
Seventeenth Brainstorming Week
on Membrane Computing

Sevilla, February 5 – 8, 2019

David Orellana-Mart́ın
Gheorghe Păun

Agust́ın Riscos-Núñez
José A. Andreu-Guzmán

Editors

Seventeenth Brainstorming Week
on Membrane Computing

Sevilla, February 5 – 8, 2019

David Orellana-Mart́ın
Gheorghe Păun

Agust́ın Riscos-Núñez
José A. Andreu-Guzmán

Editors

RGNC REPORT 1/2019

Research Group on Natural Computing

Universidad de Sevilla

Sevilla, 2019

c©Autores

(All rights remain with the authors)

ISBN: 978-84-14347-4

Printed by: Artes Gráficas Moreno, S.L.
http://www.agmoreno.net/

Preface

The Seventeenth Brainstorming Week on Membrane Computing (BWMC) was
held in Sevilla, from February 5 to 8, 2019, hosted by the Research Group on Nat-
ural Computing (RGNC) from the Department of Computer Science and Artificial
Intelligence of Universidad de Sevilla. The first edition of BWMC was organized
at the beginning of February 2003 in Rovira i Virgili University, Tarragona, and
all the next editions have been taking place in Sevilla since then, always at the
beginning of February.

In the style of previous meetings in this series, was conceived as a period of
active interaction among the participants, with the emphasis on exchanging ideas
and cooperation. Several “provocative” talks were delivered, mainly devoted to
open problems, research topics, announcements, conjectures waiting for proofs, or
ongoing research works in general (involving both theory and applications). Joint
work sessions were scheduled on the afternoons to allow for collaboration among
the about 25 participants – see the list in the end of this preface.

This year was a special year for the RGNC, since the head of the research group,
Mario J. Pérez-Jiménez recently turned 70 years old. This edition was dedicated
to him, and a special session of videos from former PhD students and researchers
who have been supervised by him but could not attend the meeting was carried
out.

The papers included in this volume, arranged in the alphabetic order of the au-
thors, were collected in the form available at a short time after the brainstorming;
several of them are still under elaboration. The idea is that the proceedings are a
working instrument, part of the interaction started during the stay of authors in
Sevilla, meant to make possible a further cooperation, this time having a written
support.

A selection of papers from this volume will be considered for publication
in the new Journal of Membrane Computing, published by Springer-Verlag
(www.springer.com/41965).

Other papers elaborated during the 2019 edition of BWMC will be submitted
to other journals or to suitable conferences. The reader interested in the final

vi Preface

version of these papers is advised to check the current bibliography of membrane
computing available in the domain website http://ppage.psystems.eu.

The list of participants as well as their email addresses are given below, with

the aim of facilitating the further communication and interaction:

1. Artiom Alhazov, Institute of Mathematics and Computer Science of Academy
of Sciences of Moldova, Moldova
aartiom@yahoo.com

2. José A. Andreu Guzmán, Universidad de Sevilla, Spain
andreuguzman36@gmail.com

3. Lúdek Cienciala, Silesian University in Opava, Czech Republic
ludek.cienciala@fpf.slu.cz

4. Lucie Ciencialová, Silesian University in Opava, Czech Republic
lucie.ciencialova@fpf.slu.cz

5. Erzsébet Csuhaj-Varjú, Eötvös Loránd University, Hungary
csuhaj@inf.elte.hu

6. Jan Drastik, Silesian University in Opava, Czech Republic
honza.drastik@gmail.com

7. Rudolf Freund, Technological University of Vienna, Austria
rudi@emcc.at

8. Zsolt Gazdag, University of Szeged, Hungary
gazdag@inf.u-szeged.hu

9. Péter Battyányi, University of Debrecen, Hungary
battyanti.peter@inf.unideb.hu

10. Carmen Graciani, Universidad de Sevilla, Spain
cgdiaz@us.es

11. Sergiu Ivanov, IBISC, Université Évry, Université Paris-Saclay, France
sergiu.ivanov@univ-evry.fr

12. Pramod Kumar Sethy, Eötvös Loránd University, Hungary
pksethy@inf.elte.hu

13. Gábor Kolonits, Eötvös Loránd University, Hungary
kolomax@inf.elte.hu

14. Alberto Leporati, University of Milano-Bicocca, Italy
leporati@disco.unimib.it

15. Luca Manzoni, University of Milano-Bicocca, Italy
luca.manzoni@disco.unimib.it

16. Miguel A. Mart́ınez-del-Amor, Universidad de Sevilla, Spain
mdelamor@us.es

17. David Orellana-Mart́ın, Universidad de Sevilla, Spain
dorellana@us.es

18. Ignacio Pérez-Hurtado, Universidad de Sevilla, Spain
perezh@us.es

Preface vii

19. Mario de J. Pérez-Jiménez, Universidad de Sevilla, Spain
marper@us.es

20. Agust́ın Riscos-Núñez, Universidad de Sevilla, Spain
ariscosn@us.es

21. Álvaro Romero-Jiménez, Universidad de Sevilla, Spain
romero.alvaro@us.es

22. Zeyi Shang, University Southwest Jiaotong, China
zeyi.shang@lacl.fr

23. Vladimir Smolka, Silesian University in Opava, Czech Republic
v.smolka@outlook.cz

24. Ana Ţurlea, University of Bucharest, Romania
t anacris@yahoo.com

25. Luis Valencia-Cabrera, Universidad de Sevilla, Spain
lvalencia@us.es

26. György Vaszil, University of Debrecen, Hungary
vaszil.gyorgy@inf.unideb.hu

As mentioned above, the meeting was organized by the Research Group on
Natural Computing from Universidad de Sevilla (http://www.gcn.us.es)– and
all the members of this group were enthusiastically involved in this (not always
easy) work.

The meeting was partially supported from various sources: (i) Research Project
TIN2017-89842-P cofinanced by Ministerio de Economı́a, Industria y Competitivi-
dad (MINECO) of Spain, through the Agencia Estatal de Investigación (AEI), and
by Fondo Europeo de Desarrollo Regional (FEDER) of the European Union, (ii)
VI Plan Propio, Vicerrectorado de Investigación de la Universidad de Sevilla, and
(iii) Department of Computer Science and Artificial Intelligence from Universidad
de Sevilla.

The Editors
(Jun 2019)

Contents

Beyond Generalized Multiplicities:
Register Machines over Groups
A. Alhazov, R. Freund, S. Ivanov . 1

(Tissue) P Systems with Anti-Membranes
A. Alhazov, R. Freund, S. Ivanov . 29

P Systems: from Anti-Matter to Anti-Rules
A. Alhazov, R. Freund, S. Ivanov, M.J. Pérez-Jiménez 41

Membrane Systems with Priority, Dissolution, Promoters and Inhibitors
and Time Petri Nets
P. Battyányi, G. Vaszil . 59

Further Results on the Power of Generating APCol Systems
L. Ciencialová, L. Cienciala, E. Csuhaj-Varjú . 79

Playing with Derivation Modes and Halting Conditions
R. Freund . 91

Simulating counting oracles with cooperation
A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron 109

A new perspective on computational complexity theory in Membrane Comput-
ing
D. Orellana-Mart́ın, L. Valencia-Cabrera,
A. Riscos-Núñez, M.J. Pérez-Jiménez . 117

An apparently innocent problem in Membrane Computing
D. Orellana-Mart́ın, L. Valencia-Cabrera,
A. Riscos-Núñez, M.J. Pérez-Jiménez . 127

A syntax for semantics in P-Lingua
I. Pérez-Hurtado, D. Orellana-Mart́ın,
A. Riscos-Núñez, M.J. Pérez-Jiménez . 139

Search Based Software Engineering in Membrane Computing
A. Turlea, M. Gheorghe, F. Ipate . 151

x Contents

New applications for an old tool
L. Valencia-Cabrera, D. Orellana-Mart́ın,
I. Pérez-Hurtado, M.J. Pérez-Jiménez . 165

The DBSCAN Clustering Algorithm on P Systems
G. Vaszil . 171

Author Index . 179

Beyond Generalized Multiplicities:
Register Machines over Groups

Artiom Alhazov1, Rudolf Freund2, Sergiu Ivanov3

1 Vladimir Andrunachievici Institute of
Mathematics and Computer Science
Academiei 5, Chişinău, MD-2028, Moldova
E-mail: artiom@math.md

2 TU Wien, Institut für Logic and Computation
Favoritenstraße 9–11, 1040 Wien, Austria
E-mail: rudi@emcc.at

3 IBISC, Université Évry, Université Paris-Saclay
23, boulevard de France, 91034 Évry, France
E-mail: sergiu.ivanov@univ-evry.fr

Summary. Register machines are a classic model of computing, often seen as a canonical
example of a device manipulating natural numbers. In this paper, we define register
machines operating on general groups instead. This generalization follows the research
direction started in multiple previous works. We study the expressive power of register
machines as a function of the underlying groups, as well as of allowed ingredients (zero
test, partial blindness, forbidden regions). We put forward a fundamental connection
between register machines and vector addition systems. Finally, we show how registers
over free groups can be used to store and manipulate strings.

1 Introduction

Register machines are traditionally seen as a model of computing manipulating
non-negative numbers. However, quite some time ago integer numbers were al-
ready considered as the base set for register contents [8]. Such machines are tradi-
tionally called blind as long as they do not allow testing registers for zero, except
eventually testing all registers for zero at the end. The computational power of
such blind register machines is inferior to that of “conventional” register machines
over natural numbers [2]. If the register machine is not allowed to go below zero,
but can neither explicitly test its registers for zero, it is called partially blind.

Even further, we need not restrict the definition of the model to numbers. For
example, Section 3 of [2] gives a very general definition of register machines whose
registers may contain elements of any set A. However, going this far up the abstrac-
tion scale loses too much structure: almost nothing can be said about such general

2 A. Alhazov, R. Freund, and S. Ivanov

constructs. In this paper, we focus on a level of abstraction which is in between
the two: we consider register machines over finitely presented groups. This gener-
alization comes in as a natural sequel to multiple previous works. For example, [9]
introduced integer vector addition systems by lifting the traditional restriction on
the vectors to only contain non-negative components. Subsequently, [7] generalized
P systems (compartmentalized multiset rewriting systems [18]) to allow multiplic-
ities of objects to come from Abelian groups instead of just natural numbers.
Finally, papers [2, 3] come back on the less general case of integer multiplicities
and show a number of new properties of integer vector addition systems and blind
register machines.

As almost any work on register machines, studies on register machines over
groups have multiple interesting consequences for P systems. The present paper
lays the ground for further exploration of P systems with generalized multisets
and raises a number of important questions, for example, about the ways in which
multiplicities from non-commutative groups can be interpreted. As we will show
later, registers containing elements of the free group can be used to emulate strings;
what would be the meaning of string multiplicities in P systems?

In this work, we define register machines over arbitrary finite families of groups,
with or without zero test, as well as partially blind register machines, and register
machines with forbidden regions (Section 3). Each of these ingredients is meant
to generalize individual features which appear in the classic definition of regis-
ter machines. We then study the computational power of the variants we define:
we compare the generating and the accepting modes, single- and multi-register
machines, vector addition systems with and without states (Section 4).

As it often happens, all of the results we present in this paper originate from
the fruitful discussions the team of authors had during the Brainstorming Week
on Membrane Computing 2019 in Seville, Spain. Even though this work is not
explicitly situated within the domain of membrane computing, we believe that it
may have an important influence on the study of generalized multiplicities in P
systems. We would therefore like to thank the organizing team for giving us the
opportunity to work on these exciting topics.

2 Preliminaries

In this paper, we use the symbols R, Z, and N to refer to the set of real numbers,
integer numbers, and the set of natural numbers including 0.

For an alphabet V , by V ∗ we denote the free monoid generated from the el-
ements of V under the operation of concatenation, i.e., containing all possible
strings over V. The empty string is denoted by λ. The family of all recursively
enumerable sets of strings is denoted by RE, the corresponding family of recur-
sively enumerable sets of Parikh sets (vectors of natural numbers) and of number
sets is denoted by PsRE and NRE, respectively. For an extensive introduction to
the theory of formal languages, we recommend [18, 19].

Beyond Generalized Multiplicities: RMs over Groups 3

Given a set A, a total function f : A×A→ A is called a binary operation over A.
We will use the infix notation afb to refer to f(a, b), for a, b ∈ A. A relation over
a set A is any subset R ⊆ A × A. As for binary operations, we will also use the
infix notation aRb for (a, b) ∈ R.

A relation ≤ ⊆ A×A is a called a total order if the following statements hold
for every three elements a, b, c ∈ A:

• antisymmetry: if a ≤ b and b ≤ a then a = b,
• transitivity: if a ≤ b and b ≤ c then a ≤ c,
• totality: either a ≤ b or b ≤ a.

For a, b ∈ A and a total order ≤ on A, we will sometimes write b ≥ a as equivalent
to a ≤ b, and use a < b (a > b) to denote that a ≤ b and a 6= b (a ≥ b and a 6= b).

2.1 Groups and Group Presentations

Groups

A group is the structure G = (G′, ◦) where G′ is the set of elements (the underlying
set) and ◦ : G′ × G′ → G′ a binary operation over G′ satisfying the following
properties (group axioms):

• closure: for any a, b ∈ G′, a ◦ b ∈ G′,
• associativity : for any a, b, c ∈ G′, (a ◦ b) ◦ c = a ◦ (b ◦ c),
• identity : there exists a (unique) element e ∈ G′, called the identity, such that

e ◦ a = a ◦ e = a for all a ∈ G′, and
• invertibility: for any a ∈ G′, there exists a (unique) element a−1, called the

inverse of a, such that a ◦ a−1 = a−1 ◦ a = e.

The group G is called commutative or Abelian, if for any a, b ∈ G′, a◦ b = b◦a.
A subgroup of the group (G, ◦) is any group (H, ◦) with H ⊆ G and the same

group operation ◦.
For any element b ∈ G′, the order of b is the smallest number n ∈ N such that

bn = e provided such n exists, and then we write ord (b) = n. If no such n exists,
{bn | n ≥ 1} is an infinite subset of G′ and we write ord (b) =∞.

In the following, we will often use the same symbol G to refer both to a group
and to its underlying set.

Representations of groups

The definitions and examples from group theory we exhibit now follow the expo-
sition given in [1] and [2], based on the notions in [10]. In what follows, we will
use strings for representing group elements.

For any set B, the set B−1 is defined to contain the symbols representing the
“inverses” of the elements of B, i.e., B−1 =

{
b−1 | b ∈ B

}
. B (not containing the

identity) is called a generator set of the group G if every element a from G can be

4 A. Alhazov, R. Freund, and S. Ivanov

written as a finite product/sum of elements from B ∪ B−1, i.e., a = b1 ◦ · · · ◦ bm
for b1, . . . , bm ∈ B ∪B−1. In this paper, we restrict ourselves to finitely presented
groups, i.e., having a finite presentation 〈B | R〉 with B being a finite generator set
and moreover, R being a finite set of relations among these generators. Informally,
the group G = 〈B | R〉 is the largest one generated by B subject only to the group
axioms and the relations in R. We will restrict ourselves to relations of the form
b1 ◦ · · · ◦ bm = e with b1, . . . , bm ∈ B; omitting the identity e we write b1 ◦ · · · ◦ bm,
which then is called relator.

Example 1. The free group F (B) = (I (B) , ◦) can be written as 〈B | ∅〉 (or even
simpler as 〈B〉) because it has no restricting relations.

Example 2. The cyclic group of order n has the presentation 〈{a} | {an}〉 (or, omit-
ting the set brackets, as 〈a | an〉). It is also known as Zn or as the quotient group
Z/nZ.

Example 3. Z is a special case of an Abelian group generated by 1 and its in-
verse −1, i.e., Z is the free group generated by B = {1}. Zd is the Abelian group
generated by the unit vectors (0, . . . , 1, . . . , 0) and their inverses (0, . . . ,−1, . . . , 0).
It is well known that every finitely generated Abelian group is a direct sum of a
torsion group and a free Abelian group, where the torsion group may be written
as a direct sum of finitely many quotient groups of the form Z/pkZ, with p a prime
and k ∈ N, and the free Abelian group is a direct sum of finitely many copies of
Z.

Example 4. A very well-known example of a non-Abelian group is the hexagonal
group with the finite presentation

〈
a, b, c | a2, b2, c2, (abc)2

〉
. The relators a2, b2,

and c2 indicate that all three generators a, b, and c are self-inverse.

Remark 1. In this paper, we will restrict ourselves to finitely generated groups, for
which the word equivalence problem u = v is decidable, i.e., there exists a decision
procedure telling us whether u ◦ v−1 = e for two strings u and v. In this case, we
call G recursive or computable. If the set of relators R in a presentation 〈B | R〉
of G is computable (recursive), we call this a computable (recursive) presentation.
Clearly, any finitely presented group is computable.

A group (G,+) in which the group operation can be interpreted as addition is
called additive. For such groups, the inverse of b ∈ G is often written as −b, the
neutral element e as 0, and the sum a+(−b) as a−b, whenever no ambiguity arises.
Another kind of groups are multiplicative groups, in which the group operation
can be thought of as multiplication. For such groups, the inverse of b ∈ G is usually
written as b−1, and the group operation as multiplication: a · b or ab.

For Abelian groups, further shortcut notation is introduced to capture chained
applications of the operation to a single element. Consider z ∈ Z and a ∈ G. The
scalar product of a by z is defined as follows (using either additive or multiplicative
notation):

Beyond Generalized Multiplicities: RMs over Groups 5

za =

az =

∑z
i=1 a, z > 0,

a0 = 0 (group identity), z = 0,

(−a)−z =
∑z

i=1(−a), z < 0.

A linearly or totally ordered group is construct (A,+,≤) where (A,+) is a
group, ≤ ⊆ A×A is a total order on A and, for any triple a, b, c ∈ A, the fact that
a ≤ b implies that c+ a ≤ c+ b and a+ c ≤ b+ c.

2.2 Register Machines

Register machines are well-known universal devices for computing (generating or
accepting) sets of vectors of natural numbers. The article [13] is one of the reference
works on the universality of register machines.

Definition 1. A register machine is the construct M = (m,B, l0, lh, P), where

• m is the number of registers,

• B is a set of labels bijectively labeling the instructions in the set P ,

• l0 ∈ B is the initial label,

• lh ∈ B is the final label, and

• P is the set of instructions.

The labeled instructions in P can be of the following forms:

• p : (ADD (r) , q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.

Increment the value of register r and non-deterministically jump to instruction
q or s.

• p : (SUB (r) , q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.

If the value of register r is not zero then decrement the value of register r
(decrement case) and jump to instruction q, otherwise jump to instruction s
(zero-test case).

• lh : HALT .

Stop the execution of the register machine.

A configuration of a register machine is the tuple C = (q, r1, . . . , rm), in which
r1, . . . , rm are the values of the registers and q is the current instruction label which
indicates which is the next instruction to execute. This label is often called the
state of the machine. An n-step computation of a register machine is a sequence of
configurations (Ci)0≤i≤n in which the configuration Ci+1 is obtained from Ci by
applying to Ci the instruction given by the current instruction label of Ci. The first
configuration C0 of a computation is usually referred to as the initial configuration
and its current instruction label must be l0. If, in the last configuration Cn, the
current instruction label is be lh, Cn is called a halting configuration and the whole
computation is called a halting computation.

6 A. Alhazov, R. Freund, and S. Ivanov

A register machine M can be seen as an accepting device, a generating device,
or as a device computing functions or relations. In the accepting case, the first k
registers of M are designated as input registers, and are initialized to a k-vector of
natural numbers v (the input vector). If there exists a halting computation of M
starting with this initial configuration, then v is accepted by M . Without losing
generality, we may only consider computations in which all registers are empty in
the halting configuration.

On the other hand, in the generating case, a single initial configuration is
fixed for all computations of M , the first k registers are designated as the output
registers, and for every halting computation of M , the k-vector contained in the
output registers in the halting configuration is said to be generated by M . Without
losing generality, we may only consider those computations of M in which all
registers with indices greater than k are empty in the halting configuration.

Finally, we can designate input and output registers (these may be disjoint) and
see M as establishing a binary relation between the contents of the input registers
in the initial configurations and the output registers in the halting configurations.
If this relation is functional, i.e., M associates at most one output vector to any
input vector, M can be seen as defining a function.

In this paper, we will only consider the accepting and the generating cases. We
will denote by Lacc(M) (respectively, by Lgen(M)) the set of input vectors accepted
(respectively, generated) by the register machine M . Similarly, for a family X of
register machines, we will denote by Lacc(X) (respectively, by Lgen(X)) the family
of sets of vectors accepted (respectively, generated) by the register machines in the
family X . We will use the same notations to denote the sets of languages accepted
(respectively, generated) by any other computing device M or any other family of
computing devices X . In case the operating mode is fixed by the definition of the
device (e.g., vector addition systems always generate), we omit the corresponding
subscript.

We use the notation RM to refer to the family of register machines defined
as above. It is folklore (e.g., see [16]) that Lacc(RM) = PsRE. Similarly, register
machines generate any recursively enumerable set of vectors of natural vectors,
Lgen(RM) = PsRE. A proof sketch: consider L ∈ PsRE, then build the machine
M such that it first non-deterministically generates a vector, and then runs a
sequence of instructions recognizing precisely the vectors in L.

Blind and Partially Blind Machines

Several papers consider weaker kinds of register machines: blind and partially blind
register machines, for example, see [2, 6, 8].

In partially blind register machines, the SUB instruction has the form p :
(SUB(r), q): if the register r is not empty, it is decremented and the register ma-
chine moves to state q, otherwise the machine crashes—the computation stops in a
non-halting configuration, yielding no result. In blind register machines, the regis-

Beyond Generalized Multiplicities: RMs over Groups 7

ters are allowed to contain negative values, meaning that the decrement instruction
always succeeds. However, valid computations of a blind machine are required to
have 0 in all non-output registers in halting configurations. The definitions of blind
and partially blind machines may vary from source to source: notably some sources
define blind register machines as partially blind, but without the zero check at the
end [6].

In this paper, we will give uniform definitions of various types of register ma-
chines.

A General Model for Register Machines

For the record, we recall here a very general definition of a register-machine-like
device given in [3].

Definition 2. A register-machine-like device over the set A is the tuple MA =
(m,A,B, l0, lh, P), where

• m ∈ N is the number of registers,

• A is the set of values the registers may contain,

• B is a finite set of instruction labels,

• l0 is the initial label,

• lh is the final label,

• P is a mapping associating an instruction to every label in B.

An instruction p is a function p : Am → Am × 2Q associating to every m-tuple of
values from A another m-tuple of such values and a set of new instruction labels
from B. A configuration C ∈ B × Am of MA is a tuple combining an instruction
label and the values of the m registers of MA.

2.3 Vector Addition Systems (VAS)

A vector addition system (VAS) of dimension n ∈ N is defined to be the pair
(w0,W), where w0 ∈ Nn is the start vector, and W is a finite set of vectors
from Zn, called addition vectors. An addition vector w ∈W is said to be applicable
to a vector x ∈ Nn if x + w ∈ Nn, i.e., if all the components of the vector x + w
are non-negative. A VAS evolves from the start vector w0 by sequentially adding
applicable addition vectors from W .

A vector addition system with states (VASS) is a VAS equipped with a finite
state control. Essentially, state labels are assigned to addition vectors and a graph
of states is given which defines the possible sequences of application of addition
vectors.

An extended model lifting the restriction that the valid vectors must have non-
negative components has recently been defined in [9] and studied in [3]: An integer

8 A. Alhazov, R. Freund, and S. Ivanov

vector addition system (Z-VAS) of dimension n ∈ N is the pair (w0,W), where
w0 ∈ Zn is the start vector and W ⊆ Zn is finite set of addition vectors. A Z-VAS
evolves from w0 by sequentially applying the addition vectors from W . The set of
vectors generated by a Z-VAS is defined to be the set of reachable vectors.

An integer vector addition system with states (Z-VASS) is a Z-VAS equipped
with a state control and is defined as a tuple (w0, Q, q0, qh, p, δ), where w0 ∈ Zn

is the start vector, Q is a finite set of state labels, q0 ∈ Q is the starting state,
qh ∈ Q is the halting state, p : Q \ {qh} → Zn is a function assigning a vector to
every state from Q \ {qh}, and δ : Q→ 2Q is a state transition function assigning
to each state the set of possible successor states. A Z-VASS starts in w0 and in
state q0, applies the addition vector p(q0), and non-deterministically moves into
one of the states from δ(q0). This process is iteratively repeated, until the halting
state qh is reached. The vector language generated by a Z-VASS is defined as the
set of all vectors which are reachable in the halting state qh.

It was shown in [11] that VASS are equivalent in expressive power to VAS (with-
out states): any n-dimensional VASS can be simulated by an (n+ 3)-dimensional
VAS. On the other hand, in [3, Section 6], it is proved that Z-VASS are strictly
more powerful than Z-VAS. This is one first example showing that changing the
nature of the objects on which a model of computing operates can affect its ex-
pressive power in important ways.

3 Register Machines over Groups

3.1 General Definition

In this section we extend the definition of register machines to allow their registers
to contain elements of arbitrary finitely presented groups.

Definition 3. Let m ∈ N and take the finite family of finitely presented groups
G = (Gi)1≤i≤m, with Gi = 〈Bi | Ri〉. A G-register machine (or a register machine
over the family G) is the construct MG = (G, B, l0, lh, P), where

• B is the set of labels bijectively labeling the instructions in the set P ,

• l0 ∈ B is the initial label,

• lh ∈ B is the final label, and

• P is the set of instructions.

The labeled instructions in P can be of the following forms:

• p : (ADD(r, b), T), with p ∈ B\{lh}, T ⊆ B, 1 ≤ r ≤ m, b ∈ Br.

Add the generator b of the group Gr = 〈Br | Rr〉 to the current contents of the
register r, then non-deterministically jump to one of the instructions in T .

Beyond Generalized Multiplicities: RMs over Groups 9

• lh : HALT .

Stop the execution of the register machine.

A configuration of a G-register machine is, like in the case of a classical register
machine, the tuple C = (q, r1, . . . , rm), in which ri ∈ Gi, 1 ≤ i ≤ m, are the values
of the registers, and q is the current instruction label which indicates the next
instruction to execute. This label is called the state of the machine. We define
the computations, halting, generating, and accepting for register machines over
the family G in the same way as for conventional register machines in Section 2.2.
In particular, k ≤ m registers are designated as input registers in the accepting
case, (respectively, as output registers in the generating case), meaning that the G-
register machine accepts (respectively, generates) vectors of the form (g1, . . . , gk),
where gj , 1 ≤ j ≤ k, belongs to a group Gi ∈ G, 1 ≤ i ≤ m, where different indices
i are assigned to different indices j.

Remark 2. Note that the ADD instructions as we define them here allow a non-
deterministic choice between more than two target states, as different from the
classical definition, in which only two target states are allowed. We allow a set
of possible target states because it simplifies the formulations of many properties
and results, without critically affecting the power of the model: indeed, multiple
target states can be easily simulated by a chain of dummy branching instructions.

Example 5. Consider the following family of 3 groups Z3 = (Z,Z,Z), where Z is
the usual Abelian group of integer numbers which can be presented in this way:
Z = 〈1 | a+b+(−a)+(−b)〉. A Z3-register machine MZ3 is almost a blind 3-register
machine: indeed, the three registers of MZ3 may contain any integer number, an
increment of a register r, r ∈ {1, 2, 3}, is done by the operation ADD(r, 1), and a
decrement by the operation ADD(r,−1). Nevertheless, MZ3 is not a blind register
machine, because no zero check is performed at the end of a computation: the only
restriction on the halting configuration is to have lh as the current instruction label.

Given a finite family of finitely generated computable groups G, we will use the
notation G-RM to refer to the family of G-register machines. We will sometimes
also use the notation ∗-RM =

⋃
G G-RM .

Remark 3. We observe that, in contrast to the original definition of register ma-
chines, the definition of G-register machines only introduces increment instructions
p : (ADD(r, b), T) and no decrement instructions p : (SUB(r, b), q, s), as decre-
menting by an element e ∈ Bi corresponds to incrementing by −e. On the other
hand, there is no direct check for zero in these ADD-instructions.

Remark 4. Register machines over groups as we define them here are somewhat
similar to previous works on automata operating on groups (e.g. [17]). However,
in our work, we rather focus on generalizing the ingredients forming register ma-
chines and describing them in a general setting, instead of analyzing their power
as language recognizers.

10 A. Alhazov, R. Freund, and S. Ivanov

Remark 5. We could extend the classical model of register machines to operate on
other algebraic structures than groups. In this paper, we choose to focus on groups
because these objects are rather well studied and there have already been previous
works on using groups as a substrate for computation (e.g., [5]).

Vector Addition Systems over Groups

Even though register machines and vector addition systems are traditionally seen
as quite different models and research on one often does not discuss the other
(see, for example, the classic works [13] and [4]), the connection between the two
is clearly rather strong, especially when considered in a more general setting. For
example, Z-VASS are equivalent in power to blind register machines [3]. In the
present paper, we explicitly enforce this connection by defining vector addition
systems over groups in terms of register machines over groups.

Definition 4. Consider a finitely generated computable group (G, ◦). A vector ad-
dition system with states over G (a G-VASS) is a tuple (g0,M), where g0 ∈ G is
the start element and M is a (G)-register machine (i.e., a machine with a single
register over the group G) working in generating mode and whose only register is
initialized with g0.

Definition 5. Consider a finitely generated computable group (G, ◦). A vector ad-
dition system over G (a G-VAS) is a G-VASS with the following structure on the
instructions of the underlying register machine:

• l0 : (ADD(1, 0), B) ∈ P : the initial instruction does not modify the contents of
the register, but allows non-deterministically jumping to any other instruction,
including the halting instruction.

• all instructions labelled by l ∈ B\{l0, lh} have the form l : (ADD(0, g), B\{l0}),
with g ∈ G: the underlying machine can jump from any non-initial instruction
to any other non-initial instruction, including the halting instruction.

Example 6. Integer vector addition systems (with states), as introduced in [9] and
studied in [3], are vector addition systems (with states) over the product group
Zn = Z×· · ·×Z. Indeed, the elements of Zn are n-vectors of integer numbers, and
the state control of the (Zn)-register machine corresponds to the state control of
the integer VASS. On the other hand, since the register machine associated with a
VAS over Zn can halt at any time, any vector it reaches belongs to the generated
language.

Given a finitely generated computable group G, we will use the notations
G-V ASS and G-V AS to refer to the families of G-VASS and G-VAS, respec-
tively. Since vector addition systems are only considered as generating devices, we
will use the notations L(G-V ASS) and L(G-V AS) to refer to the families of sets
of elements of G generated by G-VASS and G-VAS, respectively.

Beyond Generalized Multiplicities: RMs over Groups 11

3.2 Blindness, Partial Blindness, and the Zero Test

A G-register machine as defined in the previous section is quite “blind”: it has no
mechanism to make the choice of the new instruction depend on the values of the
registers. A classical way to introduce such a dependence is by allowing an explicit
zero-test instruction.

Definition 6. Let m ∈ N and take the finite family of finitely generated computable
groups G = (Gi)1≤i≤m, with Gi = 〈Bi | Ri〉. A G-register machine with zero test
is the construct MG = (G, B, l0, lh, P) such that MG is a G-register machine, and
the set P is also allowed to contain instructions of the following form:

• p : (0TEST (r), s, z), with p ∈ B\{lh}, s, z ∈ B, 1 ≤ r ≤ m.

Test if the current value of register r is equal to the neutral element of the
group Gr; if yes, jump to instruction z, if not, jump to instruction s.

Configurations, computations, halting, generating, and accepting for G-register
machines with zero test are defined as for G-register machines in Section 3.

Example 7. Consider the same family of 3 copies of the group of integers as in
Example 5, Z3 = (Z,Z,Z). A Z3-register machine with zero test is almost like a
conventional register machine: increment and decrement are done by the instruc-
tions ADD(r, 1) and ADD(r,−1), and zero test by the TEST (r) instructions.
However, the registers of a Z3-register machine with zero test are allowed to con-
tain arbitrary integers.

For a finite family of finitely generated computable groups G, we will use the
notation G-RM0 to refer to the family of G-register machines with zero test.

Allowing an explicit zero test instruction is known to strictly increase the com-
putational power of register machines (e.g., [8]). A much weaker way of introducing
a dependency between the contents of the registers and the choice of instructions
is the terminal zero test.

Definition 7. Let m ∈ N and take the finite family of finitely generated com-
putable groups G = (Gi)1≤i≤m, with Gi = 〈Bi | Ri〉. A G-register machine with a
terminal zero test (a blind G-register machine) is a construct MG = (G, B, l0, lh, P)
such that MG is a G-register machine and, in any halting configuration, all regis-
ters which have not been explicitly designated as output must contain the neutral
element of the corresponding group.

Computations, halting, generating, and accepting for G-register machines with
a terminal zero test are defined as for G-register machines in Section 3, with the
additional requirement of emptiness of the working registers, as indicated in the
previous definition.

We use the notation G-BRM to refer to the family of G-register machines with
a terminal zero test.

12 A. Alhazov, R. Freund, and S. Ivanov

Remark 6. Using the notation BRM refers to the original definition of blind reg-
ister machines which we take over for the general case of G-register machines.

Example 8. Consider the family of groups Z3 = (Z,Z,Z). A Z3-register machine
with a terminal zero test is a blind register machine, as usually defined in the
literature (e.g., [3, 8]).

Remark 7. Sheila Greibach’s original paper introducing blind and partially blind
register machines [8] considers them as recognizers of strings: these devices read the
string from the beginning to the end, using registers to store internal information.
Later works (e.g., [13]) tend to discard the string recognizer aspect, and instead
treat register machines as devices manipulating numbers exclusively. In general,
it is quite easy to encode any string as a number (using, for example, a prime
number encoding over the alphabet), therefore restricting registers machines to
numbers does not critically affect their expressiveness. In Section 3.4, we show how
to recover string-related behavior in register machines over groups with forbidden
regions.

3.3 Partial Blindness

The types of register machines over groups we have defined up to now do not di-
rectly generalize the classical register machines, which can be seen as defined over
the monoid of natural numbers (N,+): addition over the natural numbers is not
invertible, because negative numbers do not belong to N. To capture this restric-
tion, we directly draw inspiration from the definitions of VAS and conventional
partially blind register machines, and define partially blind register machines over
totally ordered groups.

Definition 8. Let m ∈ N and take the finite family of finitely generated computable
groups G = (Gi)1≤i≤m, with Gi = 〈Bi | Ri〉. Suppose one of the groups Gj,
1 ≤ j ≤ m, is totally ordered with the total order ≤j. A G-register machine with
a partially blind register j is a construct MG = (G, B, l0, lh, P) such that MG is a
G-register machine whose register j is only allowed to contain values aj ∈ Gj with
the property 0j ≤j aj.

Configurations, computations, halting, generating, and accepting for G-register
machines with some partially blind registers are defined as for G-register machines
in Section 3, with the additional restriction on the values of the partially blind
registers.

Example 9. Consider the family of groups Z3 = (Z,Z,Z). The group (Z,+) is
totally ordered with respect to the natural order. A Z3-register machine partially
blind in all of its 3 registers is a 3-register partially blind register machine in the
conventional sense, but without the final zero test.

Beyond Generalized Multiplicities: RMs over Groups 13

For a finite family of finitely generated computable groups G, we use the nota-
tion G-PBARM , with A ⊆ {1, . . . ,m}, to refer to the family of G-register machines
with partially blind registers with indices from A. This supposes that the groups
of G with indices from A are totally ordered.

When A = {1, . . . ,m}, i.e., all the registers are partially blind, we will omit
the subscript A from the notations, and we will refer to the register machine itself
as being partially blind. We use the particular notation G-PBRM to refer to the
family of register machines with all registers blind, and with the final zero test at
the end of successful computations.

Note finally that G-register machines with all registers blind and with the zero
test instruction directly generalize classic register machines.

3.4 Forbidden Regions

While G-register machines with partially blind registers are a generalization which
is rather close to conventional register machines, imposing a total order on a group
is a rather strong condition: for example, it entails the absence of elements of a
finite order [14], thus excluding cyclic groups from consideration. Notice, however,
that the total order is essentially used to define a forbidden subset of elements.
We can therefore define another generalization of conventional register machines
which imposes less constraints on the group.

Definition 9. Let m ∈ N and take the finite family of finitely generated computable
groups G = (Gi)1≤i≤m, with Gi = 〈Bi | Ri〉. Let F = (Fi)1≤i≤m be a family of
subsets of the groups in G: Fi ⊆ Gi, 1 ≤ i ≤ m. A G-register machine with
forbidden regions F is a construct MG = (G, B, l0, lh, P) such that MG is a G-
register machine whose register i is only allowed to contain the elements in Gi \Fi,
1 ≤ i ≤ m.

Configurations, computations, halting, generation, and acceptance for G-
register machines with forbidden regions are defined as for G-register machines
in Section 3, with the additional restriction on the values of registers: if a forbid-
den value appears in a register, the computation crashes without producing any
output.

Example 10. Consider the family of groups Z3 = (Z,Z,Z) and the family N̄ 3 =
(N̄ , N̄ , N̄), where N̄ = Z \ N. A Z3-register machine with the forbidden regions
N 3 is also a Z3-register machine partially blind in all of its registers.

Since groups suitably abstract a large number of objects and since forbidden
regions can be used to carve particular “shapes” out of a given group, multiple
connections with different domains can be traced for register machines over groups
and with forbidden regions.

Example 11. The dihedral group Dn is the group of symmetries of a regular poly-
gon with n sides and can be presented as follows: Dn =

〈
r, s | rn, s2, (sr)2

〉
[20].

14 A. Alhazov, R. Freund, and S. Ivanov

The infinite dihedral group D∞ can be seen as the group of symmetries of inte-
gers and can be presented as D∞ =

〈
r, s | s2, (sr)2

〉
. The Cayley graph of this

presentation can be depicted as follows [5]:

. . . sr2
r←− sr

r←− s
r←− sr−1

r←− sr−2 . . .
s �� s s �� s s �� s s �� s s �� s

. . . r−2
r−→ r−1

r−→ e
r−→ r

r−→ r2 . . .

In this picture, the lower and the upper lines are going into opposite directions,
which nicely fits as a representation of double-stranded DNA molecules, i.e., the
lower line going from the left 5′-end to the right 3′-end, whereas the complementary
upper line goes from the right 5′-end to the left 3′-end [5]. Thus, if the family G
contains D∞, a G-register machine can be seen as operating on a DNA molecule.
Forbidding the region F = {rk | k ∈ Z} ⊂ D∞ can be seen as restricting the
register machine to operate on one of the strands of the molecule (the upper one
on the figure).

Example 12. Take a finite alphabet of symbols V and consider the free group 〈V |
∅〉 = (I(V), ◦) over V . It follows from the definition of the free group that it
contains two types of elements:

• strings from the syntactic monoid V ∗: a1 ◦ · · · ◦ an, such that a1 . . . an ∈ V ∗;
• strings which include the inverses {a−1 | a ∈ V } of the elements of V .

Take now the singleton family of groups G = (〈V | ∅〉) and the singleton family of
forbidden regions F = (F), with F containing all the elements of G of the second
type. Then the only register of a G-register machine M with the forbidden regions
F will contain strings from V ∗ in any successful computation.

Remark 8. On a historical side-note, register machines as originally introduced by
Minsky in [15] came out as a consequence of reducing the tape alphabet of Turing
machines to two symbols, including the empty symbol. Such a reduction imposes
unary encoding of the working values and essentially transforms the tape into a
series of registers [12]. By generalizing register machines from natural numbers to
groups, we come back to computing devices operating on strings.

For a finite family of finitely generated computable groups G, we will use the
notation G-RM¬F to refer to the family of G-register machines with the forbidden
regions F .

Vector Addition Systems with Forbidden Regions

Since we define vector addition systems over groups as particular cases of register
machines, the idea of forbidden regions can be easily transported to VAS.

Beyond Generalized Multiplicities: RMs over Groups 15

Definition 10. Consider a finitely generated computable group (G, ◦) and a subset
F ⊆ G. A vector addition system over G (respectively, with states) with the
forbidden region F is a vector addition system (respectively, with states) whose
underlying (G)-register machine belongs to (G)-RM(F).

Example 13. A Zn-VAS with the forbidden region F = {(x1, . . . , xn) | ∃i : xi < 0}
is an n-component vector addition system as classically defined.

Given a finitely generated computable group G, we will use the notation
G-V ASS¬F (respectively, G-V AS¬F) to refer to the family of G-VASS (respec-
tively, G-VAS) with the forbidden region F .

4 Expressive Power of RM and VAS over Groups

In this section we will a give a series of results characterizing the power of register
machines over groups with or without ingredients. We start by considering the
simplest case: no ingredients and singleton group families.

4.1 Singleton Group Families

For register machines with no ingredients, there is little difference between consid-
ering non-singleton and singleton group families. In this section, we will use the
notation C = (Ck)0≤k≤n to refer to an n-step computation of a G-register machine,
where Ck is a vector of elements of the groups in G collecting the contents of the
registers at step k. Notice that this definition of computation and configurations
discards the instruction label, as opposed to the more general definition given in
Section 3.

Proposition 1. Consider a G-register machine M over a non-singleton family
G = (Gi)1≤i≤m, m > 1. Then there exists a singleton family G0 = (G), a family
of projections π = (pi : G→ Gi)1≤i≤m, and a G0-register machine M0 such that,

for any n-step computation C of M there exists an n-step computation C0 of M0

with the following property:

Ck[j] = pj(C
0
k), 1 ≤ j ≤ m,

where C0
k ∈ C0, Ck ∈ C, and Ck[j] is the j-th element of the vector Ck.

Proof. It suffices to take the group G to be the direct product [10] of the
groups in G: G =

∏m
i=1Gi. The G0-register machine M0 will thus have a sin-

gle register containing vectors of values of the groups in G. Any ADD(j, b) in-
struction of M will be represented in M0 by an instruction ADD(1,b), where
b = (e1, . . . , ej−1, b, ej+1, . . . , em) is a vector consisting of the neutral elements of
the groups in G, except for the j-th element. ut

16 A. Alhazov, R. Freund, and S. Ivanov

The converse statement is not true, because any vectors from the direct product
of G can appear in the ADD instructions of M0, thus affecting multiple compo-
nents of the vector from G at once. However, unsurprisingly, any computing step
of M0 can still be simulated by M in multiple steps.

Proposition 2. Consider the non-singleton family of groups G = (Gi)1≤i≤m, m >
1, and take the singleton family G0 = (G), where G is the direct product of the
groups in G and π = (pi : G→ Gi)1≤i≤m is the corresponding family of projections.

Then, for any G0-register machine M0 there exists a G-register machine M such
that, for any n-step computation C0 of M0, there exists an n′-step computation C
of M , n′ > n, with the property:

C0[j] = pj(C
0
0) and Cn′ [j] = pj(C

0
n), 1 ≤ j ≤ m,

where C0 and Cn′ are the first and the last configurations of the computation C,
and C0

0 and C0
n are the first and the last configurations of the computation C0.

Proof (sketch). M simulates the instruction p : (ADD(0,b), T) of M0 by the
following sequence of instructions:

p0 :
(
ADD

(
0, p0(b)

)
, {p1}

)
,

pj :
(
ADD

(
j, pj(b)

)
, {pj+1}

)
, 1 < j < m,

pm :
(
ADD

(
m, pm(b)

)
, T
)
.

This ensures that M simulates M0 with a constant-time slowdown and proves the
statement of the proposition. ut

The two previous propositions imply that, in a somewhat counter-intuitive
way, blind single-register machines are a little more efficient than multi-register
machines, because the former may require less computational steps to achieve a
given configuration than the latter. This statement, however, becomes false with
the addition of some of the ingredients we considered in the previous sections.
Indeed, the zero test in a single-register machine over a direct product of groups
requires that all components of the combined register should be zero; it is impos-
sible to individually test the components. Similarly, transposing the total orders
on some or all of the groups of the family G to their direct product is not gener-
ally possible. Forbidden regions are, on the other hand, more flexible and can be
directly carried over from individual groups to components of the elements of the
product.

The conclusion we make from these arguments is that, when no additional
ingredients are considered, the power of register machines over groups does not
depend on the number of registers.

Theorem 1. Consider the family of finitely presented computable groups G =
(Gi)1≤i≤m and a G-register machine M . Then there exists a G0-register machine
M0 over the singleton family G0 = (

∏m
i=1Gi) such that LX(M) = LX(M0), with

X ∈ {acc, gen}.

Beyond Generalized Multiplicities: RMs over Groups 17

4.2 Generation and Acceptance: No Ingredients

As a consequence of the definition of VASS over groups, Theorem 1 implies that
any G-register machine working in the generating mode can be simulated by a
VASS over the direct product of the groups in G.

Corollary 1. Consider the family of finitely presented computable groups G =
(Gi)1≤i≤m and a G-register machine M . Then there exists a G-VASS A over the
product G =

∏m
i=1Gi such that Lgen(M) = L(A).

The similar statement for register machines in accepting mode does not hold.
In fact, an accepting register machine either accepts or rejects any contents of the
input registers.

Proposition 3. Consider the family of finitely generated computable groups G, a
subfamily Gin and a G-register machine M whose input registers correspond exactly
to the groups from Gin. Then Lacc(M) ∈

{
∅,
∏

G∈Gin G
}

.

Proof. M can accept the empty language by never reaching the halting state.
Suppose now that it accepts some input vector x ∈

∏
G∈Gin G. Since the state

transitions ofM do not depend on the values of its registers, and since no particular
conditions are checked at halting, the sequence of actions applied to accept x can
be applied to accept any other x′ ∈

∏
G∈Gin G, meaning that M will accept all

possible vectors in
∏

G∈Gin G. ut

We therefore conclude that generation is at least as powerful as acceptance for
G-register machines without any additional ingredients.

Theorem 2. Consider the family of finitely generated computable groups G.
Then Lacc(G-RM) ⊆ Lgen(G-RM).

Proof. According to Proposition 3, it suffices to show how to generate the empty
language and the language of all vectors over the groups corresponding to the
output registers. The empty language can be generated by never reaching the
halting state. The language of all vectors can be generated by non-deterministically
adding the corresponding generators and their inverses to the output registers. ut

The inclusion from the previous theorem is not strict. The following example
shows a case in which the generating and accepting power are equal.

Example 14. Consider the singleton group 1 containing the single element e and a
group family G containing 1. Then the languages accepted by G-register machines
with the input register containing elements from 1 is equal to the languages gen-
erated by G-register machines with the output register containing elements from
1. Indeed, the only two possible languages which can be accepted or generated are
∅ and {e}. As discussed previously, the first language is accepted/generated by
never reaching the halting state, and the second language is accepted/generating
by halting immediately.

