
Some open problems

Artiom Alhazov

Vladimir Andrunachievici Institute of Mathematics and Computer Science
Academiei 5, Chis,inău, MD-2028, Moldova
E-mail: artiom@math.md

1 Some questions from information theory

The research topic I would like to propose is COUNTING. I do not mean #P, I
mean enumerating membrane structures or configurations of a given ”size”, modulo
isomorphism or not. After finishing this email I reformulated this question as: ”how
much information is stored in a configuration of a membrane system with symbol
objects?”

Modulo isomorphism: as ”size” it is enough to specify the number m of mem-
branes and t of objects. In total: since alphabets, e.g., membrane alphabet (labels)
and object alphabet (symbols) are not bounded, the number of configurations,
even with a specified number of membranes and objects would be infinite unless
we somehow bound all alphabets. One of alternative approaches: fix the alphabets,
in particular —O—=n kinds of objects, the number m of membranes and maximal
number k of objects of each kind in each region. Then the total number of objects
is not fixed, but bounded by m*n*k.

Some preliminary results.

I One membrane, modulo isomorphism. t = 0→ 1 (empty multiset), t = 1→ 1,
t = 2 → 2(aa, ab), t = 3 → (aaa, aab, abc), t = 4 → 5, t = 5 → 7, t = 6 → 11.
Can be specified by a recurrent two-argument function. Seems to correspond
to number sequence https://oeis.org/A000041.

II Membrane structures without objects, without considering labels/polarizations,
modulo isomorphism. m = 1 → 1 (only skin), m = 2 → 1 (two nested mem-
branes), m = 3→ 2 ([[] []] and [[[]]]), m = 4→ 4, m = 5→ 9. Seems
to correspond to number sequence https://oeis.org/A000081.
Note: with labels, already m = 2 gives 2 different configurations, [[]2]1 and
[[]1]1.

III One membrane, one label, one polarization, no isomorphism. Fixing the alpha-
bet size |O| = n, the number of different multisets of cardinality t is the num-
ber of t-combinations with repetitions of set O, equal to C(n+ t− 1, t), where

2 Artiom Alhazov

C(n, k) = n!/(k!∗(n−k)!). https://en.wikipedia.org/wiki/Combination\
#Number_of_combinations_with_repetition

IV m membranes, |O| = n, at most k objects of any kind in any membrane, no
isomorphism. Then the number of different configurations would seem to be
equal to the number of different membrane structures with m membranes,
multiplied by (mn)(k+1). Correction: but even in this case it is not so simple,
because [[a] []] and [[][a]] are the same configuration; the expression
above only holds under the assumption that there are no indistinguishable
membranes, e.g., all membranes have different labels.

Goal: to have a general formula for each typical set of parameters specifying
”size”, of all configurations of this ”size”.

If counting tree structures is difficult, start with tissue.
Why? to understand how much information is indeed stored in a configuration

of a P system, because the general impression that, with m membranes and t
objects, there are approximately exponentially many different configurations, is
too inaccurate and in some settings incorrect.

2 Some questions from simulators

Let me try to put down some of the ideas discussed last year; hopefully it will be
useful, if not programmed in the near-future, then at least as a small publication.

1. Simulator. It would be very useful for theory to have a proper tool computing
the set of all possible transitions from a given configuration. (Yes, I re-
member you are more focused on applications like zebra muscles, and you are
quite concerned that it does not scale well. However, enough theory is anyway
done, and there can be multiple simulators for PLingua. A few times I have
been so upset that I thought about programming something like that myself,
but what I do is normally not compatible, not user- friendly and definitely not
in Java) Basically, having fixed the current configuration C, for each rule r it
is easy to compute the maximal number max(r, C) of times it can be applied
in parallel. By dividing, for each object a in lhs(r), |C|a by |lhs(r)|a rounding
down, and taking the minimum. Same works in a distributed way, assuming
proper flattening, possibly on the fly. In the worst case, all possibilities are
among the combinations, for each rule r, of applying it from 0 to max(r, C)
times. It only takes to verify that the multiset union of lhs(r) times the num-
ber of applications of r, summed over all rules r, is contained in r. That would
be asynchronous mode. For any other mode, compliance is also to be checked.
Of course, for maxpar that would be non-applicability of ANY further rule to
the idle objects. Of course, in particular cases the set of possible transitions
could be computed more efficiently.

