confluent P systems
Π = {Πx | x ∈ Σ?} ⊆ D deciding L such that:

14 A. Alhazov, A. Leporati, L. Manzoni, G. Mauri, C. Zandron

• Π is uniform, i.e. for each x ∈ Σ? deciding whether x ∈ L is performed as
follows: first, a polynomial-time deterministic Turing machine, given the length
n = |x| as a unary integer, constructs a P system Πn with a distinguished
input membrane; then, another polynomial-time deterministic Turing machine
computes an encoding of the string x as a multiset wx, which is finally added
to the input membrane of Πn, thus obtaining a P system Πx that accepts if
and only if x ∈ L.

• Π operates in time f , i.e. for each x ∈ Σ?, every computation of Πx halts
within f(|x|) steps.

In particular, a language L ⊆ Σ? belongs to the complexity class PMCD if and
only if there exists a uniform family of confluent P systems Π = {Πx | x ∈ Σ?} ⊆
D deciding L in polynomial time.

The analogous complexity classes for non-confluent P systems are denoted by
NMCD(f) and NPMCD.

As stated in the Introduction, the first definition of space complexity for P sys-
tems introduced in [8] considered a possible real implementation with biochemical
materials, thus assuming that every single object and membrane requires some
constant physical space. Such a definition (in the improved version from [3], tak-
ing into account also the space required by the labels for membranes and the
alphabet of symbols) is the following:

Definition 6. Considering a configuration C of a P system Π, its size |C| is the
number of membranes in the current membrane structure multiplied by log |Λ|,
plus the total number of objects from Γ they contain multiplied by log |Γ |. If C =
(C0, . . . , Ck) is a computation of Π, then the space required by C is defined as

|C| = max{|C0|, . . . , |Ck|}.

The space required by Π itself is then obtained by computing the space required by
all computations of Π and taking the supremum:

|Π| = sup{|C| : C is a computation of Π}.

Finally, let Π = {Πx : x ∈ Σ?} be a family of recognizer P systems, and let s : N→
N. We say that Π operates within space bound s if and only if |Πx| ≤ s(|x|) for
each x ∈ Σ?.

Analogously to what has been done for time complexity classes, we can define
space complexity classes. By MCSPACED(f(n)) (resp. MCSPACE∗D(f(n))) we
denote the class of languages which can be decided by uniform (resp. semi-uniform)
families of confluent P systems of type D (for example, when we refer to P systems
with active membranes, we denote this by setting D = AM), where each Πx ∈ Π
operates within space bound f(|x|).

In particular, the class of problems solvable in polynomial space by uni-
form (resp. semi-uniform) confluent systems is denoted by PMCSPACED (resp.

Alternative Space Definitions for P Systems with Active Membranes 15

PMCSPACE∗D), and the class of problems solvable in exponential space by uni-
form (resp. semi-uniform) confluent systems is denoted by EXPMCSPACED
(resp. EXPMCSPACE∗D).

The corresponding classes for non-confluent systems are NPMCSPACED
(resp. NPMCSPACE∗D) and NEXPMCSPACED (resp. NEXPMCSPACED).

3 An Alternative Definition of Space Complexity for P
Systems

In this section, we first give a different definition of space complexity for P systems
with active membranes. This definition considers the information stored in the
objects of the systems, and not the single objects themselves. In other words, we
store, using binary numbers, the multiplicity of each object in each membrane,
thus reducing the amount of needed space with respect to the definition of space
given in the previous section. We will refer to this definition of space by binary
space, and we will add a symbol B where appropriate, to distinguish between the
definitions referring to this new measure and the definitions recalled in the previous
section.

Definition 7. Consider a configuration C of a P system Π. Let us denote by
h1, h2, ..., hz the membranes of the current membrane structure (we stress the fact
that z can be smaller, equal, or greater than the initial number of membranes d,
due to dissolution and duplication of membranes), and by |Oi,j | the multiplicity of
object i within region j. The binary size |C|B of a configuration C is defined as:

|C|B = z · log |Λ|+
(z∑
j=1

n∑
i=1

dlog(|Oi,j |)e
)
· log |Γ |

that is the number of membranes in the current membrane structure multiplied by
log |Λ|, plus the number of bits required to store the amount of each object in each
membrane multiplied by log |Γ |.