18 A. Alhazov, R. Freund, and S. Ivanov

On the other hand, generating G-register machines are not restricted to gener-
ating all possible combinations of values of their output registers, as the following
example shows.

Example 15. Consider the generating (Z)-register machine M with two states and
whose only non-halting state is associated with the instruction ADD(1, 1) adding
1 to the contents of its only register. When the register of M is initialized to 0, M
only generates the set of natural numbers N.

The difference in power between the accepting mode and the generating mode
puts forward an asymmetry in the definition of the two semantics: in the generating
mode, the registers have the “knowledge” about their initial values, whereas in the
accepting mode, no information about the register contents whatsoever is available.

4.3 Generation and Acceptance: The Zero Test

In this subsection we exhibit that allowing the zero test instruction equalizes the
power of the accepting and generating modes. In line with the usual terminology,
we will use the term “increment register i by b” to refer to composing the contents
of register i with the generator b, and the term “decrement i by b” to refer to
composing the contents of register i with the inverse of the generator b.

Lemma 1. Let m ∈ N and take the finite family of finitely presented groups
G = (Gi)1≤i≤m, with Gi = 〈Bi | Ri〉. Then there exists another family of finitely
presented groups G′ such that Lgen(G-RM0) ⊆ Lacc(G′-RM0).

Proof. Let MG = (G, B, l0, lh, P) be a G-register machine with zero test. We con-
sider MG as a generating device, where 1 ≤ j ≤ k are the output registers. We
now construct a register machine with zero test MG′ = (G′, B′, l′0, l′h, P ′) with

G′ = (G1, . . . Gk, G1, . . . Gk, Gk+1, . . . Gm+k),

i.e., every output register of MG appears in two copies, and the first copy is des-
ignated as an input register of MG′ , which now becomes an accepting device with
the input registers 1 ≤ k ≤ m. Given any input in the input registers, G′ simulates
MG in the registers k + 1, . . . ,m+ k representing the registers 1, . . . ,m using the
instructions in P ′ with each register j in an instruction of P replaced by the cor-
responding register k+ j in the instructions of P ′. With MG reaching lh, also MG′

reaches lh. After that, in a final procedure, G′ checks if the contents of register j
equals the contents of register j + k for every 1 ≤ j ≤ k. In the success case, G′
enters the final label l′h.

For j = 1, . . . , k, starting with p1, sequences of instructions
pj : (0TEST (j), p̂j , p

′
j),

p′j : (0TEST (k + j), p′j , pj+1),
p̂j : (ADD(j,−b), {p̄j}),

Beyond Generalized Multiplicities: RMs over Groups 19

p̄j : (0TEST (j + r), p̃j , p̄j), and
p̃j : (ADD(j + k,−b), {pj})
simultaneously decrement related registers j and j + k, 1 ≤ j ≤ k, down to zero.
In this construction, we define an instance of the rule p̂j and an instance of the
rule p̃j for every generator b of the group Gj , which allows testing registers j and
j + k for equality independently of the number of generators of the corresponding
(finitely generated) group. In the success case, i.e., if both have been checked to
be equal, the procedure continues with the next pair of registers. At the end, in
the success case, we take pk+1 = l′h. In the failure case, an infinite loop is entered.
We leave the remaining details of the construction to the interested reader. For
example, to allow non-deterministic branching from a label p to q and s, without
modifying the registers, we can use a working register r and a generator b as well
as the sequence of instructions p : (ADD(r, b), {p′}) and p′ : (ADD(r,−b), {q, s}).
Moreover, if there is no working register in MG , we add one in MG′ .

We conclude that the set generated by MG equals the set accepted by MG′ . ut

Lemma 2. Let m ∈ N and take the finite family of finitely presented groups
G = (Gi)1≤i≤m, with Gi = 〈Bi | Ri〉. Then there exists another family of finitely
presented groups G′ such that Lacc(G-RM0) ⊆ Lgen(G′-RM0).

Proof. We now start with an accepting G-register machine with zero test MG =
(G, B, l0, lh, P) and construct a generating register machine with zero test MG′ =
(G′, B′, l′0, l′h, P ′), again using a similar construction of additional registers as in the
proof of Lemma 1. MG′ randomly generates two copies of the output in registers
i and i + k, 1 ≤ i ≤ k. Then MG′ simulates an accepting computation of MG in
the registers k + 1, . . . ,m+ k of MG′ . In case lh is reached in that way, instead of
halting MG′ finally decreases all working registers k + 1, . . . ,m+ k to zero:

For j = k + 1, . . . ,m+ k, starting with pk+1 = lh, sequences of instructions
pj : (0TEST (j), p̂j , pj+1) and
p̂j : (ADD(j,−b), {pj , pj})
are carried out in a deterministic way, finishing with the HALT-instruction with
label l′h = pm+k. We conclude that the set accepted by MG equals the set generated
by MG′ . ut

As an immediate consequence of the two preceding lemmas, we conclude that
the generating and the accepting power of register machines over groups with the
zero test instruction is equal.

Theorem 3. Lacc(∗-RM0) = Lgen(∗-RM0).

A result similar to the one stated in Lemma 2 also holds true for blind register
machines:

Corollary 2. Let m ∈ N and take the finite family of finitely presented groups
G = (Gi)1≤i≤m, with Gi = 〈Bi | Ri〉. Then there exists another family of finitely
presented groups G′ such that Lacc(G-BRM) ⊆ Lgen(G′-BRM).

20 A. Alhazov, R. Freund, and S. Ivanov

Proof. We can use the same construction as described in the proof of Lemma 2,
except for the final procedure decrementing all working registers to zero, which
is not needed as by definition acceptance for blind register machines requires all
working registers to be zero. ut

4.4 Vector Addition Systems over Groups

One of the classical results on vector addition systems is that, in the conventional
definition of the model, adding a state control does not increase the power, because
the states can be simulated using 3 additional components of vectors [11, Lemma
2.1]. This result can be naturally generalized to vector addition systems over groups
with forbidden regions.

Theorem 4. Consider a finitely generated computable group G, the product G′ =
G × Z3, its subset F = {(g, a, b, c) ∈ G′ | a < 0 or b < 0 or c < 0}, and an
arbitrary G-VASS A. Then there exists a G′-VAS with the forbidden region F
whose computations modulo the natural projection p : G′ → G are exactly the
computations of A.

Proof. The construction from the proof of [11, Lemma 2.1] can be directly carried
over to our setting: the three components over Z with forbidden negative values can
be used to encode the current state and to compute the next one unambiguously.
We do not recall the cited construction here because it is rather technical and out
of the scope of this article. ut

We can immediately generalize this result by replacing Z in the previous state-
ment by a different group into which one can injectively (monomorphically) embed
Z.

Theorem 5. Consider a finitely generated computable group G, and a totally or-
dered group Z such that there exists an injective homomorphism of totally ordered
groups i : Z → Z. Take the product G′ = G × Z3, its subset F = {(g, a, b, c) ∈
G′ | a <Z i(0) or b <Z i(0) or c <Z i(0)}, and an arbitrary G-VASS A. Then
there exists a G′-VAS with the forbidden region F whose computations modulo the
natural projection p : G′ → G are exactly the computations of A.

Proof. The injective homomorphism i delimits a totally ordered subgroup of Z
which is isomorphic to Z, allowing to perform the same operations as in the proof
of [11, Lemma 2.1]. ut

Remark 9. The result [11, Lemma 2.1] as well as the two generalizations we give
here do not necessarily state the equality between the families of languages gener-
ated by VAS with and without states. Indeed, the language generated by a VASS
is usually taken to contain all the vectors which the VASS reaches while also being
in a terminal or halting state, while the language of a VAS is often taken to be
simply its reachability set. In Definition 5, this behavior is captured by allowing
the underlying register machine of a G-VAS to halt at any time.

Beyond Generalized Multiplicities: RMs over Groups 21

A consequence of the fact that only the elements a G-VASS produces in its
halting state contribute to the generated language is that a G-VASS can generate
the empty language ∅ by never reaching the halting state. On the other hand, the
language of a G-VAS always includes at least the start element. This observation
together with the fact that we define G-VAS as a particular case of G-VASS implies
the following statement.

Proposition 4. For any finitely generated computable group G, it holds that
L(G-V AS) (L(G-V ASS).

Since this strict inclusion is rather trivial and does not reflect the intrinsic
computing power of vector addition systems, in the rest of this section we will only
consider G-VASS generating non-empty languages. In this setting, the increase in
power due to the state control depends strongly on the underlying group. For
example, Zn-V AS (Zn-V ASS, as shown in [3, Lemmas 6 and 7]. On the other
hand, it follows trivially from Proposition 3 and Example 14 that adding states to
vector addition systems over the singleton group 1 does not increase the power.
We generalize these observations in the following statement.

Theorem 6. If a finitely generated computable group G contains an element of
order greater than 2, then L(G-V AS) (L(G-V ASS) \ {∅}.

Proof. Suppose that g is the element of G whose order is greater than 2. Suppose
that there exists such a G-VAS A with the start element g0 ∈ G that L(A) = {e, g},
where e is the neutral element of G. Then there exist two elements h0, h1 ∈ G
such that g0h0 = e and g0h1 = g, and A executes the operations corresponding to
adding h0 to g0 to generate e, and corresponding to adding h1 to g0 to generate g.
Since ord(g) > 2, g 6= e, and either h0 6= e, or h1 6= e, or both. Let h ∈ {h0, h1}
such that h 6= e. Then, if A executes the sequence of actions corresponding to h0,
and afterwards the one corresponding to h, it will generate g0h0h = h. If h /∈ {e, g},
then L(A)) {e, g}, which is a contradiction.

Now suppose that h ∈ {e, g}. By construction, h 6= e, so h = g. Suppose
that A carries out the sequence of actions corresponding to h0, then the sequence
corresponding to h, and then the same sequence again. It would generate g0h0hh =
h2 = g2. By hypothesis, ord(g) > 2, meaning that g2 /∈ {e, g}. But in this case
L(A)) {e, g}, which is again a contradiction.

We conclude the proof by remarking that the language {e, g} can be generated
by a G-VASS with the starting element e and whose underlying register machine
contains the single instruction l : (ADD(1, g), {lh}). ut

It follows immediately from the previous theorem that the state control already
makes a difference for vector addition systems over Z3 = Z/3Z, the group of
addition modulo 3. Indeed, it is impossible to construct a Z3-VAS generating {0, 1}:
any attempt would end up putting the element 2 into the generated language.

Corollary 3. L(Z3-V AS) (L(Z3-V ASS) \ {∅}.

22 A. Alhazov, R. Freund, and S. Ivanov

On the other hand, the state control does not increase the power of vector
addition systems over the two-element group Z2 = Z/2Z.

Proposition 5. L(Z2-V AS) = L(Z2-V ASS) \ {∅}.

Proof. Only the following non-empty languages over Z2 exist: {0}, {1}, and {0, 1}.
The first two ones can be generated by a Z2-VAS whose underlying register is
initialized to 0 or 1, respectively, and whose underlying register machine always
halts immediately.

The third one is generated by a Z2-VAS with the start element g0 ∈ {0, 1}
and with the underlying register machine containing only one instruction l :
(ADD(1, 1), {l, lh}). ut

Even though Theorem 6 gives a sufficient criterion for the state control to
strictly augment the expressive power of G-VAS, we do not claim that this criterion
is necessary. Establishing a necessary and sufficient criterion is left as an open
problem.

We conclude this discussion about the frontier between the power of G-VAS
and G-VASS by recalling that the paper [3] considers uniform families of VAS,
Z-V AS∪, which are essentially an extension of vector addition systems allowing
a finite number of start vectors instead of only one of them. In a similar fashion,
we can consider uniform families of G-VAS. We denote these by G-V AS∪. For a
finite group H, languages generated by uniform families of H-VAS turn out to be
the same as those generated by H-VASS.

Proposition 6. For a finite group H, L(H-V AS∪) = L(H-V ASS).

Proof. Since H is finite, H-VASS generate finite languages. Hence, any given H-
VASS A can be “simulated” by a uniform family of H-VAS without any addition
elements (the underlying register machine halts immediately) and whose start
elements form exactly L(A). ut

5 Generating and Accepting Strings

In this section, we will show how the idea to use the free group constrained to the
syntactic monoid introduced in Example 12 can be used to turn register machines
over groups into devices recognizing and generating strings. We assume that the
reader is familiar with regular and context free grammars, finite-state and push-
down automata, as well as Turing machines. For an extensive introduction to the
domain of formal languages, we refer to [19].

For an alphabet V , we will use the symbol V to refer to the free group 〈V | ∅〉
whenever no ambiguity occurs. We will also use the notation FV to refer to the
elements of the free group V which do not appear in the syntactic monoid V ∗:
FV = {x ∈ V | x /∈ V ∗} = V \ V ∗.

Beyond Generalized Multiplicities: RMs over Groups 23

Our first result shows that a register machine with only one register containing
values from V can simulate a regular grammar. The symbol REGV stands for the
class of all regular languages over the alphabet V .

Theorem 7. Lgen

(
(V)-RM¬(FV)

)
= REGV .

Proof. Consider an arbitrary regular language L and the regular grammar G =
(N,V, P, S) generating it, where N is the set of non-terminal symbols, V is the
set of terminal symbols, N ∩ V = ∅, P is the set of productions, and S is the
starting symbol. We will construct a (V)-register machine with the forbidden region
FV which will generate the language L. We associate the instruction labels l(A)
(defined below) with every non-terminal A ∈ N and we construct the program of
M in the following way:

• for every rule A → aB, A,B ∈ N , a ∈ V , we add a fresh label lA to the set
l(A) and the instruction lA : (ADD(1, a), l(B)) to the program of M ;

• for every rule A → a, A ∈ N , a ∈ V , we add a fresh label lA to the set l(A)
and the instruction lA : (ADD(1, a), {lh}) to the program of M ;

• for every rule A → λ, A ∈ N , we add a fresh label lA to the set l(A) and the
instruction lA : (ADD(1, λ), {lh}) to the program of M , where λ is the empty
string and the neutral element of the group V.

The set of instruction labels of M is therefore B =
⋃

A∈N l(A). Without losing
generality, we may assume that l(S) only contains one element, which will serve
as the starting label for M .

By construction, M faithfully simulates the regular grammar G by reflecting
the current non-terminal symbol in the instruction label, by adding the corre-
sponding symbol to the only register containing the generated string, and by non-
deterministically jumping to one of the instruction labels corresponding to the new
non-terminal symbol if a rule A→ aB is applied. ut

A symmetric result can be proved for the accepting mode, except that in this
case we need the terminal zero test to ensure that the input string has been read
completely. In this statement, we combine the notation BRM and the subscript
¬(FV) to refer to register machines with both the terminal zero test and forbidden
regions.

Theorem 8. Lacc

(
(V)-BRM¬(FV)

)
= REGV .

Proof. Consider a regular language L and a (non-deterministic) finite automaton
FA = (Q,V, δ, q, F) recognizing it, where Q is the set of states, V is the set of
input symbols, δ : Q × V → 2Q is the transition function giving a set of target
states based on the current state and the symbol on the tape, q is the starting
state, and F ⊆ Q is the set accepting states. We construct a (V)-register machine
with the forbidden region FV which accepts the reverse image of the language L,
i.e., Lacc(M) = {sR | s ∈ L} = LR, where sR is the reverse of s.

24 A. Alhazov, R. Freund, and S. Ivanov

We denote lh(p) = {lh} if p ∈ F and lh(p) = ∅ otherwise. We define the
following mapping from the set of states of FA to the set of labels of M :

l(p) = {pa | p ∈ Q, a ∈ V, δ(p, a) 6= ∅} ∪ lh(p).

We also use the natural extension l(Q′) =
⋃

p∈Q l(p), for Q′ ⊆ Q.

For every pair p ∈ Q and a ∈ V for which δ(p, a) 6= ∅, we add the following
to M :

1. the label pa to the set of labels B;

2. the instruction pa :
(
ADD(1, a−1), l(δ(p, a))

)
to the program.

Finally, we add the instruction l0 : (ADD(1, λ), l(q)) to M , where q is the starting
state of FA.

To recognize the string sR ∈ LR, M first non-deterministically jumps to one of
the labels qa by performing the instruction l0 which does not modify the register. In
the following step, the machine performs ADD(1, a−1). If the string in its register
has the form wb, w ∈ V ∗, b ∈ V \ {a}, then this operation results in the forbidden
string wba−1 and M aborts. Otherwise the value of the register becomes w, M
non-deterministically jumps to one of the labels in l(δ(q, a)), and repeats the same
procedure.

Whenever the machine simulates a jump to a state p ∈ F , it may choose to
jump to the instruction lh and halt. If it does so while the register does not contain
the empty string λ, the terminal zero test will fail and the computation will abort.
If, on the other hand, it does not jump to lh after updating its register to λ, the
subsequent instruction ADD(1, a−1) aborts the computation.

We conclude the proof by recalling that regular languages are closed under the
reverse image. ut

Registers containing elements from V can also be used as stacks, allowing to
simulate pushdown automata. We only give sketches of the proofs of the following
results, the omitted details being very similar to those appearing in the previous
proof.

Theorem 9. Consider two alphabets V and R, the corresponding free groups V and
R, and the regions FV = V \V ∗ and FR = R\R∗. Then (V,R)-register machines
with terminal zero test and with the family of forbidden regions (FV , FR) accept
all context-free languages that can be accepted by a pushdown automaton with the
tape alphabet V and the stack alphabet R.

Proof (sketch). The proof idea is very close to that employed in Theorem 8: we
construct a register machine M with two registers. The first register contains the
input string which it non-deterministically “reads” by appending symbols a−1 and
aborting when the symbol was not guessed correctly. The second register contains
the stack. M pushes a symbol z ∈ R on the stack by performing ADD(2, z) and

Beyond Generalized Multiplicities: RMs over Groups 25

pops a symbol by non-deterministically performing ADD(2, z−1). At the end of
the computation, both registers must be empty for M to accept. We conclude the
sketch of the proof by recalling that context-free languages are closed under the
mirror image. ut

The proof of Lemma 2 can be directly generalized to register machines with
forbidden regions, yielding the following corollary for the generating mode.

Theorem 10. Consider two alphabets V and R, the corresponding free groups
V and R, and the regions FV = V \ V ∗ and FR = R \ R∗. Then (V,R)-register
machines with terminal zero test and with the family of forbidden regions (FV , FR)
generate all context-free languages that can be accepted by a pushdown automaton
with the tape alphabet V and the stack alphabet R.

Finally, we remark that two registers containing strings over the same alphabet
can be used to directly simulate the tape of a Turing machine. Our construction
is very similar to an automaton with two independent stacks.

Without losing generality, we will only consider Turing machines whose input
is placed entirely to the left of their head.

Theorem 11. Consider the alphabet V , the free group V over V , and the region
FV = V \V ∗. (V,V)-register machines with the zero test instruction and the family
of forbidden regions (FV , FV) can directly simulate a Turing machine by starting
with the initial tape contents in the first register and halting with the final tape
contents in the first register.

Proof (sketch). A register machine M simulates a given Turing machine T by
keeping the string representing the tape contents to the left of the head in the first
register, and the reverse of the tape contents to the right of the head in the second
register. At every step, M checks if the second register is not empty, and if not,
non-deterministically guesses the symbol T is reading. To write a symbol a on the
tape, M simply performs ADD(2, a). To simulate a move of the head of T to the
left, M non-deterministically reads a symbol from the first register and adds it
to the second register. To simulate a move to the right, M non-deterministically
reads a symbol a from the second register and adds a to the first register. If the
second register is empty, M simulates the action of T corresponding to reading
an empty tape cell. If the head should move to the right, M adds the symbol
representing the empty tape cell (different from the empty string λ) to the first
register. Similarly, if M must simulate a move of the head to the left while its
first register is empty, it adds the symbol representing the empty tape cell to the
second register. ut

6 Conclusion and Open Problems

In this paper we focused on generalizing the model of register machines to operate
on groups instead of natural or integer numbers, thus continuing previous works

26 A. Alhazov, R. Freund, and S. Ivanov

aiming at generalizing related models of computing, such as vector addition sys-
tems and P systems [2, 3, 7, 9]. Generalizing register machines to groups allowed
us to put forward the fundamental connection between vector addition systems
and register machines, as well as to reveal an unexpected possibility to operate on
registers containing strings, without any encoding.

The definitions and basic tools exhibited in this paper illustrate some of the
consequences of the way in which register machines are generalized. One interesting
class of problems which is still left open is the role of the nature of the underlying
group in defining the frontiers of computational power. For example, Theorem 6
approaches one such separation between vector addition systems with and without
states, but does not give a crisp borderline. On the other hand, the impact of the
group being commutative is still to be explored.

References

1. Alhazov, A., Aman, B., Freund, R., Păun, Gh.: Matter and anti-matter in membrane
systems. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) Descriptional Complex-
ity of Formal Systems – 16th International Workshop, DCFS 2014, Turku, Finland,
August 5-8, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8614, pp.
65–76. Springer (2014). https://doi.org/10.1007/978-3-319-09704-6 7

2. Alhazov, A., Belingheri, O., Freund, R., Ivanov, S., Porreca, A.E., Zandron, C.:
Purely catalytic P systems over integers and their generative power. In: Leporati,
A., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) Membrane Computing – 17th
International Conference, CMC 2016, Milan, Italy, July 25-29, 2016, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 10105, pp. 67–82. Springer (2016).
https://doi.org/10.1007/978-3-319-54072-6 5

3. Alhazov, A., Belingheri, O., Freund, R., Ivanov, S., Porreca, A.E., Zandron, C.:
Semilinear sets, register machines, and integer vector addition (p) systems. In: Pro-
ceedings of the 17th International Conference on Membrane Computing, CMC 2016.
pp. 27–42 (2016)

4. Büning, H.K., Lettmann, T., Mayr, E.W.: Projections of vector addition system
reachability sets are semilinear. Theoretical Computer Science 64(3), 343–350 (May
1989). https://doi.org/10.1016/0304-3975(89)90055-8

5. Freund, R.: Control mechanisms for array grammars on Cayley grids. In: Durand-
Lose, J., Verlan, S. (eds.) Machines, Computations, and Universality – 8th Inter-
national Conference, MCU 2018, Fontainebleau, France, June 28-30, 2018, Proceed-
ings. Lecture Notes in Computer Science, vol. 10881, pp. 1–33. Springer (2018).
https://doi.org/10.1007/978-3-319-92402-1 1

6. Freund, R., Ibarra, O.H., Păun, Gh., Yen, H.C.: Matrix languages, register ma-
chines, vector addition systems. In: Gutiérrez-Naranjo, M., Riscos-Núñez, A., Romero
Campero, F., Sburlan, D. (eds.) Proceedings of the Third Brainstorming Week on
Membrane Computing. pp. 155–168. University of Sevilla (2005)

7. Freund, R., Ivanov, S., Verlan, S.: P systems with generalized multisets over totally
ordered abelian groups. In: Rozenberg, G., Salomaa, A., Sempere, J.M., Zandron, C.
(eds.) Membrane Computing – 16th International Conference, CMC 2015, Valencia,
Spain, August 17–21, 2015, Revised Selected Papers. Lecture Notes in Computer

Beyond Generalized Multiplicities: RMs over Groups 27

Science, vol. 9504, pp. 117–136. Springer (2015). https://doi.org/10.1007/978-3-319-
28475-0 9

8. Greibach, S.A.: Remarks on blind and partially blind one-way multicounter machines.
Theoretical Computer Science 7(3), 311–324 (1978). https://doi.org/10.1016/0304-
3975(78)90020-8

9. Haase, C., Halfon, S.: Integer vector addition systems with states. In: Ouaknine, J.,
Potapov, I., Worrell, J. (eds.) Reachability Problems: 8th International Workshop,
RP 2014, Oxford, UK, September 22–24, 2014. Proceedings, pp. 112–124. Springer
(2014). https://doi.org/10.1007/978-3-319-11439-2 9

10. Holt, D.F., Eick, B., O’Brien, E.A.: Handbook of Computational Group Theory. CRC
Press (2005)

11. Hopcroft, J., Pansiot, J.J.: On the reachability problem for 5-dimensional
vector addition systems. Theoretical Computer Science 8(2), 135–159 (1979).
https://doi.org/10.1016/0304-3975(79)90041-0

12. Ivanov, S.: On the power and universality of biologically-inspired models of com-
putation. (Étude de la puissance d’expression et de l’universalité des modèles de
calcul inspirés par la biologie). Ph.D. thesis, University of Paris-Est, France (2015),
https://tel.archives-ouvertes.fr/tel-01272318

13. Korec, I.: Small universal register machines. Theoretical Computer Science 168(2),
267–301 (1996). https://doi.org/10.1016/S0304-3975(96)00080-1

14. Levi, F.W.: Ordered groups. In: Proceedings of the Indian Academy of Sciences.
vol. A16, pp. 256–263 (1942)

15. Minsky, M.: Recursive unsolvability of Post’s problem of tag and other topics in the
theory of Turing machines. Annals of Mathematics, second series 74, 437–455 (1961)

16. Minsky, M.L.: Computation. Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, NJ (1967)

17. Mitrana, V., Stiebe, R.: Extended finite automata over groups. Discrete Ap-
plied Mathematics 108(3), 287 –300 (2001). https://doi.org/10.1016/S0166-
218X(00)00200-6

18. Păun, Gh., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-
puting. Oxford University Press, Inc., New York, NY, USA (2010)

19. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, 3 volumes.
Springer, New York, NY, USA (1997)

20. Thomas W. Judson, R.A.B.: Abstract Algebra: Theory and Applications (2018)

(Tissue) P Systems with Anti-Membranes

Artiom Alhazov1, Rudolf Freund2, Sergiu Ivanov3

1 Vladimir Andrunachievici Institute of
Mathematics and Computer Science
Academiei 5, Chişinău, MD-2028, Moldova
E-mail: artiom@math.md

2 TU Wien, Institut für Logic and Computation
Favoritenstraße 9–11, 1040 Wien, Austria
E-mail: rudi@emcc.at

3 IBISC, Université Évry, Université Paris-Saclay
23, boulevard de France, 91034 Évry, France
E-mail: sergiu.ivanov@univ-evry.fr

Summary. The concept of a matter object being annihilated when meeting its corre-
sponding anti-matter object is taken over for membranes as objects and anti-membranes
as the corresponding annihilation counterpart in P systems. Natural numbers can be
represented by the corresponding number of membranes with a specific label. Compu-
tational completeness in this setting then can be obtained with using only elementary
membrane division rules, without using objects. A similar result can be obtained for tis-
sue P systems with cell division rules and cell / anti-cell annihilation rules. In both cases,
as derivation modes we may take the standard maximally parallel derivation modes as
well as any of the maximally parallel set derivation modes (non-extendable (multi)sets of
rules, (multi)sets with maximal number of rules, (multi)sets of rules affecting the maximal
number of objects).

1 Introduction

The basic model of P systems as introduced in [12] can be considered as a dis-
tributed multiset rewriting system, where all objects – if possible – evolve in par-
allel in the membrane regions and may be communicated through the membranes.
Overviews on the field of P systems can be found in the monograph [13] and the
handbook of membrane systems [14]; for actual news and results we refer to the
P systems webpage [16] as well as to the Bulletin of the International Membrane
Computing Society.

Computational completeness (computing any partial recursive relation on non-
negative integers) can be obtained with using cooperative rules or with cat-
alytic rules (possibly) together with non-cooperative rules. We recall that non-
cooperative rules have the form a → w, where a is a symbol and w is a multiset,

30 A. Alhazov, R. Freund, and S. Ivanov

catalytic rules have the form ca → cw, where the symbol c is called the cata-
lyst, and cooperative rules have no restrictions on the form of the left-hand side.
Without additional control mechanisms, at least two catalysts are needed, see [7].
Using specific control mechanisms, as for example, rule labels or target agreement,
only one catalyst is needed, for example, see [6, 8, 9]. In [2, 1], another concept to
avoid cooperative rules is investigated: for any object a (matter), its anti-object
(anti-matter) a− is considered together with the corresponding annihilation rule
aa− → λ, which is assumed to exist in all membranes; this annihilation rule is
assumed to be a special non-cooperative rule having priority over all other rules in
the sense of weak priority (e.g., see [3], i.e., other rules then also may be applied if
objects cannot be bound by some annihilation rule any more). For spiking neural
P systems, the idea of anti-matter has been introduced in [11] with anti-spikes
as anti-matter objects. In [5] the power of anti-matter for solving NP-complete
problems is exhibited.

Although, as expected (for example, compare with the Geffert normal forms,
see [15]), the annihilation rules are rather powerful, it is still surprising that using
matter/anti-matter annihilation rules as the only non-cooperative rules, with the
annihilation rules having weak priority, computational completeness can already
be obtained without using any catalyst, see [2, 1], whereas usually at least one
catalyst is needed even when using other control mechanisms, for example, see [2].

Natural numbers can be represented by the corresponding number of mem-
branes with a specific label. Hence, in this paper we take over the idea of anti-
objects for membranes, i.e., for every membrane []h we take the anti-membrane
[]h− and the membrane / anti-membrane annihilation rule []h[]h−→ λ. In the
simplest case, we only use elementary membranes, but no objects, and elementary
membrane division, i.e., rules of the form []h→[]h′ []h′′ , possibly also allowing
membrane renaming rules of the form []h→[]h′ or membrane deletion rules of the
form []h→ λ. In this setting, computational completeness then can be obtained
with using only elementary membrane division rules, without using objects, to-
gether with anti-membranes and membrane / anti-membrane annihilation rules.

Natural numbers can also be represented by the corresponding number of cells
with a specific label. Hence, a similar computational completeness result can also
be obtained for tissue P systems with cell division rules and cell / anti-cell annihi-
lation rules.

In both cases, as derivation modes we may take the standard maximally parallel
derivation modes as well as any of the maximally parallel set derivation modes
(non-extendable (multi)sets of rules, (multi)sets with maximal number of rules,
(multi)sets of rules affecting the maximal number of objects).

2 Prerequisites

The set of integers is denoted by Z, and the set of non-negative integers by N.
Given an alphabet V , a finite non-empty set of abstract symbols, the free monoid

(Tissue) P Systems with Anti-Membranes 31

generated by V under the operation of concatenation is denoted by V ∗. The ele-
ments of V ∗ are called strings, the empty string is denoted by λ, and V ∗\{λ} is
denoted by V +. For an arbitrary alphabet V = {a1, . . . , an}, the number of occur-
rences of a symbol ai in a string x is denoted by |x|ai , while the length of a string x
is denoted by |x| =

∑
ai∈V |x|ai . The Parikh vector associated with x with respect

to a1, . . . , an is (|x|a1 , . . . , |x|an). The Parikh image of an arbitrary language L
over {a1, . . . , an} is the set of all Parikh vectors of strings in L, and is denoted by
Ps(L). For a family of languages FL, the family of Parikh images of languages
in FL is denoted by PsFL, while for families of languages over a one-letter (d-
letter) alphabet, the corresponding sets of non-negative integers (d-vectors with
non-negative components) are denoted by NFL (NdFL).

A (finite) multiset over a (finite) alphabet V = {a1, . . . , an}, is a mapping f :

V → N and can be represented by 〈af(a1)1 , . . . , a
f(an)
n 〉 or by any string x for which

(|x|a1 , . . . , |x|an) = (f(a1), . . . , f(an)). In the following we will not distinguish
between a vector (m1, . . . ,mn), a multiset 〈am1

1 , . . . , amn
n 〉 or a string x having

(|x|a1 , . . . , |x|an) = (m1, . . . ,mn). Fixing the sequence of symbols a1, . . . , an in an
alphabet V in advance, the representation of the multiset 〈am1

1 , . . . , amn
n 〉 by the

string am1
1 . . . amn

n is unique. The set of all finite multisets over an alphabet V is
denoted by V ◦.

The family of regular and recursively enumerable string languages is denoted
by REG and RE, respectively. For more details of formal language theory the
reader is referred to the monographs and handbooks in this area as [4] and [15].

Register machines

A register machine is a tuple M = (m,B, l0, lh, P), where m is the number of
registers, B is a set of labels, l0 ∈ B is the initial label, lh ∈ B is the final
label, and P is the set of instructions bijectively labeled by elements of B. The
instructions of M can be of the following forms:

• l1 : (ADD(j), l2, l3), with l1 ∈ B\{lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Increases the value of register j by one, followed by a non-deterministic jump
to instruction l2 or l3. This instruction is usually called increment.

• l1 : (SUB(j), l2, l3), with l1 ∈ B\{lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
If the value of register j is zero then jump to instruction l3; otherwise, the
value of register j is decreased by one, followed by a jump to instruction l2.
The two cases of this instruction are usually called zero-test and decrement,
respectively.

• lh : HALT . Stops the execution of the register machine.

A configuration of a register machine is described by the contents of each register
and by the value of the current label, which indicates the next instruction to be
executed. Computations start by executing the instruction l0 of P , and terminate
with reaching the HALT-instruction lh.

For useful results on the computational power of register machines, we refer to
[10].

32 A. Alhazov, R. Freund, and S. Ivanov

3 P Systems with Active Membranes and Anti-Membranes

For using anti-matter as a frontier of tractability, we refer to [5], where some
standard definition of P systems with active membranes can be found. We here
consider a special rather restricted model, where no objects are used and inside
the skin membrane only the following types of rules for elementary membranes are
used:

elementary membrane division []h→[]h′ []h′′

the elementary membrane []h is divided into two membranes, possibly chang-
ing the label h of the parent membrane []h to two new labels h′, h′′ for the
child membranes []h′ and []h′′

changing membrane label []h→[]h′

the label h of the elementary membrane []h is changed to h’

elementary membrane deletion []h→ λ
the elementary membrane []h is deleted

membrane / anti-membrane annihilation []h[]h−→ λ
the elementary membrane []h and its corresponding anti-membrane []h′ an-
nihilate each other

Formally, a P system with active membranes and anti-membranes (a PAMS for
short) is a construct Π = (H ∪ {0},[]0, w0, R) where H is the set of membrane
labels used in the membrane rules specified in R, []0 denotes the skin membrane
enclosing the initial set of elementary membranes w0 with labels from H, and R
is the set of rules of the forms described above, with the labels of the elementary
membranes taken from H.

In any computation step of Π a multiset of rules is chosen from the set R in
such a way that no further rule can be added to it so that the obtained multiset
would still be applicable to the existing membranes in the skin membrane. We
emphasize that membrane / anti-membrane annihilation rules have weak priority
over all other rules, i.e., as long as membrane / anti-membrane annihilation rules
may bind some membranes, other rules are not allowed to yet be taken into the
multiset of rules constructed to be maximal.

A configuration of the system can be represented by the membranes inside the
skin membrane. Starting from a given initial configuration and applying evolution
rules as described above, we get transitions among configurations; a sequence of
transitions forms a computation. A computation is halting if it reaches a configu-
ration where no rule can be applied any more.

In the generative case, a halting computation has associated a result, in the
form of the number of membranes with the same labels present in the skin mem-
brane; their numbers represents a vector of natural numbers. In the accepting case,
all (vectors of) non-negative integers are accepted whose input, given as the cor-
responding numbers of membranes in the skin membrane in addition to w0, leads

(Tissue) P Systems with Anti-Membranes 33

to a halting computation. The set of non-negative integers and the set of (Parikh)
vectors of non-negative integers generated/accepted as results of halting computa-
tions in Π are denoted by Nδ(Π) and Psδ(Π), respectively, with δ ∈ {gen, acc}.
The corresponding families of sets of non-negative integers and the sets of vectors
of non-negative integers generated/accepted by PAMSs are denoted by Nδ(PAMS)
and Psδ(PAMS), respectively.

4 Tissue P Systems with Cell Division and Anti-Cells

Instead of considering elementary membranes inside the skin membrane, we may
also consider cells floating in a common environment. Then instead of anti-
membranes, we consider anti-cells, i.e., cells with the anti-label. Again, we here
consider a special rather restricted model, where no objects are used and only the
following types of rules for cells in the tissue P system are used:

cell division #h→#h′#h′′

the cell #h is divided into two cells, possibly changing the label h of the parent
cell #h to two new labels h′, h′′ for the child cells #h′ and #h′′

changing cell label #h→#h′

the label h of cell #h is changed to h’

cell deletion #h→ λ
the cell []h is deleted

cell / anti-cell annihilation #h#h−→ λ
the cell #h and its corresponding anti-cell #h− annihilate each other

Formally, a tissue P system with anti-cells (a tPAMS for short) is a construct
Π = (H,w0, R) where H is the set of cell labels used in the rules specified in R,
w0 is the initial set of cells with labels from H, and R is the set of rules of the
forms described above, with the labels of the cells taken from H.

In any computation step of Π a multiset of rules is chosen from the set R in
such a way that no further rule can be added to it so that the obtained multiset
would still be applicable to the existing cells. We emphasize that again we assume
cell / anti-cell annihilation rules to have weak priority over all other rules, i.e., as
long as cell / anti-cell annihilation rules may bind some cells, other rules are not
allowed to yet be taken into the multiset of rules constructed to be maximal.

A configuration of the system can be represented by the currently existing
cells. Starting from a given initial configuration and applying evolution rules as
described above, we get transitions among configurations; a sequence of transitions
forms a computation. A computation is halting if it reaches a configuration where
no rule can be applied any more.

34 A. Alhazov, R. Freund, and S. Ivanov

In the generative case, a halting computation has associated a result, in the
form of the number of cells present in the system; their numbers represents a vector
of natural numbers. In the accepting case, all (vectors of) non-negative integers
are accepted whose input, given as the corresponding numbers of initial cells in
addition to w0, leads to a halting computation. The set of non-negative integers and
the set of (Parikh) vectors of non-negative integers generated/accepted as results
of halting computations in Π are denoted by Nδ(Π) and Psδ(Π), respectively,
with δ ∈ {gen, acc}. The corresponding families of sets of non-negative integers
and the sets of vectors of non-negative integers generated/accepted by tPAMSs
are denoted by Nδ(tPAMS) and Psδ(tPAMS), respectively.

5 Results

As a first result, we observe that rules changing membrane label, i.e., []h→[]h′ , and
elementary membrane deletion rules, i.e., []h→ λ, are not needed and can be re-
placed by using only elementary membrane division and suitable membrane / anti-
membrane annihilation rules.

Lemma 1. Rules changing membrane label, i.e., []h→[]h′ , and elementary mem-
brane deletion rules, i.e., []h→ λ, can be simulated by elementary membrane
division and membrane / anti-membrane annihilation rules.

Proof. A rule changing the membrane label, i.e., []h→[]h′ , can be simulated by
the rules []h→[]h′ []h′′ , []h′′→[]g[]g− , and []g[]g−→ λ, where h′′, g, g− are new
labels (separately for each label h).

An elementary membrane deletion rule, i.e., []h→ λ, can be simulated by the
rules []h→[]g[]g− and []g[]g−→ λ, where g, g− are new labels (separately for
each label h). ut

A similar result obviously also holds for tPAMS: rules changing a cell label,
i.e., #h→#h′ , and cell deletion rules, i.e., #h→ λ, are not needed and can be
replaced by using only cell division and suitable cell / anti-cell annihilation rules.
The corresponding proof verbatim follows the proof of Lemma 1, just replacing
the notation []h by #h.

Corollary 1. Rules changing cell label, i.e., #h→#h′ , and cell deletion rules, i.e.,
#h→ λ, can be simulated by cell division and cell / anti-cell annihilation rules.

A PAMS only using elementary membrane division and membrane / anti-
membrane annihilation rules is called a PAMS in normal form. As an immediate
consequence of Lemma 1 we obtain the following normal form theorem:

Theorem 1. For every PAMS Π we can construct a PAMS Π ′ in normal form
such that Nδ(Π) = Nδ(Π

′) and Psδ(Π) = Psδ(Π
′), with δ ∈ {gen, acc}.

(Tissue) P Systems with Anti-Membranes 35

A similar normal form result obviously also holds for tPAMS as an immediate
consequence of Corollary 1:

Corollary 2. For every tPAMS Π we can construct a tPAMS Π ′ in normal form
such that Nδ(Π) = Nδ(Π

′) and Psδ(Π) = Psδ(Π
′), with δ ∈ {gen, acc}.

5.1 Computational Completeness

We now show that PAMSs characterize the families NRE and PsRE, respectively.
The main proof idea – as used very often in the area of P systems – is to simulate
(the computations of) register machines, as carried out in a similar way in [1] for
P systems with anti-matter.

Theorem 2. For any Y ∈ {N,Ps} and δ ∈ {gen, acc},

Yδ(PAMS) = Y RE.

Proof. Let M = (m,B, l0, lh, P) be a register machine. We now construct a PAMS
Π which simulates (the computations of) M :

• Π = (H ∪ {0},[]0, w0, R);
• H = {r, r− | 1 ≤ r ≤ m} ∪ {l, l′ | l ∈ B} ∪ {#,#−} is the set of labels for the

elementary membranes inside the skin membrane;
the label r, 1 ≤ r ≤ m, is for the copies of membrane []r representing the
contents of register r; the labels r− are for the corresponding anti-membranes;

• in the generating case, initially the skin membrane contains only the elemen-
tary membrane []l0 ; in the accepting case, suitable copies of membranes for
representing the input vector are to be added;

• R contains the rules described in the following.

The contents of register r is represented by the number of copies of the ele-
mentary membrane []r, 1 ≤ r ≤ m, and for each membrane []r we also consider
the corresponding anti-membrane []r− .

The instructions of M are simulated by the following rules in R1:

• l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Simulated by the rules

[]l1 →[]r[]l2 and []l1 →[]r[]l3 .

• l1 : (SUB (r) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ r ≤ m.
As rules common for the simulations of all SUB-instructions, we have

[]r− →[]#− , 1 ≤ r ≤ m,

and the annihilation rules

[]r[]r− → λ, 1 ≤ r ≤ m, and []#[]#− → λ

36 A. Alhazov, R. Freund, and S. Ivanov

as well as the trap rules

[]#− → []#[]# and []# → []#[]#;

these last two rules lead the system into an infinite computation whenever
a membrane with one of the trap symbols # or #− is left without being
annihilated.

The zero test for instruction l1 is simulated by the rules

[]l1 → []l1′ []r− and []l′1 → []#[]l3 .

The membrane labeled by #, generated by the second rule []l′1 → []#[]l3 can
only be eliminated if the anti-membrane []r− generated by the first rule []l1
→ []l1′ []r− is not annihilated by []r, i.e., only if register r is empty, which
allows for applying the rule []r− → []#− and for using the annihilation rule
[]#[]#− → λ afterwards in the next derivation step.

The decrement case for instruction l1 is simulated by the rule

[]l1 →[]l2 []r− .

The anti-membrane []r− either correctly annihilates one copy of membrane []r,
thus decrementing the register r, or else traps an incorrect guess by forcing the
anti-membrane []r− to evolve to []#− and then to []#[]# in the next two
steps in case register r is empty.

We finally observe that these two remaining derivation steps for trapping the
decrement case as well as the remaining derivation step for correctly completing
the decrement case or the zero test case do not influence the correct simulation
of another SUB-instruction, even on the same register r, as the involved symbols
have evolved at least one step before they could influence the symbols being
generated by the new simulation sequence.

• lh : HALT . Simulated by []lh → λ.

When the computation in M halts, the membrane []lh is removed, and no
further rules can be applied provided the simulation has been carried out correctly,
i.e., if no membranes labeled by trap symbols # are present in this situation. The
remaining membranes in the system represent the result computed by M . ut

For δ ∈ {gen, acc}, let us denote the families of sets of non-negative integers
and the sets of vectors of non-negative integers generated/accepted by PAMSs in
normal form by Nδ(NFPAMS) and Psδ(NFPAMS), respectively.

Then, by combining Lemma 1 and Theorem 2, we obtain the following result:

Theorem 3. For any Y ∈ {N,Ps} and δ ∈ {gen, acc},

Yδ(NFPAMS) = Y RE.

(Tissue) P Systems with Anti-Membranes 37

Similar results obviously also hold for tissue P systems with anti-cells; the
corresponding proofs again verbatim follow the proofs of Theorems 2 and 3, just
replacing the notation []h by #h.

Corollary 3. For any Y ∈ {N,Ps} and δ ∈ {gen, acc},

Yδ(PAMS) = Y RE.

Corollary 4. For any Y ∈ {N,Ps} and δ ∈ {gen, acc},

Yδ(NFPAMS) = Y RE.

5.2 Derivation Modes

So far, we only have considered the maximally parallel derivation mode. Yet a
thorough investigation of the proofs given so far in this section shows that in a
successful derivation each rule need only be applied at most once, which means
that instead of the maximally parallel derivation mode we can use any of the set
derivation modes, where each rule can only be applied once, defined as follows:

setmax take a non-extendable set of rules
setmaxrules take a non-extendable set of rules with the maximal number of rules

possible
setmaxobjects take a non-extendable set of rules affecting the maximal number

of objects

The concept of using the maximal number of rules or objects can also be taken
over for the maximally parallel derivation mode:

max take a non-extendable multiset of rules
maxrules take a non-extendable multiset of rules with the maximal number of

rules possible
maxobjects take a non-extendable multiset of rules affecting the maximal number

of objects

Let us now specify the derivation mode

γ ∈ {max,maxrules,maxobjects, setmax, setmaxrules, setmaxobjects, }

as additional subscript to δ, δ ∈ {gen, acc}, for denoting the set of natural numbers
and the set of vectors of natural numbers obtained by PAMS and tPAMS, i.e., we
now write Nγ,δ and Psγ,δ, respectively.

Moreover, we use the bracket notation [t]PAMS to indicate that we mean both
PAMS and tPAMS, respectively, and in a similar way for PAMS and tPAMS in
normal form.

With any of these derivation modes, using sets or multisets of rules, we now get
the same normal form and computational completeness results as for the maximally
parallel derivation mode max as established so far:

38 A. Alhazov, R. Freund, and S. Ivanov

For the [t]PAMS to be transformed into normal form we observe that in the
construction of the normal form given in the proof of Lemma 1, for each membrane
label we used new additional labels and thus the corresponding new rules are
independent from other such rules needed for simulating the change of a membrane
label or the deletion of a membrane; hence, if in one of the set modes, one such
rule is replaced to get the normal form, all the simulating rules are also needed
only once, too, during the simulation sequences.

Hence, we can summarize the results obtained in this paper in the following
form, for any of the derivation modes defined above.

We first state our normal form theorem:

Theorem 4. For every [t]PAMS Π we can construct a [t]PAMS Π ′ in normal
form such that

Yγ,δ(Π) = Yγ,δ(Π
′)

for any Y ∈ {N,Ps} and any δ ∈ {gen, acc} as well as any

γ ∈ {max,maxrules,maxobjects, setmax, setmaxrules, setmaxobjects}.