2. Semantics and membranes. The recent advances in PLingua, like defining user
rule types, seem to be quite useful. Yet, the main value I see is being able to

Some open problems 3

specify rules other than the most usual ones in the model (and, in particular,
being able to combine rules from different models), and a comfortable way to
write them is secondary, though also nice. A thing which is often related to
syntax is how to apply it, the most needed versions being ”in max. parallelism”
and ”sequentially”. In particular, rules (a) are normally treated as parallel,
even though sequential version has been considered, while rules (b), (c), (d),
(e), . . . are normally considered sequential, even though without polarizations
alternative semantics has been studied.
Imagining rules involving more than one membrane, we need to be more pre-
cise. I proposed to indicate for each user type of rules (how exactly is a sec-
ondary question) which membranes are resources and which membranes are
context. Then, resources are lhs(r) and contexts are like promoters. Clearly,
under usual definitions a rule would be sequential with respect to resources
and parallel with respect to contexts.
If that is too difficult, usually it is enough to have implicit semantics: any
membrane written completely in lhs(r) is a reactant, a membrane written
in rhs(r) is a product, and a membrane containing ”→” is a context. Then,
[a → u] is a parallel rule, but [a] → [u] would be a sequential rule. Similarly,
it automatically follows in [[]→ [][]] that the external membrane is a context,
while internal membranes are resources, so we already know what is parallel
and what is sequential. However, if the user wants such a rule to be sequential
also w.r.t. the outer membrane, then it can be written as [[]]→ [[][]].
Unfortunately, this convention alone does not suffice for automatic deduction
of parallelism for rules like (b0), (c0). Because the context is not outside. (Yes,
they could be written as boundary rules, but this syntax is neither universal
nor compatible with traditional syntax for active membranes). But of course
something can always be invented, e.g., when specifying rule types, write ”[p”
vs ”[s” (parallel vs sequential) or ”[r” vs ”[c” (resource vs context).
Moreover, I was told that there is some problem with templates without ex-
ternal membrane, except the standard types

3. Dynamic membranes. Clearly, without explicitly indicated semantics [] → [[]]
would be a sequential membrane creation, while [a → [b]] would be a parallel
membrane creation. Then, [[a] → b] is a membrane dissolution, where the
external membrane is a context. But what is the behavior of other objects,
those not specified in the rules explicitly? The main variant is of course, upon
creation the new membrane will only contain b, and upon dissolution all the
contents of the old membrane is released in the outer membrane. But of course
there are other rules, although less studied. Last year I suggested to use some
wildcard, or mask, e.g., $1, to represent other objects (similarly, something
like #1 can represent other membranes, and for technical reasons different
characters may be chosen; I use these ones to explain the idea how to describe
semantics different from the main one).
[a$1→ $1[b]] usual parallel membrane creation
a$1→ $1[b] same without the outer context

4 Artiom Alhazov

[a$1] → [b[$1]] create a new membrane around the existing one and send b
there
[[a$1]→ b$1] usual membrane dissolution
[[a$1]→ b] lose contents of the dissolved membrane
[a$1]→ [b$1][c$1] usual membrane division
[a$1]→ [b$1][c] create a sibling membrane, without replicating contents
[a$1]→ [$1(O)][$1(O′)] membrane separation
[a$1[$2]] → [$2[a$1]] exchange objects in two membranes if the first one con-
tains a
Then, there may be different kinds of non-elementary membrane division
[a] → [b][c] same syntax as for elementary membranes, replicate objects and
membranes. Can be written as [a$1#1]→ [b$1#1][c$1#1]
[[][]] → [[]][[]] separating submembranes. But what exactly happens to other
submembranes if there are more than these two?
[$1#1[][]]→ [$1#1[]][$1#1[]] replicating other objects and membranes
[$1#1[][]]→ [$1(O)#1[]][$1(O′)#1[]] separating objects and replicating mem-
branes
[$1#1[][]]→ [$1#1(H)[]][$1#1(H ′)[]] replicating objects and separating mem-
branes
[$1#1[][]] → [$1(O)#1(H)[]][$1(O′)#1(H ′)[]] separating objects and mem-
branes
Overall, I think there may be some reasonable consistent universal way how to
describe the precise evolution not only of dedicated objects and membranes,
but also related objects and membranes, because mass action is needed (the
first classical example of the mass action is dissolution, of course currently
programmed explicitly).