If C = (C0, . . . , Ck) is a computation of Π, then the binary space required by C
is defined as

|C|B = max{|C0|B , . . . , |Ck|B}.

The binary space required by Π itself is then obtained by computing the binary
space required by all computations of Π and taking the supremum:

|Π|B = sup{|C|B : C is a computation of Π}.

Finally, let Π = {Πx : x ∈ Σ?} be a family of recognizer P systems, and let s : N→
N. We say that Π operates within binary space bound s if and only if |Πx|B ≤
s(|x|) for each x ∈ Σ?.

16 A. Alhazov, A. Leporati, L. Manzoni, G. Mauri, C. Zandron

We can thus define space complexity classes considering this new size measure
like we did in the previous section. By MCBSPACED(f(n)) we denote the class of
languages which can be decided by uniform families of confluent P systems of type
D , where each Πx ∈ Π operates within space bound f(|x|), considering this new
definition of binary space. Similarly, we can define the usual complexity classes
like we did in the previous section, simply adding a B to underline the use of this
new definition of space. For instance, the class of problems solvable in polynomial
binary space will be denoted by PMCBSPACED.

Once these notions have been defined, we are ready to state some results ob-
tained by considering various complexity classes defined in terms of binary space.
Just like it happens with the classes based on the original definition of space given
in [8], some results follow immediately from the definitions (here we state results
for semi-uniform families, but it is easy to see that they also hold in the uniform
case):

Proposition 1 The following inclusions hold:

PMCBSPACE?D ⊆ EXPMCBSPACE?D

NPMCBSPACE?D ⊆ NEXPMCBSPACE?D.

Proposition 2 MCBSPACE?D(f) ⊆ NMCBSPACE?D(f) for each f : N → N,
and in particular

PMCBSPACE?D ⊆ NPMCBSPACE?D

EXPMCBSPACE?D ⊆ NEXPMCBSPACE?D.

The results describing closure properties and providing an upper bound for
time requirements of P systems operating in bounded binary space are still valid,
too:

Proposition 3 The complexity classes PMCBSPACE?D, NPMCBSPACE?D,
EXPMCBSPACE?D, and NEXPMCBSPACE?D are all closed under polynomial-
time reductions.

Proof. Consider a language L ∈ PMCBSPACE?D and let M be the Turing ma-
chine constructing the family Π that decides L. Let L′ be reducible to L via a
polynomial-time computable function f .

We can build a Turing machine M ′ working as follows: on input x of length n,
M ′ computes f(x); then it behaves like M on input f(x), thus constructing Πf(x)

(we stress the fact that, for the corresponding result concerning the uniform case,
the construction of the P system involves two Turing machines, both operating in
polynomial time; in this case, we simulate the composition of the two machines).
Since |f(x)| is bounded by a polynomial, M ′ operates in polynomial time and
Πf(x) in polynomial binary space; it follows that Π′ = {Πf(x) | x ∈ Σ?} is a
polynomially semi-uniform family of P systems deciding L′ in polynomial binary
space. Thus L′ ∈ PMCBSPACE?D.

The proof for the three other classes is analogous.

Alternative Space Definitions for P Systems with Active Membranes 17

Proposition 4 MCBSPACE?D(f) is closed under complement for each function
f : N→ N.

Proof. By reversing the roles of objects yes and no, the complement of a language
can be decided.

4 Comparison with standard computational complexity
classes

In this section we compare the standard computational complexity classes with
the complexity classes defined in the framework of P systems working in binary
space.

Most results can be obtained as an immediate consequence of the results given
in [8], simply considering that MCSPACED(f(n)) ⊆MCBSPACED(f(n)).

Thus, recalling various results from [8], we have:

Proposition 5 Let us denote by EAM and AM0 the classes of P systems with
active membranes using only elementary membrane division and without polariza-
tions, respectively. The following results hold (we denote a result that holds for
both semi-uniform and uniform systems by [∗]):

NP ∪ coNP ⊆ EXPMCSPACE?EAM ⊆ EXPMCBSPACE?EAM

PSPACE ⊆ EXPMCSPACE?AM ⊆ EXPMCBSPACE?AM

PSPACE ⊆ EXPMCSPACEAM ⊆ EXPMCBSPACE?AM

PSPACE ⊆ EXPMCSPACE
[∗]
AM0 ⊆ EXPMCBSPACE

[∗]
AM0

An interesting research topic concerns the classes for which the inclusion
MCSPACED(f(n)) ⊆MCBSPACED(f(n)) is proper and, considering the above
inclusions, whether or not the same results can be obtained with stricter binary
space classes, by exploiting the improved information storage related to objects
with respect to the standard space definition.