As our main result, we have shown computational completeness for PAMS and
tPAMS, even in normal form, with all the derivation modes as defined above: we
again emphasize that in the proofs given so far in this section, in a successful
derivation each rule need only be applied at most once, hence, the simulations of
the instructions of a register machine work for the set modes as well. On the other
hand, whether the trap rule []# → []#[]# is applied only once or as often as
possible makes no difference for the desired effect to keep the system trapped in
an infinite loop.

Theorem 5. For any Y ∈ {N,Ps} and δ ∈ {gen, acc},

Yγ,δ([NF][t]PAMS) = Y RE

for any

γ ∈ {max,maxrules,maxobjects, setmax, setmaxrules, setmaxobjects}.

Finally we mention that computational completeness can also be extended from
the generating and accepting case to the computing case, i.e., PAMS and tPAMS,
even in normal form, can also compute any partial recursive function or relation.

6 Conclusion

In this paper we have taken over the idea of matter and anti-matter objects in
P systems to P systems with active membranes, now considering membranes and

(Tissue) P Systems with Anti-Membranes 39

anti-membranes as the objects interacting with each other in annihilation rules,
which we assume to have weak priority over all other rules. We have investigated a
restricted model of P systems with active membranes, without any objects in the
whole system and instead only elementary membranes in the skin membrane. In
this model, natural numbers are represented as copies of elementary membranes
with a specific label. In such a variant of P systems with active membranes, com-
putations of register machines can be simulated by using only (a special variant of)
elementary membrane division rules and membrane/anti-membrane annihilation
rules.

Moreover, we have established similar results for tissue P systems with cell
division rules and cell / anti-cell annihilation rules. In both cases, as derivation
modes we may also take the standard maximally parallel derivation mode(s) as well
as any of the maximally parallel set derivation modes (non-extendable (multi)sets
of rules, (multi)sets with maximal number of rules, (multi)sets of rules affecting
the maximal number of objects) to obtain computational completeness.

In a more general model, we need not restrict ourselves to elementary mem-
branes interacting with each other in membrane / anti-membrane annihilation
rules. In fact, we may consider a variant where in such a reaction only the out-
ermost membranes of two non-elementary membranes react, emitting the interior
membrane structure into the skin membrane. In such a variant, non-elementary
membrane division becomes relevant, as well as rules allowing for putting a new
membrane around a given membrane structure, i.e., rules of the form []h →
[[]h′]h′′ . Finally, as it is common in P systems with active membranes, in ad-
dition objects may be added and guide the membrane rules (yet still evolution
rules for the objects may be forbidden). Such variants remain to be investigated
in some future papers based on this one.

Acknowledgements

The ideas for this paper came up in the inspiring atmosphere of the Brainstorming
Week on Membrane Computing in Sevilla this year.

References

1. Alhazov, A., Aman, B., Freund, R.: P systems with anti-matter. In: Gheorghe, M.,
Rozenberg, G., Salomaa, A., Sośık, P., Zandron, C. (eds.) Membrane Computing -
15th International Conference, CMC 2014, Prague, Czech Republic, August 20-22,
2014, Revised Selected Papers. Lecture Notes in Computer Science, vol. 8961, pp.
66–85. Springer (2014). https://doi.org/10.1007/978-3-319-14370-5 5

2. Alhazov, A., Aman, B., Freund, R., Păun, Gh.: Matter and anti-matter
in membrane systems. In: Maćıas-Ramos, L.F., Mart́ınez-del-Amor, M.A.,
Păun, Gh., Riscos-Núñez, A., Valencia-Cabrera, L. (eds.) Proceedings of the
Twelfth Brainstorming Week on Membrane Computing. pp. 1–26 (2014),
http://www.gcn.us.es/files/12bwmc/001 bwmc2014AntiMatter.pdf

40 A. Alhazov, R. Freund, and S. Ivanov

3. Alhazov, A., Sburlan, D.: Static sorting P systems. In: Ciobanu, G., Pérez-Jiménez,
M.J., Păun, Gh. (eds.) Applications of Membrane Computing, pp. 215–252. Natural
Computing Series, Springer (2006). https://doi.org/10.1007/3-540-29937-8 8

4. Dassow, J., Păun, Gh.: Regulated Rewriting in Formal Language Theory. Springer
(1989), https://www.springer.com/de/book/9783642749346

5. Dı́az-Pernil, D., Peña-Cantillana, F., Alhazov, A., Freund, R., Gutiérrez-Naranjo,
M.A.: Antimatter as a frontier of tractability in membrane computing. Fundamenta
Informaticae 134(1-2), 83–96 (2014). https://doi.org/10.3233/FI-2014-1092

6. Freund, R.: Purely catalytic P systems: Two catalysts can be sufficient for
computational completeness. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Ro-
gozhin, Yu. (eds.) CMC14 Proceedings – The 14th International Conference on
Membrane Computing, Chişinău, August 20–23, 2013. pp. 153–166. Institute of
Mathematics and Computer Science, Academy of Sciences of Moldova (2013),
http://www.math.md/cmc14/CMC14 Proceedings.pdf

7. Freund, R., Kari, L., Oswald, M., Sośık, P.: Computationally universal P systems
without priorities: two catalysts are sufficient. Theoretical Computer Science 330(2),
251–266 (2005). https://doi.org/10.1016/j.tcs.2004.06.029

8. Freund, R., Oswald, M.: Catalytic and purely catalytic P automata: control mecha-
nisms for obtaining computational completeness. In: Bensch, S., Drewes, F., Freund,
R., Otto, F. (eds.) Fifth Workshop on Non-Classical Models for Automata and Ap-
plications - NCMA 2013, Ume̊a, Sweden, August 13 - August 14, 2013, Proceedings.
books@ocg.at, vol. 294, pp. 133–150. Österreichische Computer Gesellschaft (2013)

9. Freund, R., Păun, Gh.: How to obtain computational completeness in P systems with
one catalyst. In: Neary, T., Cook, M. (eds.) Proceedings Machines, Computations and
Universality 2013, MCU 2013, Zürich, Switzerland, September 9-11, 2013. EPTCS,
vol. 128, pp. 47–61 (2013). https://doi.org/10.4204/EPTCS.128.13

10. Minsky, M.L.: Computation. Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, NJ (1967)

11. Pan, L., Păun, Gh.: Spiking neural P systems with anti-matter.
International Journal of Computers, Communications & Con-
trol 4(3), 273–282 (2009). https://doi.org/10.15837/ijccc.2009.3.2435,
http://univagora.ro/jour/index.php/ijccc/article/download/2435/901

12. Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences
61(1), 108–143 (2000). https://doi.org/10.1006/jcss.1999.1693

13. Păun, Gh.: Membrane Computing: An Introduction. Springer (2002).
https://doi.org/10.1007/978-3-642-56196-2

14. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press (2010)

15. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer (1997).
https://doi.org/10.1007/978-3-642-59136-5

16. The P Systems Website. http://ppage.psystems.eu/

P Systems: from Anti-Matter to Anti-Rules

Artiom Alhazov1, Rudolf Freund2, Sergiu Ivanov3, Mario J. Pérez-Jiménez4

1 Vladimir Andrunachievici Institute of
Mathematics and Computer Science
Academiei 5, Chişinău, MD-2028, Moldova
E-mail: artiom@math.md

2 TU Wien, Institut für Logic and Computation
Favoritenstraße 9–11, 1040 Wien, Austria
E-mail: rudi@emcc.at

3 IBISC, Université Évry, Université Paris-Saclay
23, boulevard de France, 91034 Évry, France
E-mail: sergiu.ivanov@univ-evry.fr

4 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
E-mail: marper@us.es

Summary. The concept of a matter object being annihilated when meeting its corre-
sponding anti-matter object is taken over for rule labels as objects and anti-rule labels
as the corresponding annihilation counterpart in P systems. In the presence of a corre-
sponding anti-rule object, annihilation of a rule object happens before the rule that the
rule object represents, can be applied. Applying a rule consumes the corresponding rule
object, but may also produce new rule objects as well as anti-rule objects, too. Compu-
tational completeness in this setting then can be obtained in a one-membrane P system
with non-cooperative rules and rule / anti-rule annihilation rules when using one of the
standard maximally parallel derivation modes as well as any of the maximally parallel
set derivation modes (i.e., non-extendable (multi)sets of rules, (multi)sets with maximal
number of rules, (multi)sets of rules affecting the maximal number of objects). When
using the sequential derivation mode, at least the computational power of partially blind
register machines is obtained.

1 Introduction

The basic model of P systems as introduced in [24] can be considered as a dis-
tributed multiset rewriting system, where all objects – if possible – evolve in par-
allel in the membrane regions and may be communicated through the membranes.
Overviews on the field of P systems can be found in the monograph [25] and the
handbook of membrane systems [26]; for actual news and results we refer to the

42 A. Alhazov, R. Freund, S. Ivanov, and M.J. Pérez-Jiménez

P systems webpage [28] as well as to the Bulletin of the International Membrane
Computing Society.

Computational completeness (computing any partial recursive relation on non-
negative integers) can be obtained with using cooperative rules or with cat-
alytic rules (possibly) together with non-cooperative rules. We recall that non-
cooperative rules have the form a → w, where a is a symbol and w is a multiset,
catalytic rules have the form ca → cw, where the symbol c is called the cata-
lyst, and cooperative rules have no restrictions on the form of the left-hand side.
Without additional control mechanisms, at least two catalysts are needed, see [16].
Using specific control mechanisms, as for example, rule labels or target agreement,
only one catalyst is needed, for example, see [14, 19, 20]. In [2, 1], another concept
to avoid cooperative rules is investigated: for any object a (matter), its anti-object
(anti-matter) a− is considered together with the corresponding annihilation rule
aa− → λ, which is assumed to exist in all membranes; this annihilation rule is
assumed to be a special non-cooperative rule having priority over all other rules in
the sense of weak priority (e.g., see [9], i.e., other rules then also may be applied if
objects cannot be bound by some annihilation rule any more). For spiking neural
P systems, the idea of anti-matter has been introduced in [23] with anti-spikes
as anti-matter objects. In [12] the power of anti-matter for solving NP-complete
problems is exhibited.

Although, as expected (for example, compare with the Geffert normal forms,
see [27]), the annihilation rules are rather powerful, it is still surprising that using
matter/anti-matter annihilation rules as the only non-cooperative rules, with the
annihilation rules having weak priority, computational completeness can already
be obtained without using any catalyst, see [2, 1], whereas usually at least one
catalyst is needed even when using other control mechanisms, for example, see [2].

In this paper we now consider a rule label as an object itself which cannot evolve
as any other object in the system, but only has the task to make the rule applicable;
in some sense this can be seen as a variant of rule activation as introduced in P
systems with activation and blocking of rules, see [4]; for the concept of activation
and blocking of rules also see [3, 5]. Introducing the anti-rule object then can be
seen as a variant of blocking the corresponding rule. The main difference between
these two concepts – activation and blocking of rules in contrast to rule objects
and anti-rule objects – is that with activation and blocking of rules, rules can be
activated and blocked for specific time steps in the future, whereas the activation
of a rule by its rule object is immediate, and also blocking is immediate, but
active until the anti-rule object annihilates with the rule object, which may be an
unbounded number of steps in the future. When a rule is applied by consuming
its corresponding rule object is also not fixed and may heavily depend not only
on the applicability of the rule, but also on the derivation mode. For example,
in the sequential mode, several rule objects may compete for the rule each of
them represents to be executed; the sequence of applications may be crucial, as
in between an anti-rule object may appear and annihilate the rule object. Finally,
let us mention that the concepts of activation of rules and of rule objects already

P Systems: from Anti-Matter to Anti-Rules 43

have appeared in some different way in [13] embedded in an even more complex
setting.

We also have to emphasize that each copy of a rule object allows for exactly
one application of the corresponding rule it represents, i.e., we deal with multisets
of rules only applicable if the corresponding multiset of rule objects is present,
which restricts the set of applicable sets of multisets of rules in a given derivation
mode, especially in the maximally parallel derivation modes. This also means that
we have to deal with a subtle technical detail: We either may start with the set
of all applicable sets of multisets of rules, no matter which and how many rule
objects are present, then take out all the multisets of rules which conform with
the given derivation mode, and then only take those for which sufficient resources
of rule objects are available. On the other hand, we may also first take only those
multisets of rules for which there are sufficient resources of rule objects available,
take these as the set of applicable rule multisets and only afterwards apply the
condition for the derivation mode. Examples to explain these differences will be
given in Section 3.

After explaining some notions and definitions used in this paper in the next
section, in Section 3 we will define our new model of P systems with rule and
anti-rule objects as well the kind of rules, the derivation modes, and the halting
conditions used afterwards; moreover, some examples are given to illustrate the
new concept. In Section 4, we then establish our main results. We show that com-
putational completeness can even be obtained with one-membrane P systems using
non-cooperative rules and rule / anti-rule annihilation rules as well as one of the
standard maximally parallel derivation modes or maximally parallel set derivation
modes (i.e., non-extendable (multi)sets of rules, (multi)sets with maximal number
of rules, (multi)sets of rules affecting the maximal number of objects). When using
the sequential derivation mode, at least the computational power of partially blind
register machines is obtained. A summary of the results we obtained as well as an
outlook to future research topics conclude the paper.

2 Prerequisites

The set of integers is denoted by Z, and the set of non-negative integers by N.
Given an alphabet V , a finite non-empty set of abstract symbols, the free monoid
generated by V under the operation of concatenation is denoted by V ∗. The ele-
ments of V ∗ are called strings, the empty string is denoted by λ, and V ∗\{λ} is
denoted by V +. For an arbitrary alphabet V = {a1, . . . , an}, the number of occur-
rences of a symbol ai in a string x is denoted by |x|ai , while the length of a string x
is denoted by |x| =

∑
ai∈V |x|ai . The Parikh vector associated with x with respect

to a1, . . . , an is (|x|a1 , . . . , |x|an). The Parikh image of an arbitrary language L
over {a1, . . . , an} is the set of all Parikh vectors of strings in L, and is denoted by
Ps(L). For a family of languages FL, the family of Parikh images of languages

44 A. Alhazov, R. Freund, S. Ivanov, and M.J. Pérez-Jiménez

in FL is denoted by PsFL, while for families of languages over a one-letter (d-
letter) alphabet, the corresponding sets of non-negative integers (d-vectors with
non-negative components) are denoted by NFL (NdFL).

A (finite) multiset over a (finite) alphabet V = {a1, . . . , an}, is a mapping f :

V → N and can be represented by 〈af(a1)1 , . . . , a
f(an)
n 〉 or by any string x for which

(|x|a1 , . . . , |x|an) = (f(a1), . . . , f(an)). In the following we will not distinguish
between a vector (m1, . . . ,mn), a multiset 〈am1

1 , . . . , amnn 〉 or a string x having
(|x|a1 , . . . , |x|an) = (m1, . . . ,mn). Fixing the sequence of symbols a1, . . . , an in an
alphabet V in advance, the representation of the multiset 〈am1

1 , . . . , amnn 〉 by the
string am1

1 . . . amnn is unique. The set of all finite multisets over an alphabet V is
denoted by V ◦.

The family of regular and recursively enumerable string languages is denoted
by REG and RE, respectively. For more details of formal language theory the
reader is referred to the monographs and handbooks in this area as [11] and [27].

Register machines

A register machine is a tuple M = (m,B, l0, lh, P), where m is the number of
registers, B is a set of labels, l0 ∈ B is the initial label, lh ∈ B is the final
label, and P is the set of instructions bijectively labeled by elements of B. The
instructions of M can be of the following forms:

• l1 : (ADD(j), l2, l3), with l1 ∈ B\{lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Increases the value of register j by one, followed by a non-deterministic jump
to instruction l2 or l3. This instruction is usually called increment.

• l1 : (SUB(j), l2, l3), with l1 ∈ B\{lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
If the value of register j is zero then jump to instruction l3; otherwise, the
value of register j is decreased by one, followed by a jump to instruction l2.
The two cases of this instruction are usually called zero-test and decrement,
respectively.

• lh : HALT . Stops the execution of the register machine.

A configuration of a register machine is described by the contents of each register
and by the value of the current label, which indicates the next instruction to be
executed. Computations start by executing the instruction l0 of P , and terminate
with reaching the HALT-instruction lh.

For useful results on the computational power of register machines, we refer to
[22].

In partially blind register machines, the SUB instruction has the form p :
(SUB(r), q): if the register r is not empty, it is decremented and the register
machine moves to state q, otherwise the machine crashes – the computation stops
in a non-halting configuration, yielding no result. Moreover, we require that valid
computations of a partially blind register machine have 0 in all non-output registers
in halting configurations.

P Systems: from Anti-Matter to Anti-Rules 45

3 P Systems with Rule and Anti-Rule Objects

Formally, a P system with anti-rules (a PARS for short) is a construct

Π =
(
V, T,H ∪H−, µ, w1, . . . , wm, R1, . . . , Rm, gH , f,=⇒Π,δ

)
where

• V is the alphabet of objects;
• T ⊆ V is the alphabet of terminal objects;
• H ∪H− is the alphabet of rule objects (H) and anti-rule objects (H−), respec-

tively; we also define VH := V ∪H ∪H−;
• µ is the hierarchical membrane structure (a rooted tree of membranes) with

the membranes uniquely labeled by the numbers from 1 to m;
• wi ∈ V ∗, 1 ≤ i ≤ m, is the initial multiset in membrane i;
• Ri, 1 ≤ i ≤ m, is a finite set of rules of type X assigned to membrane i; we

also define R =
⋃

1≤i≤m{(i, r) | r ∈ Ri};
• gH is a function assigning a rule from R to every rule object in H;
• f is the label of the membrane from which the result of a computation has to

be taken from (in the generative case) or into which the initial multiset has to
be given in addition to wf (in the accepting case),

• =⇒Π,δ is the derivation relation under the derivation mode δ.

The symbol X in “rules of type X” may stand for “cooperative”, “non-
cooperative”,“purely catalytic”, “catalytic”, etc., see Subsection 3.1.

A configuration is a list of the contents of each membrane region; a sequence
of configurations C1, . . . , Ck is called a computation in the derivation mode δ if
Ci=⇒Π,δCi+1 for 1 ≤ i < k. The derivation relation =⇒Π,δ is defined by the set of
rules in Π and the given derivation mode which determines the multiset of rules to
be applied to the multisets contained in each membrane also taking into account
the available rule objects, as we will explain in more detail in Subsection 3.4.

3.1 Standard Rule Variants

Non-cooperative rules have the form a → w, where a is a symbol and w is a
multiset, catalytic rules have the form ca→ cw, where the symbol c is called the
catalyst, and cooperative rules have no restrictions on the form of the left-hand
side. These types of rules will be denoted by ncoo (non-cooperative), pcat (purely
catalytic), and coo (cooperative); if both non-cooperative and catalytic rules are
allowed, we write cat (catalytic).

If in general a P system has more than one membrane, each symbol on the
right-hand side may have assigned a target where the symbol has to be sent after
the application of the rule, where the targets take into account the tree structure
of the membranes as follows:

here the symbol stays in the membrane where the rule is applied;
out the symbol is sent to the outer membrane, i.e., the membrane enclosing the

membrane where the rule is applied;

46 A. Alhazov, R. Freund, S. Ivanov, and M.J. Pérez-Jiménez

in the symbol is sent to an inner membrane, i.e., a membrane enclosed by the
membrane where the rule is applied;

inj the symbol is sent to the inner membrane labeled by j.

3.2 Derivation Modes

In general, the set of all multisets of rules applicable in a P system to a given con-
figuration C is denoted by Appl(Π,C) and can be restricted by imposing specific
conditions, thus yielding the following basic derivation modes (for example, see
[21] for formal definitions):

• asynchronous mode (abbreviated asyn): at least one rule is applied;
• sequential mode (sequ): only one rule is applied;
• maximally parallel mode (max): a non-extendable multiset of rules is applied;
• maximally parallel mode with maximal number of rules (maxrules): a non-

extendable multiset of rules of maximal possible cardinality is applied;
• maximally parallel mode with maximal number of objects (maxobjects): a non-

extendable multiset of rules affecting as many objects as possible is applied.

In [7], these derivation modes are restricted in such a way that each rule can
be applied at most once, thus yielding the set modes sasyn, smax, smaxrules, and
smaxobjects (the sequential mode is already a set mode by definition):

• asynchronous set mode (abbreviated sasyn): at least one rule is applied, but
each rule at most once;

• maximally parallel set mode (smax): a non-extendable set of rules is applied;
• maximally parallel set mode with maximal number of rules (smaxrules): a

non-extendable set of rules of maximal possible cardinality is applied;
• maximally parallel set mode with maximal number of objects (smaxobjects): a

non-extendable set of rules affecting as many objects as possible is applied.

Let us denote the set of all multisets (possibly only sets) of rules applicable
in a (tissue) P system Π to a given configuration C in the derivation mode δ by
Appl(Π,C, δ). We immediately observe that Appl(Π,C, asyn) = Appl(Π,C).
To collect the set and multiset derivation modes, we use the following notations:

DS = {sequ, sasyn, smax, smaxrules, smaxobjects} and
DM = {asyn,max,maxrules,maxobjects}.

3.3 Halting Conditions

Besides the standard total halting with no (multi)set of rules being applicable any
more to the current configuration, some more variants of halting conditions have
been considered in the literature:

total halting (H) the common halting strategy where the computation stops
with no (multi)set of rules being applicable any more

P Systems: from Anti-Matter to Anti-Rules 47

unconditional halting (u) the result of a computation can be taken from ev-
ery configuration derived from the initial one (possibly only taking terminal
results)

partial halting (h) the set of rules R is partitioned into disjoint subsets R1 to
Rh, and a computation stops if there is no multiset of rules applicable to the
current configuration which contains a rule from every set Rj , 1 ≤ j ≤ h

halting with states (s) the configuration with which a derivation may stop
must fulfill a recursive condition (which corresponds with a final state)

The variant of unconditional halting was introduced in [10]. Partial halting, for
example, was investigated in [6, 8, 18], using the membranes for partitioning the
rules. Formal definitions for the halting conditions H,h, s can be found in [21].

In the description for P systems, the derivation relation under the derivation
mode δ, =⇒Π,δ, is extended by the halting condition, i.e., we then write =⇒Π,δ,β

for β ∈ {H,h, u, s}. By default, β is understood to be the total halting H and
then usually omitted.

3.4 Rule and Anti-Rule Objects

In the set of rules R, the rules on the left-hand side may only contain symbols from
V , whereas on the right-hand side of a rules any symbol from VH may appear.

In any computation step of a PARS Π only a multiset R′ of rules can be applied
such that for each (copy of a) rule r a rule object h with g(h) = r is present in the
current configuration. With the application of a rule r, a copy of a rule object h
with g(h) = r is consumed, i.e., the number of rule objects in the sense of multisets
is important for the applicability of a multiset of rules.

As we allow anti-rule objects to be generated, too, we implicitly assume the
rule / anti-rule annihilation rule hh− → λ to be present in every membrane, for
every h ∈ H. Before the next derivation step as described above can be carried
out, all such annihilation rules have to be executed, as we assume them to have
(weak) priority over all other rules.

As already mentioned in Section 1, each copy of a rule object allows for exactly
one application of the corresponding rule it represents, i.e., we deal with multisets
of rules only applicable if the corresponding multiset of rule objects is present,
which restricts the set of applicable sets of multisets of rules in a given derivation
mode, especially in the maximally parallel derivation modes.

Hence, there are two possible ways how to define the applicable multisets of
rules applicable to a given configuration; we observe that a configuration may
contain elements from VH , not only V , but as the rule / anti-rule annihilation
rules hh− → λ have weak priority, no pair hh− can be present any more:

starting with applicable multisets (δa) We start with the set of all applicable sets
of multisets of rules, no matter which and how many rule objects are present,
then take out all the multisets of rules which conform with the given derivation

48 A. Alhazov, R. Freund, S. Ivanov, and M.J. Pérez-Jiménez

mode, and then only take those for which sufficient resources of rule objects
are available.

starting with available rule objects (δr) We first take only those multisets of
rules for which there are sufficient resources of rule objects available, take
these as the set of applicable rule multisets and only afterwards apply the
condition for the derivation mode.

Which variant we choose for a given derivation mode, will be indicated by a
subscript a or r to δ, i.e., we write δa and δr, respectively.

The language generated by the PARS Π is the set of all terminal multisets
which can be obtained in the output membrane f starting from the initial config-
uration C1 = (w1, . . . , wm) using the derivation mode δα, α ∈ {a, r}, in a halting
computation using the halting condition β, i.e.,

Lgen,δα,β (Π) =
{
C(f) ∈ T ◦ | C1

∗
=⇒Π,δα,β C ∧ haltingδα,β(C)

}
,

where C(f) stands for the multiset contained in the output membrane f of the
final configuration C and haltingδα,β(C) indicates that C is a halting configuration
with respect to the halting condition β when using δα.

The family of languages of multisets generated by PARSs of type X with at
most n membranes in the derivation mode δα using the halting condition β is
denoted by Psgen,δα,βOPn (X).

We may also consider PARSs as accepting mechanisms: in membrane f , we add
the input multiset w0 to wf in the initial configuration C1 = (w1, . . . , wm) thus
obtaining C1[w0] = (w1, . . . , wfw0, . . . , wm); the input multiset w0 is accepted if
there exists a halting computation in the derivation mode δα starting from C1[w0],
i.e.,

Lacc,δα,β (Π) =
{
w0 ∈ T ◦ | ∃C :

(
C1[w0]

∗
=⇒Π,δα,β C ∧ haltingδα,β(C)

)}
.

Then the family of languages of multisets accepted by PARSs of type X with at
most n membranes in the derivation mode δα using the halting condition β is
denoted by Psacc,δα,βOPn (X).

We finally mention that PARSs can also be used to compute functions and
relations, with using f both as input and output membrane or even using two
different membranes for the input and the output. Yet in this paper we will mainly
focus on the generating case.

3.5 Flattening

As many variants of P systems can be flattened to only one membrane, see [17], we
often may assume the simplest membrane structure of only one membrane which
in effect reduces the P system to a multiset processing mechanism, and, observing
that f = 1, in what follows we then will use the reduced notation

P Systems: from Anti-Matter to Anti-Rules 49

Π =
(
V, T,H ∪H−, w,R, gH ,=⇒Π,δα,β

)
for a PARS with only one membrane, for which the definitions for the language
generated by Π and the language accepted by Π can be written in an easier way,
i.e.,

Lgen,δα,β (Π) =
{
v ∈ T ◦ | w ∗

=⇒Π,δα,β v ∧ haltingδα,β(v)
}

and

Lacc,δα,β (Π) =
{
w0 ∈ T ◦ | ∃v :

(
ww0

∗
=⇒Π,δα,β v ∧ haltingδα,β(v)

)}
.

The family of languages of multisets generated by one-membrane PARSs of
type X in the derivation mode δα using the halting condition β is denoted by
Psgen,δα,βOP (X).

The family of languages of multisets accepted by one-membrane PARSs of
type X in the derivation mode δα using the halting condition β is denoted by
Psacc,δα,βOP (X).

The following example illustrates that the two variants δa and δa need not yield
the same results:

Example 1. Take the PARS

Π =
(
V = {a}, T = {a}, H ∪H−, w = ar,R = {a→ aar}, gH ,=⇒Π,δα,u

)
with H = {r} and gH = {(r, a → aar)}. Then, with every application of the rule
r : a→ aar we get one more symbol a, i.e., for α ∈ {a, r}, we have

{a}+ = Lgen,sequα,u (Π) = Lgen,smaxα,u (Π)

= Lgen,maxr,u (Π) .

But on the other hand, Lgen,maxa,u (Π) = {a, aa}, because after the first applica-
tion of rule r we obtain the configuration aar, which is a terminal one, as the only
applicable multiset of rules which is not extendable would contain two copies of
the rule a→ aar, yet only one corresponding rule object r is available.

The following example shows that different results are obtained with different
derivation modes δ:

Example 2. Take the PARS

Π =
(
V = {a}, T = {a}, H ∪H−, w = ar,R = {a→ aarr}, gH ,=⇒Π,δα,u

)
with H = {r} and gH = {(r, a→ aarr)}. Then, with every application of the rule
r : a→ aarr we double the number of symbols a when using a maximally parallel
derivation mode, i.e., for α ∈ {a, r}, we have

Lgen,δα,u (Π) =
{
a2
n

| n ≥ 0
}

50 A. Alhazov, R. Freund, S. Ivanov, and M.J. Pérez-Jiménez

for any δ ∈ {max,maxrules,maxobjects}, because now the number of rule objects r
grows in the same way as the number of symbols a. But on the other hand, we still
get Lgen,sequα,u (Π) = {a}+, because in every derivation step the rule r : a→ aarr
can only be applied once, although the number of rule objects grows in a similar
way as the number of symbols a, i.e., we obtain a sequence of configurations anrn,
n ≥ 1, from which we extract the terminal results an, n ≥ 1.

4 Results

As our first result, we will show that with the sequential derivation mode PARSs
at least are as powerful as partially blind register machines.

Afterwards, computational completeness will be established for PARSs working
in the derivation modes maxr and smaxr, smaxa.

4.1 Sequential PARSs

In order to easily comply with the final condition that in halting computations of
partially blind register machines all non-output registers should be zero, for the
PARSs in the following theorem we use halting with states, where the final states
are defined in such a way that the PARS can only halt with yielding a result if only
terminal symbols are present any more. Now let NPBRM and PsPBRM denote
the families of sets of multisets and vectors of multisets, respectively, generated by
partially blind register machines.

Theorem 1. For any Y ∈ {N,Ps} and α ∈ {a, r},

Y PBRM ⊆ Ygen,sequα,sOP (ncoo).

Proof. Let M = (m,B, l0, lh, P) be a partially blind register machine; we assume
the output registers to be the first k ones. We now construct a PARS Π which
simulates (the computations of) M ; the contents of register r is represented by
the number of copies of symbols ar:

Π =
(
V, T,H ∪H−, w,R, gH ,=⇒Π,sequα,s

)
where

• V = {aj | 1 ≤ j ≤ m} ∪ {s,#};
• T = {aj | 1 ≤ j ≤ k};
• H = B ∪ B′SUB ∪ {l#}, i.e., the rule objects are the instruction labels in B,

their primed variants, but only for the SUB-instructions, i.e.,

B′SUB = {l′1 ∈ B | l1 : (SUB (r) , l2) ∈ P},

and the label l# for the trap rule s→ #; we also define VH := V ∪H ∪H−;

P Systems: from Anti-Matter to Anti-Rules 51

• w = l0s, i.e., we start with the symbol s and the rule object l0 representing
the initial instruction.

The instructions of M are simulated by the following rules in R; we will write
l : r to both indicate the rule r and the label l, having assigned the rule r by the
function gH .

• l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Simulated by the rules l1 : s→ arl2 and l1 : s→ arl3.

• l1 : (SUB (r) , l2), with l1 ∈ B \ {lh}, l2 ∈ B, 1 ≤ r ≤ m.
As labeled rule common for the simulations of all SUB-instructions, we have
l# : s→ # and the rule / anti-rule annihilation rule l#l#

− → λ.

The application of the rule l# : s → # traps the whole computation, as #
is no terminal symbol and thus any configuration containing the trap symbol
cannot fulfill the final state condition.
The decrement case for instruction l1 is simulated by the rules
l1 : s→ sl′1l# generating the rule objects l′1 and l#, and

l′1 : ar → l2l#
−, which guarantees a correct simulation of a possible decre-

ment instruction in case register r is not empty (and also eliminates the rule
object l# by generating its anti-rule object l#

−).
If register r is empty, then the application of the rule labeled with l# generating
the trap symbol # is enforced, which can only be avoided if register r is not
empty and the rule labeled with l′1 can be applied instead.

• lh : HALT . Simulated by lh : s→ λ.

When the computation in M halts, the state symbol s is removed, and no fur-
ther rules can be applied provided the simulation of a valid computation in M has
been carried out correctly, i.e., if no trap symbols # are present in this situation,
which then guarantees that the halting condition is fulfilled. The terminal symbols
in the skin membrane represent the result computed by M . ut

In the preceding proof we have taken advantage of the halting condition with
final states guaranteeing to take only terminal results. Yet we can also take the
standard total halting, but paying the price with having rule objects remaining in
the halting computations:

Theorem 2. For any Y ∈ {N,Ps} and α ∈ {a, r},

Y PBRM ⊆ Ygen,sequα,HOP (ncoo).

Proof. As in the preceding proof we simulate a partially blind register machine
M = (m,B, l0, lh, P), where we assume the output registers to be the first k ones.

52 A. Alhazov, R. Freund, S. Ivanov, and M.J. Pérez-Jiménez

We then construct a PARS Π ′ which simulates (the computations of) M , where
Π ′ is obtained from Π as constructed in the proof of Theorem 1 by extending it
in the following way:

Π ′ =
(
V, T,H ′ ∪H ′−, w,R′, gH′ ,=⇒Π,sequα,H

)
where

• V = {aj | 1 ≤ j ≤ m} ∪ {s,#};
• T = {aj | 1 ≤ j ≤ k};
• H ′ = B ∪B′SUB ∪ {l#, l′#} ∪Br, i.e., the rule objects are the instruction labels

in B, their primed variants, but only for the SUB-instructions, i.e.,

B′SUB = {l′1 ∈ B | l1 : (SUB (r) , l2) ∈ P},

the label l# for the trap rule s → #, as well as, in addition now, the labels
in Br = {lj,# | k + 1 ≤ j ≤ m} needed for the final zero check and the
label l′#, which is needed for the additional trap rule # → #; we also define

VH′ := V ∪H ′ ∪H ′−;
• w = l0s, i.e., we start with the symbol s and the rule object l0 representing

the initial instruction.

For simulating the instructions of M we take all rules in R′ constructed as
follows:

• l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Simulated by the rules l1 : s→ arl2 and l1 : s→ arl3.

• l1 : (SUB (r) , l2), with l1 ∈ B \ {lh}, l2 ∈ B, 1 ≤ r ≤ m.
As labeled rule common for the simulations of all SUB-instructions, we have
l# : s→ # and the rule / anti-rule annihilation rule l#l#

− → λ.

The application of the rule l# : s→ # traps the whole computation by intro-
ducing the trap symbol #.
The decrement case for instruction l1 is simulated by the rules
l1 : s→ sl′1l# generating the rule objects l′1 and l#, and

l′1 : ar → l2l#
−, which guarantees a correct simulation of a possible decre-

ment instruction in case register r is not empty (and also eliminates the rule
object l# by generating its anti-rule object l#

−).
If register r is empty, then the application of the rule labeled with l# generating
the trap symbol # is enforced, which can only be avoided if register r is not
empty and the rule labeled with l′1 can be applied instead.

• lh : HALT .
Instead of lh : s→ λ we now use the final rule lh : s→ l′#lk+1,# . . . lm,#, where
lj,# : aj → #, k+ 1 ≤ j ≤ m, introduces the trap symbol #, if any of the non-
output registers is not empty when lh is reached. If at some moment the trap
symbol is introduced, an infinite (non-halting) derivation finally is guaranteed
by the rule l′# : #→ #l′#.

P Systems: from Anti-Matter to Anti-Rules 53

When the computation in M halts, the state symbol s is removed, and no
further rules can be applied provided the simulation of a valid computation in
M has been carried out correctly, i.e., if no trap symbols # are present in this
situation, AND the final zero test is successful, i.e., none of the rules lj,# : aj → #,
k + 1 ≤ j ≤ m is applicable in the step after the application of the final rule
lh : s→ l′#lk+1,# . . . lm,#.

Only the terminal symbols in the skin membrane represent the result computed
by M . ut

In the proof of Theorem 1 we needed the anti-rule object l#
− and the rule / anti-

rule annihilation rule l#l#
− → λ to finally obtain a clean result without any rule

object. Yet as in the construction of the PARS in Theorem 2 we anyway get
rule objects remaining in the final configuration we need not use this anti-rule
object l#

− and the corresponding rule / anti-rule annihilation rule l#l#
− → λ for

the PARS Π ′ constructed in the proof of Theorem 2 any more; the remaining
technical details are left to the interested reader.

Denoting a PARS not needing anti-rule objects as well as the corresponding
rule / anti-rule annihilation rules by PRS and indicating this by writing α0 instead
of α, we immediately may state the following result:

Corollary 1. For any Y ∈ {N,Ps} and α ∈ {a, r},

Y PBRM ⊆ Ygen,sequα0 ,HOP (ncoo).

We remark that the PARSs in Examples 1 and 2 in fact also are only using
rule objects and thus are PRSs only.

It remains a challenging open question if we can go beyond Y PBRM when
using the sequential derivation mode and non-cooperative rules.

4.2 Computational Completeness

We now show that PARSs characterize the families NRE and PsRE, respectively.
The main proof idea – as used very often in the area of P systems – is to simulate
(the computations of) register machines, as carried out in a similar way in [1] for
P systems with anti-matter.

Theorem 3. For any Y ∈ {N,Ps} and γ ∈ {gen, acc},

Yγ,δr,HOP (ncoo) = Y RE

for any δ ∈ {max,maxrules,maxobjects}.

Proof. Let M = (m,B, l0, lh, P) be a register machine. We now construct a PARS
Π which simulates (the computations of) M ; the contents of register r is repre-
sented by the number of copies of symbols ar:

54 A. Alhazov, R. Freund, S. Ivanov, and M.J. Pérez-Jiménez

Π ′ =
(
V, T,H ∪H−, w,R, gH ,=⇒Π,sequα,H

)
where

• V = {aj | 1 ≤ j ≤ m} ∪ {s};
• T = {aj | 1 ≤ j ≤ k};
• H = B ∪ B̃ ∪Br, where

B̃ = {l′1, l′′1 | l1 ∈ B, l1 : (SUB (r) , l2, l3) ∈ P} and
Br = {lj,l1 | l1 ∈ B, l1 : (SUB (r) , l2, l3) ∈ P, and 1 ≤ r ≤ m};

we also define VH := V ∪H ∪H−;
• w = l0s, i.e., we start with the symbol s and the rule object l0 representing

the initial instruction.

The instructions of M are simulated by the following rules in R (we emphasize
that by definition, for all rule objects l ∈ H also the anti-rule objects l− are part
of the PARS Π as well as all the corresponding rule / anti-rule annihilation rules
l l− → λ are in R):

• l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Simulated by the rules l1 : s→ arl2 and l1 : s→ arl3.

• l1 : (SUB (r) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ r ≤ m.

We start the simulation by using the rule
l1 : s→ sl′1lr,l1 and then possibly use the two rules

l′1 : s→ sl′′1 and lr,l1 : ar → l2l
′′
1
−

.

If register r is not empty, then lr,l1 : ar → l2l
′′
1
−

can be applied, at the same
time generating the label l2 to continue the computation after the successful
simulation of the decrement case and eliminating the rule object l′′1 by gener-
ating its anti-rule object l′′1

−
.

In case the register is empty, the rule object l′′1 is still present in the next
derivation step and correctly ends the simulation of the zero test case with
l′′1 : s→ slr,l1

−l3,
at the same time eliminating the rule object lr,l1 by generating the correspond-
ing anti-rule object lr,l1

−.

• lh : HALT . Simulated by lh : s→ λ.

When the computation in M halts, the symbol s is removed, and no further
rules can be applied; as the simulation has been carried out correctly, the terminal
symbols in the skin membrane at the end of a halting computation represent the
result computed by M .

We finally observe the important fact that Π simulates the SUB-instructions
of M in a deterministic way, i.e., in the accepting case the simulation of a deter-
ministic register machine is deterministic. ut

P Systems: from Anti-Matter to Anti-Rules 55

In the maximally parallel derivation modes δ we can only use the variant δr,
because in case that more than one object ar is present, we still want only one
ar to be erased in the decrement case, which is guaranteed by having only one
rule object lr,l1 , whereas without the restriction for the presence of rule objects,
this rule would be used for every copy of ar. On the other hand, in any of the set
maximally derivation modes δ already the definition of the mode guarantees that
this rule can only be applied once; hence, using the same construction as in the
proof of Theorem 3, we immediately get the corresponding result for all δr and δa
in case of the maximally parallel set derivation modes:

Corollary 2. For any Y ∈ {N,Ps}, α ∈ {a, r}, and γ ∈ {gen, acc},

Yγ,δα,HOP (ncoo) = Y RE

for any δ ∈ {smax, smaxrules, smaxobjects}.

5 Conclusion

In this paper we have taken over the idea of matter and anti-matter objects in P
systems to P systems with rule objects and anti-rule objects. For each rule to be
applied, a rule object must be present, which is consumed by the application of
the rule. Whenever a rule object h meets its anti-rule object h− the rule / anti-rule
annihilation rule hh− → λ, independent from the underlying derivation mode, has
to be applied before the next derivation step is executed.

The use of anti-rule objects and the corresponding rule / anti-rule annihilation
rules allows for the simulation of register machines with only non-cooperative rules
and any of the maximally (set) derivation modes. In the sequential mode, non-
cooperative rules together with rule objects, but even without anti-rule objects and
the corresponding rule / anti-rule annihilation rules at least allow for the simulation
of partially blind register machines. Whether we could obtain more, remains as a
challenge for future research.

In that sense, anti-rule objects (and the corresponding rule / anti-rule anni-
hilation rules) may also constitute a frontier of tractability as it was shown for
anti-matter, for example, see [12]. Investigating these kinds of complexity issues is
also a project for future research.

In this paper, we have only investigated some of the possible combinations
of derivation modes and halting conditions. Considering other combinations of
derivation modes and halting conditions as well as other kinds of rules, for example,
insertion, deletion, and substitution, is a promising topic for the future, too.

Another concept that can be added to the model of P systems with anti-rule
objects is to use decaying objects as in [15], but only for the rule objects and the

56 A. Alhazov, R. Freund, S. Ivanov, and M.J. Pérez-Jiménez

anti-rule objects. A rule object decaying in t time steps means that it can only
activate the application of the rule it stands for during the next t derivation steps,
whereafter the rule object vanishes even without the application of the rule / anti-
rule annihilation rule.

Acknowledgements

The ideas for this paper came up in the inspiring atmosphere of the Brainstorming
Week on Membrane Computing in Sevilla this year.