4. Tests. From time to time, researchers consider rules that were not considered
in the original model. I believe many (though not all) of these issues can be
captured by the thoughts above.

a sequential (a), parallel (b), (c), (d), (e), . . .
b where other objects and membranes go - division vs separation, outside vs

delete, . . .
c external rules: a[]→ u[], a[]→ b, a[]→ b[][], . . .
d . . .

5. Other models besides active membranes. With suitable choice of parallel/sequential
semantics made clear, r ∈ Ri can be written as [r]i. In most cases, membrane
i must be treated as context, hence, rules are parallel with respect to it.
Antiport: u[v]→ v[u]
Evolutional antiport or boundary rules: u[v]→ u′[v′]
Transitional: pretty standard, except multiple targets would be represented
as multi-membrane context, and dissolution semantics is normally assumed
parallel (multiple δ = one dissolution), not sequential.
Spiking: mostly similar, the main difference are additional regular expressions.

Some open problems 5

Promoters, inhibitors - how much is already captured by PLingua??
Priorities - is there already a well-established syntax for them?
Notice that strong and week priorities can co-exist: these are just additional
filters for the set of the next configurations (see part 1: Simulator) besides the
derivation mode. As discussed with Rudi a few days after BWMC19, filters
like priorities should be applied BEFORE the derivation mode filter.

6. Other derivation modes. A new (mostly studied in the last few years) im-
portant derivation mode for many models is set maximally-parallel. Same
as maximally parallel, but in each step each rule may be only applied once.
Technically similar to having a dedicated catalyst for each rule.
Some of the classical modes that would be most important to also have are
sequential and asynchronous. Asyn is even easier than maxpar - just remove
the maximality filter. Sequential is of course the easiest to implement.

7. New ways of rule control. Activation and blocking (I hope to soon finish for-
malizing the concept also for zero-delay).

8. One of the “worst” things that could happen. “Denying”. This is how we call
the situation where there exists at least one applicable rule, but there is no
valid multiset of rules. An example is ”> 1 mode” in the situation where only
one rule is applicable. This situation has been carefully avoided in the first
years of membrane computing, but it does not present a problem (except it
is unusual), e.g., this is similar to what happens to partially blind register
machines when they try to decrement a register containing zero, which is not
allowed by the model.
Finally, a question is - can all of this co-exist in the same context? I still think
it could. If anyone has an example of ANY membrane features that seem
incompatible, please let me know, and maybe I will be able to convince you
that there is no problem. Reminder - a universal look at P systems models:
network of cells, see a few publications on the Formal Framework for a) static
structures, b) dynamic structures, c) spiking.
R. Freund, S. Verlan: A Formal Framework for Static (Tissue) P Sys-
tems. In: Eleftherakis G., Kefalas P., Păun Gh., Rozenberg G., Salomaa A.
(eds) Membrane Computing. WMC 2007. Lecture Notes in Computer Science
4860. Springer, Berlin, Heidelberg, 2007, 271-284. https://link.springer.
com/chapter/10.1007%2F978-3-540-77312-2_17

R. Freund, I. Pérez-Hurtado, A. Riscos-Núñez, S. Verlan: A Formalization
of Membrane Systems with Dynamically Evolving Structures. In-
ternational Journal of Computer Mathematics 90(4), 801–815 (2013) https:

//doi.org/10.1080/00207160.2012.748899

S. Verlan, A. Alhazov, R. Freund, S. Ivanov: A Formal Framework for
Spiking Neural P Systems. In Proceedings of the 20th International Con-
ference on Membrane Computing, CMC20, Curtea de Arges, (Păun, Gh., Ed.).
Bibliostar, Râmnicu Vâlcea, 2019, pp. 523–535. http://membranecomputing.
net/cmc20/pdf/procCMC20.pdf#page=250