Some partial results in this respect are the following:

Theorem 6 Let us denote by NAM the class of P systems with active mem-
branes that do not use membrane division. The following result holds: P =
MCSPACE?NAM(O(1)) = MCBSPACE?NAM(O(1))

Proof. The inclusion P ⊆ MCSPACE?NAM(O(1)) follows immediately from the
definition of semiuniform P systems. Consider a language L in P and a string
x; a deterministic Turing machine can create in polynomial time a P system
having a single membrane and one single object yes or no, directly answering
the question whether or not x ∈ L. The inclusion MCSPACE?NAM(O(1)) ⊆
MCBSPACE?NAM(O(1)) follows, as stated above, from the definition of binary
space.

18 A. Alhazov, A. Leporati, L. Manzoni, G. Mauri, C. Zandron

For the converse, we simply need to recall that a confluent P system without
membrane division can be simulated, in polynomial time, by a deterministic Turing
machine, like it was shown in [11]. It is easy to see that the proof works both
considering the standard space definition as well as the binary space definition for
P systems.

Another interesting result concerning the standard definition of space in the
framework of P systems was presented in [9], and it focuses on the type of resources
used. In particular, a solution for the PSPACE-complete problem Quantified
3SAT was given, for uniform systems using only communication rules (hence no
evolution, membrane division and dissolution rules were used), thus proving the
inclusion of PSPACE in this class. Once again, since the definition of binary space
allows a more efficient allocation of space, the result is still valid:

Proposition 7 Let AM(−ev,+com,−dis,−div) be the class of P systems with
active membranes using only communication rules (no evolution, dissolution, nor
division of membranes). Then PSPACE ⊆ PMCBSPACEAM(−ev,+com,−dis,−div) ⊆
PMCBSPACE∗AM(−ev,+com,−dis,−div).

Once again, it would be interesting to understand whether or not the result
remains valid for a smaller binary space class. In this case, the question can be
answered negatively, by considering a result presented in [10]. In the article, it was
shown that recognizer P systems with active membranes using polynomial space
characterize the complexity class PSPACE. The result holds for both confluent
and nonconfluent systems, and even in the case that non-elementary division is
used. In particular, it was pointed out that such systems can be simulated by
polynomial space Turing machines.

By considering the alternative definition for binary space, we can thus obtain
the corresponding theorem:

Theorem 8 Let Π be a nonconfluent P system with active membranes, running
in binary space S. Then, it can be simulated by a deterministic Turing machine in
space O(S).

Proof. We simulate Π by a non-deterministic Turing machine N , which can then
be reduced to polynomial deterministic space by using Savitch’s theorem [5].

The current configuration of Π can be stored explicitly by N : the membrane
structure is represented as a rooted tree, where each node is a membrane and
contains the information concerning its label, its charge, the multiset of objects in
the region, and a list of children nodes (i.e. the membranes immediately inside it).
To represent the multiset of objects inside each region, tuples of integers encoded
in binary can be used, with one entry for each object type in the alphabet.

Since the simulation algorithm is the same as in [10], it is still valid that the
space required to store further information needed to carry on the simulation is
limited by S.

It follows that the total requested amount of space for the simulation is of the
same order as the one required by Π, that is, O(S).

Alternative Space Definitions for P Systems with Active Membranes 19

It follows immediately from this theorem and from Proposition 7:

Theorem 9 Let D be a class of P systems with active membranes using at least
communication rules. Then [N]PMCBSPACE

[?]
D = PSPACE, where [N] denotes

optional nonconfluence, and [?] optional semi-uniformity.