References

1. Alhazov, A., Aman, B., Freund, R.: P systems with anti-matter. In: Gheorghe, M.,
Rozenberg, G., Salomaa, A., Sośık, P., Zandron, C. (eds.) Membrane Computing –
15th International Conference, CMC 2014, Prague, Czech Republic, August 20–22,
2014, Revised Selected Papers. Lecture Notes in Computer Science, vol. 8961, pp.
66–85. Springer (2014). https://doi.org/10.1007/978-3-319-14370-5 5

2. Alhazov, A., Aman, B., Freund, R., Păun, Gh.: Matter and anti-matter
in membrane systems. In: Maćıas-Ramos, L.F., Mart́ınez-del-Amor, M.A.,
Păun, Gh., Riscos-Núñez, A., Valencia-Cabrera, L. (eds.) Proceedings of the
Twelfth Brainstorming Week on Membrane Computing. pp. 1–26 (2014),
http://www.gcn.us.es/files/12bwmc/001 bwmc2014AntiMatter.pdf

3. Alhazov, A., Freund, R., Ivanov, S.: Introducing the concept of activation and block-
ing of rules in the general framework for regulated rewriting in sequential grammars.
In: Proceedings of BWMC 2018 (2018)

4. Alhazov, A., Freund, R., Ivanov, S.: P systems with activation and blocking of rules.
In: Stepney, S., Verlan, S. (eds.) Unconventional Computation and Natural Com-
putation – 17th International Conference, UCNC 2018, Fontainebleau, France, June
25-29, 2018, Proceedings. Lecture Notes in Computer Science, vol. 10867, pp. 1–15.
Springer (2018). https://doi.org/10.1007/978-3-319-92435-9 1

5. Alhazov, A., Freund, R., Ivanov, S.: Sequential grammars with activation and
blocking of rules. In: Machines, Computations, and Universality – 8th Inter-
national Conference, MCU 2018, Fontainebleau, France, June 28-30, 2018, Pro-
ceedings. Lecture Notes in Computer Science, vol. 10881, pp. 51–68 (2018).
https://doi.org/10.1007/978-3-319-92402-1 3

6. Alhazov, A., Freund, R., Oswald, M., Verlan, S.: Partial halting in P systems us-
ing membrane rules with permitting contexts. In: Durand-Lose, J., Margenstern,
M. (eds.) Machines, Computations, and Universality. pp. 110–121. Springer, Berlin,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74593-8 10

7. Alhazov, A., Freund, R., Verlan, S.: P systems working in maximal variants of the set
derivation mode. In: Leporati, A., Rozenberg, G., Salomaa, A., Zandron, C. (eds.)
Membrane Computing – 17th International Conference, CMC 2016, Milan, Italy,
July 25-29, 2016, Revised Selected Papers. Lecture Notes in Computer Science, vol.
10105, pp. 83–102. Springer (2017). https://doi.org/10.1007/978-3-319-54072-6 6

8. Alhazov, A., Oswald, M., Freund, R., Verlan, S.: Partial halting and minimal par-
allelism based on arbitrary rule partitions. Fundam. Inform. 91(1), 17–34 (2009).
https://doi.org/10.3233/FI-2009-0031

P Systems: from Anti-Matter to Anti-Rules 57

9. Alhazov, A., Sburlan, D.: Static sorting P systems. In: Ciobanu, G., Pérez-Jiménez,
M.J., Păun, Gh. (eds.) Applications of Membrane Computing, pp. 215–252. Natural
Computing Series, Springer (2006). https://doi.org/10.1007/3-540-29937-8 8

10. Beyreder, M., Freund, R.: Membrane systems using noncooperative rules with un-
conditional halting. In: Corne, D.W., Frisco, P., Păun, Gh., Rozenberg, G., Salomaa,
A. (eds.) Membrane Computing. pp. 129–136. Springer, Berlin, Heidelberg (2009).
https://doi.org/10.1007/978-3-540-95885-7 10

11. Dassow, J., Păun, Gh.: Regulated Rewriting in Formal Language Theory. Springer
(1989), https://www.springer.com/de/book/9783642749346

12. Dı́az-Pernil, D., Peña-Cantillana, F., Alhazov, A., Freund, R., Gutiérrez-Naranjo,
M.A.: Antimatter as a frontier of tractability in membrane computing. Fundam.
Inform. 134(1–2), 83–96 (2014). https://doi.org/10.3233/FI-2014-1092

13. Freund, R.: Generalized P-Systems. In: Ciobanu, G., Păun, Gh. (eds.) Fundamentals
of Computation Theory, 12th International Symposium, FCT ’99, Iaşi, Romania,
August 30 – September 3, 1999, Proceedings. Lecture Notes in Computer Science,
vol. 1684, pp. 281–292. Springer (1999)

14. Freund, R.: Purely catalytic P systems: Two catalysts can be sufficient for
computational completeness. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Ro-
gozhin, Yu. (eds.) CMC14 Proceedings – The 14th International Conference on
Membrane Computing, Chişinău, August 20–23, 2013. pp. 153–166. Institute of
Mathematics and Computer Science, Academy of Sciences of Moldova (2013),
http://www.math.md/cmc14/CMC14 Proceedings.pdf

15. Freund, R.: (Tissue) P systems with decaying objects. In: Csuhaj-Varjú, E., Ghe-
orghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) Membrane Computing –
13th International Conference, CMC 2012, Budapest, Hungary, August 28–31, 2012,
Revised Selected Papers. Lecture Notes in Computer Science, vol. 7762, pp. 1–25.
Springer (2013)

16. Freund, R., Kari, L., Oswald, M., Sośık, P.: Computationally universal P systems
without priorities: two catalysts are sufficient. Theoretical Computer Science 330(2),
251–266 (2005). https://doi.org/10.1016/j.tcs.2004.06.029

17. Freund, R., Leporati, A., Mauri, G., Porreca, A.E., Verlan, S., Zandron, C.: Flatten-
ing in (tissue) P systems. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Yu.,
Rozenberg, G., Salomaa, A. (eds.) Membrane Computing, Lecture Notes in Computer
Science, vol. 8340, pp. 173–188. Springer (2014). https://doi.org/10.1007/978-3-642-
54239-8 13

18. Freund, R., Oswald, M.: Partial halting in P systems. Int. J. Found. Comput. Sci.
18(6), 1215–1225 (2007). https://doi.org/10.1142/S0129054107005261

19. Freund, R., Oswald, M.: Catalytic and purely catalytic P automata: control mecha-
nisms for obtaining computational completeness. In: Bensch, S., Drewes, F., Freund,
R., Otto, F. (eds.) Fifth Workshop on Non-Classical Models for Automata and Ap-
plications – NCMA 2013, Ume̊a, Sweden, August 13 – August 14, 2013, Proceedings.
books@ocg.at, vol. 294, pp. 133–150. Österreichische Computer Gesellschaft (2013)

20. Freund, R., Păun, Gh.: How to obtain computational completeness in P systems with
one catalyst. In: Neary, T., Cook, M. (eds.) Proceedings Machines, Computations and
Universality 2013, MCU 2013, Zürich, Switzerland, September 9–11, 2013. EPTCS,
vol. 128, pp. 47–61 (2013). https://doi.org/10.4204/EPTCS.128.13

21. Freund, R., Verlan, S.: A formal framework for static (tissue) P systems. In: Eleft-
herakis, G., Kefalas, P., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) Membrane

58 A. Alhazov, R. Freund, S. Ivanov, and M.J. Pérez-Jiménez

Computing, Lecture Notes in Computer Science, vol. 4860, pp. 271–284. Springer
(2007). https://doi.org/10.1007/978-3-540-77312-2 17

22. Minsky, M.L.: Computation. Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, NJ (1967)

23. Pan, L., Păun, Gh.: Spiking neural P systems with anti-matter.
International Journal of Computers, Communications & Con-
trol 4(3), 273–282 (2009). https://doi.org/10.15837/ijccc.2009.3.2435,
http://univagora.ro/jour/index.php/ijccc/article/download/2435/901

24. Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences
61(1), 108–143 (2000). https://doi.org/10.1006/jcss.1999.1693

25. Păun, Gh.: Membrane Computing: An Introduction. Springer (2002).
https://doi.org/10.1007/978-3-642-56196-2

26. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press (2010)

27. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer (1997).
https://doi.org/10.1007/978-3-642-59136-5

28. The P Systems Website. http://ppage.psystems.eu/

Membrane Systems with Priority, Dissolution,

Promoters and Inhibitors and Time Petri Nets

Péter Battyányi, György Vaszil

Department of Computer Science, Faculty of Informatics
University of Debrecen
Kassai út 26, 4028 Debrecen, Hungary

{battyanyi.peter,vaszil.gyorgy}@inf.unideb.hu

Summary. We continue the investigations on exploring the connection between mem-
brane systems and time Petri nets already commenced in [4] by extending membrane
systems with promoters/inhibitors, membrane dissolution and priority for rules com-
pared to the simple symbol-object membrane system. By constructing the simulating
Petri net, we retain one of the main characteristics of the Petri net model, namely, the
�rings of the transitions can take place in any order: we do not impose any additional
stipulation on the transition sequences in order to obtain a Petri net model equivalent to
the general Turing machine. Instead, we substantially exploit the gain in computational
strength obtained by the introduction of the timing feature for Petri nets.

1 Introduction

Several models have emerged in the past decades to model distributed systems
with interactive, parallel components. One of them was developed by C. A. Petri
[20], and since then the Petri nets have become the underlying system of a vast �eld
of research with a considerable practical interest on the other hand. The theory
of membrane systems was invented by Gh. P un [18], and it has proved to be
a very convenient and many-sided model of distributed systems with concurrent
processes.

Place/transition Petri nets are bipartite graphs, the conditions of the events
of a distributed system are represented by places and directed arcs connect the
places to the transitions, that model the events. The conditions for the events are
expressed by tokens, an event can take place, i.e., a transition can �re, if there
are enough number of tokens an the places at the ends of the incoming arcs of
a transition. these places are called as preconditions. The outgoing edges of a
transition represent the postcondition of the events. Firing of a transition means
removing tokens from the preconditions and adding them to the postconditions.
The number of tokens moved in this way are prescribed by the multiplicities of
the incoming and outgoing arcs, respectively.

60 Péter Battyányi, György Vaszil

In some cases the original place/transition model has turned out not to be
satisfactory, for example, we are not able to model systems where a certain order
of events must be taken into account. Various extensions of the Petri net model
have appeared, in this paper we deal with the time Petri net model developed by
Merlin [17]. In this model, time intervals are associated to transitions. The local
time observed from a transition can be modi�ed by the Petri net state transition
rules, and a transition can �re only if its observed time lies in the interval assigned
to the transition by the construction of the model. In this way, the computational
power of Petri nets is increased: the time Petri net model is Turing complete in
contrast with the original state/transition Petri net.

Membrane systems are models of distributed, synchronized computational sys-
tems ordered in a tree-like structure. The building blocks are compartments, which
contain multisets of objects. The multisets evolve in each compartment in a paral-
lel manner, and the compartments, in each computational step, wait for the others
to �nish their computation, hence the system acts in a synchronized manner. In
every computational step, the multisets in the compartments evolve in a maximal
parallel manner, this means that, in each step, as many rules of the compartment
are applied simultaneously as possible.

In this paper, we continue the research on the connection between time Petri
nets and membrane systems initiated in [4]. We extend the basic construction
of the time Petri net simulating a symbol object membrane system developed in
[4] in order to represent some more membrane computational tools like promot-
ers/inhibitors, membrane dissolution and priority of rules. One of the main features
of our construction is that the unsynchronized characteristics of Petri nets is re-
tained when a Petri net equivalent of a membrane system is presented. That is,
unlike the construction in [13], we do not stipulate that the Petri nets should per-
form their computational steps in a maximal parallel manner, the attached time
intervals provide the synchronization in the corresponding Petri nets.

2 Membrane Systems

Membrane systems are computational models operating on multisets. A �nite mul-
tiset over an alphabet O is a mapping M : O → N, where N is the set of non-
negative integers. The number M(a) for a ∈ O is called the multiplicity of a in
M . We write that M1 ⊆ M2 if for all a ∈ O, M1(a) ≤ M2(a). The union or sum
of two multisets over O is de�ned as (M1 + M2)(a) = M1(a) + M2(a), while the
di�erence is de�ned forM2 ⊆M1 as (M1−M2)(a) = M1(a)−M2(a) for all a ∈ O.
The set of all �nite multisets over an alphabet O is denoted byM(O); the empty
multiset is denoted by ∅.

The notation N>0 stands for the set of positive integers, while Q and Q≥0
denotes the set of rational numbers and non-negative rational numbers and R and
R≥0 the set of real numbers and non-negative real numbers, respectively.

We de�ne the notion of the basic symbol-object membrane system [19] together
with the additional features discussed in Chapter 5. A membrane system (or P sys-

Membrane Systems with Priority, . . . and Time Petri Nets 61

tem) is a tree-like structure of hierarchically arranged membranes. The outermost
membrane is usually called the skin membrane. The membranes are labelled by
natural numbers {1, . . . , n}, and we use the notation mi for a membrane labelled
by i. Each membrane, except for the skin membrane, has its parent membrane.
We use µ for representing the structure of the membrane system itself, in fact,
the structure itself can be given as a balanced string of left and right brackets
indexed by their labels. For example, µ = [skin [1 [2]2 [3]3 [4]4]skin. Here, the skin
membrane has two submembranes, while region 1 also contains two embedded re-
gions. Abusing the notation, µ(i) = k can also mean that the parent of the i-th
region is region k.

The regions contain multisets over a �nite alphabet O. The contents of the
regions of a P system evolve through rules associated with the regions. The rules
constitute the micro steps of the computations. They are applied in a maximal
parallel manner: the computation in a region proceeds until no more rule can
further be applied. A computational step is the macro step of the process: it
ends when each of the regions have �nished their computations. A computational
sequence is a sequence of computational steps.

Here we make the usual conditions on the presentation of a computational step:
we assume that the computational steps in the regions consist of two phases- �rst
the rule application part produces from the objects on the left-hand sides of the
rules the labelled objects on the right-hand sides (the labels of the labelled objects
describe the way they should be moved between the regions: stay where they are,
move to the parent region, or move into one of the children regions); then we have
the communication phase when the labels are removed and all the objects �nd
their regions indicated by their labels.

The P system gives a result when it halts, i.e., when no more rules can be
applied in any of the regions. The result is a number or a tuple of natural numbers
counting certain objects in the membrane designated as as the output membrane.
More formally,

De�nition 1. A P system of degree n ≥ 1 is Π = (O,µ,w1, . . . , wn, R1, . . . , Rn)
where O is an alphabet of objects, µ is a membrane structure of n membranes,
wi ∈ M(O) with 1 ≤ i ≤ n are the initial contents of the n regions, Ri with
(1 ≤ i ≤ n) are the sets of evolution rules associated with the regions; they are of
the form u → v, where u ∈ M(O) and v ∈ M(O × tar), and tar = {here, out} ∪
{inj | 1 ≤ j ≤ n}.

Unless stated otherwise, we consider the n-th membrane as the output mem-
brane. A con�guration is the sequenceW = (w1, . . . , wn), where wk is the multiset
contained by membrane mk (1 ≤ k ≤ n). By the application of a rule u→ v ∈ Ri
we mean the process of removing the elements of u from the multiset wi and
extending wi with the labelled elements, which are called messages. As a result,
during a computational step, a region can contain both elements of O and mes-
sages. An intermediate con�guration is an n-tuple of multisets over O∪ (O× tar).
We say that W is a proper con�guration, if wi ∈M(O) for each of its regions wi.

62 Péter Battyányi, György Vaszil

The communication phase means that the elements coming from the right-hand
sides of the rules of region i should be added to the regions as speci�ed by the tar-
get indicators associated with them. If rhs(r) contains a pair (a, here) ∈ O× tar,
then a ∈ O is added to region i, the region where the rule is applied. If rhs(r)
contains (a, out) ∈ O × tar, then a is added to the parent region of region i. If
rhs(r) contains (a, inj) ∈ O × tar, then a is added to the contents of region j. In
the latter case, µ(mj) = mi holds.

Given a (proper) con�guration W , we obtain a new (proper) con�guration W ′

by executing the two phases of the transformations determined by the maximal
parallel sets of rules chosen for each compartment of the membrane system. We
call this a computational step, and denote it by W ⇒W ′.

In the general case, the symbol-object membrane systems can already generate
the recursively enumerable sets of natural numbers. We might consider additional
features being present in the membrane system, though, by the previous remark
they do not enhance the computational power of the P system. First of all, we
can add promoters and inhibitors to the rules that regulate the rule applications
in a way that the promoter assigned to the rule r ∈ Ri, when 1 ≤ i ≤ n is �xed,
prescribes how many copies of object a (a ∈ O) should be present in mi for the
rule to be applied, while the inhibitor prevents the rule from being applied if the
number of a certain object a exceeds the number determined by the inhibitor.
Second, we deal with the so-called membrane dissolution. The set of objects is
extended with an additional element δ that can appear on the right hand sides of
the rules. If δ ∈ rhs(r), where r is a rule of the i-th region for some i, and rule r is
chosen to be in the maximal multiset of rules in Ri applied in that computational
step, then the communication phase is executed as before and, as the result of the
presence of δ in mi, the region mi together with its set of rules Ri disappears from
the P system. This means, it is invisible to the subsequent computational steps.
The elements of mi, except for δ, which disappears, are passed over to the region
containing mi and the rules in Ri can never be applied anymore. The region skin
cannot dissolve. Finally, we consider a priority relation among rules. That is, we
consider a two-place relation ρi on the set Ri for each 1 ≤ i ≤ n. Let r′, r ∈ Ri
for some �xed i ∈ {1, . . . , n}. We say that r′ has priority over r, or r′ has higher
priority than r, if (r′, r) ∈ ρi. In this case, if both r′ and r were applicable in a
maximal parallel step, then r is suppressed, that is, not allowed to be applied. The
exact de�nitions can be found in the relevant parts of Section 5. In Section 5 we
show that all these features can be smoothly modelled by time Petri nets. The
advantage of using time Petri nets instead of the Petri net models mostly applied
in the literature (see e.g. [13]) is the fact that the usual order of the �rings of the
transitions is preserved- we do not in�ict any additional �ring condition on the
transitions of the Petri nets, like the requirement that the transitions �red in a
computational step should constitute a maximal multiset of �reable transitions.

Membrane Systems with Priority, . . . and Time Petri Nets 63

3 Time Petri Nets

In this section, following the de�nitions in [21] we de�ne time Petri nets� a model
rendering time intervals to transitions along the concept of Merlin [17]. First of all
we de�ne the underlying place/transition Petri nets, and then extend this model
to the timed version.

De�nition 2. A Petri net is a tuple U = (P, T, F, V,m0) such that

1. P , T , F are �nite, where P ∩ T = ∅, P ∪ T 6= ∅ and F ⊆ (P × T) ∪ (T × P),
2. V : F → N>0,
3. m0 : P → N.

The elements of P and T are called places and transitions, respectively. The el-
ements of T are the arcs, and F is the �ow relation of U . The function V is
the multiplicity (weight) of the arcs, and m0 is the initial marking. In general, a
marking is a function m : P → N. We may occasionally omit the initial marking
and simply refer to a Petri net as the tuple U = (P, T, F, V). We stipulate that
for every transition t ∈ T , there is a place p ∈ P such that f = (p, t) ∈ F and
V (f) 6= 0.

Let x ∈ P ∪T . The pre- and post-sets of x, denoted by •x and x• respectively,
are de�ned as •x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F}.

De�nition 3. For each transition t ∈ T , we de�ne two markings, t−, t+ : P → N
as follows:

t−(p) =

{
V (p, t), if (p, t) ∈ F,
0 otherwise ,

t+(p) =

{
V (t, p), if (t, p) ∈ F,
0 otherwise .

A transition t ∈ T is said to be enabled if t−(p) ≤ m(p) for all p ∈ •t.

Applying the notation M t(p) = t+(p)− t−(p) for p ∈ P , we are able to de�ne
the �ring of a Petri net.

De�nition 4. Let U = (P, T, F, V,m0) be a Petri net, and m be a marking in U .
A transition t ∈ T can �re in m (notation: m −→t) if t is enabled in m. After
the �ring of t, the Petri net obtains the new marking m′ : P → N with m′(p) =
m(p)+ M t(p) for all p ∈ P . Notation: m −→t m′.

We arrive at time Petri nets if we add time assigned to transitions of the Petri
net. Intuitively, the time associated with a transition denote the last time when
the transition was �red. We are considering only bounded time intervals.

De�nition 5. A time Petri net is a 6-tuple N = (P, T, F, V,m0, I) such that

1. the skeleton of N given by S(N) = (P, T, F, V,m0) is a Petri net, and
2. I : T → Q × Q is a function assigning a rational interval to each transition,

that is, for each t ∈ T and I(t) = (I(t)1, I(t)2) we have that 0 ≤ I(t)1 ≤ I(t)2.

64 Péter Battyányi, György Vaszil

We call I(t)1 and I(t)2 the earliest and the latest �ring times belonging to t, and
denote them by eft(t) and lft(t), respectively.

Given a time Petri nets N = (P, T, F, V,m0, I), a function m : P → N is called
a p-marking of N . Note that talking about a p-marking of N is the same as talking
about a marking of S(N).

De�nition 6. Let N = (P, T, F, V,mo, I) be a time Petri net, m : P → N a p-
marking in N , and h be a function called a transition marking (or t-marking)
in N , h : T → R≥0 ∪ {#}. A state in N is a pair u = (m,h) such that the two
markings m and h satisfy the following properties: for all t ∈ T ,
1. if t is not enabled in m (that is, if t−(p) > m(p) for some p ∈ •t), then
h(t) = #,

2. if t is enabled in m (that is, if t−(p) ≤ m(p) for all p ∈ •t), then h(t) ∈ R with
h(t) ≤ lft(t)).

The initial state is the pair u0 = (m0, h0), where m0 is the initial marking and
for all t ∈ T ,

h0(t) =

{
0, if t−(p) ≤ m0(p) for all p ∈ •t,
#, otherwise .

De�nition 7. A transition t ∈ T is ready to �re in state u = (m,h) (denoted
by u −→t) if t is enabled and eft(t) ≤ h(t).

We de�ne the result of the �ring for a transition that is ready to �re.

De�nition 8. Let t ∈ T be a transition and u = (m,h) be a state such that u −→t.
Then the state u′ resulting after the �ring of t denoted by u −→t u′ is a new state
u′ = (m′, h′), such that m′(p) = m(p)+4t(p) for all p ∈ P . Now, for all transitions
s ∈ T , we have

h′(s) =

h(s), if s−(p) ≤ m(p), s−(p) ≤ m′(p) for all p ∈ •s,
0, if s−(p) > m(p) for some p ∈ •s, but

s−(p) ≤ m′(p) for all p ∈ •s,
#, if s−(p) > m′(p) for some p ∈ •s.

Hence, the �ring of a transition changes not only the p-marking of the Petri
net, but also the time values corresponding to the transitions. If a transition s ∈ T
which was enabled before the �ring of t remains enabled after the �ring, then the
value h(s) remains the same, even if s is t itself. If an s ∈ T is newly enabled with
the �ring of transition t, then we set h(s) = 0. Finally, if s is not enabled after
�ring of transition t, then h(s) = #.

Observe that we ensure that a rule can be chosen more than once in a maximal
parallel step that we allow transitions to be �red several times in a row: if t is �red
resulting in the new p-marking m′ and t−(p) ≤ m′(p) holds for all p ∈ •t, then
h(t) remains the same.

Besides the �ring of a transition there is another possibility for a state to alter,
and this is the time delay step.

Membrane Systems with Priority, . . . and Time Petri Nets 65

De�nition 9. Let u = (m,h) be a state of a time Petri net, and τ ∈ R≥0. Then,
the elapsing of time with τ is possible for the state u (denoted u −→τ) if for all
t ∈ T , h(t) 6= # we have h(t) + τ ≤ lft(t). Then the state u′, namely the result of
the elapsing of time by τ denoted by u −→τ u′ is de�ned as u′ = (m′, h′), where
m = m′ and

h′(t) =

{
h(t) + τ, if h(t) 6= #,
otherwise.

Note that De�nition 9 ensures that we are not able to skip a transition when it is
enabled: a transition cannot be disabled by a time jump. This kind of semantics
is called the strong semantics in the literature [22].

We remark that classic Petri nets can be obviously obtained by having h(t) =
[0, 0] for every transition, and no time delay step is ever made.

4 Connecting Petri nets and membrane systems

First of all, we introduce the time Petri net model constructed in [4], which serves
as our starting point in the constructions below. Our model relies on the corre-
spondence between Petri nets and membrane systems described in [13], with the
additional property that we do not require that our Petri net model should operate
in a maximal parallel manner. In general, both by membrane systems and by Petri
nets, a computational step can be considered as a multiset of rules or as a multiset
of transitions, respectively. In the case of Petri nets, an application of a multiset of
transitions is maximal parallel, if augmenting the multiset by any other transition
results in a multiset of transitions that cannot be �red simultaneously in that con-
�guration. In the case of membrane systems, maximal parallel execution means
that, if we consider any membrane mk, no rule of mk can be added to our multiset
of rules such that the remaining multiset still forms a multiset of executable rules
in mk. In our construction, the �reable transitions of the simulating Petri nets can
be executed in any order, we do not impose a restriction on the computational
sequence of the Petri nets. This involves that we have made an essential use of
the time feature, since the original place/transition Petri net model is not Turing
complete, unlike the majority of the symbol object membrane systems.

We remark that, similarly to membrane systems, Petri nets can also be con-
sidered as computational devices, which means that, if we start from an initial
con�guration such that an input is represented by the tokens contained by some
designated places, then, when the computation halts, the content of the output
places provide the result of the computation. Depending on the construction, the
result can either be a number, or a tuple. The following statement is a reformu-
lation of Theorem 4.2 in [4]. We present the proof with details here, since the
subsequent Petri nets in the next section build upon this construction.

Theorem 1. Let Π = (O,µ,w1, . . . , wn, R1, . . . , Rn) be a membrane system. Then
there is a time Petri net N = (P, T, F, V,m0, I) such that N halts if and only if Π
halts and, if either of them halts, then both systems provide the same result.

66 Péter Battyányi, György Vaszil

Proof. The proof is a reinterpretation of that of Theorem 1 in [4]. We elabo-
rate the construction again in order to keep our presentation self-contained. Let
Π = (O,µ,w1, . . . , wn, R1, . . . , Rn) be a membrane system and let
N = (P, T, F, V,m0, I) be the corresponding Petri net. We de�ne N so that a
computational step of Π is simulated by two subnets of N . The two subnets cor-
respond to the two computational phases of a computational step of a membrane
system, namely, the rule application and the communication phases. In our Petri
net model, the tokens in the places P0 = O × {1, . . . , n} stand for the objects in
the various compartments, while the tokens of the places P̄0 = Ō × {1, . . . , n},
where Ō = {ā | a ∈ O}, represent the messages obtained in the course of the rule
applications. Let us see the construction in detail.

• P = P0 ∪ P̄0 ∪ {initapp, initcom, sem, enabld}, where P0 = O × {1, . . . , n} and
P̄0 = Ō × {1, . . . , n}. Let m0(p) = wj(a) for every place p = (a, j) ∈ P0.

Intuitively, the relation |p| = t, where p = (a, i) ∈ O×{1, . . . , n}, means that there
are as many as t objects a ∈ O in compartment mi. In other words, wi(a) = t. On
the other hand, the equality |p̄| = s, where p̄ = (b̄, j) ∈ Ō × {1, . . . , n}, expresses
the fact that there are s copies of object b that will enter into membrane mj at the
end of the computational step. The places initcom, initapp, sem, enabld are places
enabling the synchronization of the Petri net model.

• T = T0 ∪ T ∗0 ∪ T# ∪ {tapp, tcom, t1sem, t2sem},

where the transitions are de�ned as follows.
Let ri,j ∈ Ri, where 1 ≤ j ≤ |Ri| and 1 ≤ i ≤ n, be a rule in mi. Then the
transition ti,j ∈ T0 corresponds to ri,j ∈ Ri. Let us de�ne the arcs associated with
ti,j for a �xed i and j together with their multiplicities.

- Assume ti,j ∈ T0, where 1 ≤ i ≤ n and 1 ≤ j ≤ |Ri|. Then p = (a, i) ∈ •ti,j
if and only if a ∈ lhs(ri,j), and p̄ = (b̄, k) ∈ t•i,j if and only if either (b, ink) ∈
rhs(ri,j), that is, mi is the parent region of mk, or (b, out) ∈ rhs(ri,j), where
region k is the parent region of i, or k = j and (b, here) ∈ rhs(ri,j).
In addition, enabld ∈ •ti,j ∩ t•i,j (1 ≤ i ≤ n, 1 ≤ j ≤ |Ri|).
Regarding the weights of the arcs, let p = (a, i) and f = (p, ti,j) ∈ F . Then
the weight of f is the multiplicity of a ∈ O on the left-hand side of ri,j ,
namely, V (f) = lhs(ri,j)(a); furthermore, for p̄ = (b̄, k) and f = (ti,j , p̄) ∈ F ,
the weight of f is V (f) = rhs(ri,j)(b, ink) if region k is a child region of
i, V (f) = rhs(ri,j)(b, out) if region k is the parent region of i, or V (f) =
rhs(ri,j)(b, here) for k = j. Additionally, if f = (ti,j , enabld), then V (f) = 1
(1 ≤ i ≤ n, 1 ≤ j ≤ |Ri|).

The transitions in T# are in charge with the correct simulation of a maximal
parallel step: they �re only if there are any enabled rules in any of the regions.
Their inputs are the same as those of the elements of T0, only their outputs di�er,
since they should not give rise to a change in the original distribution of the tokens
before the computational step takes place.

Membrane Systems with Priority, . . . and Time Petri Nets 67

- Let ri,j ∈ Ri, where 1 ≤ j ≤ |Ri|, 1 ≤ i ≤ n; then t#i,j ∈ T# is the transition

checking the applicability of ri,j . Let p = (a, i) ∈ P0 and let t#i,j ∈ T#; then

p ∈ •(t#i,j) and initapp ∈ •t#i,j and enabld ∈ (t#i,j)
• and p ∈ (t#i,j)

•. In words,

for a �xed i and j, t#i,j expects as many tokens from its outgoing places as the
number of distinct objects that is necessitated by an execution of the rule ri,j .
In the meantime, a token arrives in enabld, which ensures the continuation of
the simulation of the rule application phase. Then t#i,j gives back the tokens to
the places in P0.
As regards the multiplicities, if f = (initapp, t

#
i,j) then V (f) = 1, and if f =

(t#i,j , enabld) then V (f) = 1; furthermore, if f = (p, t#i,j) or f = (t#i,j , p) where
p = (a, i), then V (f) = lhs(ri,j)(a).

The transitions in T ∗0 ensure that tokens can �ow back from P̄0 to P0, thus
representing the communication phase of the membrane computation.

- T ∗0 = {sa,i | a ∈ O, 1 ≤ i ≤ n}. Let p̄ = (ā, i) ∈ P̄0, then p̄ ∈ •sa,i and
initcom ∈ •sa,i. Moreover, if p = (a, i), then p ∈ s•a,i and initcom ∈ s•a,i.
Regarding the multiplicities, each arc has multiplicity 1.

The intervals belonging to the elements of T = T0 ∪T ∗0 ∪T# are [0, 0]. The rest of
the transitions are de�ned as follows.

- tapp connects enabld, and hence the rule application part of the Petri net with
the semaphore: enabld ∈ •tapp and sem ∈ t•app. Moreover, V (enabld, tapp) = 1
and V (tapp, sem) = 2 and I(tapp) = [1, 1].

The role of tapp is to guarantee that a sequence of �rings of transitions correctly
simulates a maximal parallel application of membrane rules: every transition, ti,j
(1 ≤ j ≤ |Ri|, 1 ≤ i ≤ n), corresponding to a rule execution can �re only if a
token is found in enabld. On the other hand, if no transition ti,j can �re, then the
transition tapp connected only to enabld will be activated after a time unit's delay.

- tcom connects initcom, and hence the communication part of the Petri net with
the semaphore: initcom ∈ •tcom and sem ∈ t•com. Moreover, V (initcom, tcom) =
V (tcom, sem) = 1 and I(tcom) = [1, 1].
The role of the semaphore is to make sure that the simulation of the rule
application and the communication phases takes place in an alternating order.
This is achieved by the following machinery.

- Let t1sem and t2sem be transitions of the semaphore. Then sem ∈ •(t1sem) and
sem ∈ •(t2sem); furthermore, initapp ∈ (t1sem)• and initcom ∈ (t1sem)•. If f =
(sem, t2sem), then V (f) = 2. The weights of the other arcs are 1. In addition,
I(t1sem) = [1, 1] and I(t2sem) = [0, 0].

To sum up the above construction: a computational step of a membrane system
is split into a rule application and a communication phase, and those two phases are
simulated separately and in an alternating order. The simulation of a phase �nishes
when no more rule applications are possible, hence we ensure that a maximal

68 Péter Battyányi, György Vaszil

parallel step is correctly simulated. When the rule application phase �nishes its
operation, 2 tokens are sent to the semaphore via tapp, and the simulation of
the communication phase can immediately begin by forwarding the 2 tokens to
initcom. Otherwise, when the communication phase �nishes its operation, only 1
token is sent to the semaphore, so the rule application phase is initiated after a
time unit's wait. The structure of the various subnets are described in Figures 1,
2 and 3, respectively.

initapp enabld (a, 1) (b, 1)

tapp[1,1] [0,0] t#1,1 [0,0] t1,1

sem (c̄, 1) (d̄, 2)

initapp enabld (a, 1) (b, 1)

tapp[1,1] [0,0] t#1,1 [0,0] t1,1

sem (c̄, 1) (d̄, 2)

2

Fig. 1. Assume a, b2 ∈ w(1) and r1,1 = ab → c3(d, in2), where m2 is child of m1. The
�gure shows the result of a single application of the rule in a split table: to the left is the
subnet testing the applicability of r1,1 and to the right is the application of the rule itself.
The rule consumes an a and a b in region 1 and three tokens are sent to the place (c̄, 1),
and one token to (d̄, 2), in accordance with the fact that three objects of c should be
added to region 1, and one copy of d should be added to region 2 in the communication
phase.

By this, we have simulated a membrane system with a time Petri net such that
in the Petri net model no restriction on the transitions is made: the transitions
that are ready to �re can be �red in any order. �

5 Extending the correspondence to membrane systems with

more features

In this section we examine the possibility of extending our core model to Petri nets
that are able to represent various properties of membrane systems, such as the
presence of promoters/inhibitors, membrane dissolution and priority among rules.
The obtained Petri nets each build upon the basic model de�ned in the previous
section, so, in most of the cases, we restrict ourselves to emphasize only the new
elements of the constructions by which the basic Petri net model is extended.
First of all, we begin with discussing the case of promoters and inhibitors in the
membrane system. Below we present the necessary de�nitions.

Membrane Systems with Priority, . . . and Time Petri Nets 69

sem (c, 1) (d, 2)

tcom[1,1]

1

sc,1[0,0] sd,2[0,0]

initcom (c̄, 1) (d̄, 2)

Fig. 2. The Petri net simulating the communication phase of a membrane computational
step. When the simulation of a maximal parallel rule application step is �nished, a token is
given to the semaphore sem. The transitions sc,1, sd,2 ∈ T ∗

0 ensure the correct placement
of the tokens corresponding to the messages.

sem

[1,1]

t1sem

[0,0]

t2sem

initapp initcom

1 2

Fig. 3. The semaphore for the Petri net. When the simulation of the rule application
phase of a computational step of the membrane system is complete, two tokens appear at
sem, and then sent to initcom, activating the simulation of the communication phase of
the computational step. When the simulation of the communication phase is completed,
one token appears at sem, which is then sent to init0, activating the simulation of the
rule application phase of a subsequent computational step.

De�nition 10. Let Π = (O,µ,w1, . . . , wn, R1, . . . , Rn,P) be a membrane system
with promoters/inhibitors, where P(rj,i) ⊆ O∗ × O∗, for every rj,i ∈ Ri. Then
P(rj,i) = (ρj,i, τj,i) ⊆ O∗ ×O∗ is a promoter/inhibitor pair for rj. We denote the
pair (ρj,i, τj,i) by (promr, inhibr). Let R be a multiset of rules. A multiset R is
applicable, if each of the following conditions ful�ll.

1. lhs(rj,i)(a) · R(j, i) ≤ wi(a) (a ∈ O),

70 Péter Battyányi, György Vaszil

2. promr(a) ≤ wi(a) (r ∈ R, a ∈ O),
3. wi(a) < inhibr(a) (r ∈ R, a ∈ O).

In what follows, we give the structure of the Petri net simulating a general
example of a membrane system with promoters/inhibitors.

Theorem 2. Let Π = (O,µ,w1, . . . , wn, R1, . . . , Rn,P) be a membrane system
with promoters/inhibitors. Then there is a time Petri net N = (P, T, F, V,m0, I)
such that N halts if and only if Π halts and, if any of them halts, then both systems
provide the same result.

Proof. LetΠ be as in the statement of the theorem. We constructN in a way anal-
ogous to the construction of the Petri net of Theorem 1. The Petri net simulates
the rule application and the communication phase separately, we only concentrate
on the rule application part, since the other parts of the construction are identical
to that of the proof of Theorem 1. Let us detail the proof a bit more.

• P = P0∪ P̄0∪{initapp, initcom, sem, enabld, contd}, where P0 = O×{1, . . . , n}
and P̄0 = Ō × {1, . . . , n}. Let m0(p) = wj(a) for every place p = (a, j) ∈ P0.

As before, if |p| = t, where p = (a, i) ∈ O×{1, . . . , n}, then there are as many as t
objects a ∈ O in compartment mi. Likewise, we retain the meaning of p̄ = (b̄, j) ∈
Ō× {1, . . . , n}, where |p̄| = s expresses the fact that there are s copies of object b
that are going to appear in membranemj at the end of the computational step. The
places initcom, initapp, sem, enabld, contd are places enabling the synchronization
of the Petri net model. The new element here is the place contd, which is introduced
in order to handle conditions 2 and 3 for rule applicability in De�nition 10.

• T = T0 ∪ T ∗0 ∪ T# ∪ T## ∪ {tapp, tcom, t1sem, t2sem},

where the transitions are de�ned as follows.

- The de�nitions of the transitions T0 and T ∗0 are unchanged. The construction
of the arcs and their weights, with respect to T0 and T ∗0 , is exactly the same
as above.

The di�erence lies in the de�nitions of T# and T##. They ensure that the
conditions of rule applications presented in De�nition 10 are simulated correctly.

- Let ri,j ∈ Ri, where 1 ≤ j ≤ |Ri|, 1 ≤ i ≤ n; then t#i,j ∈ T# is the transition
checking conditions 1 and 2 in De�nition 10. Let p = (a, i) ∈ P0 and let

t#i,j ∈ T#; then p ∈ •(t#i,j) and initapp ∈ •t
#
i,j and contd ∈ (t#i,j)

• and p ∈ (t#i,j)
•

and enabld ∈ (t#i,j)
•.

As regards the multiplicities, if f = (initapp, t
#
i,j) then V (f) = 1, and if f =

(contd, t#i,j) or f = (t#i,j , enabld) then V (f) = 1; furthermore, if f = (p, t#i,j)

or f = (t#i,j , p), where p = (a, i), then V (f) = max{lhs(ri,j)(a), promri,j (a)}.
The time interval assigned to t#i,j is [1, 1].

Membrane Systems with Priority, . . . and Time Petri Nets 71

The novelty in this Petri net is the appearance of the transitions T## =
{t##
i,j | ri,j ∈ Ri}, that are responsible for the correct simulation of the inhibitors.

- Let ri,j ∈ Ri, where 1 ≤ j ≤ |Ri|, 1 ≤ i ≤ n; then t##
i,j ∈ T## is the transition

checking condition 3 in De�niton 10. Let p = (a, i) ∈ P0 and let t##
i,j ∈ T#;

then p ∈ •(t##
i,j) ∩ (t##

i,j)•.

If f = (p, t##
i,j) or f = (t##

i,j , p), where p = (a, i), then V (f) = inhibri,j (a).

The time interval assigned to t##
i,j is [0, 0].

In words, the transitions t##
i,j capture the tokens of p = (a, i) in the case when

|p| ≥ inhibri,j (a). The �ring sequence can continue with the simulation of the
application of rule ri,j only if |p| < inhibri,j (a) holds for every a ∈ O for which
lhs(ri,j)(a) > 0.

The rest of the construction is the same as that of Theorem 1, hence we omit
the details. The changes in the Petri net compared to the core model are illustrated
in Figures 4. �

init enabld contd (a, 1)

tapp[2,2] [0,0] tr,1 [1,1] t#r,1

sem

[0,0] t##
r,1

2

sem (c̄, 1) (d̄, 2)

init enabld contd (a, 1)

tapp[2,2] [0,0] tr,1 [1,1] t#r,1

sem

[0,0] t##
r,1

2

sem (c̄, 1) (d̄, 2)

3

2

Fig. 4. The rule application phase for the Petri net, where a ∈ w1 and r = a→ c(d, in2)3

and promr(a) = inhibr(a) = 1.

Next, we turn our attention to membrane systems with dissolution. Let Π =
(O,µ,w1, . . . , wn, R1, . . . , Rn, δ) be a membrane system with dissolution. We recall
form our previous de�nitions that this means that there exists a special element
δ ∈ O, which can appear on the right side of a rule only. Assume r ∈ Ri and
δßrhs(r). Suppose r is chosen in the actual maximal parallel rule application of
mi. Then all the rules of Ri appearing in that computational step are executed as
usual, and, after the maximal parallel step is over, the region mi disappears, its
objects wander into the parent region and the rules Ri cease to operate. With this
in mind, we construct a time Petri net simulating the operation of the membrane
system in the sense below.

72 Péter Battyányi, György Vaszil

Theorem 3. Let Π = (O,µ,w1, . . . , wn, R1, . . . , Rn, δ) be a membrane system
with dissolution. Then there is a time Petri net N = (P, T, F, V,m0, I) such that N
halts if and only if Π halts and, if either of them halts, then both systems provide
the same result.

Proof. LetΠ be as in the theorem. We construct the Petri netN with the required
properties. The construction again leans on the proof of Theorem 1. The rule
application phase is exactly the same with one exception: places δi symbolizing
the dissolution of membrane mi appear. The di�erence manifests itself in the
de�nition of the communication phase. Moreover, we introduce one more phase, a
δ-phase, that serves for moving the elements of a previously dissolved membrane
to the parent region. First of all, we de�ne the set of places as before.

• P = P0 ∪ P̄0 ∪ {initapp, initcom, sem, enabld, δi}, where P0 = O × {1, . . . , n}
and P̄0 = Ō × {1, . . . , n} and 1 ≤ i ≤ n. Let m0(p) = wj(a) for every place
p = (a, j) ∈ P0.

The only change is the presence of the places δi for every region mi. Intuitively,
they are indicators whether a membrane is going to disappear in the next step or
has been dissolved already. This is re�ected in the design of the arcs for the rule
application phase. We require an extended set of transitions, since we have a third
phase also that transfers the objects of the dissolved membranes to their parent
membranes.

• T = T0 ∪ T ∗0 ∪ T δ0 ∪ T# ∪ T [∪ {tapp, tcom, tclean, t1sem, t2sem, t3sem},

and the arcs for the rule application phase are identical to those of Theorem 1
with the only exception of the arcs pointing from ti,j , where ri,j ∈ Ri, to the place
δi with multiplicity 1 provided δ ∈ rhs(ri,j). Thus we are only interested in the
transitions T ∗0 , T

[and their corresponding arcs.

- Let T ∗0 = {sa,i | a ∈ O, 1 ≤ i ≤ n} and T δ0 = {sδa,i | a ∈ O, 1 ≤ i ≤ n}. Let mi

be a region other than the skin membrane, assumemk is its parent region. (Ifmi

is the skin membrane, it cannot disappear.) Let p̄ = (ā, i) ∈ P̄0, then p̄ ∈ •sa,i
and, if p = (a, i), then p ∈ s•a,i. Moreover, initcom ∈ •sa,i ∩ s•a,i. In addition, δi

is connected with sδa,i for every object a ∈ O, that is: δi ∈ •sδa,k ∩ sδa,i
•
and we

have q̄ = (ā, k) ∈ sδa,i
•
. Regarding the multiplicities, each arc has multiplicity

1.
Furthermore, I(sa,i) = [1, 1], I(sδa,i) = [0, 0] and I(tcom) = [2, 2], where tcom is
the transition connecting initcom with the place sem.

Intuitively, if mi is a region with parent region mk, the communication phase
transfers the tokens of p̄ = (ā, i) to the place p = (a, i), as long as the membrane
mi exists. When mi is marked for dissolution or has been already dissolved, that
is, |δi| = 1, then the tokens of p̄ = (ā, i) are redirected to q̄ = (ā, k). This is
achieved by a time gap between the possible �rings of the transitions sa,i and s

δ
a,i.

This implies that the elements appearing on the right hand side of the rules of a
dissolved membrane �nd their correct place: they wander to the upper levels of the

Membrane Systems with Priority, . . . and Time Petri Nets 73

tree until they �nd the �rst ancestor region not dissolved. The main ingredients
of the construction are illustrated in Figure 5.

The only missing part is the subnet directing the remaining object of a dissolved
membrane into an existing container membrane. We term this phase the cleaning
phase. The construction is quite simple: let mk be a region and assume that mi is
its parent region. Then, for every place p = (a, k), there corresponds a transition
tfp lat which transfers the objects of p to q = (a, i) when δk contains a token. The

place initclean is connected to all the transitions t[p in order to perceive when the
tidying phase is ready. After this, 3 tokens are sent to the semaphore and a new
application phase activates. More formally,

- let T [= {t[a,k | a ∈ O, 1 ≤ k ≤ n}. Assume mi is the parent region of region

mk. Then p = (a, k) ∈ •t[p and q = (a, i) ∈ t[p
•
and δk ∈ •t[p ∩ t[p

•
. Moreover,

initclean ∈ •t[p ∩ t[p
•
and initclean ∈ •tclean and sem ∈ t•clean. Regarding the

multiplicities, each arc has multiplicity 1, except for (tclean, sem), which has
multiplicity 3.
Furthermore, I(t[a,i) = [0, 0], I(tclean) = [1, 1].

This is described in Figure 6. The semaphore is extended with a new transition,
t3sem which leads to the initialization of the third phase in the simulation of a
maximal parallel step. The new semaphore is depicted in Figure 7.

δ2 (a, 2) (b, 2)

tr

(c̄, 2) (d̄, 3)

2

(c̄, 1) (c, 2)

sδc,2[0,0] sc,2[1,1]

(c̄, 2)δ2

Fig. 5. The Petri net simulating a membrane system with dissolution. In this case, m2

is dissolved, hence sδc,2 can be activated moving the elements of p̄(c, 2) to p̄(c, 1).

�

Finally, we tackle the problem of to the representation membrane systems with
priorities in terms of Petri nets. Again, our construction is a slight modi�cation of

74 Péter Battyányi, György Vaszil

sem (a, 2) (a, 1)

tclean[1,1]

3

t[a,2[0,0]

initclean

δ2

Fig. 6. The Petri net simulating the phase when the objects of a dissolved membrane
are directed towards the parent membrane. Here we assume that region 1 is the parent
of region 2, and the place δ2 already has a token.

sem

[2,2]

t1sem

[1,1]

t2sem

[0,0]

t3sem

initapp initcom initclean

1 2 3

Fig. 7. The semaphore for the Petri net with dissolution. The choice of the next phase
is uniquely determined by the number of tokens arriving in the place sem.

the core model. What we have to do is to introduce some pieces of information in
the simulation of the rule application phase that accounts for the treatment of the
priorities. Let Π = (O,µ,w1, . . . , wn, R1, . . . , Rn, ρ) be a membrane system with
priorities. This means that ρ ⊆ R×R, and the rule application is modi�ed in the
following way.

De�nition 11. Let Π = (O,µ,w1, . . . , wn, R1, . . . , Rn, ρ) be a membrane system
with priorities. Let r ∈ Ri, if 1 ≤ i ≤ n. Then r is applicable, if

1. lhs(ri) ≤ wi,
2. for every r′ ∈ Ri such that r′ > r, r′ is not applicable.

Let r1, r2 ∈ Rk be two rules of region mk, assume that (r1, r2) ∈ ρ, that
is, r1 > r2. Then, considering a computational step, r2 can be applied if r2 is

Membrane Systems with Priority, . . . and Time Petri Nets 75

applicable in the usual sense and, in addition, r1 fails to be applicable in the
maximal parallel step belonging to region mk. We remark that we use priority
in the strong sense: assume wk = a2b, r1 = a → c and r2 = ab → d. Then the
result of the maximal parallel step will be ad, instead of cd, since r1 > r2 and r1 is
applicable, which implies that r2 cannot be applied in that maximal parallel step
at all, even if r1 is not applicable any more. We understand applicability in the
sense of De�nition 11, that is, a rule is not only required to have enough resources
for being a candidate for that computational step, but also it is demanded that
no other rule with higher priority should be applicable in that stronger sense.
Moreover, conforming to the applications of priority suggested by the literature
on P systems, we stipulate that priorities do not interfere with each other, i.e., no
rule appears on the left hand side of a priority relation and on the right hand side
of a (possibly di�erent) priority relation. We can handle the membrane systems
even if we omit this stipulation: to obtain an idea how to treat the other case, the
reader should refer to page 526 in [3].

Now we are in a position to state the theorem on the simulation.

Theorem 4. Let Π = (O,µ,w1, . . . , wn, R1, . . . , Rn, ρ) be a membrane system
with priorities. Then there is a time Petri net N = (P, T, F, V,m0, I) such that N
halts if and only if Π halts and, if either of them halts, then they provide the same
result.

Proof. Let Π as above. We describe the Petri net N simulating Π. The only dif-
ferences in comparison with the model in Theorem 1 occur by the rule application
phase when we select the transitions that stand for the applicable rules. We adopt
the stipulation that no rule can occur both on the left hand side of a priority
relation and on the right hand side of a (possibly di�erent) priority relation. We
omit repeating the construction of the Petri net in detail and we con�ne ourselves
to the rule application phase that represents the di�erence. The places are

• P = P0 ∪ P̄0 ∪ PTA ∪ PTNA ∪ {initapp, initcom, sem, enabld}, where P0 =
O×{1, . . . , n} and P̄0 = Ō×{1, . . . , n} and the auxiliary places are de�ned as in
Theorem 1. Regarding the new places, PTA = {ptAi,j | ri,j ∈ Ri, 1 ≤ j ≤ |Ri|}
and PTNA = {ptNAi,j | ri,j ∈ Ri, 1 ≤ j ≤ |Ri|}.
The new places accomplish some bookkeeping in order to keep track of which

rules are applicable and which ones are not. A token in ptAi,j should symbolize the

applicability of an arbitrary ri,j ∈ Ri, while a token in ptNAi,j should mean that ri,j
is not applicable in that maximal parallel step. We de�ne now the new transitions
together with the arcs induced by these transitions.