6 Artiom Alhazov

3 Some questions from variety

1. Anti-membranes.
Reminder: rules of types []h → []j []k , []h[]h′ → λ ; could also be with objects.
A. Alhazov, R. Freund, S. Ivanov: (Tissue) P Systems with Anti-Membranes.
In Seventeenth Brainstorming Week on Membrane Computing (Orellana-
Mart́ın, D.; Păun, Gh.; Riscos-Núñez, A.; Andreu-Guzmán, J. A., Eds.),
Sevilla. RGNC report 1/2019, University of Seville, Artes Gráficas Moreno,
S.L., 2019, 29–30. http://www.gcn.us.es/files/17bwmc/029_AntiMembranes.
pdf

and
A. Alhazov, R. Freund, S. Ivanov: P Systems with Anti-Membranes. In
Proceedings of the 20th International Conference on Membrane Computing,
CMC20, Curtea de Arges, (Păun, Gh., Ed.). Bibliostar, Râmnicu Vâlcea, 2019,
249–256. http://membranecomputing.net/cmc20/pdf/procCMC20.pdf#page=
250

1) Can we still do anything non-trivial if changing membrane labels is forbid-
den?

2) Is it possible, e.g., to simulate boolean circuits?
3) What if we forbid changing labels but allow a limited (3?) number of polar-

izations? let’s say annihilation needs some form of polarization agreement
4) Descriptional complexity of a small universal NFPAMS
5) Which ingredients are needed to solve SAT with anti-membranes?
6) How we can exploit deeper membrane structures? For instance, annihi-

lation of nested membranes outside-in performs an ordered sequence of
membrane dissolutions.

7) antiMembranes for efficiency? In any way that is not a trivial translation
of the previous research from objects to membranes.

2. Channels.
For symport/antiport P systems, in tissue case, it is usually assumed that
channels do not admit any parallelism. There has been a few exceptions. 1)
Some Rudi’s talk with PPT slides many years ago, where cells were represented
by huge colored circles, I do not remember the title. 2)
A. Alhazov, R. Freund, M. Oswald: Tissue P Systems with Antiport
Rules and Small Numbers of Symbols and Cells. In: De Felice C.,
Restivo A. (eds) Developments in Language Theory. DLT 2005. Lecture Notes
in Computer Science 3572. Springer, Berlin, Heidelberg, 2005, 100-111. https:
//doi.org/10.1007/11505877_9

, where in Ot′P , primed letter t indicated that it was allowed to have distinct
channels (i, j) and (j, i). 3) A more recent paper
H. Adorna, A. Alhazov, L. Pan, B. Song: Simulating Evolutional Sym-
port/Antiport by Evolution-Communication and vice versa in Tissue
P Systems with Parallel Communication. In: Gheorghe M., Rozenberg

Some open problems 7

G., Salomaa A., Zandron C. (eds) Membrane Computing. CMC 2017. Lec-
ture Notes in Computer Science 10725. Springer, Cham, 2018, 1-14. https:
//doi.org/10.1007/978-3-319-73359-3_1

relating evolutional symport/antiport with evolution-communication – in or-
der to make it possible having direct simulation with a slowdown by a factor
of a constant, communication needed to be massively parallel. 4) Older re-
search on neural P systems, probably by [Krishna,Rama], long time before
spiking. . . anyway, that last one was quite a different model. - Parallel VS se-
quential channels in tP systems. Improve results with mcre from NP∪co−NP
to PSPACE.