In [2] it was shown that exponential space Turing machines can be simulated
by polynomially uniform exponential-space P systems with active membranes. In
view of this result and of Theorem 8, and of the definition of binary space, we have
the following:

Theorem 10 EXPSPACE = EXPMCBSPACEAM = EXPMCBSPACE?AM =
NEXPMCBSPACE?AM

Proof. The following inclusions hold by definition:
EXPMCBSPACEAM ⊆ EXPMCBSPACE?AM ⊆ NEXPMCBSPACE?AM,
whereas it is easy to see that the inclusionNEXPMCBSPACE?AM ⊆ EXPSPACE

is an immediate corollary of theorem 8.
Finally, the inclusion of EXPSPACE in EXPMCSPACEAM is proved in [2,

Theorem 8]. Recalling that EXPMCSPACEAM ⊆ EXPMCBSPACEAM, it fol-
lows EXPSPACE ⊆ EXPMCBSPACEAM ut

Hence, also in this case, considering binary space instead of the standard one
does not result in improved efficiency. Moreover, when we consider an exponential
amount of space, we can show that the classes coincide: in fact, considering the
theorem just proved and recalling [1, Corollary 1] proving the same results for
classes with the original definition of space for P systems, we have

Corollary 11 EXPSPACE = EXPMCSPACEAM = EXPMCSPACE?AM =
NEXPMCSPACE?AM = EXPMCBSPACEAM = EXPMCBSPACE?AM =
NEXPMCBSPACE?AM

5 Conclusions

We have proposed an alternative space complexity measure for P systems with
active membranes, where the multiplicity of each object in each membrane is stored
by using binary numbers. We have defined the corresponding complexity classes
and we have compared some of them both with standard space complexity classes
and with complexity classes defined in the framework of P systems considering the
original definition of space ([8]).

An interesting research topic is to compare such classes for different amounts of
allowed space. In particular, it would be interesting to find specific classes defined
in terms of binary space which stricly contain classes defined in terms of standard
space in the framework of P systems, thus proving that storing in an efficient way
the information concerning objects can really be exploited. We showed that, when

20 A. Alhazov, A. Leporati, L. Manzoni, G. Mauri, C. Zandron

an exponential amount of space is considered, these classes do not differ. Only
partial answers have been obtained for a polynomial amount of space. We expect
that the differences can be evident when considering sublinear space complexity
classes.

References

1. Alhazov, A., Leporati, A., Mauri, G., Porreca, A.E., Zandron, C.: The computa-
tional power of exponential-space P systems with active membranes. In: Martínez-del-
Amor, M.A., Păun, G., Pérez-Hurtado, I., Romero-Campero, F.J. (eds.) Tenth Brain-
storming Week on Membrane Computing, Volume I. pp. 35–60. No. 1/2012 in RGNC
Reports, Fénix Editora (2012), http://www.gcn.us.es/icdmc2012_proceedings

2. Alhazov, A., Leporati, A., Mauri, G., Porreca, A.E., Zandron, C.:
Space complexity equivalence of P systems with active membranes and
Turing machines. Theoretical Computer Science 529, 69–81 (2014),
https://doi.org/10.1016/j.tcs.2013.11.015

3. Leporati, A., Mauri, G., Porreca, A.E., Zandron, C.: A gap in the space hierarchy of
P systems with active membranes. Journal of Automata, Languages and Combina-
torics 19(1–4), 173–184 (2014), http://theo.cs.ovgu.de/jalc/search/j19_i.html

4. Murphy, N., Woods, D.: The computational power of membrane systems un-
der tight uniformity conditions. Natural Computing 10(1), 613–632 (2011),
https://doi.org/10.1007/s11047-010-9244-7

5. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1993)
6. Păun, G.: P systems with active membranes: Attacking NP-complete problems. Jour-

nal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)
7. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press (2010)
8. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: Introduc-

ing a space complexity measure for P systems. International Jour-
nal of Computers, Communications & Control 4(3), 301–310 (2009),
http://univagora.ro/jour/index.php/ijccc/article/view/2779

9. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: P systems with active
membranes: Trading time for space. Natural Computing 10(1), 167–182 (2011),
https://doi.org/10.1007/s11047-010-9189-x

10. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: P systems with active mem-
branes working in polynomial space. International Journal of Foundations of Com-
puter Science 22(1), 65–73 (2011), https://doi.org/10.1142/S0129054111007836

11. Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems us-
ing P systems with active membranes. In: Antoniou, I., Calude, C.S., Din-
neen, M.J. (eds.) Unconventional Models of Computation, UMC’2K, Proceed-
ings of the Second International Conference, pp. 289–301. Springer (2001),
https://doi.org/10.1007/978-1-4471-0313-4_21