• T = T0 ∪ T ∗0 ∪ T# ∪ Tρ ∪ T [∪ {tapp, tcom, t1sem, t2sem}.

The transitions are de�ned as before, except for the elements of Tρ and T
[, where

Tρ = {tri>rj | ri, rj ∈ mk, and (r1, r2) ∈ ρ} and T [= {t[i,j | ti,j ∈ T0}. We retain
the arcs de�ned in the construction of the core model between the places and
transitions. Modi�cations take place only in connection with the new states and
transitions. We detail the rule application phase only.

76 Péter Battyányi, György Vaszil

- Let ri,j ∈ Ri, where 1 ≤ j ≤ |Ri|, 1 ≤ i ≤ n; then, as in the previous

constructions, t#i,j ∈ T# is checking the applicability of ri,j . Let p = (a, i) ∈ P0

and let t#i,j ∈ T#; then p ∈ •(t#i,j)∩(t#i,j)
• and initapp ∈ •t#i,j and enabld ∈ •t

#
i,j∩

(t#i,j)
•, which is a slight modi�cation compared to Theorem 1. Furthermore,

ptAi,j ∈ t
#
i,j

•
.

Regarding the multiplicities, V ((initapp, t
#
i,j)) = 1, and if f = (t#i,j , enabld)

then V (f) = 1; furthermore, if f = (p, t#i,j) or f = (t#i,j , p) where p = (a, i),

then V (f) = lhs(ri,j)(a). in addition, the multiplicity of (t#i,j , pt
A
i,j) is 1.

- Now, we turn to determining the operations of the transitions Tρ. Let ri,j ,
ri,k ∈ Ri with ri,k > ri,j . Then tri,k>ri,j ∈ Tρ, and ptAi,k ∈ •tri,k>ri,j ∩ t•ri,k>ri,j ,
and ptAi,j ∈ •tri,k>ri,j and ptNAi,j ∈ t•ri,k>ri,j .
The multiplicities of all the new arcs is 1.
The elements of T [collect the tokens that might remain in the places PTA

and PTNA after a �nished maximal parallel step. We have ptAi,j , pt
NA
i,j ∈ •t[i,j

for every index pair i, j such that t[i,j ∈ T [. The multiplicities of the arc is 1.

For each tri,k>ri,j ∈ Tρ, we have I(tri,k>ri,j) = [0, 0], moreover, I(t[i,j) = [2, 2].
- Finally, let ti,j ∈ T0, where 1 ≤ i ≤ n and 1 ≤ j ≤ |Ri|. Then, as before,

p = (a, i) ∈ •ti,j if and only if a ∈ lhs(ri,j). In addition, enabld ∈ •ti,j ∩ t•i,j
(1 ≤ i ≤ n, 1 ≤ j ≤ |Ri|).
Regarding the weights of the arcs, let p = (a, i) and f = (p, ti,j) ∈ F . Then the
weight of f is the multiplicity of a ∈ O on the left-hand side of ri,j , namely,
V (f) = lhs(ri,j)(a). If f = (ti,j , enabld) or f = (enabld, ti,j), then V (f) = 1
(1 ≤ i ≤ n, 1 ≤ j ≤ |Ri|). Moreover, if tapp is the transition connecting enabld
to sem, then I(tapp) = [2, 2].

The de�nition of the communication part is the same as that of the proof of
Theorem 1, we ignore repeating the rest of the construction.

Intuitively, the tokens in the places ptAi,j , where ri,j ∈ Ri, stand for the appli-

cability of rule ri,j in region mi. If ri,k > ri,j , then the token in ptAi,j is directed

into ptNAi,j and remains there until that maximal parallel step is �nished. The time
intervals assigned to the transitions tri,k>ri,j ensure that every such pair of the
priority relation is discovered before we begin the actual simulation of the rule
applications. Hence, only transitions corresponding to rules applicable in the weak
sense of of priority are able to �re. If no more rule can be applied, the token in
enabld is passed over to sem at time instance 2, and the simulation of the rule
application phase terminates. �

6 Conclusions

In this paper, we have made a step forward in relating the membrane systems
and time Petri nets. We connected membrane systems with promoters/inhibitors,

Membrane Systems with Priority, . . . and Time Petri Nets 77

(a, 1) ptA2 ptNA2 ptA1 (b, 1)

t2[1,1] [0,0] tr1>r2 [2,2] pt[r2 [2,2] pt[r1 [1,1] t1

(c̄, 1) (d̄, 2)

(a, 1) ptA2 ptNA2 ptA1 (b, 1)

t2[1,1] [0,0] tr1>r2 [2,2] pt[r2 [2,2] pt[r1 [1,1] t1

(c̄, 1) (d̄, 2)

Fig. 8. Assume w1 = a2b and r1, r2 ∈ R1, r1 = ab → d, r2 = a → c such that r1 > r2.
Then t1 can �re only, the token from ptA2 eventually moves to ptNA2 .

membrane dissolution and priority for rules with time Petri nets by extending the
Petri net model presented in [4]. We preserved the main characteristic of Petri nets,
namely, the �rings of the transitions can take place in any order: we do not impose
any additional condition on the transition sequences in order to obtain a Petri net
model equivalent to the general Turing machine. We can ignore the requirement of
computing with maximal parallel transition sequences in the case of the Petri nets.
Instead, our simulating Petri net model adopts the usual semantics: the �reable
transitions can �re in any possible order.

References

1. B. Aman, G. Ciobanu. Adding Lifetime to Objects and Membranes in P Systems.
International Journal of Computers, Communications and Control, 5(3) (2010) 268�
279.

2. B. Aman, G. Ciobanu. Veri�cation of Membrane Systems with Delays via Petri Nets
with Delays. Theoretical Computer Science, 598 (2015) 87�101.

3. B. Aman, P. Battyányi, G. Ciobanu, Gy. Vaszil, Simulating P systems with membrane
dissolution in a chemical calculus. Natural Computing 15 (4) (2016), 521-532.

4. B. Aman, P. Battyányi, G. Ciobanu, Gy. Vaszil. Local time mem-
brane systems and time Petri nets. Theoretical Computer Science, (2018),
https://doi.org/10.1016/j.tcs.2018.06.013

5. B. Aman, G. Ciobanu, G.M. Pinna. Timed Catalytic Petri Nets. In Proceedings
SYNASC, IEEE Computer Society, 319�326, 2012.

6. M. Cavaliere, D. Sburlan. Time and Synchronization in Membrane Systems. Funda-
menta Informaticae, 64(1) (2005) 65 � 77.

7. M. Cavaliere, D. Sburlan. Time Independent P Systems Towards a Petri Net Seman-
tics for Membrane Systems. Lecture Notes in Computer Science, vol.3365, 239�258,
2005.

8. G. Ciobanu, G.M. Pinna. Catalytic and Communicating Petri Nets are Turing Com-
plete. Information and Computation, 239 (2014) 55�70.

9. R. Freund, O. Ibarra, A. P un, P. Sosík, H.-C. Yen. Catalytic P Systems. In [19],
83�117, 2010.

10. M.H.T. Hack. Decidability Questions for Petri Nets, PhD Thesis, M.I.T., 1976.

78 Péter Battyányi, György Vaszil

11. M. Ionescu, Gh. P un, T. Yokomori. Spiking Neural P Systems. Fundamenta Infor-

maticae, 71 (2006) 279�308.
12. R.M. Karp, R.E. Miller. Parallel Program Schemata. Journal of Computer and Sys-

tem Sciences, 3 (1969) 147�195.
13. J.H.C.M. Kleijn, M. Koutny, G. Rozenberg. Towards a Petri Net Semantics for Mem-

brane Systems. Lecture Notes in Computer Science, vol.3850, 292�309, 2005.
14. S.R. Kosaraju. Decidability of Reachability in Vector Addition Systems. 14th ACM

Symposium on Theory of Computing, 267�281, 1982.
15. C. Martín-Vide, Gh. P un, J. Pazos, A. Rodríguez-Patón. Tissue P Systems. Theo-

retical Computer Science, 296 (2003) 295�326.
16. E.W. Mayr. Persistence of Vector Replacement Systems is Decidable. Acta Infor-

matica, 15 (1981) 309�318.
17. P.M. Merlin. A Study of the Recoverability of Computing Systems. PhD Thesis,

University of California, Irvine, 1974.
18. Gh. P un. Membrane Computing - An Introduction, Springer, 2002.
19. Gh. P un, G. Rozenberg, A. Salomaa. The Oxford Handbook of Membrane Comput-

ing. Oxford University Press, 2010.
20. C.A. Petri. Kommunikation mit Automaten. Dissertation, Universität Hamburg,

1962.
21. L. Popova. On Time Petri Nets. Journal of Information Processing and Cybernetics,

27(4) (1991) 227�244.
22. L. Popova-Zeugmann. Time and Petri Nets, Springer, 2013.

Further Results on the Power of Generating
APCol Systems

Lucie Ciencialová1, Luděk Cienciala1, and Erzsébet Csuhaj-Varjú2

1 Institute of Computer Science, Silesian University in Opava, Czech Republic
lucie.ciencialova@fpf.slu.cz

ludek.cienciala@fpf.slu.cz
2 Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary

csuhaj@inf.elte.hu

Summary. In this paper we continue our investigations in APCol systems (Automaton-
like P colonies), variants of P colonies where the environment of the agents is given by a
string and the functioning of the system resembles to the functioning of standard finite
automaton. We first deal with the concept of determinism in these systems and compare
deterministic APCol systems with deterministic register machines. Then we focus on
generating non-deterministic APCol systems with only one agent. We show that these
systems are as powerful as 0-type grammars, i.e., generate any recursively enumerable
language. If the APCol system is non-erasing, then any context-sensitive language can
be generated by a non-deterministic APCol systems with only one agent.

1 Introduction

Automaton-like P colonies (APCol systems, for short), introduced in [1], are vari-
ants of of P colonies (introduced in [10]) - very simple membrane systems inspired
by colonies of formal grammars. The interested reader is referred to [14] for de-
tailed information on membrane systems (P systems) and to [11] and [5] for more
information to grammar systems theory. For more details on P colonies consult
the surveys [9] and [4].

An APCol system consists of a finite number of agents - finite collections of
objects in a cell - and their joint shared environment. The agents have programs
consisting of rules. These rules are of two types: they may change the objects of the
agents and they can be used for interacting with the joint shared environment of
the agents. While in the case of standard P colonies the environment is a multiset
of objects, in case of APCol systems it is represented by a string. The number of
objects inside each agent is set by definition and it is usually a very small number:
1, 2 or 3. The string representing the environment is processed by the agents and it
is used as an indirect communication channel for the agents as well, since through
the string, the agents are able to affect the behaviour of another agent. It can easily

80 Lucie Ciencialová, Luděk Cienciala, and Erzsébet Csuhaj-Varjú

be observed that APCol systems resemble automata. The current configuration of
the system (the objects inside the agents) and the current string representing the
environment correspond to the current state of the automaton and the currently
processed input string.

The agents may perform rewriting, communication or checking rules [10]. A
rewriting rule a→ b allows the agent to rewrite one object a to object b. Rewriting
rules are also called evolution rules. Both objects are placed inside the agent.
Communication rule c↔ d makes possible to exchange object c placed inside the
agent with object d in the string. A checking rule is formed from two rules r1, r2 of
type rewriting or communication. It sets a kind of priority between the two rules
r1 and r2. The agent tries to apply the first rule and if it cannot be performed,
then the agent performs the second rule. The rules are combined into programs in
such a way that all objects inside the agent are affected by execution of the rules.
Thus, the number of rules in the program is the same as the number of objects
inside the agent.

The computation in APCol systems starts with the an input string, represent-
ing the initial state of the environment, and with each agents having only symbols
e inside.

A computational step means a maximally parallel action of the active agents,
i.e., agents that can apply their rules. Every symbol can be object of the action of
only one agent. The computation ends if the input string is reduced to the empty
word, there are no more applicable programs in the system, and meantime at least
one of the agents is in so-called final state. This mode of computation is called
accepting. APCol systems can also be used not only for accepting but generating
strings. For more detailed information on APCol systems we refer to [2, 3].

In the first part of this paper, we deal with both variants of modes of compu-
tation. In general, a computation of APCol system is non-deterministic. It means
that in every configuration one set of maximal sets of applicable programs is non-
deterministically chosen to be executed. We focus on such APCol systems that
there exists only one maximal set of applicable programs in each configuration -
deterministic APCol systems. The second part of this paper is devoted to non-
deterministic generating APCol systems with one agent only.

2 Preliminaries and Basic Notions

Throughout the paper we assume the reader to be familiar with the basics of the
formal language theory and membrane computing [15, 14].

For an alphabet Σ, the set of all words over Σ (including the empty word, ε),
is denoted by Σ∗. We denote the length of a word w ∈ Σ∗ by |w| and the number
of occurrences of the symbol a ∈ Σ in w by |w|a.

A multiset of objects M is a pair M = (O, f), where O is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : O → N ; f assigns to each
object in O its multiplicity in M . Any multiset of objects M with the set of

Further Results on the Power of Generating APCol Systems 81

objects O = {x1, . . . xn} can be represented as a string w over alphabet O with
|w|xi

= f(xi); 1 ≤ i ≤ n. Obviously, all words obtained from w by permuting
the letters can also represent the same multiset M , and ε represents the empty
multiset.

2.1 Register machine

Definition 1. [13] A register machine is a construct M = (m,H, l0, lh, P) where

• m is the number of registers,
• H is the set of instruction labels,
• l0 is the start label,
• lh is the final label,
• P is a finite set of instructions injectively labelled with the elements from the set

H.

The instructions of the register machine are one of the following forms:
l1 : (ADD(r), l2, l3) Add 1 to the content of the register r and proceed to the in-

struction (labelled with) l2 or l3.
l1 : (SUB(r), l2, l3) If the register r stores the value different from zero, then

subtract 1 from its content and go to instruction l2, other-
wise proceed to instruction l3.

lh : HALT Halt the machine. The final label lh is only assigned to this
instruction.

If every ADD-instructions of M is of the form ADD-instruction l1 : (ADD(r), l2),
then M is called a deterministic register machine.

Register machine M accepts a set N(M) of numbers in the following way:
it starts with number x ∈ N in the first register and all the other registers are
empty (hence storing the number zero) and with the instruction labelled l0. Then
it proceeds to apply the instructions as indicated by the labels (and made possible
by the contents of registers). If it reaches the halt instruction and all registers are
empty, the input is said to be accepted by M and hence it is introduced in N(M).

It is known that any recursively enumerable set of natural numbers can be
accepted by a deterministic register machine with at most three registers.

Register machines can also generate sets of natural numbers. In this case the
first register is dedicated as the output register. The register machine starts with
empty registers (registers storing zero) and with instruction l0. Then it proceeds
with executing instructions, according to their labels. After halting, the generated
number is the value of stored in the first register.

2.2 APCol systems

In the following we recall the notion of an APCol system (an automaton-like P
colony) [1].

82 Lucie Ciencialová, Luděk Cienciala, and Erzsébet Csuhaj-Varjú

As standard P colonies, agents of the APCol systems contain objects, each of
them is an element of a finite alphabet. Every agent is associated with a set of
programs, every program consists of two rules that can be one of the following
two types. The first one, called an evolution rule or a rewriting rule, is of the
form a → b. This means that object a inside of the agent is rewritten to object
b. The second type of rules, called a communication rule, is of the form c ↔ d.
When this rule is applied, object c inside the agent and a symbol d in the string
representing the environment (the input string) are exchanged. If c = e, then the
agent erases d from the input string and if d = e, symbol c is inserted into the
string.

The computation in APCol systems starts with an input string, representing
the environment, and with each agent having only symbols e inside.

A computation step means a maximally parallel action of the active agents,
i.e., a maximal number of agents that can perform at least one of their programs,
has to execute such an action parallel. Every symbol can be object of the action
of only one agent. The computation ends if the input string is reduced to the
empty word and there are no more applicable programs in the whole system, and
meantime at least one of the agents is in so-called final state.

An APCol system is a construct
Π = (O, e,A1, . . . , An), where

• O is an alphabet; its elements are called the objects,
• e ∈ O, called the basic object,
• Ai, 1 ≤ i ≤ n, are agents. Each agent is a triplet Ai = (ωi, Pi, Fi), where

– ωi is a multiset over O, describing the initial state (content) of the agent,
|ωi| = 2,

– Pi = {pi,1, . . . , pi,ki
} is a finite set of programs associated with the agent,

where each program is a pair of rules. Each rule is in one of the following
forms:
· a→ b, where a, b ∈ O, called an evolution rule,
· c↔ d, where c, d ∈ O, called a communication rule,

– Fi ⊆ O∗ is a finite set of final states (contents) of agent Ai.

In the following we explain the work of an APCol system.
During the work of the APCol system, the agents perform programs. Since

both rules in a program can be communication rules, an agent can work with two
objects in the string in the same step of the computation. In the case of program
〈a↔ b; c↔ d〉, a substring bd of the input string is replaced by string ac. Notice
that although the order of rules in the programs is usually irrelevant, here it is
significant, since it expresses context-dependence. If the program is of the form
〈c↔ d; a↔ b〉, then a substring db of the input string is replaced by string ca.
Thus, the agent is allowed to act only at one position of the string in the one step
of the computation and the result of its action to the string depends both on the
order of the rules in the program and on the interacting objects. In particular, we
have the following types of programs with two communication rules:

Further Results on the Power of Generating APCol Systems 83

• 〈a↔ b; c↔ e〉 - b in the string is replaced by ac,
• 〈c↔ e; a↔ b〉 - b in the string is replaced by ca,
• 〈a↔ e; c↔ e〉 - ac is inserted in a non-deterministically chosen place in the

string,
• 〈e↔ b; e↔ d〉 - bd is erased from the string,
• 〈e↔ d; e↔ b〉 - db is erased from the string,
• 〈e↔ e; e↔ d〉; 〈e↔ e; c↔ d〉, . . . - these programs can be replaced by pro-

grams of type 〈e→ e; c↔ d〉.

At the beginning of the work of the APCol system (at the beginning of the
computation), the environment is given by a string ω of objects which are different
from e. This string represents the initial state of the environment. Consequently,
an initial configuration of the APCol system is an (n+1)-tuple c = (ω;ω1, . . . , ωn)
where w is the initial state of the environment and the other n components are
multisets of strings of objects, given in the form of strings, the initial states the of
agents.

A configuration of an APCol system Π is given by (w;w1, . . . , wn), where |wi| =
2, 1 ≤ i ≤ n, wi represents all the objects inside the ith agent and w ∈ (O−{e})∗
is the string to be processed.

At each step of the computation every agent attempts to find one of its pro-
grams to use. If the number of applicable programs is higher than one, then the
agent non-deterministically chooses one of them. At one step of computation, the
maximal possible number of agents have to be active, i.e., have to perform a pro-
gram.

By applying programs, the APCol system passes from one configuration to
another configuration. A sequence of configurations started from the initial con-
figuration is called a computation. A configuration is halting if the APCol system
has no applicable program.

The result of computation depends on the mode in which the APCol system
works. In the case of accepting mode a computation is called accepting if and only
if at least one agent is in final state and the string to be processed is ε. Hence, the
string ω is accepted by the APCol system Π if there exists a computation by Π
such that it starts in the initial configuration (ω;ω1, . . . , ωn) and the computation
ends by halting in the configuration (ε;w1, . . . , wn), where at least one of wi ∈ Fi

for 1 ≤ i ≤ n.
In [1] it was shown that the family of languages accepted by jumping finite

automata (introduced in [12]) is properly included in the family of languages ac-
cepted by APCol systems with one agent. It was also proved that any recursively
enumerable language can be obtained as a projection of a language accepted by
an APCol system with two agents.

In the case of generating mode, the string wF is generated by Π iff there exists
computation starting in an initial configuration (ε;ω1, . . . , ωn) and the computa-
tion ends by halting in the configuration (wF ;w1, . . . , wn), where at least one of
wi ∈ Fi for 1 ≤ i ≤ n.

84 Lucie Ciencialová, Luděk Cienciala, and Erzsébet Csuhaj-Varjú

In both cases, instead of a string, we can work with the number of symbols in
the string as the result of the computation. The set of natural numbers accepted or
generated with an APCol system Π is denoted Nacc(Π) or Ngen(Π), respectively.

The family of sets of numbers generated by APCol systems with n agents is
denoted by NAPColgen(n), if we consider only restricted APCol systems, then
we use notation NAPColgenR(n). The family of recursively enumerable sets of
natural numbers is denoted by NRE, and the family of sets of natural numbers
acceptable by partially blind register machines is denoted by NRMpb.

Results have been obtained about the generative power of APCol systems[3]:

• Restricted APCol systems with two agents working in generating mode gener-
ate any recursively set of natural numbers and conversely. Thus,

NAPColgenR(2) = NRE.

• The family of sets of natural numbers acceptable by partially blind register
machines can be generated by restricted APCol systems with one agent and
conversely. Thus,

NRMpb ⊆ NAPColgenR(1).

3 Generative Power of APCol Systems

3.1 Deterministic APCol systems

The concept of determinism can be interpreted for APCol systems in several ways.
Here we consider the following concept:

Let c = (w1, . . . , wn;wE) be an arbitrary configuration of an APCol system
Π = (O, e,A1, . . . , An), n ≥ 1. We say that Π is deterministic if there is only one
maximal applicable multiset of programs MP in Π that can be applied to c.

We can construct an n-tuple xc of strings of length two, xiyi corresponding
to the string that agent i consumes from the environmental string by applying a
program from MP . If there is rewriting rule in the program, then e appears in the
string xiyi. If some agent has no applicable program then it is represented by ee
in the xc. Let O be a set of objects and Σ is input alphabet, then let f : O → Σ∗

be a function defined as follows: ∀x ∈ O − {e}f(x) = a; f(e) = ε and

u0 ai1bi1 u1 ai2bi2 u2 . . . un−1 ainbin un = wE (1)

We focus on deterministic APCol system working in generating mode.
The deterministic APCol system working in generating mode starts its compu-

tation in initial configuration given by initial contents of agents and with empty
string as environmental string. By execution of programs it passes from one con-
figuration to another one. Notice that to every configuration there is only one
maximal set of programs such that environmental string is formed as (1). The re-
sult of the computation - environmental string - is obtained only if APCol system
halts and at least one agent is in final state.

Further Results on the Power of Generating APCol Systems 85

Theorem 1. Let M be a deterministic register machine. Then there exists a de-
terministic APCol system Π with two agents such that M and Π generate the
same set of natural numbers.

Idea of the proof:

The environmental string stores information about the contents of the registers.
It is in a form #111 . . . 1222 . . . 2333 . . . n#′. When ADD-instruction is performed
on register r, then an agent puts ↓ just after # and moves ↓ through the string
from the left to the right until the agent consumes the number s ≥ r. Then the
agent insert new symbol r just before s, deletes ↓ and generates the label of the
next instruction performed by register machine.

The idea how to do zero-check, and thus subtraction (l1 : (SUB(r), l2, l3)) is
the following: Content of register r is represented by the number of objects r in
the environmental string. If the agent needs to erase some r, then it places mark
↑ just after # and moves it through the string. If there is any object r, then the
agent erases it and generates label l2. If there is no r, then the agent consumes ↑
together with s (s > r) or #′ it generates label l3.

If the next instruction is the halt instruction, then the agent exchanges # with
l and pushes it through the string. it leaves symbol 1 unchanged, the symbols
representing the contents of other registers are deleted. Finally, if agent consume
#′, then it erases l and stops working.

It can be seen that the instruction of the register machine can be simulated by
the deterministic APCol system.

3.2 APCol systems with one agent

In this part we deal with APCol systems with only one agent and working in
non-deterministic manner.

By the analogy of a non-decreasing Chomsky grammar, we introduce the notion
of a non-decreasing APCol systems working in the generating mode. We say that
an APCol system Π is non-decreasing, if no agent of Π has a rule of the form
e ↔ y, i.e., there is no rule for erasing a symbol from the string representing the
environment.

We first show that any ε-free context-sensitive language can be generated by
an APCol system with only one agent. Furthermore, the APCol system is non-
decreasing.

Theorem 2. Any ε-free context-sensitive language can be generated by a non-
decreasing APCol system with only one agent.

Sketch of the proof:

We show that to every context-sensitive grammar G = (N,T, P, S) in Kuroda
normal form there exists an APCol system Π with one agent working in generating

86 Lucie Ciencialová, Luděk Cienciala, and Erzsébet Csuhaj-Varjú

mode such that L(G) = L(Π). To do this, we construct an APCol system Π such
that every generation in G can be simulated by a computation in Π and any
successful computation in Π corresponds to a terminating derivation in G. To
help the easier reading, we provide only the description of the simulation of the
rules of G, the other components of Π can be extracted from the descriptions
below.

At the beginning of the simulating computation in Π we need to initialize
environmental string - there is only starting non-terminal at the beginning of
derivation in G. Let symbols X,X ′ /∈ N ∪ T .

Initialization Agent Program String
(ee) 〈e→ S; e→ X ′〉 ε
(SX ′) 〈S ↔ e;X ′ → X〉 ε
(eX) S

There are four types of rules in grammar in Kuroda normal form: AB →
CD; A→ BC;A→ B and A→ a, a ∈ T, A,B,C,D ∈ N.

To every rule in form AB → CD, to the set of programs of the agent A, we
add the following set of programs:

pi : AB → CD Agent Program String
(eX) 〈e→ pi;X → X ′〉 u AB v
(piX

′) 〈pi ↔ A;X ′ ↔ B〉 u p′iX ′ v
(AB) 〈A→ p′′i ;B → C〉 u p′iX

′ v
(p′′i C) 〈p′′i → p′′′i ;C ↔ p′i〉 u p′iX ′ v
(p′′′i p

′
i) 〈p′′′i → qi; p

′
i → D〉 u CX ′ v

(qiD) 〈qi → q′i;D ↔ X ′〉 u CX ′ v
(q′iX

′) 〈q′i → X;X → e〉 u CD v
(Xe) u CD v
(p′′i C) 〈p′′i → A;C → B〉 u p′iX

′ v
The program 〈p′′i → A;C → B〉 can be used just after program 〈p′′i → p′′′i ;C ↔ p′i〉

and these two programs can cause loop in computation. This is because there can
exist more than one rule with AB on the left side and the agent can generate label
of a rule different from pi.

For every rule in a form A→ BC we add the following programs to the set of
programs of A:

pi : A→ BC Agent Program String
(eX) 〈e→ pi;X → X ′〉 u A v
(piX

′) 〈pi → p′i;X
′ ↔ A〉 u A v

(p′iA) 〈p′i → p′′i ;A→ B〉 u X ′ v
(p′′i B) 〈p′′i ↔ X ′;B ↔ e〉 u X ′ v
(X ′e) 〈X ′ ↔ p′′i ; e→ e〉 u Bp′′i v
(p′′i e) 〈p′′i → p′′′i ; e→ C〉 u BX ′ v
(p′′′i C) 〈p′′′i → p′′′i ;C ↔ X ′〉 u BX ′ v
(p′′′i X

′) 〈p′′′i → e;X ′ → X〉 u BC v
For every rule in a form A → B or A → a we add the following programs to

the set of programs of A (α is non-terminal or terminal symbol):

Further Results on the Power of Generating APCol Systems 87

pi : A→ α Agent Program String
(eX) 〈e→ pi;X → α〉 u A v
(piα) 〈pi → p′i;α↔ A〉 u A v
(p′iA) 〈p′i → e;A→ X〉 u α v

At the end we add one more set of programs to the set of programs of A that
is of the form

〈e→ Y ;X ↔ A〉 ; 〈Y → Y ;A→ A〉

where Y /∈ N ∪ T and A ∈ N . By execution of the first program, the computation
enters a loop and the computation never halts. We have to add these programs
to ensure that the computation will not halt if the derivation of a string in the
grammar stops with a non-terminal in the string.

The agent simulates execution of rules and computation ends only when there
is no non-terminal symbol in environmental string. By the definition of the rules
and the programs above, it can easily be seen that the program set of agent A can
only simulate the rules of G, furthermore any computation in Π successfully halts
only if the corresponding derivation successfully terminates in G. We also observe
that Π is non-decreasing.

It is known that any recursively enumerable language can be generated by a
Kuroda-like normal form grammar G = (N,T, P, S), where the rules are one of
the forms AB → CD, A → BC,A → B, A → a, and A → ε, where a ∈ T,
A,B,C,D ∈ N. Modifying the proof of the above theorem (simulation of rule
A→ α), we can extend the proof to obtain any recursively enumerable language.
The modification is the following: in the case of A → ε we use rule e ↔ A in the
corresponding rule set.

We also note that to generate a context-sensitive language which contains ε,
we have an extension of the Kuroda normal form grammar where the rules are
one of the forms AB → CD, A→ BC,A→ B, A→ a, and S → ε, where a ∈ T,
A,B,C,D ∈ N , and S does not appear at the right-hand side of any rule. It is
easy to see that the proof of the above theorem can be modified to be a proof of
this statement as well.

Let CS, CSε, RE denote the family of ε-free context-sensitive, context-
sensitive, and recursively enumerable languages, respectively. Since APCol systems
(both in the generating and in the accepting mode) can be simulated by Turing
machines, we obtain the following statement

Theorem 3.
CS ⊂ CSε ⊂ RE = APColgen(1).

4 Conclusion

In this paper we examined APCol systems working in generating mode. We defined
a deterministic version of APCol systems and showed that they are able to simulate

88 Lucie Ciencialová, Luděk Cienciala, and Erzsébet Csuhaj-Varjú

functioning of deterministic register machines. In second part of paper we focused
on generating APCol systems with only one agent. We have showed that these
systems generate the family of recursively enumerable languages, and if they are
non-decreasing (have no rule for decreasing the length of the environment).

Acknowledgments.

The work of L. Ciencialová and L. Cienciala was supported by The Ministry of Ed-
ucation, Youth and Sports from the National Programme of Sustainability (NPU
II) project IT4Innovations excellence in science - LQ1602, by SGS/11/2019. The
work of E. Csuhaj-Varjú was supported by Grant No. K 120558 of the National
Research, Development, and Innovation Office, Hungary.

References

1. Cienciala, L., Ciencialová, L., Csuhaj-Varjú, E.: Towards on P Colonies Processing
Strings. In: Proc. BWMC 2014, Sevilla, 2014. pp. 102–118. Fénix Editora, Sevilla,
Spain (2014)

2. Cienciala, L., Ciencialová, L., Csuhaj-Varjú, E.: P colonies processing strings. Fun-
damenta Informaticae 134(1-2), 51–65 (2014)

3. Cienciala, L., Ciencialová, L., Csuhaj-Varjú, E.: A Class of Restricted P Colonies
with String Environment. Natural Computing 15(4), 541–549 (2016)

4. L. Ciencialová, E. Csuhaj-Varjú, L. Cienciala, and P. Sośık. P colonies. Bulletin of
the International Membrane Computing Society 1(2):119–156 (2016).

5. Csuhaj-Varjú, E., Kelemen, J., Păun, Gh., Dassow, J.(eds.): Grammar Systems: A
Grammatical Approach to Distribution and Cooperation. Gordon and Breach Science
Publishers, Inc., Newark, NJ, USA (1994)

6. Csuhaj-Varjú, E., Vaszil, G.: Finite dP Automata versus Multi-head Finite Automata
In: Gheorghe, M. et. al. (eds.) CMC 2011, LNCS, vol. 7184, pp. 120-138. Springer-
Verlag, Berlin Heidelberg (2012)

7. Holzer, M., Kutrib, M., Malcher, A.: Complexity of multi-head finite automata: Ori-
gins and directions, Theoretical Computer Science 412, 83–96 (2011)

8. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading, Mass. (1979)

9. Kelemenová, A.: P Colonies. Chapter 23.1, In: Păun, Gh., Rozenberg, G., Salomaa,
A. (eds.) The Oxford Handbook of Membrane Computing, pp. 584–593. Oxford Uni-
versity Press (2010)

10. Kelemen, J., Kelemenová, A., Păun, G.: Preview of P Colonies: A Biochemically
Inspired Computing Model. In: Workshop and Tutorial Proceedings. Ninth Interna-
tional Conference on the Simulation and Synthesis of Living Systems (Alife IX). pp.
82–86. Boston, Mass (2004)

11. Kelemen, J., Kelemenová, A.: A Grammar-Theoretic Treatment of Multiagent Sys-
tems. Cybern. Syst. 23(6), 621–633 (1992),

12. Meduna, A., Zemek, P.: Jumping Finite Automata. Int. J. Found. Comput. Sci. 23(7),
1555–1578 (2012)

Further Results on the Power of Generating APCol Systems 89

13. Minsky, Marvin L.: Computation: Finite and Infinite Machines. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA (1967)

14. Păun, Gh., Rozenberg, G., Salomaa, A.(eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, Inc., New York, NY, USA (2010)

15. Rozenberg, G., Salomaa, A.(eds.): Handbook of Formal Languages I-III. Springer
Verlag., Berin-Heidelberg-New York (1997)

90 Lucie Ciencialová, Luděk Cienciala, and Erzsébet Csuhaj-Varjú

Playing with Derivation Modes and
Halting Conditions

Rudolf Freund

TU Wien, Institut für Logic and Computation
Favoritenstraße 9–11, 1040 Wien, Austria
E-mail: rudi@emcc.at

Summary. In the area of P systems, besides the standard maximally parallel derivation
mode, many other derivation modes have been investigated, too. In this paper, many
variants of hierarchical P systems and tissue P systems using different derivation modes
are considered and the effects of using different derivation modes, especially the maxi-
mally parallel derivation modes and the maximally parallel set derivation modes, on the
generative and accepting power are illustrated. Moreover, an overview on some control
mechanisms used for (tissue) P systems is given.

Furthermore, besides the standard total halting mode, we also consider different halt-
ing conditions such as unconditional halting and partial halting and explain how the use
of different halting modes may considerably change the computing power of P systems
and tissue P systems.

1 Introduction

The basic model of P systems as introduced in [19] can be considered as a dis-
tributed multiset rewriting system, where all objects – if possible – evolve in par-
allel in the membrane regions and may be communicated through the membranes.
But also P systems operating on more complex objects (e.g., strings, arrays) are
often considered, too, for instance, see [8].

Besides the maximally parallel derivation mode, many other derivation modes
have been investigated during the last two decades. Thus in this paper the defini-
tions of the standard derivation modes used for P systems and tissue P systems are
recalled. Various interpretations of derivation modes known from the P systems
area are illustrated and well-known results are presented in a different manner.

Moreover, we not only consider the standard total halting, but also other halt-
ing conditions such as unconditional halting, see [5], and partial halting, see [12].
We explain and give some examples how the use of different halting modes may
considerably change the computing power of P systems and tissue P systems.

Overviews on the field of P systems can be found in the monograph [20] and
the Handbook of Membrane Computing [21]; for actual news and results we refer

92 R. Freund

to the P systems webpage [23] as well as to the Bulletin of the International
Membrane Computing Society. The reader is assumed to be very familiar with the
basic definitions and notations of P systems and tissue P systems as well as of the
commonly used derivation modes and halting conditions.

2 Prerequisites

The set of integers is denoted by Z, and the set of non-negative integers by N.
Given an alphabet V , a finite non-empty set of abstract symbols, the free monoid
generated by V under the operation of concatenation is denoted by V ∗. The ele-
ments of V ∗ are called strings, the empty string is denoted by λ, and V ∗\{λ} is
denoted by V +. For an arbitrary alphabet V = {a1, . . . , an}, the number of occur-
rences of a symbol ai in a string x is denoted by |x|ai , while the length of a string x
is denoted by |x| =

∑
ai∈V |x|ai . The Parikh vector associated with x with respect

to a1, . . . , an is (|x|a1 , . . . , |x|an). The Parikh image of an arbitrary language L
over {a1, . . . , an} is the set of all Parikh vectors of strings in L, and is denoted by
Ps(L). For a family of languages FL, the family of Parikh images of languages
in FL is denoted by PsFL, while for families of languages over a one-letter (d-
letter) alphabet, the corresponding sets of non-negative integers (d-vectors with
non-negative components) are denoted by NFL (NdFL).

A (finite) multiset over a (finite) alphabet V = {a1, . . . , an}, is a mapping f :

V → N and can be represented by 〈af(a1)1 , . . . , a
f(an)
n 〉 or by any string x for which

(|x|a1 , . . . , |x|an) = (f(a1), . . . , f(an)). In the following we will not distinguish
between a vector (m1, . . . ,mn), a multiset 〈am1

1 , . . . , amn
n 〉 or a string x having

(|x|a1 , . . . , |x|an) = (m1, . . . ,mn). Fixing the sequence of symbols a1, . . . , an in an
alphabet V in advance, the representation of the multiset 〈am1

1 , . . . , amn
n 〉 by the

string am1
1 . . . amn

n is unique. The set of all finite multisets over an alphabet V is
denoted by V ◦.

The family of regular, context-free, and recursively enumerable string languages
is denoted by REG, CF , and RE, respectively. For example, PsREG = PsCF ,
which is the reason why in the area of multiset rewriting CF plays no role at
all, and in the area of membrane computing we usually get characterizations of
PsREG and PsRE.

An extended Lindenmayer system (an E0L system for short) is a construct
G = (V, T, P,w), where V is an alphabet, T ⊆ V is the terminal alphabet, w ∈ V ∗
is the axiom, and P is a finite set of non-cooperative rules over V of the form
a→ u. In a derivation step, each symbol present in the current sentential form is
rewritten using one rule arbitrarily chosen from P . The language generated by G,
denoted by L(G), consists of all the strings over T which can be generated in this
way by starting from the initial string w. An E0L system with T = V is called a
0L system.

For more details of formal language theory the reader is referred to the mono-
graphs and handbooks in this area as [7] and [22].

Playing with Derivation Modes and Halting Conditions 93

Register machines

A register machine is a tuple M = (m,B, l0, lh, P), where m is the number of
registers, B is a set of labels, l0 ∈ B is the initial label, lh ∈ B is the final label,
and P is the set of instructions labeled by elements of B. The instructions of M
can be of the following forms:

• l1 : (ADD(j), l2, l3), with l1 ∈ B\{lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Increases the value of register j by one, followed by a non-deterministic jump
to instruction l2 or l3. This instruction is usually called increment.

• l1 : (SUB(j), l2, l3), with l1 ∈ B\{lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
If the value of register j is zero then jump to instruction l3; otherwise, the
value of register j is decreased by one, followed by a jump to instruction l2.
The two cases of this instruction are usually called zero-test and decrement,
respectively.

• lh : HALT . Stops the execution of the register machine.

A configuration of a register machine is described by the contents of each register
and by the value of the current label, which indicates the next instruction to be
executed. Computations start by executing the instruction l0 of P , and terminate
with reaching the HALT-instruction lh.

M is called deterministic if in all ADD-instructions p : (ADD (r) , q, s), it holds
that q = s; in this case we write p : (ADD (r) , q).

For useful results on the computational power of register machines, we refer
to [18]; for example, deterministic register machines can accept all recursively
enumerable sets of vectors of natural numbers with k components using precisely
k + 2 registers.

3 A General Model for Tissue and Hierarchical P Systems

We now recall the main definitions of the general model for tissue P systems and
hierarchical P systems and the basic derivation modes as defined, for example, in
[16]. Moreover, we define the halting conditions discussed in this paper.

A (hierarchical) P system (with rules of type X) working in the derivation
mode δ is a construct

Π = (V, T, µ, w1, . . . , wm, R1, . . . , Rm, f,=⇒Π,δ) where

• V is the alphabet of objects;
• T ⊆ V is the alphabet of terminal objects;
• µ is the hierarchical membrane structure (a rooted tree of membranes) with

the membranes uniquely labeled by the numbers from 1 to m;
• wi ∈ V ∗, 1 ≤ i ≤ m, is the initial multiset in membrane i;
• Ri, 1 ≤ i ≤ m, is a finite set of rules of type X assigned to membrane i;

94 R. Freund

• f is the label of the membrane from which the result of a computation has to
be taken from (in the generative case) or into which the initial multiset has to
be given in addition to wf (in the accepting case),

• =⇒Π,δ is the derivation relation under the derivation mode δ.

The symbol X in “rules of type X” may stand for “evolution”, “communi-
cation”, “membrane evolution”, etc. In this paper, we will mainly consider non-
cooperative as well as catalytic and purely catalytic rules, see Subsection 3.2.

In hierarchical P systems, the membranes are arranged in a tree structure. If
we allow arbitrary graphs as communication structure, with the membranes now
also called cells, floating in the environment instead of being enclosed in the skin
membrane, we come to the model of tissue P systems, where in the static case we
simply number the cells from 1 to m:

A (static) tissue P system (with rules of type X) working in the derivation
mode δ is a construct

Π = (V, T,m,w1, . . . , wm, R1, . . . , Rm, f,=⇒Π,δ) where

• V is the alphabet of objects;
• T ⊆ V is the alphabet of terminal objects;
• m is the number of cells uniquely labeled by the numbers from 1 to m;
• wi ∈ V ∗, 1 ≤ i ≤ m, is the initial multiset in cell i;
• Ri, 1 ≤ i ≤ m, is a finite set of rules of type X assigned to cell i;
• f is the label of the cell from which the result of a computation has to be taken

from (in the generative case) or into which the initial multiset has to be given
in addition to wf (in the accepting case),

• =⇒Π,δ is the derivation relation under the derivation mode δ.

Each of the cells may have assigned its own set of rules Ri, but in the most
general case the rules (for multisets) are of the form

(1, u1) . . . (m,um)→ (1, v1) . . . (m, vm)

where u1, . . . , um and v1, . . . , vm are multisets over V , and then instead of
R1, . . . , Rm we specify only one set of rules R for the whole tissue P system Π.

A configuration is a list of the contents of each cell or membrane region, re-
spectively; a sequence of configurations C1, . . . , Ck is called a computation in the
derivation mode δ if Ci=⇒Π,δCi+1 for 1 ≤ i < k. The derivation relation =⇒Π,δ is
defined by the set of rules in Π and the given derivation mode which determines
the multiset of rules to be applied to the multisets contained in each membrane
or cell or even in the overall tissue P system.

The language generated by Π is the set of all terminal multisets which can be
obtained in the output membrane / cell f starting from the initial configuration
C1 = (w1, . . . , wm) using the derivation mode δ in a halting computation, i.e.,

Playing with Derivation Modes and Halting Conditions 95

Lgen,δ (Π) =
{
C(f) ∈ T ◦ | C1

∗
=⇒Π,δ C ∧ ¬∃C ′ : C=⇒Π,δC

′
}
,

where C(f) stands for the multiset contained in the output membrane or cell f of
the configuration C. The configuration C is halting, i.e., no further configuration
C ′ can be derived from it.

The family of languages of multisets generated by P systems and tissue P
systems of type X with at most n membranes / cells in the derivation mode δ is
denoted by Psgen,δOPn (X) and Psgen,δOtPn (X), respectively.

We may also consider (tissue) P systems as accepting mechanisms: in mem-
brane / cell f , we add the input multiset w0 to wf in the initial configuration
C1 = (w1, . . . , wm) thus obtaining C1[w0] = (w1, . . . , wfw0, . . . , wm); the input
multiset w0 is accepted if there exists a halting computation in the derivation
mode δ starting from C1[w0], i.e.,

Lacc,δ (Π) =
{
w0 ∈ T ◦ | ∃C :

(
C1[w0]

∗
=⇒Π,δ C ∧ ¬∃C ′ : C=⇒Π,δC

′
)}

.

Then the family of languages of multisets accepted by P systems and tissue P
systems of type X with at most n membranes / cells in the derivation mode δ is
denoted by Psacc,δOPn (X) and Psacc,δOtPn (X), respectively.

We finally mention that (tissue) P systems can also be used to compute func-
tions and relations, with using f both as input and output membrane / cell or
even using two different membranes / cells for the input and the output. Yet in
this paper we will mainly focus on the generating case.

3.1 Derivation Modes

The set of all multisets of rules applicable in a (tissue) P system to a given con-
figuration C is denoted by Appl(Π,C) and can be restricted by imposing specific
conditions, thus yielding the following basic derivation modes (for example, see
[16] for formal definitions):

• asynchronous mode (abbreviated asyn): at least one rule is applied;
• sequential mode (sequ): only one rule is applied;
• maximally parallel mode (max): a non-extendable multiset of rules is applied;
• maximally parallel mode with maximal number of rules (maxrules): a non-

extendable multiset of rules of maximal possible cardinality is applied;
• maximally parallel mode with maximal number of objects (maxobjects): a non-

extendable multiset of rules affecting as many objects as possible is applied.

In [3], these derivation modes are restricted in such a way that each rule can
be applied at most once, thus yielding the set modes sasyn, smax, smaxrules, and
smaxobjects (the sequential mode is already a set mode by definition):

• asynchronous set mode (abbreviated sasyn): at least one rule is applied, but
each rule at most once;

96 R. Freund

• maximally parallel set mode (smax): a non-extendable set of rules is applied;
• maximally parallel set mode with maximal number of rules (smaxrules): a

non-extendable set of rules of maximal possible cardinality is applied;
• maximally parallel set mode with maximal number of objects (smaxobjects): a

non-extendable set of rules affecting as many objects as possible is applied.

Let us denote the set of all multisets (possibly only sets) of rules applicable
in a (tissue) P system Π to a given configuration C in the derivation mode δ by
Appl(Π,C, δ). We immediately observe that Appl(Π,C, asyn) = Appl(Π,C).
To collect the set and multiset derivation modes, we use the following notations:

DS = {sequ, sasyn, smax, smaxrules, smaxobjects} and
DM = {asyn,max,maxrules,maxobjects}.

3.2 Standard Rule Variants

Non-cooperative rules have the form a → w, where a is a symbol and w is a
multiset, catalytic rules have the form ca→ cw, where the symbol c is called the
catalyst, and cooperative rules have no restrictions on the form of the left-hand
side. These types of rules will be denoted by ncoo (non-cooperative), pcat (purely
catalytic), and coo (cooperative); if both non-cooperative and catalytic rules are
allowed, we write cat (catalytic).

If the P system has more than one membrane, each symbol on the right-hand
side may have assigned a target where the symbol has to be sent after the appli-
cation of the rule. In tissue P systems this target is simply the number of the cell,
whereas in hierarchical P systems the targets take into account the tree structure
of the membranes:

here the symbol stays in the membrane where the rule is applied;
out the symbol is sent to the outer membrane, i.e., the membrane enclosing the

membrane where the rule is applied;
in the symbol is sent to an inner membrane, i.e., a membrane enclosed by the

membrane where the rule is applied;
inj the symbol is sent to the inner membrane labeled by j.