3. Global rules.
considered by A. Păun and once briefly by myself. This relates to problem
(Q6) in Gheorghe’s open problem list http://www.gcn.us.es/?q=18bwmc_

openproblems. If membrane structure is static and we do not care about de-
scriptional complexity, making all rules global does not seem to restrict us at
all: objects can always be renamed when moved, so they know where they are.
However, the total number of rules in this reduction may increase, and this
technique becomes more complicated, or even impossible, with dissolution.
BTW, this may open an interesting discussion at solving hard problems in
polytime. Besides, not all membranes are created equal: by definition, elemen-
tary membrane division is not applicable to membranes that are (currently)
non-elementary, and the skin cannot be dissolved or divided (and sometimes
it is forbidden for any object to enter it) - this trick might help distinguishing
membranes when needed, however, requiring non-determinism or complicated
simulation. On the other hand, with sufficient ingredients one working region
is already enough, so we should stay in a restricted enough settings.
A. Păun: On P Systems with Global Rules. In: Jonoska N., Seeman
N.C. (eds) DNA Computing. DNA 2001. Lecture Notes in Computer Science,
vol 2340. Springer, Berlin, Heidelberg, 2002, 329-339. https://doi.org/10.
1007/3-540-48017-X_31

A. Alhazov, R. Freund: On the Efficiency of P Systems with Active
Membranes and Two Polarizations. In: Mauri G., Păun Gh., Pérez-
Jiménez M.J., Rozenberg G., Salomaa A. (eds) Membrane Computing. WMC
2004. Lecture Notes in Computer Science, vol 3365. Springer, Berlin, Heidel-
berg, 2005, https://doi.org/10.1007/978-3-540-31837-8_8
A. Alhazov, R. Freund, S. Ivanov: Length P Systems. Fundamenta Infor-
maticae 134(1-2), 2014, 17-37. https://doi.org/10.3233/FI-2014-1088

4. Maximal consistency modes.
Reminder: here applicability does not only depend on lhs. I have heard about a
practical use of this mode in a BWMC2019 discussion from Agustin (though I
forgot which application it was for, so I would not know what reference to cite).
Usually in membrane computing rule applicability only depends on the left
side of the rule (whether all reactants are present in the current configuration,

8 Artiom Alhazov

and, possibly, whether some additional conditions are satisfied, e.g., promoters,
inhibitors, etc.).
Consider rules changing membrane polarization. Allow to apply multiple rules
(maximal parallelism), as long as the polarization in their rhs is the same.
Let me call it “polarization agreement”. Need to be precise, probably need to
choose the polarization corresponding to at least one applied rule, if possible.
Other examples of maximal consistency:

- Parallel string rewriting without conflicts [D. Besozzi], many years ago,
reference needed.

- Rudi’s target agreement/label agreement, original reference needed.
- Any other shared resource to agree upon?

Overall, I believe this feature deserves more attention.
5. cP systems.

= P systems with complex objects, see [Nicolescu]. Reminder: prolog-like
rules using power of term rewriting and unification. Very powerful model, e.g.,
a solution of the Travelling Salesman Problem has been reported with five
rules only [CooperNicolescu ACMC2017]. Some longer time ago the colleagues
in my institute wanted to attack with P systems the problem of finding Gröbner
basis. Unfortunately, the data structures that can be represented and efficiently
processed by usual P systems are limited, and hence they are not suited well
to work, e.g., with dynamic ordered lists of strings (a solution via Turing
machine is not elegant). It turns out that cP systems are much more flexible
in representing and efficiently processing complicated data structures.
Some problems that have been addressed besides universality/computational
completeness and NP-hard problems, by usual P systems:

- sorting https://doi.org/10.1007/3-540-29937-8_8,
- dictionary search and update
http://univagora.ro/jour/index.php/ijccc/issue/download/44/pdf_

165,
- inflections
http://www.math.md/publications/csjm/issues/v17-n2/10082/,

- annotating affixes https://doi.org/10.1007/978-3-642-54239-8_7,
- firing squad synchronization problem
https://doi.org/10.1007/978-3-540-95885-7_9

(more problems and solutions can be found in Applications of Membrane Com-
puting, 2005 and Membrane Computing Handbook). Need: more problems that
are practical, well defined and sufficiently simple (simpler than Gröbner basis),
to be attacked by cP systems, but not completely trivial (needing, say, more
than two rules).
Need: more problems that are practical, well defined and sufficiently simple
(simpler than Gröbner basis), to be attacked by cP systems, but not completely
trivial (needing, say, more than two rules).