3.3 Flattening

As many variants of P systems can be flattened to only one membrane, see [11], we
often may assume the simplest membrane structure of only one membrane which
in effect reduces the P system to a multiset processing mechanism, and, observing
that f = 1, in what follows we then will use the reduced notation

Π = (V, T,w,R,=⇒Π,δ) .

For a one-membrane system, the definitions for the language generated by Π
and the language accepted by Π can be written in an easier way, i.e.,

Playing with Derivation Modes and Halting Conditions 97

Lgen,δ (Π) =
{
v ∈ T ◦ | w ∗

=⇒Π,δ v ∧ ¬∃z : v=⇒Π,δz
}

and

Lacc,δ (Π) =
{
w0 ∈ T ◦ | ∃v :

(
ww0

∗
=⇒Π,δ v ∧ ¬∃z : v=⇒Π,δz

)}
.

The family of languages of multisets generated by one-membrane P systems of
type X in the derivation mode δ is denoted by Psgen,δOP (X).

The family of languages of multisets accepted by one-membrane P systems of
type X in the derivation mode δ is denoted by Psacc,δOP (X).

In the following, we will mainly focus on the generative case, and when writing
PsδOP (X) we by default will mean Psgen,δOP (X).

3.4 Halting Conditions

Besides the standard total halting with no (multi)set of rules being applicable any
more to the current configuration, some more variants of halting conditions have
been considered in the literature:

total halting (H) the common halting strategy where the computation stops
with no (multi)set of rules being applicable any more

unconditional halting (u) the result of a computation can be taken from ev-
ery configuration derived from the initial one (possibly only taking terminal
results)

partial halting (h) the set of rules R is partitioned into disjoint subsets R1 to
Rh, and a computation stops if there is no multiset of rules applicable to the
current configuration which contains a rule from every set Rj , 1 ≤ j ≤ h

halting with states (s) the configuration with which a derivation may stop
must fulfill a recursive condition (which corresponds with a final state)

The variant of unconditional halting was introduced in [5]. Partial halting, for
example, was investigated in [2, 4, 12], using the membranes for partitioning the
rules. Formal definitions for the halting conditions H,h, s can be found in [16].

In the description for (tissue) P systems, the derivation relation under the
derivation mode δ, =⇒Π,δ, is extended by the halting condition, i.e., we then
write =⇒Π,δ,β for β ∈ {H,h, u, s}. Moreover, we add the halting condition in the
description of the generated or accepted language, i.e., we then write Lγ,δ,β (Π),
γ ∈ {gen, acc}. The same extension is made for the corresponding families of
languages of multisets, i.e., for n ≥ 1, we write Yγ,δ,βOPn (X) and Yγ,δ,βOtPn (X),
respectively. By default, β is understood to be the total halting H and then usually
omitted in all these notations.

4 Some Well-Known Results

In this section we recall some well-known results, which usually are not stated in
the compact form given here.

98 R. Freund

4.1 Non-Cooperative Rules

Using only non-cooperative rules leaves us on the level of semi-linear sets, as for the
derivation with context-free rules (and non-cooperative rules correspond to those),
the resulting derivation tree does not depend on an interpretation of a sequential
or a parallel derivation of any kind. Moreover, context-free (string or multiset)
languages are closed under projections, hence, taking (even only terminal) results
out from a specific output membrane / cell does not make any difference. Therefore,
we may state the following result:

Theorem 1. For any Y ∈ {N,Ps} and any n ≥ 1 as well as any derivation mode
δ ∈ DS ∪DM ,

Ygen,δOPn (ncoo) = Ygen,δOtPn (ncoo) = Y REG.

Although P systems working in the maximally parallel derivation mode are a
parallel mechanism, we cannot go beyond PsREG, see Theorem 1.

For example, the rule a → aa used in parallel very much reminds us of a 0L
system, i.e., a Lindenmayer system of the simplest form, which, when starting
from the axiom aa, yields the language L1 = {a2n | n ≥ 1}. In order to also get
this language with P systems working in one of the maximally parallel derivation
modes, we either need some control mechanism (see Section 5) or some other
special halting condition (see Section 7).

4.2 The Importance of Using Catalysts

If in a one-membrane system we only have one catalyst c and only catalytic rules
assigned to c, then this corresponds to a sequential use of non-cooperative rules,
which together with Theorem 1 yields the following result:

Theorem 2. For any Y ∈ {N,Ps} and any derivation mode δ ∈ DS ∪DM ,

Ygen,δOP (pcat1) = Ygen,sequOP (pcat1) = Ygen,sequOP (ncoo) = Y REG.

Without additional control mechanisms, at least three catalysts are needed
to obtain computational completeness for purely catalytic P systems using the
derivation mode max, see [10]. In a more general way, the following results were
already proved there:

Theorem 3. For any d ≥ 1 and any k ≥ d+ 2,

Psacc,maxOP (pcatk+1) = Psacc,maxOP (catk) = NdRE.

Although not yet stated in [10], we mention that these results are also valid
when replacing the derivation mode max by any other maximally parallel (set)
derivation mode, i.e., for any δ in

Playing with Derivation Modes and Halting Conditions 99

{max,maxrules,maxobjects, smax, smaxrules, smaxobjects}.

The complexity of the construction, for all these derivation modes, has been
considerably reduced since the original paper from 2005, for example, see [3].

These results are obtained by simulating register machines, which in fact means
that a sequential machine has to be simulated by a parallel mechanism. Exactly
this feature of breaking down the parallelism to sequentiality is the main im-
portance of using catalysts: when using a maximally parallel derivation mode
δ ∈ {max,maxrules,maxobjects}, for decrementing the number of a symbol ar
to carry out the decrement case of a SUB-instruction of a register machine, we
cannot do this by a non-cooperative rule ar → λ, instead we have to use a catalytic
rule car → c.

What happens in the case of two catalysts in purely catalytic P systems (and
one catalyst in the case of catalytic P systems), is one of the most intriguing open
problems in the area of P systems since long time, e.g., see [15], where it is shown
that catalytic P systems with one catalyst can simulate partially blind register
machines and partially blind counter automata.

With respect to the importance of using catalytic rules, the set derivation
modes offer new opportunities, i.e., using specific control mechanisms they are not
needed any more, as eliminating only one symbol ar to carry out the decrement case
of a SUB-instruction of a register machine now can be done by a non-cooperative
rule ar → λ, because due to the set restriction this rule is not applied more than
once.

5 Control Mechanisms

To reduce the number of catalysts needed for obtaining computational complete-
ness, specific control mechanisms can be used. Some of these control mechanisms
are considered in this section. For example, label selection or control languages
allow for using only one catalyst (two catalysts) in (purely) catalytic P systems
for getting computational completeness, for instance, see [9, 13, 14, 3]. With tar-
get agreement and maximally parallel set derivation modes, catalysts can even be
avoided completely, only non-cooperative rules are needed.

For all the control mechanisms described in this section, as a special example
we will show how the 0L language L1 = {a2n | n ≥ 1} can be generated using the
maximally parallel derivation mode.

5.1 P Systems with Label Selection

For all the variants of (tissue) P systems of type X, we may consider labeling all
the rules in the sets R1, . . . , Rm in a one-to-one manner by labels from a set H

100 R. Freund

and taking a set W containing subsets of H. In any derivation step of a (tissue)
P system with label selection Π we first select a set of labels U ∈ W and then, in
the given derivation mode, we apply a non-empty multiset R of rules such that all
the labels of these rules from R are in U .

Example 1. Consider the one-membrane P system

Π = (V = {A, a}, T = {a}, w = AA,R = {r1 : A→ AA, r2 : A→ a},
W = {{r1}, {r2}},=⇒Π,max).

with the labeled rules r1 : A → AA and r2 : A → a; only one of these can be
used according to the sets of labels in W . Using r1 in n − 1 derivation steps and
finally using r2 yields a2

n

, for any n ≥ 1, i.e., we get Ngen,max(Π) = L1, where
L1 = {a2n | n ≥ 1}.

The families of sets Yγ,δ (Π), Y ∈ {N,Ps}, γ ∈ {gen, acc}, and δ ∈ DM ∪DS

computed by (tissue) P systems with label selection with at most m membranes
and rules of type X are denoted by Yγ,δOPm (X, ls) (Yγ,δOtPm (X, ls)).

Theorem 4. Yγ,δOP (cat1, ls) = Yγ,δOP (pcat2, ls) = Y RE for any Y ∈ {N,Ps},
γ ∈ {gen, acc}, and any maximally parallel (set) derivation mode δ,

δ ∈ {max,maxrules,maxobjects, smax, smaxrules, smaxobjects} .

The proof given in [14] for the maximally parallel mode max can be taken over
for the other maximally parallel (set) derivation modes word by word; the only
difference again is that in set derivation modes, in non-successful computations
where more than one trap symbol # has been generated, the trap rule #→ # is
only applied once.

5.2 Controlled (Tissue) P Systems and Time-Varying (Tissue) P
Systems

Another method to control the application of the labeled rules is to use control
languages (see [17] and [1]).

In a controlled (tissue) P system Π, in addition we use a set H of labels for
the rules in Π, and a string language L over 2H (each subset of H represents an
element of the alphabet for L) from a family FL. Every successful computation
in Π has to follow a control word U1 . . . Un ∈ L: in derivation step i, only rules
with labels in Ui are allowed to be applied (in the underlying derivation mode, for
example, max or smax), and after the n-th derivation, the computation halts; we
may relax this end condition, i.e., we may stop after the i-th derivation for any
i ≤ n, and then we speak of weakly controlled P systems. If L = (U1 . . . Up)

∗
, Π is

called a (weakly) time-varying (tissue) P system: in the computation step pn+ i,
n ≥ 0, rules from the set Ui have to be applied; p is called the period.

Playing with Derivation Modes and Halting Conditions 101

Example 2. Consider the one-membrane P system

Π = (V = {A, a}, T = {a}, w = AA,R = {r1 : A→ AA, r2 : A→ a},
L = {r1}∗{r2},=⇒Π,max)

with the labeled rules r1 : A → AA and r2 : A → a. Using the control word
r1
n−1r2 means using r1 in n−1 derivation steps and finally using r2, thus yielding

a2
n

, for any n ≥ 1, i.e., as in Example 1, we get Ngen,max(Π) = L1.
As now we do not have to distinguish between non-terminal and terminal sym-

bols due to the use of control words, the same result can be obtained by the much
simpler system

Π ′ = (V = {a}, T = {a}, w = aa,R = {r1 : a→ aa},
L = {r1}∗,=⇒Π′,max)

again yielding Ngen,max(Π ′) = L1.

The family of sets Yγ,δ (Π), Y ∈ {N,Ps}, computed by (weakly) controlled
P systems and (weakly) time-varying P systems with period p, with at most
m membranes and rules of type X as well as control languages in FL is de-
noted by Yγ,δOPm (X,C (FL)) (Yγ,δOPm (X,wC (FL))) and Yγ,δOPm (X,TVp)
(Yγ,δOPm (X,wTVp)), respectively, for γ ∈ {gen, acc} and δ ∈ DM ∪DS . Similar
notations hold for tissue P systems.

Theorem 5. Yγ,δOP (cat1, αTV6) = Yγ,δOP (pcat2, αTV6) = Y RE, for any α ∈
{λ,w}, Y ∈ {N,Ps}, γ ∈ {gen, acc}, and

δ ∈ {max,maxrules,maxobjects, smax, smaxrules, smaxobjects} .

The proof given in [14] for the maximally parallel mode max again can be
taken over for the other maximally parallel (set) derivation modes word by word,
e.g., see [3].

5.3 Target Selection

In P systems with target selection, all objects on the right-hand side of a rule must
have the same target, and in each derivation step, for each region a (multi)set of
rules – non-empty if possible – having the same target is chosen. In [3] it was
shown that for P systems with target selection in the derivation mode smax no
catalyst is needed any more, and with smaxrules, we even obtain a deterministic
simulation of deterministic register machines:

Theorem 6. For any Y ∈ {N,Ps},

Ygen,smaxOP (ncoo, target selection) = Y RE.

102 R. Freund

Theorem 7. For any Y ∈ {N,Ps},

Ydetacc,smaxrules
OP (ncoo, target selection) = Y RE.

In contrast to all the other variants of P systems, P systems with target selec-
tion really take advantage of the membrane structure, no flattening is used or even
reasonable. In that sense, this variant of P systems reflects the spirit of membrane
systems with a non-trivial membrane structure in the best way.

Example 3. Consider the two-membrane P system

Π = (V = {a}, T = {a}, µ = [[]2]1, w1 = aa,w2 = λ,

R1 = {a→ aa, a→ (a, in)}, R2 = ∅,=⇒Π,max)

with the rule a → aa having target here and the rule a → (a, in) having target
in; only one of these two rules can be used in one derivation step according to the
condition of target agreement. Using a→ aa in n− 1 derivation steps in the skin
membrane and finally using a → (a, in) yields a2

n

in the elementary membrane
[]2, for any n ≥ 1, i.e., we again get Ngen,max(Π) = L1.

6 The Strangeness of Minimal Parallelism

There is another derivation mode known from literature, which has two possi-
ble basic definitions, but these two variants unfortunately do not yield the same
results.

Following the definition given in [16], for the minimally parallel derivation mode
(min), we need an additional feature for the set of rules R used in the overall
(tissue) P system, i.e., we consider a partitioning θ of R into disjoint subsets R1

to Rh. Usually, this partitioning of R may coincide with a specific assignment of
the rules to the membranes or cells. We observe that this partitioning θ may, but
need not be the same as the partitioning η used for partial halting.

There are now several possible interpretations of this minimally parallel deriva-
tion mode which in an informal way can be described as applying multisets such
that from every set Rj , 1 ≤ j ≤ h, at least one rule – if possible – has to be used
(e.g., see [6]). Yet this if possible allows for two possible interpretations:

Minimal parallelism as a restriction of asyn

As defined in [16], we start with a multiset R′ of rules from Appl(Π,C, asyn) and
only take it if it cannot be extended to a multiset R′ of rules from Appl(Π,C, asyn)
by some rule from a set Rj from which so far no rule is in R′.

Playing with Derivation Modes and Halting Conditions 103

Minimal parallelism as an extension of smax

We start with a set R′ of rules from Appl(Π,C, smaxθ), where the notion smaxθ
indicates that we are using smax with respect to the partitioning of R into the
subsets R1 to Rh, and then possibly extend it to a multiset R′′ of rules from
Appl(Π,C, asyn) which contains R′. This definition finally was used in [21] without
using the notion smax, because at the moment when this handbook was written
the notion of maximally parallel set derivation modes had not been invented yet.
Moreover, the use of the notion smax so far was restricted to the discrete topology,
where every rule formed its own set Rj , whereas for smaxθ the condition is fulfilled
if one of the rules in the Rj is used if possible.

Example 4. Consider the one-membrane P system working in the min-mode

Π = (V = {a, b}, T = {b}, w = aa,R = R1 ∪R2,=⇒Π,min)

with R1 = {a→ bb} and R2 = {a→ bbb} being the partitions of R = R1 ∪R2.
Starting from smax, we get only one set of rules, i.e., R′ = {a→ bb, a→ bbb},

whose application yields the result b5.
In the case of starting with asyn, we may use one of the two rules twice, thus

also getting the results b4 and b6.
Hence, when two rules are competing for the same objects, the results obtained

with the two different definitions may be different, where the set of results obtained
when using the first definition will always include the results obtained by the
second definition.

The condition that the sets Rj , 1 ≤ j ≤ h, have to be disjoint may be alleviated,
for example, see [4].

A special variant of the minimally parallel derivation mode, with the sets Rj ,
1 ≤ j ≤ h, not being required to be disjoint, is the mode min1, which in fact
means that we stay with smaxθ. Now let smaxθ,k denote a partioning θ with k
sets of rules. As an interesting result we then get the interpretation of a purely
catalytic P system using max as a P system using min1 with the partitioning Rj ,
1 ≤ j ≤ k, where Rj is the set of non-cooperative rules a → u representing the
corresponding catalytic rules cja→ cju. Denoting a partitioning in k sets of rules
by θk, we obtain the following result:

Theorem 8. For any d ≥ 1 and any k ≥ d+ 3,

Psacc,min1
OP (ncoo, θk) = Psgen,min1

OP (ncoo, θ3) = NdRE.

104 R. Freund

Minimal parallelism with all applicable sets

There is an even stranger variant for minimal parallelism already defined in [16]:
To a configuration C we can only apply a multiset of rules which contains at

least one rule from each Rj , 1 ≤ j ≤ h, that contains a rule applicable to C,
i.e., we take all possible multisets R′ from Appl(Π,C, asyn) which also fulfill the
condition that R′ ∩Rj 6= ∅ provided Appl(Π,C, asyn)∩Rj 6= ∅, for all 1 ≤ j ≤ h.

This derivation mode is abbreviated allasetmin in [16] and used under the
notion amin in [4].

Example 5. Consider the one-membrane P system from Example 4, now working
in the amin-mode,

Π = (V = {a, b}, T = {b}, w = aa,R = R1 ∪R2,=⇒Π,amin)

with R1 = {a→ bb} and R2 = {a→ bbb}.
As both the rule from R1 and the rule from R2 are applicable, the only

(multi)set of rules applicable to the configuration aa is the same as that one when
starting from smax, i.e., R′ = {a → bb, a → bbb}, whose application yields the
result b5.

Yet if we take w = a instead, then still both the rule from R1 and the rule from
R2 are applicable, but there are not enough resources of symbols a for applying
both rules, hence, no derivation step is possible in this case with the derivation
mode amin. On the other hand, with the first two variants of the minimally parallel
derivation mode, in both cases we may either apply a→ bb or a→ bbb, thus getting
bb and bbb, respectively.

Again we observe that the results with different definitions of the minimally
parallel derivation mode may be different when two rules are competing for the
same object(s).

7 Halting Conditions

As already mentioned, P systems working in the maximally parallel derivation
mode at first sight look like (E)0L systems. Only the total halting condition com-
pletely destroys this similarity which looks so obvious at first sight. Yet this con-
nection between P systems working in the maximally parallel derivation mode and
(E)0L systems can be shown when using unconditional halting, see [5].

Besides unconditional halting, in this section we will also discuss some results
for partial halting and halting with states. In each case, as in Section 5, we will
show how to obtain the special multiset language L1 = {a2n | n ≥ 1}.

Playing with Derivation Modes and Halting Conditions 105

7.1 Unconditional Halting

Example 6. Consider the one-membrane (or one-cell tissue) P system

Π = (V = {a}, T = {a}, w = aa,R = {a→ aa},=⇒Π,max,u)

with the single rule a → aa; with every application of this rule the number of
symbols a is doubled, i.e., after n− 1 derivation steps, n ≥ 1, we get a2

n

, i.e., we
obtain Ngen,max,u(Π) = L1.

According to the results shown in [5], the following results holds true, if we use
extended systems (indicated by the additional symbol E) and only take results
from the output membrane / cell which are terminal:

Theorem 9. For any Y ∈ {N,Ps} and any m ≥ 1,

Ygen,δ,uEOPm (ncoo) = Ygen,δ,uEOtPm (ncoo) = Y E0L,

for any maximally parallel derivation mode δ,

δ ∈ {max,maxrules,maxobjects} .

If we do not use extended systems, i.e., V = T , we immediately obtain the
following:

Corollary 1. For any Y ∈ {N,Ps},

Ygen,δ,uOP1 (ncoo) = Ygen,δ,uOtP1 (ncoo) = Y 0L,

for any maximally parallel derivation mode δ,

δ ∈ {max,maxrules,maxobjects} .

These results now show the – somehow expected – correspondence between the
two parallel mechanisms (tissue) P systems and Lindenmayer systems.

We finally mention that with unconditional halting, considering acceptance
would not make any sense, because according to the standard definition of accept-
ing (tissue) P systems, in any case they would accept every input.

106 R. Freund

7.2 Partial Halting

Partial halting allows us to stop a derivation as soon as some specific symbols are
not present any more:

Example 7. Consider the one-membrane P system

Π = (V = {a, s}, T = {a}, w = as,R1 ∪R2,=⇒Π,max,h)

where R1 = {a→ aa} and R2 = {s→ s, s→ λ} are the two partitions of the rule
set R = {a→ aa, s→ s, s→ λ}.

As long as one of the rules from R2 can be applied to the symbol s, the symbols
a are doubled as usual by the rule a→ aa from R1. Using s→ s in n−1 derivation
steps, n ≥ 1, and finally applying s→ λ, we get a2

n

; hence, Ngen,max,h(Π) = L1.

Some interesting results for the partial halting may be looked up in [2, 4, 12].

7.3 Halting with States

In general, speaking of states reminds us of mechanisms like register machines;
there a computation halts when the halt instruction lh : HALT is applied. In
simulations of register machines by (tissue) P systems the computation often is
made halting by applying the final rule lh → λ, provided no trap rules are still
applicable. When lh disappears this means that no instruction label appears any
more in the configuration of the simulating (tissue) P system; such a condition
checking for the absence (or presence) of specific symbols in a given configuration
is computable and therefore a condition we can use for halting with states (which
ironically in this case means the absence of state symbols).

Example 8. Consider the one-membrane P system

Π = (V = {a, s}, T = {a}, w = as,R = {a→ aa, s→ s, s→ λ},=⇒Π,max,s),

which uses the same ingredients as the one considered in Example 7, but instead
of partial halting now uses the condition that a computation halts if no symbol
s is present any more, which gives the same computations as for the P system
in Example 7, with the only difference that the computations halt because of s
having been deleted. Thus, we obtain Ngen,max,s(Π) = L1.

8 Conclusion

In this paper the effects of using different derivation modes on the generative
and accepting power of many variants of hierarchical P systems and tissue P
systems have been illustrated. Especially some differences between the maximally
parallel derivation modes and the maximally parallel set derivation modes have

Playing with Derivation Modes and Halting Conditions 107

been exhibited. We have also given an overview on some control mechanisms used
for (tissue) P systems. Moreover, we have discussed the effect of using different
halting conditions such as unconditional and partial halting.

Many more relations between derivation modes and halting conditions as well
could have been discussed, but this would have gone much beyond such a normal
article.

Acknowledgements

Many of the ideas for this paper came up in the inspiring atmosphere of the
Brainstorming Week on Membrane Computing in Sevilla this year and even in
some previous years, and they are based on many discussions with Artiom Alhazov,
Sergiu Ivanov, and Sergey Verlan, but also other colleagues from the P community,
especially with Gheorghe Păun.

References

1. Alhazov, A., Freund, R., Heikenwälder, H., Oswald, M., Rogozhin, Yu., Verlan, S.: Se-
quential P systems with regular control. In: Csuhaj-Varjú, E., Gheorghe, M., Rozen-
berg, G., Salomaa, A., Vaszil, Gy. (eds.) Membrane Computing – 13th International
Conference, CMC 2012, Budapest, Hungary, August 28–31, 2012, Revised Selected
Papers, Lecture Notes in Computer Science, vol. 7762, pp. 112–127. Springer (2013).
https://doi.org/10.1007/978-3-642-36751-9 9

2. Alhazov, A., Freund, R., Oswald, M., Verlan, S.: Partial halting in P systems us-
ing membrane rules with permitting contexts. In: Durand-Lose, J., Margenstern,
M. (eds.) Machines, Computations, and Universality. pp. 110–121. Springer, Berlin,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74593-8 10

3. Alhazov, A., Freund, R., Verlan, S.: P systems working in maximal variants of the set
derivation mode. In: Leporati, A., Rozenberg, G., Salomaa, A., Zandron, C. (eds.)
Membrane Computing – 17th International Conference, CMC 2016, Milan, Italy,
July 25-29, 2016, Revised Selected Papers. Lecture Notes in Computer Science, vol.
10105, pp. 83–102. Springer (2017). https://doi.org/10.1007/978-3-319-54072-6 6

4. Alhazov, A., Oswald, M., Freund, R., Verlan, S.: Partial halting and minimal par-
allelism based on arbitrary rule partitions. Fundam. Inform. 91(1), 17–34 (2009).
https://doi.org/10.3233/FI-2009-0031

5. Beyreder, M., Freund, R.: Membrane systems using noncooperative rules with un-
conditional halting. In: Corne, D.W., Frisco, P., Păun, Gh., Rozenberg, G., Salomaa,
A. (eds.) Membrane Computing. pp. 129–136. Springer, Berlin, Heidelberg (2009).
https://doi.org/10.1007/978-3-540-95885-7 10

6. Ciobanu, G., Pan, L., Păun, Gh., Pérez-Jiménez, M.: P systems with
minimal parallelism. Theoretical Computer Science 378(1), 117–130 (2007).
https://doi.org/10.1016/j.tcs.2007.03.044

7. Dassow, J., Păun, Gh.: Regulated Rewriting in Formal Language Theory. Springer
(1989), https://www.springer.com/de/book/9783642749346

8. Freund, R.: P systems working in the sequential mode on arrays
and strings. Int. J. Found. Comput. Sci. 16(4), 663–682 (2005).
https://doi.org/10.1142/S0129054105003224

108 R. Freund

9. Freund, R.: Purely catalytic P systems: Two catalysts can be sufficient for
computational completeness. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Ro-
gozhin, Yu. (eds.) CMC14 Proceedings – The 14th International Conference on
Membrane Computing, Chişinău, August 20–23, 2013. pp. 153–166. Institute of
Mathematics and Computer Science, Academy of Sciences of Moldova (2013),
http://www.math.md/cmc14/CMC14 Proceedings.pdf

10. Freund, R., Kari, L., Oswald, M., Sośık, P.: Computationally universal P systems
without priorities: two catalysts are sufficient. Theoretical Computer Science 330(2),
251–266 (2005). https://doi.org/10.1016/j.tcs.2004.06.029

11. Freund, R., Leporati, A., Mauri, G., Porreca, A.E., Verlan, S., Zandron, C.: Flatten-
ing in (tissue) P systems. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Yu.,
Rozenberg, G., Salomaa, A. (eds.) Membrane Computing, Lecture Notes in Computer
Science, vol. 8340, pp. 173–188. Springer (2014). https://doi.org/10.1007/978-3-642-
54239-8 13

12. Freund, R., Oswald, M.: Partial halting in P systems. Int. J. Found. Comput. Sci.
18(6), 1215–1225 (2007). https://doi.org/10.1142/S0129054107005261

13. Freund, R., Oswald, M.: Catalytic and purely catalytic P automata: control mecha-
nisms for obtaining computational completeness. In: Bensch, S., Drewes, F., Freund,
R., Otto, F. (eds.) Fifth Workshop on Non-Classical Models for Automata and Ap-
plications – NCMA 2013, Ume̊a, Sweden, August 13 – August 14, 2013, Proceedings.
books@ocg.at, vol. 294, pp. 133–150. Österreichische Computer Gesellschaft (2013)

14. Freund, R., Păun, Gh.: How to obtain computational completeness in P systems with
one catalyst. In: Neary, T., Cook, M. (eds.) Proceedings Machines, Computations and
Universality 2013, MCU 2013, Zürich, Switzerland, September 9–11, 2013. EPTCS,
vol. 128, pp. 47–61 (2013). https://doi.org/10.4204/EPTCS.128.13

15. Freund, R., Sośık, P.: On the power of catalytic P systems with one catalyst. In:
Rozenberg, G., Salomaa, A., Sempere, J.M., Zandron, C. (eds.) Membrane Com-
puting – 16th International Conference, CMC 2015, Valencia, Spain, August 17–21,
2015, Revised Selected Papers. Lecture Notes in Computer Science, vol. 9504, pp.
137–152. Springer (2015). https://doi.org/10.1007/978-3-319-28475-0 10

16. Freund, R., Verlan, S.: A formal framework for static (tissue) P systems. In: Eleft-
herakis, G., Kefalas, P., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) Membrane
Computing, Lecture Notes in Computer Science, vol. 4860, pp. 271–284. Springer
(2007). https://doi.org/10.1007/978-3-540-77312-2 17

17. Krithivasan, K., Păun, Gh., Ramanujan, A.: On controlled P systems. Fundam. In-
form. 131(3–4), 451–464 (2014). https://doi.org/10.3233/FI-2014-1025

18. Minsky, M.L.: Computation. Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, NJ (1967)

19. Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences
61(1), 108–143 (2000). https://doi.org/10.1006/jcss.1999.1693

20. Păun, Gh.: Membrane Computing: An Introduction. Springer (2002).
https://doi.org/10.1007/978-3-642-56196-2

21. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press (2010)

22. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer (1997).
https://doi.org/10.1007/978-3-642-59136-5

23. The P Systems Website. http://ppage.psystems.eu/

Simulating counting oracles with cooperation

Alberto Leporati1, Luca Manzoni1, Giancarlo Mauri1,
Antonio E. Porreca2, and Claudio Zandron1

1 Dipartimento di informatica, Sistemistica e Comunicazione
Università degli Studi di Milano-Bicocca,
Viale Sarca 336, 20126, Milan, Italy
alberto.leporati@unimib.it luca.manzoni@unimib.it

giancarlo.mauri@unimib.it claudio.zandron@unimib.it
2 Aix Marseille Université, Université de Toulon, CNRS, LIS, Marseille, France
antonio.porreca@lis-lab.fr

Summary. We prove that monodirectional shallow chargeless P systems with active
membranes and minimal cooperation working in polynomial time precisely charac-
terise P#P

‖ , the complexity class of problems solved in polynomial time by deterministic
Turing machines with a polynomial number of parallel queries to an oracle for a counting
problem.

1 Introduction

Many variants of P systems with active membranes [8] are able to solve tradition-
ally intractable problems: with charges and bidirectional communication, uniform
families of them are able to solve P#P-complete problems when only one level of
membrane nesting (i.e., shallow systems) is allowed [2, 3], and PSPACE-complete
problems when this restriction is removed [9]. The presence of simple cooperation
rules, like the ones provided by antimatter, where two opposite objects can annihi-
late each other, allows the systems to reach P#P with a shallow membrane struc-
ture, also when the systems have no charges [5]. Even when the communication
is severely restricted, as in monodirectional systems, where send-in is forbidden,
uniform families of P systems with active membranes with charges characterize
PNP or, if shallow, the class PNP

‖ , as shown in [4]. It is interesting to see that
this is not the case for monodirectional systems with antimatter: the additional
cooperation provided by object annihilation makes possible to “count” once, thus
allowing families of this kind of systems the ability to reach P#P[1] = P

#P
‖ , even

with only one level of nesting [5].
In this paper we continue the investigation of the importance of cooperation

to increase the computational power of P systems. In particular, we show that
monodirectional systems with minimal cooperation [10] working in polynomial

110 A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron

time also characterize the class of all decision problems solvable in polynomial
time by a deterministic Turing machine with access to a single query of a #P

oracle, i.e., P#P[1] = P
#P
‖ .

The paper is organized as follows: Section 2 introduces the basic notions nec-
essary for the rest of the paper. Section 3 shows how a single #P query can be
simulated, and in Section 4 the main result is presented. Section 5 contains the
conclusions, and shows some directions for future research.

2 Basic Notions

In this paper we consider (semi)uniform families of P systems with active mem-
branes without charges and using minimal cooperative evolution rules [ab→ w]h,
send-out rules [a]h → []h b and elementary division rules [a]h → [b]h [c]h, where a,
b, and c are single objects and w is a multiset of objects. For the technical details
we refer the reader to Valencia-Cabrera et al. [10].

We also consider polynomial-time Turing machines with oracles for count-
ing problems in the complexity class #P [7] and, in particular, the complexity

classes P#P[1], where only one query is allowed, and P
#P
‖ , when any polynomial

number of queries is allowed, but they must all be carried out in parallel, that is, all
query strings are prepared in advance before actually interrogating the oracle (in
other words, later queries are not adaptive with respect to the answers to previous
ones). The two classes P#P[1] and P

#P
‖ actually turn out to be equivalent:

Proposition 1 (Leporati et al. [5]). A polynomial number of parallel #P

queries can be simulated by a single #P query in polynomial time (in sym-

bols P
#P
‖ = P#P[1]).

Proof. A single query does never depend on the results of previous queries,
thus P#P[1] ⊆ P

#P
‖ by definition.

Conversely, let M be a deterministic Turing machine running in polynomial
time p(n) with parallel oracle queries for a function f ∈ #P, and let N be a
nondeterministic Turing machine having f(x) accepting computations for each
input string x of length n and running in polynomial time q(n).

Then f(x) ≤ 2q(|x|) for each input string x, since 2q(n) is the maximum number
of computations of N on an input of length n (assuming binary nondeterministic
choices). Clearly, due to its running time, the machine M can only ask queries with
query strings of length bounded by p(n), which means that each query answer is
an integer bounded by 2q(p(n)), and M can ask up to p(n) queries.

Let x1, x2, . . . , xp(n) be the query strings of M on a run on a given input,
letting xi = ε if M asks less than i queries, and let g : Σ? → N, with Σ the union
of the query alphabet and the separator symbol $, be defined as

g(x1$x2$. . . $xp(n)) =

p(n)∑
i=1

Bi × f(xi)

Simulating counting oracles with cooperation 111

where B = 2q(p(n)) + 1; this corresponds to encoding all the query answers as a
base-B integer. Then, a single query to g contains all the information that can be
obtained by asking up to p(n) parallel queries to f , since each value f(xi) can be
recovered in polynomial time by computing

f(xi) =

⌊
g(x1$x2$. . . $xp(n))

Bi−1

⌋
mod B.

The function g is also in #P, since this class is closed under summations and
products [1], and this proves P

#P
‖ ⊆ P#P[1]. ut

3 Simulating a single #P query monodirectionally

It is quite easy to simulate efficiently (actually, in linear time) a deterministic
Turing machine working in polynomial time, and thus using only a tape length, by
means of a uniform family of P systems [6]. A configuration of the Turing machine
can be encoded as a multiset of objects as follows:

a b b a

q

0 1 2 3 4 5

a0 b1 b2 a3

q1

�4 �5b2

that is, each symbol (including blanks) is subscripted by an index corresponding
to the number of the tape cell, and the state of the machine is also represented
as an object, subscripted by the index of the cell currently under the tape head.
Blank tape cells are represented by the �i objects. Then, each transition of the
machine, say δ(q, b) = (r, a, d) with d = ±1, is simulated by a set of cooperative
evolution rules replicated for each legitimate tape position:

[qi bi → ri+d ai]h for 0 ≤ i < s(n) (1)

where s(n) is the polynomial space bound of the machine tape. These rules replace
the symbol bi under the tape head by ai, and update the state symbol qi to ri+d,
which also updates the position of the tape head.

A nondeterministic Turing machine can be simulated by dividing elementary
membranes, replacing the rules (1) by

[qi bi → 〈qi, bi〉]h for 0 ≤ i < s(n) (2)

[〈qi, bi〉]h → [〈ri+d, ai〉′]h [〈si+e, ci〉′]h for 0 ≤ i < s(n) (3)

[〈ri+d, ai〉′ → ri+d ci]h for 0 ≤ i < s(n) (4)

[〈si+e, bi〉′ → si+e ci]h for 0 ≤ i < s(n) (5)

in the case of a nondeterministic transition such as δ(q, b) = {(r, a, d), (s, c, e)}.
The rules of type (2) “pack” the head-state object and the object representing the

112 A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron

symbol under the tape head into a single object (which is necessary in order to
respect the membrane division rule format). The rules of type (3) then perform the
transition rule by dividing the membrane and rewriting the packed object into the
two objects representing the two possible evolutions of the configuration, one in
each of the resulting membranes; these objects are primed, in order to signal that
they are the result of the transition and not the left-hand side. Finally, the two
resulting objects are “unpacked” by the rules of type (4) and (5), thus obtaining
the two possible Turing machine configurations inside the divided membranes.
In order to avoid synchronisation issues due to the three-step simulation of a
nondeterministic transition vs the one-step simulation of deterministic ones, we
also slow down the latter accordingly, using the rules

[qi bi → 〈qi, bi〉]h for 0 ≤ i < s(n)

[〈qi, bi〉 → 〈ri+d, ai〉′]h for 0 ≤ i < s(n)

[〈ri+d, ai〉′ → ri+d ai]h for 0 ≤ i < s(n)

in the case of a deterministic transition such as δ(q, b) = (r, a, d).
Thus, a single membrane (or a number of membranes obtained by division

of a single initial one, in the case of nondeterminism) can efficiently simulate a
polynomial-size tape Turing machine and, in particular, a Turing machine working
in polynomial time. On the other hand, by using several nested membranes it is
possible to efficiently simulate oracle queries [6]. With bidirectional P systems (i.e.,
standard P systems using both send-in and send-out rules) the simulation of the
Turing machine is paused, then one usually sends the query string into a child
membrane, where another Turing machine for the oracle language is simulated,
possibly using membrane division; the answer is sent out and the simulation of the
original Turing machine is resumed.

With monodirectional P systems we proceed in the opposite direction: we first
duplicate and send out the multiset encoding the configuration of the Turing
machine being simulated, then the oracle machine is simulated in the innermost
membrane, and the result is sent out, where the simulation of the original Turing
machine can then resume [6]. This process is depicted in Figure 1.

When the simulated Turing machine answering the query is nondeterministic,
several result-objects yes are sent out from the divided membranes; they can be
counted and operated upon by the Turing machine simulated in the external mem-
brane by converting them in the binary representation of their multiplicity. This
can be accomplished by using cooperative evolution rules as follows:

[yes→ 10]k

[1i 1i → 1i+1]k for 0 ≤ i < m

where m is the maximum number of bits for the answer, which can be computed
as in the proof of Proposition 1. These rules produce the multiset of 1i for all
positions i where the number of yes objects produced as the answer to the query

Simulating counting oracles with cooperation 113

a0
b1 $2 a3 b4

b5 a6 $7 b8
�9

h

k

q?,3

a0
b1 $2 a3 b4

b5 a6 $7 b8
�9

h

k

q′0,3

a0
b1 $2 a3 b4

b5 a6 $7 b8
�9

w3

Fig. 1. Simulating an oracle query by means of monodirectional P systems. The portion
of configuration delimited by $ corresponds to the oracle query string, and the tape
head is located on its first symbol. When the Turing machine being simulated inside
membrane h enters the query state q?, its configuration is duplicated and sent out. The
head-state object inside membrane h now represents the state q′0, the initial state of the
Turing machine to be simulated in order to answer the oracle query, while the head-state
object outside (in membrane k) represent a “dummy” symbol waiting for state w.

expressed in binary notation, contains a 1. By combining this with the multi-
set 0m 0m−1 · · · 01 00 using the rules

[0i 1i → 1i]k for 0 ≤ i ≤ m

i.e., by deleting the objects 0i corresponding to the existing objects 1i, we obtain
the binary notation for the answer to the query, which can then be processed by
the original Turing machine (now being simulated inside membrane k) as part of
its tape.

The existence of the simulation described here, together with Proposition 1,
prove the following result:

Theorem 1. A deterministic polynomial time Turing machine with a polynomial
number of queries to a #P problem can be simulated by shallow chargeless monodi-
rectional P systems with active membranes and minimal cooperation rules in poly-
nomial time. ut

114 A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron

4 Simulating P systems with a single #P query

The query used by the Turing machine that simulates a shallow chargeless P system
with active membranes and minimal cooperation, working in polynomial time, is
the following:

Query 1. Given the description of a P system Π, an elementary membrane la-
bel h, an object type a and a time t in unary notation, how many objects of type a
are collectively sent out by membranes with label h at time t?

It is now necessary to prove that the answer to the query can be actually
computed by a function in #P, i.e., it is a “valid” oracle query for the Turing
machines that we are considering. Here we only give a sketch of the proof; all the
details can be found in [5].

Lemma 1. Query 1 is in #P.

Proof. Query 1 can be answered by essentially simulating a single-membrane P sys-
tem; indeed, if Π is monodirectional, no object can enter membrane h from the
parent membrane, and if h is elementary, neither can objects from children mem-
branes. By the Milano Theorem [11], a P system without division (thus, in partic-
ular, a single membrane without division), even with cooperative evolution rules,
can be simulated in deterministic polynomial time. By allowing nondeterminism,
the divisions [a]h → [b]h [c]h of membrane h can be simulated in polynomial time
by nondeterministically choosing whether to simulate the “left” (where a is rewrit-
ten as b) or the “right” membrane (where a is rewritten as c) resulting from the
division. After simulating t steps, this results in a nondeterministic computation
tree with a leaf for each instance of membrane h. Each computation must accept
if and only if an object of type a is sent out at time t, which gives us a number of
accepting computations identical to the number of objects a that are collectively
sent out at time t by membranes labelled by h, proving that the query is in #P. ut

Since we have shown that the query is actually computable by a function in
#P, we are now ready to prove the main theorem of this section:

Theorem 2. A family of (semi)uniform shallow chargeless monodirectional P sys-
tems with active membranes running in polynomial time can be efficiently simulated
with a single #P query.

Proof. Given an input string x, the corresponding P system Πx can be constructed
in polynomial time by a deterministic Turing machine M that simulates the (two)
Turing machine(s) establishing the (semi)uniformity condition.

Before beginning the actual simulation of Πx, we can ask a number of queries
to an oracle for Query 1; in particular, we ask Query 1 for each possible value of h
(labels of elementary membranes), of a (symbols of the alphabet of Πx), and of t
(time steps between 0 and p(|x|), where p is the polynomial running time of the

Simulating counting oracles with cooperation 115

family). Clearly, this is a polynomial number of parallel queries. These queries can
then be combined into a single #P query by means of Proposition 1.

Then, the external membrane of Πx can be simulated by Turing machine M .
Since this membrane does not divide, by the Milano Theorem [11] it can be sim-
ulated deterministically in polynomial time, except for the objects coming from
the children membranes, which are allowed to divide. But these have already been
precomputed by asking the oracle queries, and can simply be added with the corre-
sponding multiplicity in the correct time step to the configuration of the outermost
membrane. The simulation can then be carried out correctly until the result ob-
ject is sent out to the environment, and the simulation algorithm accepts or rejects
correspondingly. ut

5 Conclusions

We have shown that minimal cooperation for monodirectional, shallow P systems
with active membranes without charges is sufficient to reach and characterize P

#P
‖ .

This minimal amount of cooperation seems actually necessary and it might be ex-
pressed either explicitly (as done here), or implicitly (as with antimatter [5]).
However, the minimal amount of cooperation actually required to “count”, thus
allowing the construction of a #P oracle, is still an open research avenue. In fact,
while minimal cooperation can simulate annihilation rules in P systems with anti-
matter, it is unclear if there exist ways of performing cooperative actions that are
even weaker, while still attaining the ability to “count” and perform #P queries.

References

1. Fortnow, L.: Counting complexity. In: Hemaspaandra, L.A., Selman, A.L. (eds.) Com-
plexity Theory Retrospective II, pp. 81–107. Springer (1997)

2. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Simulating ele-
mentary active membranes, with an application to the P conjecture. In: Gheorghe,
M., Rozenberg, G., Sośık, P., Zandron, C. (eds.) Membrane Computing, 15th Inter-
national Conference, CMC 2014. Lecture Notes in Computer Science, vol. 8961, pp.
284–299. Springer (2014), https://doi.org/10.1007/978-3-319-14370-5 18

3. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Membrane divi-
sion, oracles, and the counting hierarchy. Fundamenta Informaticae 138(1–2), 97–111
(2015), https://doi.org/10.3233/FI-2015-1201

4. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.:
Monodirectional P systems. Natural Computing 15(4), 551–564 (2016),
https://doi.org/10.1007/s11047-016-9565-2

5. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: The counting
power of P systems with antimatter. Theoretical Computer Science 701, 161–173
(2017), https://doi.org/10.1016/j.tcs.2017.03.045

6. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Subroutines in
P systems and closure properties of their complexity classes. Theoretical Computer
Science (2018), https://doi.org/10.1016/j.tcs.2018.06.012, in press

116 A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron

7. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1993)
8. Păun, G.: P systems with active membranes: Attacking NP-complete problems. Jour-

nal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)
9. Sośık, P., Rodŕıguez-Patón, A.: Membrane computing and complexity theory: A char-

acterization of PSPACE. Journal of Computer and System Sciences 73(1), 137–152
(2007), https://doi.org/10.1016/j.jcss.2006.10.001

10. Valencia-Cabrera, L., Orellana-Mart́ın, D., Mart́ınez-del-Amor, M.A., Riscos-Núñez,
A., Pérez-Jiménez, M.J.: Polarizationless P systems with active membranes: Com-
putational complexity aspects. Journal of Automata, Languages and Combinatorics
21(1–2), 107–123 (2016), https://doi.org/10.25596/jalc-2016-107

11. Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems us-
ing P systems with active membranes. In: Antoniou, I., Calude, C.S., Din-
neen, M.J. (eds.) Unconventional Models of Computation, UMC’2K, Proceed-
ings of the Second International Conference, pp. 289–301. Springer (2001),
https://doi.org/10.1007/978-1-4471-0313-4 21

A new perspective on computational complexity
theory in Membrane Computing

David Orellana-Mart́ın, Luis Valencia-Cabrera,
Agust́ın Riscos-Núñez, and Mario J. Pérez-Jiménez

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: {dorellana, lvalencia, ariscosn, marper}@us.es

Summary. A single Turing machine can solve decision problems with an infinite number
of instances. On the other hand, in the framework of membrane computing, a “solution”
to an abstract decision problem consists of a family of membrane systems (where each
system of the family is associated with a finite set of instances of the problem to be
solved). An interesting question is to analyze the possibility to find a single membrane
system able to deal with the infinitely many instances of a decision problem.

In this context, it is fundamental to define precisely how the instances of the problem
are introduced into the system. In this paper, two different methods are considered:
pre-computed (in polynomial time) resources and non-treated resources.

An extended version of this work will be presented in the 20th International Confer-
ence on Membrane Computing.

1 Introduction

In the 17th Brainstorming Week on Membrane Computing, an apparently innocent
problem was presented by the authors: the ONLY-ONE-OBJECT problem. The goal
is to build a system able to distinguish whether in a given region, at a given
moment, there is only one copy of an object, or if the multiplicity of the object
is strictly greater than one. Besides, the notion of efficient solvability by means
of a single recognizer polarizationless P system with active membranes, without
dissolution rules and using division for elementary and non-elementary membranes,
was proposed. Following a reasoning based on the dependency graph technique, a
negative answer to the previous question was concluded (i.e. the problem is not
solvable in the proposed framework).

In some sense, the previous question links up with others that were proposed by
P. Sośık [17], which raise the possibility of being able to solve P-complete problems

118 D. Orellana-Mart́ın et al.

or NP-complete problems by means of a single membrane system. Specifically,
two “open problems” were “formulated” in [17], expressed in an informal way as
follows:

• Open Problem 1. Is there any known standard model of P system capable of
solving a P-complete problem in polynomial time without the use of families,
i.e., all instances are solved by the same P systems?

• Open Problem 2. How to design a natural (not much “extraordinary”) model
of P system capable of solving an NP-complete problem in polynomial time
without the use of families?

Of course, these questions should be expressed in a formal way and their answers
will depend on the definitions given about what solving a decision problem through
a single membrane system means.

For instance, two possible definitions could be considered according to the
way of entering the input inside the membrane system: (a) by using precomputed
resources (that is, waiting for a polynomial time prior to the initial step of the
computation, to calculate which is the input multiset that has to be provided
to the system); or (b) by directly introducing the input multiset without any
preprocessing, that is, free of external resources.

For a comprehensive introduction to membrane systems, we refer the reader
to [12, 15].

2 The complexity class PMC1p
R

First, let us define a solution to a decision problem through a single membrane
system allowing the possibility to use (external) precomputed resources for provid-
ing the input multiset to the system. In other words, we assume that there is an
available device able to execute the function that computes the input multiset,
and this process should be performed before the computation of the membrane
system starts.

Definition 1. Let R be a class of recognizer membrane system. Let X = (IX , θX)
be a decision problem. We say that problem X is solvable in polynomial time by a
single membrane system Π from R with precomputed resources, denoted by X ∈
PMC1p

R , if the following hold:

• There exists a polynomial encoding cod from X to Π providing a “reasonable
encoding scheme” which maps problem instances into the multisets describing
them [3]; that is, there exists a polynomial time computable function, cod, whose
domain is IX such that for every instance u ∈ IX , cod(u) is a multiset over
the input alphabet of Π.

• The system Π is polynomially bounded with regard to (X, cod); that is, there
exists a polynomial p(r) such that for each instance u ∈ IX , every computation
of the system Π with input multiset cod(u) performs at most p(|u|) steps.

A new perspective on complexity theory in Membrane Computing 119

• The system Π is sound with regard to (X, cod); that is, for each instance u ∈
IX , if there exists an accepting computation of the system Π with input multiset
cod(u) then θX(u) = 1.

• The system Π is complete with regard to (X, cod); that is, for each instance
u ∈ IX such that θX(u) = 1, every computation of the system Π with input
multiset cod(u) is an accepting computation.

In this definition, the input multiset that is allocated into the initial configuration
of the system is precomputed by means of a polynomial-time computable function.

Proposition 1. If R is a class of recognizer membrane systems, then

P ⊆ PMC1p
R ⊆ PMCR

Proof. In order to show that P ⊆ PMC1p
R , let X = (IX , θX) be a decision problem

in class P. Let us consider the deterministic recognizer (cell-like) membrane system
Π = {Γ,Σ, µ,M1,R, iin} of degree 1 defined as follows:

• Γ = Σ = {yes, no}.
• µ = []1.
• M1 = ∅
• R = {[yes]1 → yes []1; [no]1 → no []1}
• iin = 1.

Let us consider cod as the map whose domain is IX defined as follows: for every
u ∈ IX , cod(u) = {yes} if θX(u) = 1, and cod(u) = {no}, otherwise. Since X ∈ P,
cod is a polynomial-time function. Then, we have:

• The system Π is polynomially bounded with regard to (X, cod): for every in-
stance u ∈ IX , the computation of Π with input multiset cod(u) performs 1
transition step.

• For every instance u ∈ IX , the computation of the systemΠ with input multiset
cod(u) is an accepting computation if and only if θX(u) = 1.

This definition can be easily adjusted for any class of recognizer membrane
systems R, in such a way that we have X ∈ PMC1p

R . Then, we conclude that

P ⊆ PMC1p
R .

In order to show that PMC1p
R ⊆ PMCR, let X = (IX , θX) be a decision

problem such that X ∈ PMC1p. Let Π ′ a membrane system from R solving X
according to Definition 1, being cod′ a polynomial encoding from X to Π associated
with that solution. Let us consider the family Π = {Π(t) | t ∈ N} defined as follows
Π(t) = Π ′, for each t ∈ N. Let us consider the polynomial encoding (cod, s) from
the problem X to the family Π defined as follows: cod = cod′ and s(u) = 0, for
each u ∈ IX . Then it is easy to check that the family Π is polynomially uniform
by Turing machines, polynomially bounded with regard to (X, cod, s), and sound
and complete with regard to (X, cod, s). Thus, X ∈ PMCR.

�

120 D. Orellana-Mart́ın et al.

3 The complexity class PMC1f
R

The second definition refers to the case in which the input multiset is directly
introduced inside the system as it is (“free” of external dependencies or resources),
and thus the input alphabet should be chosen so that the system is able to “read”
the instances of the problem to be solved.

Definition 2. Let R be a class of recognizer membrane systems. Let X = (IX , θX)
be a decision problem such that IX is a language over a finite alphabet ΣX . We
say that problem X is solvable in polynomial time by a single membrane system Π
from R free of external resources, denoted by X ∈ PMC1f

R , if the following hold:

• The input alphabet of Π is ΣX .
• The system Π is polynomially bounded with regard to X; that is, there exists

a polynomial p(r) such that for each instance u ∈ IX , every computation of the
system Π with input multiset u performs at most p(|u|) steps.

• The system Π is sound with regard to X; that is, for each instance u ∈ IX ,
if there exists an accepting computation of the system Π with input multiset u
then θX(u) = 1.

• The system Π is complete with regard to X; that is, for each instance u ∈ IX
such that θX(u) = 1, every computation of the system Π with input multiset u
is an accepting computation.

Proposition 2. Let R be a class of recognizer membrane systems. Then we have
PMC1f

R ⊆ PMC1p
R .

Proof. Let us assume that X ∈ PMC1f
R . Let Π ′ a membrane system from R

whose input alphabet is ΣX (the working alphabet of the problem X) such that it
is polynomially bounded, sound and complete with regard to X. Let us consider
the polynomial encoding cod from X to Π ′ defined as follows: cod(u) = u, for
every instance u ∈ IX . Then, Π ′ is polynomially bounded, sound and complete
with regard to (X, cod). Thus, X ∈ PMC1p

R .
�

4 Decision problems with a finite number of instances

In this section, we work with decision problems whose set of instances is a finite
set.

Proposition 3. Let T (so) the class of all recognizer transition P systems which
make use of send-out communication rules only. Then, if X = (IX , θX) is a deci-

sion problem whose set of instances is a finite set, then X ∈ PMC1f
T (so).

Proof. Let X = (IX , θX) be a decision problem whose set of instances IX is a
finite language over the alphabet ΣX . Let us consider the recognizer transition P
system Π = (Γ,Σ, µ,M1,R1, iin), defined as follows:

A new perspective on complexity theory in Membrane Computing 121

• The working alphabet is Γ = ΣX ∪{yes, no} and the input alphabet Σ is ΣX .
• The membrane structure is µ = []1 and the initial multiset is M1 = ∅.
• The set R1 of rules is

{[u]1 → yes []1 | θX(u) = 1} ∪ {[u]1 → no []1 | θX(u) = 0}

• The input membrane is labelled by 1.

Obviously, membrane system Π belongs to the class T (so) and it solves problem
X, according to Definition 2.

5 The NONE-OBJECT problem

In this section, we consider the NONE-OBJECT problem which informally corre-
sponds to the task of determining whether there is any input object or not in the
system. Formally, let X = (IX , θX) be the decision problem defined as follows:

IX = {∅} ∪ {an | n ∈ N, n ≥ 1} , θX(∅) = 1, and θX(an) = 0 for each n ≥ 1

That is, the problem X distinguishes two types of situations: absence of objects
on one hand, and at least one copy of object a, on the other hand.

Theorem 1. Let T (nc, ev, so, dis, pr) the class of all non-cooperative recognizer P
systems which makes use of minimal production in object evolution rules (that is,
only one object in the right-hand side of the rule), send-out communication rules,

dissolution rules and priorities. Then, NONE-OBJECT∈ PMC1f
T (nc,ev,so,dis,pr).

Proof. Let us consider the system Π from T (nc, ev, so, dis, pr) defined as follows:

• The working alphabet is Γ = {a, b, c} and the input alphabet is Σ = {a}.
• The membrane structure µ is µ = [[]2]1 and the initial multisets areM1 = ∅

and M2 = {c}.
• The set R of rules of Π is the following:

{[a→ b]2; [b]2 → no; [c]2 → yes; [yes]1 → yes []1; [no]1 → no []1}

• The set of priorities P among rules of Π is the following:{
([a→ b]2, [c]2 → yes); ([b]2 → no, [c]2 → yes)

}
• The input membrane is labelled by 2.

Then, the following hold:

• For each natural number n ≥ 1, the system Π with input multiset {an} is
deterministic, the computation of Π + {an} performs three transition steps
and it is a rejecting computation.

• The system Π with input multiset ∅ is deterministic, the computation of Π+∅
performs two transition steps and it is an accepting computation.

Thus, NONE-OBJECT∈ PMC1f
T (nc,ev,so,dis,pr). �

122 D. Orellana-Mart́ın et al.

6 The ONLY-ONE-OBJECT problem

In this section, the problem of telling apart “one” from “more-than-one” object is
considered. Formally, let X = (IX , θX) be the decision problem defined as follows:

IX = {an | n ∈ N, n ≥ 1} and θX(an) = 1 if and only if n = 1

That is, the problem X distinguishes the case when there is only one copy of object
a from the rest of possible cases with several copies of that object. We denote that
problem as the ONLY-ONE-OBJECT problem. Obviously, the ONLY-ONE-OBJECT prob-
lem belongs to class P since it is easy to design a deterministic Turing machine solv-
ing that problem which takes two computation steps. Thus, ONLY-ONE-OBJECT∈ P.
Bearing in mind that for every class R of recognizer membrane systems, we have
we P ⊆ PMC1p

R , we deduce that ONLY-ONE-OBJECT∈ PMC1p
R .

It is easy to prove that ONLY-ONE-OBJECT∈ PMC1f
T (nc,ev,so,dis,pr), but the fol-

lowing result shows that this problem cannot be solved by a membrane system
from AM0(−d,+ne) without using precomputed resources, being AM0(−d,+ne)
the class of polarizationless P systems without dissolution rules and with division
rules for elementary and non-elementary membranes.

Theorem 2. There does not exist a recognizer membrane system Π ′ ∈ AM0(−d,+ne)
solving the ONLY-ONE-OBJECT problem in a polynomial time by a single membrane
system and free of resources. That is, ONLY-ONE-OBJECT/∈ PMC1f

AM0(−d,+ne).

Proof. (Reasoning by reductio ad absurdum) Let us assume that there exists a
recognizer membrane system Π ′ from AM0(−d,+ne) verifying the following:

(a) The input alphabet of Π ′ is the singleton {a}.
(b) Every computation of Π ′ with input multiset {a} is an accepting computation.
(c) Every computation of Π ′ with input multiset {an}, for each n > 1, is a rejecting

computation.

Let us denote by GΠ′+{a} (respectively, GΠ′+{an}, for each n > 1) the dependency
graph1 associated with the system Π ′ + {a} (resp. Π ′ + {an}). Then, we have:

• For each n > 1, GΠ′+{a} = GΠ′+{an}. Indeed, in both graphs there is only one
edge starting from s, specifically, the edge {s, (a, iin)}, and the rest of edges
are given by the rules of Π ′, due to Π ′ ∈ AM0(−d,+ne).

• A computation of Π ′ + {a} is an accepting computation if and only if there
exists a path in GΠ′+{a} from s to (yes, env).

• For each n > 1, a computation of Π ′ + {an} is an accepting computation if
and only if there exists a path in GΠ′+{an} from s to (yes, env).

1 We will not recall the formal definition here (see [2, 18] for details). The dependency
graph can be intuitively seen as a map of “reactants-product” relationship between
objects: the nodes are pairs (object, region) and for every rule of the system there will
be an arc connecting each object on the left-hand-side to each object on the right-hand
side.

A new perspective on complexity theory in Membrane Computing 123

Thus, bearing in mind that GΠ′+{a} = GΠ′+{an} we deduce that every computa-
tion of Π ′ + {a} is an accepting computation if and only if every computation of
Π ′+{an}, for each n > 1, is an accepting computation. Hence, conditions (b) and
(c) are contradictory.

�

Corollary 1. PMC1f
AM0(−d,+ne) (P ⊆ PMC1p

AM0(−d,+ne).

7 A version of the PARITY problem

In this section, a version of the PARITY problem is considered. Specifically, let
PARITY = (IPARITY, θPARITY) be the decision problem defined as follows:

IPARITY = {an | n ∈ N, n ≥ 1} and θPARITY(a
n) = 1 if and only if n is even

That is, the PARITY problem distinguishes an even number of copies of object a
from an odd number of copies of that object. Obviously, this version of the PARITY
problem belongs to class P since it is easy to design a deterministic Turing machine
solving that problem.

Theorem 3. Let T (mcmp, so, dis, pr) the class of all recognizer P systems which
make use of minimal cooperation and minimal production in object evolution rules,
send-out communication rules, dissolution rules and priorities. Then, PARITY∈
PMC1f

T (mcmp,so,dis,pr).

Proof. Let us consider the system Π from T (mcmp, so, dis, pr) defined as follows:

(a) The working alphabet is Γ = {a, b} and the input alphabet is Σ = {a}.
(b) The membrane structure is µ = [[]2]1, and the initial multisets are M1 = ∅

and M2 = ∅.
(d) The set R of rules of Π is the following:

{[a2 → b]2; [b2 → b]2; [a]2 → no; [b]2 → yes}∪
{[no]1 → no []1; [yes]1 → yes []1}

(e) The set of priorities P among rules of Π is the following:{
([a2 → b]2, [a]2 → no); ([b2 → b]2, [a]2 → no); ([a2 → b]2, [b]2 → yes);
([b2 → b]2, [b]2 → yes); ([a]2 → no, [b]2 → yes)

}
(f) The input membrane is labelled by 2.

Then, for each natural number n ≥ 1, the following hold:

• The system Π with input multiset {an} is deterministic.
• The computation of Π + {an} performs 2 + blog2(n)c transition steps.
• The natural number n is odd if and only if the configuration Cblog2(n)c

contains

a copy of object a.
• The natural number n is even if and only if the computation of Π + {an} is an

accepting computation.

Thus, PARITY∈ PMC1f
T (mcmp,so,dis,pr). �

124 D. Orellana-Mart́ın et al.

8 Conclusions

In this work, the ability of solving problems by single “stand-alone” membrane sys-
tems instead of families of membrane systems is studied. While using precomputed
resources, it is easy to see that problems from P can be solved by a single mem-
brane system using only send-out rules. A question arises from here: What if we
cannot access to a precomputed encoding and we have the raw instance as input?
In this paper, the power of single membrane systems free of precomputed resources
is also studied, giving, on the one hand, solutions to decision problems by means of
a single membrane system solving them, and on the other hand demonstrating the
inability of systems from AM0(−d,+ne) to solve the ONLY-ONE-OBJECT problem
by using the dependency graph technique in a novel way.

While talking about recognizer membrane systems, we suppose that they can,
at least, send an object to the environment to return the answer. Even with this
minimal definition, the lower bound for PMC1p

R has been demonstrated to be
P. On the other hand, logic gates have been solved by a system using only non-
cooperative send-out rules. This result gives a tool to tackle problems below P in
the framework of Membrane Computing.

An interesting question is to obtain a lower bound of these systems using only
unary alphabets; that is, not allowing cooperation implicit in the instance of the
problem. It could be also worth investigating other “weaker” variants, for example
obtained removing priorities.

Some open problems remain for future work, e.g. looking for upper bounds of
the complexity classes PMC1p

R and PMC1f
R .

Acknowledgements

This work was supported in part by the research project TIN2017-89842-P, co-
financed by Ministerio de Economı́a, Industria y Competitividad (MINECO) of
Spain, through the Agencia Estatal de Investigación (AEI), and by Fondo Europeo
de Desarrollo Regional (FEDER) of the European Union.

References

1. A. Alhazov, T.-O. Ishdorj: Membrane operations in P systems with active mem-
branes. In Proceedings of the Second Brainstorming Week on Membrane Computing,
Sevilla, 2-7 February 2004, 37-44.

2. A. Cordón-Franco, M. A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez.
Weak metrics on configurations of a P system. In Gh. Paun, A. Riscos, Á. Romero,
F. Sancho (eds.) Proceedings of the Second Brainstorming Week on Membrane Com-
puting, Report RGNC 01/2004, 2004, pp. 139-151.

A new perspective on complexity theory in Membrane Computing 125

3. M.R. Garey, D.S. Johnson D.S. Computers and intractability, W.H. Freeman and
Company, New York, 1979.

4. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, F.J. Romero-Campero: A linear solu-
tion of Subset Sum problem by using membrane creation. Lecture Notes in Computer
Science, 3561 (2005), 258-267.

5. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, F.J. Romero-
Campero, A. Romero-Jiménez: Characterizing tractability by cell–like membrane
systems. In K.G. Subramanian, K. Rangarajan, M. Mukund (eds.) Formal models,
languages and applications, World Scientific, Singapore, 2006, pp. 137–154.

6. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, F.J. Romero-Campero: A linear time
solution for QSAT with membrane creation. Lecture Notes in Computer Science,
3850 (2006), 241-252.

7. P.L. Luisi. The Chemical Implementation of Autopoiesis, Self-Production of
Supramolecular Structures (G.R. Fleishaker et al., eds.), Kluwer, Dordrecht, 1994.

8. C. Mart́ın-Vide, Gh. Păun, A. Rodŕıguez-Patón. On P Systems with Membrane
Creation. Computer Science Journal of Moldova, 9, 2(26) 2001, 134-145.

9. M. Mutyam, K. Krithivasan: P systems with membrane creation: Universality and
efficiency. Lecture Notes in Computer Science, 2055 (2001), 276–287.

10. L. Pan, T.-O. Ishdorj: P systems with active membranes and separation rules. Journal
of Universal Computer Science, 10, 5 (2004), 630–649.

11. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143, and Turku Center for CS-TUCS Report No. 208, 1998

12. Gh. Păun. Membrane Computing: An introduction. Springer Natural Computing
Series, 2002.

13. Gh. Păun. P systems with active membranes: attacking NP–complete problems,
Journal of Automata, Languages and Combinatorics, 6, 1 (2001), 75-90.

14. Gh. Păun, M.J. Pérez-Jiménez, Gr. Rozenberg. Spike trains in spiking neural P
systems. International Journal of Foundations of Computer Science, 17, 4 (2006),
975-1002.

15. Gh. Păun, G. Rozenberg, A. Salomaa (eds). The Oxford Handbook of Membrane
Computing. Oxford University Press, Oxford, U.K., 2009.

16. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini: Complexity classes
in cellular computing with membranes. Natural Computing, 2, 3 (2003), 265–285.

17. P. Sośık. Active Membranes, Proteins on Membranes, Tissue P Systems: Complexity-
Related Issues and Challenges. Lecture Notes in Computer Science, 8340 (2014),
40–55.

18. L. Valencia-Cabrera, D. Orellana-Mart́ın, I. Pérez-Hurtado, M.J. Pérez-Jiménez. De-
pendency graph technique revisited. in this volume

19. G. Zhang, M.J. Pérez-Jiménez, M. Gheorghe. Real-Life Modelling with Membrane
Computing. Series: Emergence, Complexity and Computation, Volume 25. Springer
International Publishing, 2017, X + 367 pages.

An apparently innocent problem in
Membrane Computing

David Orellana-Mart́ın, Luis Valencia-Cabrera,
Agust́ın Riscos-Núñez, Mario J. Pérez-Jiménez

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: {dorellana, lvalencia, ariscosn, marper}@us.es

Summary. The search for efficient solutions of computationally hard problems by means
of families of membrane systems has lead to a wide and prosperous field of research. The
study of computational complexity theory in Membrane Computing is mainly based on
the look for frontiers of efficiency between different classes of membrane systems. Every
frontier provides a powerful tool for tackling the P versus NP problem in the following
way. Given two classes of recognizer membrane systems R1 and R2, being systems from
R1 non-efficient (that is, capable of solving only problems from the class P) and systems
from R2 presumably efficient (that is, capable of solving NP-complete problems), and
R2 the same class that R1 with some ingredients added, passing from R1 to R2 is
comparable to passing from the non efficiency to the presumed efficiency. In order to
prove that P = NP, it would be enough to, given a solution of an NP-complete problem
by means of a family of recognizer membrane systems from R2, try to remove the added
ingredients to R2 from R1. In this paper, we study if it is possible to solve SAT by
means of a family of recognizer P systems from AM0(−d,+n), whose non-efficiency was
demonstrated already.

Key words: Membrane Computing, polarizationless P systems with active mem-
branes, cooperative rules, the P versus NP problem, SAT problem.

1 Introduction

Membrane Computing is a bio-inspired computing model based on the behavior
and the structure of living cells. Introduced by Gh. Păun in 1998 [4], it has been
used in a wide range of applications, and several variants have been developed de-
pending on the field of study. From the beginning, the research of computational
complexity issues from the perspective of membrane systems has been a prosper-
ous field of study, with several papers written and interesting results found. The

128 D. Orellana, L. Valencia, A. Riscos, M.J. Pérez

first “solution” to an NP-complete problem, the SAT problem, in linear time is pre-
sented in [5]. We say “solution” since there was no definition of solving a problem
by means of membrane systems. There was no definition until [8] where recognizer
membrane systems (called decision membrane systems in the paper, and accepting
membrane systems in a later paper), for a family of membrane systems of a certain
type capable of solving a computational problem.

In the following years, for demonstrating the non-efficiency of membrane sys-
tems (that is, the capability of only solving problems from the class P), some tools
were developed, as the simulation technique [7], the algorithmic technique [] and
the dependency graph technique [1]. By using the former, in [1] it was demonstrated
that P systems from PMCAM0(−d,+n) were capable of solving only problems from
the class P. As complexity classes PMCR, beingR a class of recognizer membrane
systems, was demonstrated to be closed under polynomial reduction [], finding an
efficient solution to any NP-complete problem by means of a family of P systems
from AM0(−d,+n) would lead to a negative answer to the P 6= NP conjecture;
that is, it solving an NP-complete problem in this framework leads to P = NP.
It seems interesting then trying to find a solution based on the most common
techniques while solving a computationally hard problem.

From here, the paper is organized as follows: in the next section, a brief view to
the general structure of techniques to solve NP-complete problems by membrane
systems is given. Section 3 is devoted to present a “solution” to the SAT problem,
such that it depends of the existence of some special machines. These machines
are detailed in the following two sections, explaining the structure in Section 4
and the behavior in Section 5. After that, in Section 6, the three kinds of special
machines introduced are reduced to a single one, capable of solving each of the
problems of the previous machines. Last, the main result is presented in Section 7.
The paper ends with some conclusions and interesting open research lines.

2 Solutions to NP-complete problems

In the framework of Membrane Computing, several efficient solutions to compu-
tationally hard problems have been provided by means of a family of membrane
systems; that is, they are solutions that run in polynomial time with respect of
the size of the input. Usually, this is done by interchanging time and space, in the
sense that we need to create an exponential workspace in terms of membranes or
cells in the computation in order to obtain all the possible alternatives to solve
the instance, and taking advantage of the inherent parallelism of membrane sys-
tems to check them at the same time. For this purpose, a family of membrane
systems must be defined, each of its systems solving a subset of all the instances
of the problem. Usually, the protocol to solve computationally hard problems is
the following one:

An apparently innocent problem in Membrane Computing 129

1. Generation stage: In this stage, using division rules [6], separation rules [3]
or membrane creation rules [2], among others, we can obtain an exponential
workspace in terms of membranes or cells in polynomial (or even linear time).

2. Checking stage: In this stage, the presumed solutions in the previous stage are
checked in order to know if any of them is a real solution of the instance.

3. Output stage: This stage consists in sending an object yes or an object no to
the environment depending on the solvability or not of the instance.

In this sense, an interesting work for the reader is [9], where solutions are
analyzed by decomposing the solutions in subroutines.

3 A “solution” to the SAT problem without using dissolution

Here we provide a solution to the SAT problem by means of a family of recognizer
P systems with active membranes Π = {Π(t) | t ∈ N} from AM0(−d,+n) with
a special mechanism whose behavior will be explained later. Given a Boolean
formula ϕ in CNF and simplified with n variables and p clauses, the system

Π(s(ϕ)) + cod(ϕ) processes it, being s(ϕ) = 〈n, p〉 = (n+p)(n+p+1)
2 + n and

cod(ϕ) = {xi,j,0 | xi ∈ Cj} ∪ {xi,j,0 | ¬xi ∈ Cj}.

For each n, p ∈ N, we consider the recognizer P system

Π(〈n, p〉) = (Γ,Σ, µ,M1,M2,M3,multisets(Mi,j)(1 ≤ i ≤ n, 1 ≤ j ≤ p),
multisets(Mi,j,l)(1 ≤ i ≤ d n2l e, 1 ≤ j ≤ p, 1 ≤ l ≤ dlog2 ne),
multisets(Mj)(1 ≤ j ≤ p),multisets(Md,l)(1 ≤ l ≤ dlog2 ne),
multisets(Mr),R, iin, iout),

from AM0(−d,+n) where:

1. Working alphabet Γ :
{yes, no, a, a′} ∪ {ai,j | 1 ≤ i ≤ n, 1 ≤ j ≤ 2i− 1} ∪
{ti,j , fi,j | 1 ≤ i ≤ n, 2i ≤ j ≤ 2n− 1} ∪
{Ti,j , Fi,j | 1 ≤ i ≤ n, 0 ≤ j ≤ n− 1} ∪ {Ti, Fi, ti, fi | 1 ≤ i ≤ n} ∪
{xi,j,k, xi,j,k | 1 ≤ i ≤ n, 1 ≤ j ≤ p, 1 ≤ k ≤ 3n} ∪
{ci,j,l | 1 ≤ i ≤ 2n

2l
, 1 ≤ j ≤ p, 1 ≤ l ≤ dlog2 ne} ∪

{cj,l | 1 ≤ j ≤ p, 1 ≤ l ≤ (j − 1)(k + 2) + 1} ∪ {dj | 1 ≤ j ≤ p} ∪
{dp,l | 1 ≤ l ≤ dlog2 ne+ 1} ∪ alphabet(Mi,j)(1 ≤ i ≤ n, 1 ≤ j ≤ p) ∪
alphabet(Mi,j,l)(1 ≤ i ≤ d n2l e, 1 ≤ j ≤ p, 1 ≤ l ≤ dlog2 ne) ∪
alphabet(Mj)(1 ≤ j ≤ p) ∪ alphabet(Md,l)(1 ≤ l ≤ dlog2 ne) ∪ alphabet(Mr)

2. Input alphabet Σ:
{xi,j,0, xi,j,0 | 1 ≤ i ≤ n, 1 ≤ j ≤ p}

3. Initial multisets:
M1 = ∅,M2 = ∅,M3 = {ai,1 | 1 ≤ i ≤ n}

4. The rule set R consists on the following rules:

130 D. Orellana, L. Valencia, A. Riscos, M.J. Pérez

1.1 Rules to create p copies of every possible truth assignment in each of the
2n membranes labelled by 2.

[ai,j → ai,j+1]3 for 2 ≤ i ≤ n, 1 ≤ j ≤ 2i− 2

[ai,2i−1]3 → [ti,2i]3 [fi,2i]3 for 1 ≤ i ≤ n

[an,2n−1]3 → [Tn,n+1]3 [Fn,n+1]3

[[]3 []3]2 → [[]3]2 [[]3]2

[ti,j → ti,j+1]3

[fi,j → fi,j+1]3

}
for 1 ≤ i ≤ n− 1, 2i ≤ j ≤ 2n− 2

[ti,2n−1 → Ti,i+1]3

[fi,2n−1 → Fi,i+1]3

}
for 1 ≤ i ≤ n− 1

[Ti,j → Ti,j−1]3

[Fi,j → Fi,j−1]3

}
for 1 ≤ i ≤ n, 1 ≤ j ≤ i+ 1

[Ti,0]3 → Ti,i []3

[Fi,0]3 → Fi,i []3

}
for 1 ≤ i ≤ n

[Tn,0]3 → Tn []3

[Fn,0]3 → Fn []3

[Ti,j → Ti,j+1]2

[Fi,j → Fi,j+1]2

}
for 1 ≤ i ≤ n− 2, i ≤ j ≤ n− 2

[Ti,n−1 → Ti]2

[Fi,n−1 → Fi]2

}
for 1 ≤ i ≤ n− 1

[Ti → tpi]2

[Fi → fpi]2

}
for 1 ≤ i ≤ n− 1

2.1 Rules to check which clauses are satisfied by the truth assignments.

[xi,j,k → xi,j,k+1]2

[xi,j,k → xi,j,k+1]2

}
for 1 ≤ i ≤ n, 1 ≤ j ≤ p, 0 ≤ k ≤ 3n− 1

xi,j,3n []Mi,j
→ [a′]Mi,j

xi,j,3n []Mi,j
→ [a′]Mi,j

}
for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[a′ → a]Mi,j
for 1 ≤ i ≤ n, 1 ≤ j ≤ p

ti []Mi,j
→ [a]Mi,j

fi []Mi,j → [a]Mi,j

}
for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Mi,j(3n+ 2) : a2 ci,j,1 in k steps for 1 ≤ i ≤ n, 1 ≤ j ≤ p

An apparently innocent problem in Membrane Computing 131

2.2 Rules to obtain only one copy of each object cj , if possible.

c2i−1,j,l []Mi,j,l
→ [a′]Mi,j,l

c2i,j,l []Mi,j,l
→ [a]Mi,j,l

}
for

1 ≤ i ≤ d n
2l
e,

1 ≤ j ≤ p, 1 ≤ l ≤ dlog2 ne

[a′ → a]Mi,j,l
for

1 ≤ i ≤ d n
2l
e,

1 ≤ j ≤ p, 1 ≤ l ≤ dlog2 ne
2l−1 membranes of each type Mi,j,l are present in the step 3n+ 1

Mi,j,l((3n+ 3) + 2l + k(l − 1)) :
a2 ci,j,l+1

a ci,j,l+1

}
in k steps for

1 ≤ i ≤ d n
2l
e,

1 ≤ j ≤ p,
1 ≤ l ≤ dlog2 ne − 1

M1,j,dlog2 ne((3n+ 3) + (2 + k)dlog2 ne − 1) :
a2 cj,1

a cj,1

}
in k steps for 1 ≤

j ≤ p
3.1 Rules to check if all the clauses are satisfied by a truth assignment.

dj−1 []Mj → [a′]Mj

cj,(j−1)(k+2)+1 []Mj
→ [a]Mj

}
for 1 ≤ j ≤ p

[cj,l → cj,l+1]2 for 1 ≤ j ≤ p, 1 ≤ j ≤ (j − 1)(k + 2)

Mj((3n+ 3) + (2 + k)dlog2 ne+ 2j + k(j − 1)) : a2 dj in k steps for 1 ≤
j ≤ p

4.1 Rules to obtain only one copy of the object dp, if possible.

[dp]2 → dp,1[]2

dp,l []Md,l
→ [a]Md,l

for 1 ≤ l ≤ dlog2 ne
2l−1 membranes of each type Md,l are present in the step (3n+ 3) + (2 +
k)(dlog2 ne+ p)

Md,l((3n+ 3) + (2 + k)(dlog2 ne+ p) + 2l + k(l − 1)) :
a2 dp,l+1

a dp,l+1

}
for 1 ≤

l ≤ dlog2 ne
4.2 Rules to return the correct answer.

dp,dlog2 ne+1 []Mr
→ [a]Mr

Mr((3n+ 3) + (2 + k)(2dlog2 ne+ p+ 1)) :
a yes

a0 no

}
in k steps

[yes]1 → yes []1

[no]1 → no []1
5. The input membrane is the membrane labelled by 2 (iin = 2) and the output

zone is the environment (iout = env).

132 D. Orellana, L. Valencia, A. Riscos, M.J. Pérez

The proposed solution follows a brute force algorithm in the framework of
recognizer P systems with active membranes without dissolution rules and divi-
sion rules for elementary and non-elementary membranes, and it consists on the
following stages:

1. Generation stage: Using rules from 1.1, 2n membranes labelled by 2 and 3
will be produced. Each of the membranes labelled by 2 will contain a different
truth assignment for the n variables. This stage takes 3n+ 1 time steps.

2. First checking stage: In this stage, an object cj,1 will be produced in the mem-
branes labelled by 2 whose truth assignment makes true the clause Cj . First
of all, with rules from 2.1, multiple copies of objects ci,j,1 will be produced,
and later with the rules from 2.2 will lead to a single copy of objects cj,1 if
there was at least one object ci,j,1. This stage takes (2 + k)dlog2 ne.

3. Second checking stage: In this stage, an object dp will be produced in a mem-
brane labelled by 2 if the truth assignment associated with it makes true the
whole formula ϕ, by using rules from 3.1. This stage takes p(2+k) time steps.

4. Output stage: Finally, by using rules from 4.1, a single object dp,dlog2 ne will
be produced in the skin membrane if there exists at least one truth assignment
that makes true the formula ϕ. If such an object exists, the system will send
an object yes to the environment. Otherwise, it will return an object no. This
is done by using the rules from 4.2. This stage takes dlog2 ne+ 4 time steps.

4 Details of the special machines

In the previous solution, new syntax with respect to the classical of membrane sys-
tems appears. Let us define some kind of “machines” that follows a not-so-much
special behavior. A machine Mi is no more than a P system from the correspond-
ing family, in this case, from AM0(−d,+n). Given a machine Mi, we say that
multisets(Mi) will be the multisets of objects placed initially in the membranes
within the structure of the machine Mi, alphabet(Mi) will be the working alphabet
of the machine and if there is a rule of the kind Mi(t) : rules, the machine Mi will
execute the corresponding rule associated to the number of objects placed in the
system at configuration Ct. In k steps, the machine Mi will return the correspond-
ing answer to the parent membrane. Of course, not all the machines will spend
the same amount of time steps, since in the end they are P systems and different
machines can spend different times, but for the sake of simplicity, we say that they
spend the same number of time steps. Later, we will look for a simple machine
that must spend exactly k time steps, and that machine will be a “sub-routine”
used for the ones used in the solution.

As opposed to oracles, that in this sense they can be though as machines that
start working when they receive some input, these machines are “running” from
the first configuration; that is, they are P systems that work as a P system of its
family, so it cannot accomplish tasks that are impossible for P systems of its own

An apparently innocent problem in Membrane Computing 133

family.

We can think that the “machine” can wait until step t by using subscripts
and evolution rules. Since division rules are allowed for both elementary and non-
elementary rules, we can ensure that we can obtain enough number of machines of
each kind. For this purpose, if a machine Mi needs to be replicated into 2k copies,
a single copy of this machine is present at the beginning of the computation. In
the skin membrane of this machine, there is a leaf membrane labelled by d, and
such that it contains an object: a1. Let us define the following rules:

[a2i → a2i+1]d for 1 ≤ i ≤ k − 1

[a2i−1]d → [a2i]d[a2i]d for 1 ≤ i ≤ k

[[]d[]d]skinMi
→ [[]d]skinMi

[[]d]skinMi

By using these rules, we can obtain 2k exact copies of the machine Mi in 2k−1
steps. The label d is a label such that it is not used in the whole machine Mi.
Since the rest of objects are supposed to be evolving within their corresponding
membranes, this process does not affect in this task.

5 Duties of the special machines

Five different machines are described in the previous solution. As discussed in the
previous section, a machine Mi such that it has a rules defined as Mi(t) : rule,
then when the configuration Ct is reached, the rule will be executed from the next
transition. In k time steps, it will return to its parent membrane the corresponding
answer.

• Mi,j : If there are 2 copies of the object a, then it returns an object ci,j,1.
Otherwise, it returns nothing.

• Mi,j,l: If there are 1 or 2 copies of the object a, then it returns an object ci,j,l+1.
Otherwise, it returns nothing.

• Mj : If there are 2 copies of the object a, then it returns an object dj . Otherwise,
it returns nothing.

• Md,l: If there are 1 or 2 copies of the object a, then it returns an object dp,l+1.
Otherwise, it returns nothing.

• Mr: If there are 1 copy of the object a, then it returns an object yes. If there
are no copies of the object a, it returns no. Otherwise, it returns nothing.

As we can observe, three different behaviors are required here. For instance, the
answers of Mi,j and Mj are similar. Since they do not return the same object, we
can think that we have a single type of machine Mi, and it is within a membrane
labelled by M ′i,j (respectively, M ′j). The behavior of this machine is simple: If there
are 2 copies of the object a, then it returns yes. Otherwise, it returns no. The
corresponding answer would be sent at the (k − 1)-th time step to the membrane

134 D. Orellana, L. Valencia, A. Riscos, M.J. Pérez

M ′i,j (resp., M ′j). Then, in the k-th time step, the membrane M ′i,j (resp., M ′j)
would send to the parent membrane an object ci,j,1 (resp., dj) if an object yes

appeared in the previous configuration, and it would not send anything if an object
no had appeared.

1. Mi,j ,Mj : Differentiate between 1 and 2 copies of object a.
2. Mi,j,l,Md,l: Differentiate between 1 or 2 and none copies of object a.
3. Mr: Differentiate between 1 and 0 copies of object a.

In fact, taking into account that we are deciding if the number of objects a is
equal to a number, then we can generalize these three cases into a single one, in
order to have a single problem to be solved.

6 Covering all the cases

What we are trying to solve here is deciding if the number of objects of a certain
type corresponds to a particular number.

Then, the following question could generalize the previous problems:

Can we differentiate the existence of a single object from
the non-existence or the multiple existence of the object?

Or, more formally, if there is a single instance of an object, then return yes.
Otherwise, return no.

We are going to give a proof on how these three cases can be reduced to this
question.

1. The first case is reduced as follows: let Mi,1, Mi,2 and Mi,3 be three machines
that solve the current problem. Then, we can think that the machine Mi is
formed as follows:

Mi

Mi,1

a

Mi,2

An apparently innocent problem in Membrane Computing 135

For sending objects a to each machine Mi,j , they can be replicated by using
object evolution rules and sent to them by using send-in rules (for the order,
subscripts can be used). Mi,1 will solve the problem normally; that is, if there
is only one object a, then it will send an object yes1 to Mi in k steps, other-
wise, it will return an object no1. At the same time, the problem will be solved
in Mi,2, but as there is an object a present in the system, it will return an ob-
ject yes2 if there are no objects a in Mi, otherwise it will return an object no2.

If Mi,1 returns an object yes1, it means that there is only one copy of the
object a. Therefore, Mi will not send anything to its parent membrane. If
Mi,1 returns no1, there are two possibilities: On the one hand, there can be
no objects a, then Mi,2 will return an object yes2. On the other hand, there
can be two copies of object a, then Mi,2 will return Mi,2 will return an object
no2. The following table represent the desired output for each possibility:

Input Mi,1 Mi,2 Output

n = 0 no1 yes2 no

n = 1 yes1 no2 no

n = 2 no1 no2 yes

Since these three cases are the only possible ones, it is easy to see that if only
an object no is present, it must return no (that will not be sent to the parent
membrane, since in these situations, there is only one or none copies of object
a). The other possible situation is that two objects no appear. In that case, we
should return an object yes (that later will be sent to the parent membrane as
the corresponding object). It is easy to do it by changing objects noi to objects
a. If there is a single copy, the machine Mi will return nothing. Otherwise, it
will send to the parent membrane the corresponding object.

2. The second case is similar to the first one. In this case, the objective of Mi is
to return an object when there are 1 or 2 copies of the object a. In the other
case; that is, when there are no copies of the object a, it will return nothing.
As in the previous case, we will have the following structure:

136 D. Orellana, L. Valencia, A. Riscos, M.J. Pérez

Mi

Mi,1

a

Mi,2

If Mi,1 and Mi,2 work as in the previous case, while there are 2 copies of
the object a, it will return the correct answer. But in the case that there is
a single copy of a, then it will return nothing, and this is not the behavior
that we expect. But, with a simple trick, we can transform this answer to the
correct one just by flipping the answer of Mi,2; that is, if there is a single object
a, then return no2. Otherwise, it returns yes2. Remember that it is possible
since it can have an external membrane that has object evolution rules similar
to yes → no2 and no → yes2. Therefore, the following table represents the
desired output taking into account the behavior of Mi,1 and Mi,2:

Input Mi,1 Mi,2 Output

n = 0 no1 yes2 no

n = 1 yes1 no2 yes

n = 2 no1 no2 yes

By looking at the table, we can clearly see that if an object no2 comes out
from the machine Mi,2, then it will return yes (that will be sent to the parent
membrane as the corresponding object). Then, we can transform object no2
into an object a. Objects no1, yes1 and yes2 will not evolve into an object
a. Therefore, if objects no1 and yes2 are the output of machines Mi,1 and
Mi,2 there will not be any object a in Mi, thus it will return a no (that will
not be sent to the parent membrane). If object no2 is the output of Mi,2,
no matter the output of Mi,1, since it will not produce another object a will
produce a yes as an output (and it will be sent to the parent membrane as
the corresponding object).

3. The third case is trivial since only two scenarios can occur: On the one hand,
if there is no object a it will return an object no. On the other hand, if there
is an object a present in the machine, then it will return a yes.

The three previous problems have been reduced to the previously stated ques-
tion. Therefore, having a P system from AM0(−d,+n) capable of solving this

An apparently innocent problem in Membrane Computing 137

problem, would complete the solution. This machine must be totally independent
from the input, and this machine will spend exactly k steps.

7 Reduction of the problem

In order to prove NP ∪ co − NP ⊆ PMCR, an efficient solution to an NP-
complete problem by means of a family of recognizer P systems from R must be
provided. In this paper, a “solution” to the SAT problem has been provided by
means of a family of recognizer membrane systems from AM0(−d,+n). This so-
lution depends on the ability of these P systems to solve the proposed problem.
Thus, the existence of a single membrane system of this family capable of solving
this question would lead to NP ∪ co−NP ⊆ PMCAM0(−d,+n).

In [1], by using the dependency graph technique, it was proved that P =
PMCAM0(−d,+n). Therefore, a single membrane system from this family solving
the cited problem would not exist unless P = NP.

Thus, a new tool to tackle the P versus NP problem has been stablished: If
there exists a single membrane from AM0(−d,+n) solving the problem of dif-
ferentiating a single appearance of a certain object from its non-existence or the
multiple existence, then P = NP.

8 Conclusions and future work

In this paper, a “solution” to the SAT problem in the framework of recognizer P
systems from AM0(−d,+n) has been given. This is not a real solution since it
needs of special “machines” that execute tasks whose possible execution in this
framework has not been demonstrated. Since a positive solution of this problem
yields P = NP, a very powerful tool to tackle this problem has been raised.

Two interesting research lines open up: On the one hand, solve this problem
as it would lead to a very powerful result (in fact, if it ends up being a question
with an affirmative answer, an efficient mechanism to solve NP-complete problems
would raise from the solution). On the other hand, to explore the existence of more
conjectures of this type, since they can be helpful to solve, in an affirmative or in
a negative way, the P versus NP problem.

References

1. M.Á. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, F.J. Romero-
Campero. On the power of dissolution in P systems with active membranes. In

138 D. Orellana, L. Valencia, A. Riscos, M.J. Pérez

R. Freund, Gh. Păun, Gr. Rozenberg, A. Salomaa (eds.). Membrane Computing,
6th International Workshop, WMC 2005, Vienna, Austria, July 18-21, 2005, Re-
vised Selected and Invited Papers, Lecture Notes in Computer Science, 3850 (2006),
224-240.

2. M.Á. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, F.J. Romero-Campero. A uniform so-
lution to SAT using membrane creation. Theoretical Computer Science, 371, 1–2
(2007), 54–61.

3. L. Pan, T-.O.Ishdorj. P systems with active membranes and separation rules. Journal
of Universal Computer Science, 10, 5 (2004), 630–649.

4. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143, and Turku Center for CS-TUCS Report No. 208, 1998.

5. Gh. Păun. P systems with active membranes: attacking NP–complete problems,
Journal of Automata, Languages and Combinatorics, 6, 1 (2001), 75-90.

6. M.J. Pérez-Jiménez, A. Riscos-Núñez, Á. Romero-Jiménez, D. Woods. Complexity:
Membrane division, membrane creation. In: Păun et al. (eds.), The Oxford Handbook
of Membrane Computing, Oxford University Press, 2010, chap. 12, 302–336.

7. M.J. Pérez-Jiménez, Á. Romero Jiménez. Simulating Turing Machines by P systems
with External Output. Fundamenta Informaticae, Annales Societatis Mathematicae
Polonae, Series IV, IOS Press, Amsterdam, 49, 1-3 (2002), 273-287

8. M.J. Pérez-Jiménez, Á. Romero-Jiménez, F. Sancho-Caparrini. Decision P systems
and the P 6= NP conjecture. In Gh. Păun, Gr. Rozenberg, A. Salomaa, C. Zandron
(eds.) Membrane Computing 2002. Lecture Notes in Computer Science, 2597 (2003),
388-399. A preliminary version in Gh. Păun, C. Zandron (eds.) Pre-proceedings of
Workshop on Membrane Computing 2002, MolCoNet project-IST-2001-32008, Pub-
lication No. 1, Curtea de Arges, Romanian, August 19-23, 2002, pp. 345-354.

9. Á. Romero-Jiménez, D. Orellana-Mart́ın. Design Patterns for Efficient to NP-
Complete Problems in Membrane Computing. In C. Graciani et al. (eds.), Enjoy-
ing Natural Computing: Essays Dedicated to Mario de Jesús Pérez-Jiménez on the
Occasion of His 70th Birthday, Springer, 2018, chap. 19, 237–255.

A syntax for semantics in P-Lingua

Ignacio Pérez-Hurtado, David Orellana-Mart́ın,
Agust́ın Riscos-Núñez, and Mario J. Pérez-Jiménez

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
Universidad de Sevilla, Spain
{perezh,dorellana,ariscosn,marper}@us.es

Summary. P-Lingua is a software framework for Membrane Computing, it includes a
programming language, also called P-Lingua, for writting P system definitions using a
syntax close to standard scientific notation. The first line of a P-Lingua file is an unique
identifier defining the variant or model of P system to be used, i.e, the semantics of the
P system. Software tools based on P-Lingua use this identifier to select a simulation
algorithm implementing the corresponding derivation mode. Derivation modes define
how to obtain a configuration Ct+1 from a configuration Ct. This information is usually
hard-coded in the simulation algorithm.

The P system model also defines what types or rules can be used, the P-Lingua
compiler uses the identifier to select an specific parser for the file. In this case, a set of
parsers is codified within the compiler tool. One for each unique identifier.

P-Lingua has grown during the last 12 years, including more and more P system
models. From a software engineering point of view, this approximation implies a continous
development of the framework, leading to a monolithic software which is hard to debug
and maintain.

In this paper, we propose a new software approximation for the framework, including
a new syntax for defining rule patterns and derivation modes. The P-Lingua users can
now define custom P system models instead of hard-coding them in the software. This
approximation leads to a more flexible solution which is easier to maintain and debug.
Moreover, users could define and play with new/experimental P system models.

1 Introduction

Membrane computing is an unconventional model of computation within natural
computing that was introduced in 1998 by Gh. Păun [17]. The computational
devices in membrane computing, also known as P systems, are non-deterministic
theoretical machines inspired on the biochemical processes that take place inside
the compartments of living cells.

Several kinds of P systems coexist, each of them having different syntactic in-
gredients, such as different alphabets and structures. The two most studied are

140 I. Pérez-Hurtado et al.

cell-like membrane systems, characterized by their rooted tree structure, where
membranes act as filters that let certain elements to pass through them [17], and
membrane systems structured as directed graphs, representing the communication
between cells within a tissue of a living being, called tissue-like P systems [9] or
between neurons in a brain, called spiking neural P systems [7]. The interchange
of objects between the different compartments is defined by the rules of the sys-
tem, that together with the corresponding semantics, mark the functioning of the
system.

A configuration of a P system is defined by the structure of the compartments
at a certain moment, and the elements (being usually objects, although other
kinds of elements can be considered, as strings, catalysts [17] and anti-matter [14],
among others) contained in each compartment, as well as other characteristics
from specific types of P systems, providing a snapshot of the system at an instant
t. By using the rules specified in a model, we can make its objects change, both
evolving and moving between the different compartments (membranes in the case
of cell-like P systems and cells in the case of tissue-like P systems).

On the one hand, in P systems with active membranes [19], both objects and
membranes change through the application of evolution, communication, division,
separation, creation and dissolution. In this framework, membranes can have a
polarization associated to each membrane. On the other hand, in tissue P sys-
tems [9], symport/antiport rules are devoted to make objects move from a cell to
another cell or to the environment (a special compartment where there exist an
arbitrary number of objects of an alphabet defined a priori), while division and
separation rules allow an exponential growth in linear time.

We say that a configuration Ct yields to a configuration Ct+1 if, by applying the
rules specified in the model according to its semantics, we can obtain Ct+1 from
Ct. Semantics rules the behavior of the system, determining which rules can be
applied and how they affect the system according to a global clock. A computation
of a P system is a (finite or infinite) sequence of instantaneous configurations.

We consider a family (or model) of P systems as the definition of a type of
P system, that is, its syntax and semantics. According to the specification of a
particular family of P systems, we consider a (specific) model as the definition
of an individual P system, that is, its working alphabet, initial membrane struc-
ture with initial multisets of objects and the set of rewriting rules with another
characteristics of the correspondent family. By the definition of the family, we can
interpret the structure and behavior of a specific model within that family.

Membrane computing is a very flexible framework where different types of
devices can be outlined. In fact, the intersection between Membrane Computing
and other fields, such as engineering [20], biology [23] and ecology [2], as well as
a long list of other scientific lines [5, 13, 24], has generated necessities that could
only be filled by the creation of new kinds of P systems, expanding the scope of
researchers in this area. For an exhaustive explanation of the different types of P
systems, we refer the reader to [18] and [16].

A syntax for semantics in P-Lingua 141

In this work, we have reinvented the P-Lingua framework [6, 25] to include
semantic features concerning to the models.

The paper is structured as follows: In the next section, some preliminaries
concepts about P-Lingua are introduced. In Section 3, we propose an extension
for the P-Lingua language to directly define model constraints in the own P-Lingua
files, providing a more flexible and experimental framework. The next Section is
devoted to the new GNU GPLv3 software tool to compile the input P-Lingua files.
In Section 5 some examples of the new P-Lingua extension are introduced. Finally,
some conclusions and future work are drawn.

2 Preliminaries

P-Lingua [6, 25] is a software framework that includes a definition language for P
systems (also called P-Lingua) and a GNU GPLv3 Java library (pLinguaCore) that
is able to parse P-Lingua files and simulate computations. The library contains
three main components:

• A parser for reading input files in P-Lingua format and checking syntactic and
semantic constraints related to predefined models. In order to achieve this, the
first line of a P-Lingua file should include a P system model declaration by us-
ing an unique identifier. There are several P system models that can be used,
each one with its own identifier, such as transition, membrane division,
tissue psystems, and probabilistic. The analysis of semantic ingredients,
such as rule patterns, is hard-coded for each model. Several versions of pLin-
guaCore [6, 8, 10, 21] have been launched to cover different types of models.

• For each type of model, the pLinguaCore library includes one or more built-in
simulators, each one implementing a different simulation algorithm. For in-
stance, Population Dynamic P systems [1] (probabilistic identifier in P-
Lingua) can be simulated within the library by applying three different al-
gorithms: BBB, DNDP, and DCBA [3, 11]. Remarkable software projects such as
MeCoSim (Membrane Computing Simulator) [27, 22] use the simulators inte-
grated in the library to perform P system computations and generate relevant
information as result for custom applications.

• Alternatively, the pLinguaCore library is able to transform the input P-Lingua
files to other formats such as XML or binary format in order to feed external
simulators. The generated files for the given P systems are free of syntac-
tic/semantic errors since the transformation is done after the parser analysis.
Several external simulators use this feature, for example, the PMCGPU project
(Parallel simulators for membrane computing on GPU) [12, 26] uses definitions
generated by pLinguaCore in order to provide the input of CUDA GPU simu-
lators.

The P-Lingua language is currently a standard widely used for the scientific
community since the syntax is modular, parametric and close to the common

142 I. Pérez-Hurtado et al.

scientific notation. The description of the language can be found in the refer-
ences [6, 8, 10, 21, 25]. As an example, the definition of a basic transition P
system follows:

@model<transition>

def main()

{

@mu = [[[]’3 []’4]’2]’1;

@ms(3) = a,f;

[a --> a,bp]’3;

[a --> bp,@d]’3;

[f --> f*2]’3;

[bp --> b]’2;

[b []’4 --> b [c]’4]’2;

(1) [f*2 --> f]’2;

(2) [f --> a,@d]’2;

}

In the example, a module main is defined including an initial membrane struc-
ture [[]3 []4]2]1, an initial multiset for the membrane labelled 3, and a set
of seven multiset rewriting rules. The special symbol @d is used to specify dissolu-
tion. The last two rules include priorities as integer numbers in parenthesis at the
beginning of the left-hand side of the rules. More complex examples can be found
in the P-Lingua web [25].

3 An extension of P-Lingua for semantic features

As explained above, the analysis of semantic ingredients belonging to P systems
is hard-coded in the pLinguaCore library, i.e, the only way to define new types
of models is by implementing code inside the library. In this section, we propose
an extension for the P-Lingua language to directly define model constraints in the
own P-Lingua files, providing a more flexible and experimental framework. Two
types of semantic constraints can be defined with this extension: rule patterns and
derivation modes.

3.1 Rule patterns

The P-Lingua parser is able to recognize rules with the next general syntax:

p

u[v1[v1,1]
α1,1

h1,1
. . . [v1,m1

]
α1,m1

h1,m1
]α1

h1
. . . [vn[vn,1]

αn,1

hn,1
. . . [vn,mn

]
αn,mn

hn,mn
]αn

hn

A syntax for semantics in P-Lingua 143

q−→ or
q←→

w0[w1[w1,1]β1,1
g1,1 . . . [w1,r1]

β1,r1
g1,r1

]β1
g1 . . . [ws[ws,1]βs,1

gs,1 . . . [ws,rs]
βs,rs
gs,rs]βs

gs

where:

• p is a priority related to the rule given by a natural number, where a lower
number means a higher rule priority.

• q is a probability related to the rule given by a real number in [0, 1].
• αi, αi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ mi and βi, βi,j , 1 ≤ i ≤ s, 1 ≤ j ≤ ri are electrical

charges.
• hi, hi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ mi and gi, gi,j , 1 ≤ i ≤ s, 1 ≤ j ≤ ri are membrane

labels.
• u, vi, vi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ mi and wi, wi,j , 1 ≤ i ≤ s, 1 ≤ j ≤ ri are multisets

of objects.

Next, there is a list of P-Lingua rule examples matching the general rule syntax:

• a,b [d,e*2]’h --> [f,g]’h :: q; where q is the probability of the rule.
• (p) [a]’h --> [b]’h; where p is the priority of the rule.
• [a --> b]’h;, the left-hand side and right-hand side of evolution rules can be

collapsed.
• +[a]’h --> +[b]’h -[c]’h; a division rule using electrical charges.
• [a]’h --> ; a dissolution rule.
• a[]’h --> [b]’h; a send-in rule.
• [a]’h --> b[]’h; a send-out rule.
• [a --> #]’h; the symbol # can be optionally used as empty multiset.
• [a]’1 <--> [b]’0; a symport/antiport rule in the tissue-like framework.

The syntax of the general rule is very permissive, and so different parsers for
different models have been developed in order to restrict the rules used in each one.
In order to provide the researcher a more flexible framework, not having to depend
on the implementation itself but acquiring the capacity of restricting the model
by himself, we introduce the next syntax in P-Lingua for rule pattern matching:

!rule-type-id

{

pattern1

pattern2

...

patternN

}

where rule-type-identifier is an unique name for the type of rule that is going
to be defined and pattern1, pattern2, ..., patternN are rule patterns following the
same syntax than common rules in P-Lingua where anonymous variables beginning

144 I. Pérez-Hurtado et al.

with ? can be optionally used instead of probabilities, charges and priorities. In
the patterns, the symbols beginning with a, b or c always mean single objects and
symbols beginning with u, v and w always mean multisets of objects. In Section 5,
are given several examples of rule patterns in P-Lingua for different types of cell-
like and tissue-like models.

3.2 Derivation modes

From an informal point of view, we can see a derivation mode as the way a step
of a P system is performed. As a part of semantics, it rules the exact application
of rules of the system, deciding when rules can be applied or not when they are
applicable. An extensive study of derivation modes can be found in [4]. In order
to make the work self-content, we give a minimal definition of a derivation mode.

A derivation mode ϑ is defined as a function that selects different multisets
of rules “really applicable” to a configuration Ct of a P system depending on a
specification. For this purpose, let Π be a P system with R as its set of rules, R a
multiset of compatible rules applicable to a P system at configuration Ct, and let
R be the set of all multisets applicable to a P system at configuration Ct.

In this extension of P-Lingua we provide two main derivation modes:

• Maximally parallel derivation mode (max): It is the default mode for P
systems. In this mode, we only take multisets from R that are not extensible,
that is:

R′ = {R | R ∈ R∧ 6 ∃R′ ∈ R : R $ R′}.

The multiset of rules finally applied to Ct is selected non-deterministically from
R′.

• Bounded-by-rule parallel derivation mode (boundB1,...,Br
): Let {a, b, . . . }

be the set of different types of rules present in a P system. Bi can be of the
following forms:

– Bi = j, j ∈ {a, b, . . . };
– Bi = βn(B1i , . . . , Bri), being n ∈ N, and for each Bj = βmj

(B1j , . . . , Brj),
j ∈ {1i, . . . ri}, mj ≤ n;

– As a restriction, a label for a type of rule cannot appear more than once in
the whole definition of the derivation mode.

We say that n is the bound of Bi = βn. We say that a type of rule (j) is in the
context of Bi if:

– There exists Bi = βn(j) (we call Bi its immediate context); and
– There exists Bi = βn(B1i , . . . , Bri) such that Bj is a context of the type of

rule (j).

This mode is defined recursively, and we can understand the applicability of
the rules in a defined bounded-by-rule parallel derivation mode in the following
sense:

A syntax for semantics in P-Lingua 145

– In a context βn(B1, . . . , Br), the number of rules that can be applied in
parallel in a P system in a configuration Ct is n; and

– In a bounded-by-rule parallel derivation mode boundB1,...,Br , if Bi = j(j ∈
{a, b, . . . }), being 1 ≤ i ≤ r, then rules of type j can be applied in a maximal
way.

With this mode, we can define the classical mode used in P systems with active
membranes, that is, evolution rules (a) can be applied in a maximal parallel
mode, while the other types of rules (send-in communication rules (b), send-out
communication rules (c), dissolution rules (d), division rules for elementary (e)
and non-elementary (f) membranes) can be applied at most once per membrane
at each computation step. It would be defined as bounda,β1(b,c,d,e,f). If Rj is
the set of rules from R of the type j, we formally define the bounded-by-rule
maximally parallel mode by

R′ = { R | R ∈ R
∧ | {r | r ∈ R, r ∈ Rj} |≤ n for all j in the context of Bi = βn
∧ 6 ∃R′ ∈ R : R $ R′}

Thus, a model type can be defined in P-Lingua by aggregating the allowed rule
patterns and its corresponding derivation modes, the syntax is as follows:

@model(id) = rule-type-id1,..., rule-type-idN;

where id is an unique identifier for the model and rule-type-id1 ,...,
rule-type-idN are unique identifiers for the corresponding allowed rule patterns.
By default all rules behave in maximally parallel derivation mode, but rules can
be grouped in sets to behave in bounded parallel derivation mode as follows:

@model(id) = @bound{rule-type-id,..., rule-type-idN};

where bound is a natural number defining the maximum number of rules in the
group that can be applied to a given configuration. In Section 5, several examples
of model definitions in P-Lingua are given.

4 Command-line tools

A set of two GNU GPLv3 command-line tools called plingua and psim have
been implemented in C++ language with Flex [28] and Bison [29]. The source
code including examples and instructions can be downloaded from

https://github.com/RGNC/plingua.
The tool provides three main functionalities:

146 I. Pérez-Hurtado et al.

• Parsing P-Lingua files while printing the syntactic and semantic errors to
the standard error output. In this sense, the tool acts as a conventional com-
piler, showing the name of the file, as well as the number of the line and column
for each error with a short description. The analysis of semantic errors is done
by using the rule patterns and derivation modes defined in the own P-Lingua
files. Several files can be compiled together like conventional programs, fur-
thermore standard makefiles can be also used. The developer can decide to
write the rule patterns and derivation modes in a set of files and reuse them
in several projects. More explanations can be found in the website.

• Generating JSON/XML/Binary files. The tool is able to translate the
definitions contained in P-Lingua files to standard formats such as JSON, XML
and Binary (compressed bit-level file format) for compatibility with third-party
simulators. The conversion is done after parsing the input files, thus the output
files are free of syntactic/semantic errors and the third-party applications do
not have to check them. Several P-Lingua files can be combined together in
one output file, including also the selected derivation modes.

• Simulation of P system computations.

Detailed information about how to use these tools, including examples, can be
found in the website of the project https://github.com/RGNC/plingua.

5 Examples

Next, there are some examples of rule patterns and definiton of derivation modes
for several common P system models. Please, see the website of the project for
more information.

5.1 Transition P systems

!transition_evolution /* Limited to rules with 3 inner membranes */
{

[a -> v]’h;
[a -> v, @d]’h;

(?) [a -> v]’h;
(?) [a -> v, @d]’h;

[a []’h1 --> v [w]’h1]’h;
[a []’h1 --> v [w]’h1]’h;

(?) [a []’h1 --> v [w]’h1]’h;
(?) [a []’h1 --> v [w]’h1]’h;

[a []’h1 []’h2 --> v [w1]’h1 [w2]’h2]’h;
[a []’h1 []’h2 --> v [w1]’h1 [w2]’h2]’h;

(?) [a []’h1 []’h2 --> v [w1]’h1 [w2]’h2]’h;
(?) [a []’h1 []’h2 --> v [w1]’h1 [w2]’h2]’h;

[a []’h1 []’h2 []’h3 --> v [w1]’h1 [w2]’h2 [w3]’h3]’h;
[a []’h1 []’h2 []’h3 --> v [w1]’h1 [w2]’h2 [w3]’h3]’h;

(?) [a []’h1 []’h2 []’h3 --> v [w1]’h1 [w2]’h2 [w3]’h3]’h;
(?) [a []’h1 []’h2 []’h3 --> v [w1]’h1 [w2]’h2 [w3]’h3]’h;

}

@model(transition) = transition_evolution;

A syntax for semantics in P-Lingua 147

5.2 Active membranes with division rules

!dam_evolution
{

?[a -> v]’h;
?[a ->]’h;

}

!dam_send_in
{

a ?[]’h -> ?[b]’h;
}

!dam_send_out
{

?[a]’h -> b ?[]’h;
}

!dam_dissolution
{

?[a]’h -> b;
?[a]’h -> ;

}

!dam_division
{

?[a]’h -> ?[]’h ?[]’h;
?[a]’h -> ?[b]’h ?[]’h;
?[a]’h -> ?[]’h ?[b]’h;
?[a]’h -> ?[b]’h ?[c]’h;

}

@model(membrane_division) =
dam_evolution, @1{dam_send_in, dam_send_out, dam_dissolution, dam_division};

5.3 Tissue-like P systems with communication and cell division

!tissue_communication
{

[u]’h1 <--> [v]’h2;
}

!tissue_division
{

[a]’h -> []’h []’h;
[a]’h -> [b]’h []’h;
[a]’h -> []’h [b]’h;
[a]’h -> [b]’h [c]’h;

}

@model(tissue_division) =
tissue_communication, @1{tissue_division};

5.4 Population Dynamics P Systems

!pdp_evolution
{

u1 ?[v1]’h -> u2 ?[v2]’h :: ?;
}

!pdp_environment_communication
{

[[a]’e1 []’e2]’h -> [[]’e1 [b]’e2]’h :: ?;

148 I. Pérez-Hurtado et al.

}

@model(probabilistic) =
pdp_evolution, pdp_environment_communication;

6 Conclusions and future work

This paper reinvents P-Lingua moving forward to a more flexible tool which is
easier to maintain and debug. The goal is twofold: On the one hand, it pretends
to be a good assistant for researchers while verifying their designs, even working
with experimental models. On the other hand, more general simulators can be
developed, covering a large set of P system variants by reading and simulating the
custom derivation modes.

Several lines are open for future work. From the point of view of the language,
the semantic ingredients that can be written in P-Lingua should be studied in order
to cover more types of models. For instance, defining bounds for the multiplicities
of objects in different compartments, such as the environment in tissue-like P sys-
tems, where the multiplicity of objects can be infinite. On the other hand, custom
directives could be included in P-Lingua files and translated to C preprocessor di-
rectives for the simulator. For example, if the design is confluent, a directive could
be written to optimize the simulation time, since it is not necessary to simulate
the non-determinism by using random numbers.

From the point of view of the simulation tools, we are interested about the
integration with CUDA, OpenMP, FPGA and POSIX threads, optimizing the use
of parallel architectures.

Acknowledgements

The authors acknowledge the support of the research project TIN2017-89842-P,
co-financed by Ministerio de Economı́a, Industria y Competitividad (MINECO) of
Spain, through the Agencia Estatal de Investigación (AEI), and by Fondo Europeo
de Desarrollo Regional (FEDER) of the European Union.

References

1. M. Colomer, A. Margalida, and M.J. Pérez-Jiménez. Population Dynamics P System
(PDP) Models: A Standardized Protocol for Describing and Applying Novel Bio-
Inspired Computing Tools, Plos One, 2013 8 (14), 1–13.

2. M. Cardona, M.A. Colomer, M.J. Prez-Jimnez, D. Sanuy, A. Margalida. Modeling
ecosystems using P systems: The bearded vulture, a case study. Membrane Comput-
ing, 9th International Workshop, WMC 2008, Edinburgh, UK, July 28-31, 2008, Re-
vised Selected and Invited Papers. Lecture Notes in Computer Science, 5391 (2009),
137-156.

A syntax for semantics in P-Lingua 149

3. M. Colomer, I. Pérez-Hurtado, M.J. Pérez Jiménez, and A. Riscos-Núñez. Comparing
simulation algorithms for multienvironment probabilistic Psystem over a standard
virtual ecosystem, Natural Computing, 11 (2012), 369–379.

4. R. Freund, S. Verlan. A Formal Framework for Static (Tissue) P Systems. Lecture
Notes in Computer Science, 4860 (2007), 271–284.

5. P. Frisco, M. Gheorghe, M. J. Prez-Jimnez. Applications of Membrane Computing
in Systems and Synthetic Biology. Emergence, Complexity and Computation (Series
ISSN 2194-7287), Volume 7. Springer International Publishing, eBook ISBN 978-
3-319-03191-0, Hardcover ISBN 978-3-319-03190-3, 2014, XVII + 266 pages (doi:
10.1007/978-3-319-03191-0).

6. M. Garćıa-Quismondo, R. Gutiérrez-Escudero, I. Pérez-Hurtado, M.J. Pérez-
Jiménez, and A. Riscos-Núñez. An overview of P-Lingua 2.0, Lecture Notes in Com-
puter Science, 5957 (2010), 264–288.

7. M. Ionescu, Gh. Păun, T. Yokomori. Spiking Neural P systems. Fundamenta Infor-
maticae, 71, 2-3 (2006), 279-308.

8. L.F. Maćıas, I. Pérez-Hurtado, M. Garćıa-Quismondo, L. Valencia, M.J. Prez-Jimnez,
A. Riscos-Nez. A P-Lingua based simulator for Spiking Neural P systems. Lecture
Notes in Computer Science, 7184 (2012), 257–281.

9. C. Mart́ın-Vide, Gh. Păun, J. Pazos, A. Rodŕıghez-Patón. Tissue P systems. Theo-
retical Computer Science, 296, 2 (2003), 295-326.

10. M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-Núñez.
A P-Lingua based simulator for Tissue P systems. Journal of Logic and Algebraic
Programming, 79, 6 (2010), 374–382.

11. M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, M. Garćıa-Quismondo, et al. DCBA:
Simulating population dynamics P systems with proportional objects distribution,
Lecture Notes in Computer Science, 7762 (2013), 257–276.

12. M.A. Mart́ınez-del-Amor, M. Garćıa-Quismondo, L.F. Maćıas-Ramos, L. Valencia-
Cabrera, A. Riscos-Núñez, M.J. Pérez-Jiménez. Simulating P systems on GPU de-
vices: a survey. Fundamenta Informaticae, 136, 3 (2015), 269–284.

13. L. Pan, Gh. Paun, M. J. Prez-Jimnez, T. Song. Bio-inspired Computing: Theo-
ries and Applications. Communications in Computer and Information Science (Se-
ries ISSN 1865-0929), Volume 472, Springer-Verlag Berlin Heidelberg, Print ISBN
978-3-662-45048-2, Online ISBN 978-3-662-45049-9, 2014, XX + 672 pages (doi:
10.1007/978-3-662-45049-9).

14. L. Pan, Gh. Păun. Spiking Neural P Systems with Anti-Matter. International Journal
of Computers Communications & Control, 4, 3 (2009), 273–282.

15. L. Pan, T.-O. Ishdorj. P Systems with Active Membranes and Separation Rules. Pro-
ceedings of the Second Brainstorming Week on Membrane Computing, 2-7 February,
2004, Sevilla, Spain, pp. 325–341.

16. Gh. Păun, G. Rozenberg, A. Salomaa (eds.). The Oxford Handbook of Membrane
Computing, Oxford University Press, Oxford, 2010.

17. Gh. Păun. Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143, and Turku Center for CS-TUCS Report No. 208, 1998.

18. Gh. Păun. Membrane Computing. An introduction. Springer-Verlag, Berlin, 2002.
19. Gh. Păun. P systems with active membranes: attacking NP–complete problems,

Journal of Automata, Languages and Combinatorics, 6 (2001), 75–90.
20. H. Peng, J. Wang, J. Ming, P. Shi, M.J. Prez-Jimnez, W. Yu, Ch. Tao. Fault di-

agnosis of power systems using intuitionistic fuzzy spiking neural P systems. IEEE
Transactions on Smart Grid, in press (2017) (doi: 10.1109/TSG.2017.2670602).

150 I. Pérez-Hurtado et al.

21. I. Pérez-Hurtado, L. Valencia-Cabrera, J.M. Chacón, A. Riscos-Núñez, M.J. Pérez-
Jiménez. A P-Lingua based Simulator for Tissue P Systems with Cell Separation.
Romanian Journal of Information Science and Technology, 17 , 1 (2014), 89–102.

22. I. Pérez-Hurtado, L. Valencia-Cabrera, M.J. Pérez-Jiménez, M. Colomer, and A.
Riscos-Núñez. MeCoSim: A general purpose software tool for simulating biological
phenomena by means of P Systems, IEEE Fifth International Conference on Bio-
inpired Computing: Theories and Applications (BIC-TA 2010), 637–643.

23. F.J. Romero-Campero, M.J. Prez-Jimnez. A model of the Quorum Sensing Sys-
tem in Vibrio Fischeri using P systems. Artificial Life, 14, 1 (2008), 95-109 (doi:
10.1162/artl.2008.14.1.95).

24. G. Zhang, M. J. Prez-Jimnez, M. Gheorghe. Real-life applications with Membrane
Computing. Emergence, Complexity and Computation (Series ISSN 2194-7287), Vol-
ume 25. Springer International Publishing, Online ISBN 978-3-319-55989-6, Print
ISBN 978-3-319-55987-2, 2017, X + 367 pages (doi: 10.1007/978-3-319-55989-6).

25. The P-Lingua web page: http://www.p-lingua.org.
26. The PMCGPU web page: https://sourceforge.net/projects/pmcgpu/
27. The MeCoSim web page: http://www.p-lingua.org/mecosim/.
28. The Flex web page: https://github.com/westes/flexl
29. The Bison web page: https://www.gnu.org/software/bison/

Search Based Software Engineering in Membrane
Computing

Ana Ţurlea1, Marian Gheorghe2, Florentin Ipate1

1 Faculty of Mathematics and Computer Science and ICUB
University of Bucharest, Bucharest, Romania
ana.turlea@fmi.unibuc.com, florentin.ipate@ifsoft.ro

2 School of Electrical Engineering and Computer Science,
University of Bradford, Bradford, UK
m.gheorghe@bradford.ac.uk

Summary. This paper presents a testing approach for kernel P Systems (kP systems),
based on test data generation for a given scenario. This method uses Genetic Algorithms
to generate the input sets needed to trigger the given computation steps.

Keywords: membrane computing; kernel P systems; testing; genetic algorithms:
test data generation.

1 Introduction

Membrane Systems [17], now known as P Systems, were founded by Gheorghe
Păun in 1998 [15, 16]. Initially inspired by the structure and functioning of the
living cells, the field has been developed very fast and different types of P systems
being investigated. Kernel P systems (kP systems, for short), have been introduced
in [2]. These systems can be simulated using a software framework, called kPWork-
bench [1] or some earlier variants (so called simple kP systems) using P-Lingua
and the MeCoSim simulator [3]. Having many computational models with different
software implementations, associated with various applications, it is very impor-
tant to develop testing methods, to check that the implementation agrees with
the system specification. This testing methodology is called conformance testing,
which tries to find the differences betweem the behaviour of an implementation
and its specification. The testing task is not trivial, given the fact that the models
are parallel and non-deterministic. Previous works on P systems testing include
testing cell-like P systems with methods like finite state-based inspired [6], stream
X-machine based testing [7], mutation testing for evaluating the efficiency of the
test sets [11], model-checking based testing [8] and testing identifiable kernel P
systems using X-machines [4].

Automated test data generation is a topic of interest in software engineering
community. There are many evolutionary testing approaches that generate test

152 A. Ţurlea, M. Gheorghe, F.Ipate

date from code, finite state machines and other models, but there are no applica-
tions in membrane computing community.

In kernel P systems, we can simulate the evolution of the model for a given
number of steps, starting with an initial multiset. We can change the evolution of
the system by adding new multisets as inputs for each evolution step.

This paper presents a testing approach for kernel P systems, using genetic
algorithms to generate test data that leads to a given set of computation steps.

In Section 2 we present some basic information about kP systems, evolutionary
functional testing, genetic algorithms, search based testing for extended finite state
machines. Section 3 describes the kP system type used for testing, the configuration
of the algorithm and some experimetal results. In Section 4 we present conclusions
and future work.

2 Preliminaries

In this section we will present some basic details about kernel P systems and Search
Based Testing using Genetic Algorithms. We will also present some approaches
that use evolutionary algorithms to test Extended Finite State Machines.

2.1 Kernel P systems

In the following we will give a formal definition of kernel P systems (or kP sys-
tems) [2]. We start by introducing the concept of a compartment type utilised later
in defining the compartments of a kernel P system.

Definition 1. T is a set of compartment types, T = {t1, . . . , ts}, where ti =
(Ri, σi), 1 ≤ i ≤ s, consists of a set of rules, Ri, and an execution strategy, σi,
defined over Lab(Ri), the labels of the rules of Ri.

Definition 2. A kP system of degree n is a tuple kΠ = (A,µ,C1, . . . , Cn, i0),
where

• A is a finite set of elements called objects;
• µ defines the membrane structure, which is a graph, (V,E), where V is a set

of vertices representing components (compartments), and E is a set of edges,
i. e., links between components;

• Ci = (ti, wi,0), 1 ≤ i ≤ n, is a compartment of the system consisting of a
compartment type, ti, from a set T and an initial multiset, wi,0 over A; the
type ti = (Ri, σi) consists of a set of evolution rules, Ri, and an execution
strategy, σi;

• i0 is the output compartment where the result is obtained.

Within the general kP systems framework, the following types of evolution
rules have been considered so far:

Search Based Software Engineering in Membrane Computing 153

• rewriting and communication rule: x → y{g}, where g represents a guard,
x ∈ A+ and y ∈ A∗, where y is a multiset with potential different compartment
type targets (each symbol from the right side of the rule can be sent to a
different compartment, specified by its type; if multiple compartments of the
same type are linked to the current compartment, then one is randomly chosen
to be the target). Unlike cell-like P systems, the targets in kP systems indicate
only the types of compartments to which the objects will be sent, not particular
instances (for example, y = (a1, t1) . . . (ah, th), where h ≥ 0, and for each
1 ≤ j ≤ h, aj ∈ A and tj indicates a compartment type from T).

• structure changing rules: membrane division, membrane dissolution, link cre-
ation and link destruction rules, which all may also incorporate complex guards
and that are covered in detail in [2]. However, this type of rules will not be
considered in the following discussion.

For a multiset w over A and an element a ∈ A, we denote by |w|a the number
of objects a occurring in w. Let us denote Rel = {<,≤,=, 6=,≥, >}, the set of
relational operators, γ ∈ Rel, a relational operator, and an a multiset, consisting
of n copies of a. We first introduce an abstract relational expression.

Definition 3. If g is the abstract relational expression denoting γan and w a
multiset, then the guard g applied to w denotes the relational expression |w|aγn.

The abstract relational expression g is true for the multiset w, if |w|aγn is true.
We consider now the following Boolean operators ¬ (negation), ∧ (conjunc-

tion) and ∨ (disjunction). An abstract Boolean expression is defined by one of the
following conditions:

• any abstract relational expression is an abstract Boolean expression;
• if g and h are abstract Boolean expressions then ¬g, g∧h and g∨h are abstract

Boolean expressions.

The concept of a guard, introduced for kP systems, is a generalisation of the
promoter and inhibitor concepts utilised by some variants of P systems.

Definition 4. If g is an abstract Boolean expression containing gi, 1 ≤ i ≤ q,
abstract relational expressions and w a multiset, then g applied to w means the
Boolean expression obtained from g by applying gi to w for any i, 1 ≤ i ≤ q.

As in the case of an abstract relational expression, the guard g is true with
respect to the multiset w, if the abstract Boolean expression g applied to w is true.

For example, if g is the guard defined by the abstract Boolean expression
≥ a4∧ < b2 ∨ ¬ > c and w a multiset, then g applied to w is true if it has at least
4 a′s and less than 2 b′s or no more than one c.

2.2 Evolutionary Functional Testing

Software testing is the process of finding errors in a system, also measuring the
quality of the system. The correctness of a system is the most essential purpose

154 A. Ţurlea, M. Gheorghe, F.Ipate

of testing. Automated testing can be divided into white-box testing and black-
box testing. White-box testing (structural testing) uses the source code of the
system to generate test cases, while black-box testing (functional testing) uses the
systems specifications for test generation. In white box testing the tester needs to
have a look inside the source code and find out which unit of code is behaving
inappropriately. In black box testing, a tester uses the system architecture or
specification and does not have access to the source code [10].

One of the common approaches of automated testing is model based test cases
generation. The generated test cases (based on the model) reveal faults and verify
if the implementation conforms to its specification. Transforming this problem into
an optimisation problem, we can use evolutionary approaches.

Search based software testing represents automated search in a potentially
large input space, guided by a problem specific fitness function. The search space
depends on the problem and on the configuration of the parameters of the system.
The fitness function guides the search to the test goal and scores different inputs
of the system according to the test goal.

Test cases generation has been intensively studied for EFSMs.
Test cases are set of input values and expected results developed to cover

certain test conditions. A test suite is a collection of test cases.

2.3 Genetic Algorithms

Genetic Algorithms (GAs) are metaheuristic search techniques (mainly applied
in optimization problems) that simulate the biological evolution and have the
following elements: populations of chromosomes (individuals, candidate solutions),
selection according to a fitness function, crossover to produce new offspring and
random mutation of new offspring [14].

GAs start with initialization of a population with random candidate solutions,
evolve the population several times, until a solution is found or a stop condition
is met. Each element (chromosome) from the population represents a sequence
of variables/parameters. Variable values can be represented in binary form, real-
numbers, or even characters.

At each evolution, individuals are evaluated and selected for the next gen-
eration. The quality of each individual is determined by a fitness function that
depends upon the problem considered. If the chromosome is fitter, it is likely to
be selected to reproduce more times [14]. The optimization problem can be to
minimize or to maximize the fitness function.

Crossover is applied to the randomly selected parent chromosomes, exchanging
information between them and creating new children chromosomes. Some common
types of crossovers are: single-point crossover, multi-point crossover and uniform
crossover.

Mutation is applied, with some probability, to each chromosome, randomly
changing some of the individual’s genes. A new evolution starts with these new
individuals. Mutation prevents genetic pool from premature convergence (getting

Search Based Software Engineering in Membrane Computing 155

stuck in local maxima/minima). The main purpose of mutation is to bring diversity
in population.

As described in [14], a simple GA works as follows:

1. Start with a randomly generated population (the initial population).
2. Compute fitness function for each chromosome in the population.
3. Repeat the following steps until a new generation is created:

a) Select a pair of parent individuals from the current population (a chromo-
some can be selected only once to become a parent);

b) Apply crossover on the current pair to form two offsprings.
c) Mutate the two offspring chromosomes, with a given probability, and place

the resulting individuals in the new population.
4. Selection is applied on the current population along with the new population.
5. Go to step 2.

A generation is represented by an iteration of this process. The entire set of
generations is called a run. Two different runs will produce different behaviors.
In order to evaluate the efficacy of a genetic algorithm, we should run it multiple
times and analyse the results.

2.4 Search based Testing for EFSM Models

An extended finite state machine (EFSM) is a six-tuple (S, s0, V, I, O, T) [9] where
S is the finite set of states, s0 is the initial state, V is the finite set of context
variables, I is the finite set of inputs, O is the finite set of outputs and T is the
finite set of transitions. A transition is represented by a start state, an input that
may have associated input parameters, a guard (logical expression), a sequential
operation (a method with assignments and output statements) and the end state.

A path of an EFSM is a sequence of adjacent transitions, p = S1
f1[g1]−−−→

S2
f2[g2]−−−→ . . . Sm

fm[gm]−−−−→ Sm+1, where Si represents the state i from that path, fi
is the method executed on the transition i and gi is the guard of the transition
i. A path can be feasible, if there exist values for the input parameters to satisfy
guards and to trigger all transitions for that path, and infeasible, otherwise.

There are many approaches that generate values for input parameters for each
method fi from a given path, that satisfy the guard conditions gi and trigger
all transitions. Lefticaru and Ipate investigated in [13] the use of search based
techniques for functional testing using state machines. Its purpose is to generate
input data for chosen path in a state machine, so that it triggers the transitions,
using three search techniques: simulated annealing, genetic algorithms and particle
swarm optimization. Kalaji et al. [9] proposed an integrated search based test
data generation using EFSMs. The approach has two phases. In the first phase,
feasible paths are generated using a GA with a feasibility metric based on dataflow
dependence as fitness function, satisfying transition coverage criteria. In the second
phase those paths are used as inputs to generate test data that trigger the paths,

156 A. Ţurlea, M. Gheorghe, F.Ipate

using a GA with a fitness function based on the branch distance function and
approach level.

The approach proposed by Lefticaru and Ipate [12] is based on the state dia-
gram and uses a genetic algorithm to generate test data. The first step is to find
feasible paths to achieve some coverage criteria. The second step is to find, for each
path, the input values for parameters, to trigger the transitions. The test data gen-
eration problem is converted to an optimization problem, aiming to minimize the
fitness function.

Paper [18] generates test data for EFSMs and uses a hybrid genetic algorithm,
improving the algorithm presented in [12].

For a particular path in the EFSM, a chromosome (individual, possible solu-
tion) is a list of values, x = (x1, x2, . . . , xn), corresponding to all parameters of the
methods, as they appear on that path. A solution is a chromosome with fitness
function 0 that triggers transitions between states according to the selected path
and validates the guards of each transition.

The fitness function used in this approach is: fitness = approach level +
normalized branch level (f = al+nbl). approach level is calculated by m−1−p,
where m is the length of the path to be executed and p is the number of nodes
executed until the first unsatisfied guard on the path. normalized branch level
is the mapping onto [0, 1) for branch level. branch level computes, for the pred-
icate that is not satisfied, how close the predicate was to being true, using the
transformations from Table 1. The normalization function is norm : [0, 101] →
[0, 1], norm(d) = 1− 1.05−d.

Element Objective function value obj

Boolean if TRUE then 0 else K

a = b if abs(a− b) = 0 then 0 else abs(a− b) + K

a 6= b if abs(a− b) 6= 0 then 0 else K

a < b if a− b < 0 then 0 else (a− b) + K

a ≤ b if a− b ≤ 0 then 0 else (a− b) + K

a > b if b− a < 0 then 0 else (b− a) + K

a ≥ b if b− a ≤ 0 then 0 else (b− a) + K

a ∧ b obj(a) + obj(b)

a ∨ b min(obj(a), obj(b))

a xor b obj((a ∧ ¬b) ∨ (¬a ∧ b))

¬a Negation is moved inwards and propagated over a

Table 1. Tracey’s objective functions for relational predicates and logical connectives.
The value K, K > 0, refers to a constant which is always added if the term is not true

The algorithm ends when the stop criteria is reached or when the maximum
number of evolutions is exceeded. After the selection step, a new generation is
created using recombination, crossover and mutation.

Search Based Software Engineering in Membrane Computing 157

3 Search based Testing for kP systems

Modelling systems specification can be also done by using kP systems. In this
paper we will introduce kP systems that behave similar to EFSMs and apply
testing approaches based on EFSMs.

We will consider deterministic kP systems with two compartments.
The main compartment will only consist of rewriting rules of the form Aa →

Bb{g}, where A,B and a, b belong to two disjoint sets (A,B play the role of the
input and output states of a transition of an EFSM, respectively, whereas a, b are
input and output of the transition, with g being its guard).At any moment only
one rule is applied, i.e. the system is always working in sequential manner.

The other compartment is meant to send symbols to the main compartment
that are inputs a for its rules. This compartment is behaving similar to an environ-
ment of an EFSM that provides inputs to it. The rules have the form C → D(a,M),
where C,D and a belong to disjoint sets, as in the case of the main compartment;
M is the type of that compartment.

An execution of the system from a given configuration consists in applying a
rule from the input compartment, sending the input multiset to the main com-
partment and applying a corresponding rule from the main compartment.

The testing strategy developed in this paper will refer to the main compart-
ment; the other one will just provide inputs, as presented above.

When we aim to simulate the execution of the main compartment for N steps
then the compartment generating inputs should be able to generate N inputs.
Execution of each rule Aa → Bb{g} in the main compartment depends of the
availability of Aa and also on guard g that must be true. In order to generate
suitable inputs both these conditions have to be fulfilled and this is what happens
for a test generation.

We can automatically generate test data for kPSystems using genetic algo-
rithms and the kPWorkbench tool to simulate the evolution of the system.

3.1 kP System Definition

In this subsection we will present the kP system configuration.
The kP system will be denoted kπ = (A,µ,C1, C2, i0). The kP system will have

the following elements:
µ = (V,E), where V = {cM, cInp}, cM = main compartment and cInp = the

input compartment, E = {(cM, cInp)}.
We denote AST and AIO two disjoint sets and A = AST ∪ AIO. AST denotes

symbols that are either corresponding to states in cM or symbols used in cInp
for generating inputs. AIO are input and output symbols as well as symbols that
appear in guards.

The membrane structure contains two compartments, cM = (tM , wM0), where
tM = (RM , σM) is the compartment type and wM0 is the initial multiset over A
and cInp = (tI , wI0), where tI = (RI , σI) is the compartment type and wI0 is the
initial multiset over A.

158 A. Ţurlea, M. Gheorghe, F.Ipate

The main compartment type tM = (RM , σM) consists of a set of evolution rules
RM and an execution strategy σM working in sequential manner. RM contains only
rewriting rules:Aa→ Bb{g}, where A,B ∈ AST and a, b ∈ AIO.

In an evolution step and a given configuration, only one rule can be applied.
The input compartment type tI = (RI , σI) consists of a set of evolution rules

RI and the execution strategy σI working in sequential manner. RI contains only
rewriting and communication rules C → D(a, tM), where C,D ∈ AST and a ∈ AIO

The initial configuration contains the initial values from the memory and the
output compartment i0 is represented by the main compartment.

Example 1. Let us consider the kP system kΠ1 = (A,µ, cM, cInp, i0), where i0 =
cM , AST = {A,B,C,D,E, F,A1, ..., A6}, AIO = {a, b.f, d, o, t, x}

RM =

r1 : A, f → A, a{< 3a& = f} r2 : A, f → E{= 3a}
r3 : A, t→ B, a{< 3a& = t& < f} r4 : B, x→ C{= x}
r5 : B, d→ D{= d} r6 : C, b, x→ C{>= x}
r7 : D, d→ D, b{>= d} r8 : C, o→ F{< x}
r9 : D, o→ F{< d}

RI =

r10 : A1 → A2, (f, tM) r11 : A2→ A3, (f, tM)

r12 : A3→ A4, (t, tM) r13 : A4→ A5, (x, tM)

r14 : A5→ A6, (3x, tM) r15 : A6 → A7, (o, tM)

The inital configuration of kπ1 is M0 = (100b A,A1).
The only applicable rule is r10 for cInp and A1 =⇒r10 A2, (f,M) and f goes

to cM . Hence, the next configuration is M1 = (100b A f,A2).
In this configuration we can only apply rule r1 in cM and rule r11 in cInp,

A2 =⇒r11 A3, (f,M) in cInp , f goes to cM and A =⇒r1 A, a in cM and the next
configuration is M2 = (100b A a f,A3).

The next computational step is A3 =⇒r12 A4, (t,M) in cInp, t goes to cM and
A, f =⇒r1 A, a in cM and the next configuration is M2 = (100b A 2a t, A4).

The next configuration is M3 = (100b B 3a x,A5) obtained by applying
A4 =⇒r13 A5, (x,M) in cInp, sending x to cM and applying A, t =⇒r3 B, a
in cM .

After this step, the only applicable rules are A5 =⇒r14 A6, (3x,M) in cInp
and B, x =⇒r4 C in cM , sending 3x to cM and the next configuration is M4 =
(100b C 3a 3x,A6).

From this configuration we can apply A6 =⇒r15 A7, (o,M) in cInp and
C, b, x =⇒r6 C in cM , sending o to cM and reaching configuration M5 =
(99b C 3a 2x o,A7).

The next computational step contains the rule C, b, x =⇒r6 C applied in cM ,
obtaining the configuration M6 = (98b C 3a x o,A7). In the next step, the same
rule is applied identically in cM and M7 = (97b C 3a o,A7).

Search Based Software Engineering in Membrane Computing 159

In the last computational step, the applicable rule is C, o =⇒r8 F in cM and
the final configuration is M8 = (97b F 3a,A7).

The evolution steps obtained by this simulation are the following:

• Step 1: rule r10
• Step 2: rules r11r1
• Step 3: rules r12r1
• Step 4: rules r13r3
• Step 5: rules r14r4
• Step 6: rules r15r6
• Step 7: rule r6
• Step 8: rule r6
• Step 9: rule r8

To simulate the execution of a system we use kPWorkbench. kPWorkbench
is an integrated software suite aimed to provide support for kP systems. Among
other functionallities, kPWorkbench contains tools for modelling, simulating and
verifying kP systems. A simulation trace represents the evolution of the system
during some computations.

kP-Lingua model

kPWorkbench

Simulation Traces

Fig. 1. kPWorkbench simulation steps

3.2 Genetic Algorithm Configuration

The Genetic Algorithm has the following steps:

• create random initial population - length N ;

160 A. Ţurlea, M. Gheorghe, F.Ipate

• evaluate the population using the fitness function;
• repeat the following steps until the stopping condition is reached:

– offspring population ← reproduction(population);
– evaluate offsprig popultion;
– population ← reinsertion+selection(population, offspring population).

A chromosome (x1, x2, . . . , xn) is represented as a list of input symbols corre-
sponding to the input set. A gene represents the input for the corresponding step
and consists of a list of strings (input symbols) xi = (r1s1, r2s2, . . . , rnsn), where
si is a symbol from the alphabet, and ri is the number of times the symbol appears
in the input set.

The Crossover Operator creates two new chromosomes from the two existing
parent chromosomes, using one of the two operations, with equal probability.

• exchange only the value for a gene from a random selected point{
(x1, x2, . . . , xn)

(y1, y2, . . . , yn)
→

{
(x1, x2, . . . , yi, . . . , xn)

(y1, y2, . . . , xi, . . . , yn)

• exchange for a random point only a part of the gene{
(x1, x2, . . . , xi, . . . , xn)

(y1, y2, . . . , yi, . . . , yn)
→

{
(x1, x2, . . . , x

′
i, . . . , xn)

(y1, y2, . . . , y
′
i, . . . , yn)

where
xi = (r1s1, . . . , rnsn), yi = (t1s1, . . . , tnsn),
x′i = (r1s1, . . . , tisi, . . . , tnsn), y′i = (t1s1, . . . , risi, . . . , rnsn)

A chromosome can be mutated in many different ways. To identify possible
mutation operators, we considered the characteristics of a chromosome.We have
defined the following different mutation operators, which are all applied with 0.5
probability:

• completly change a gene (an input value)
• remove gene part - for an input value choose randomly a symbol that will not

be used (ri = 0)
• for a random gene - replace random symbol number(ri)
• exchange materials between two genes

We tried to apply the selection operator as it was used in many test data
generation approaches. The reinsertion of the offspring population into the new
population was made in different ways:

• the new population = the offspring population [12];
• the new population = the offspring population and the fittest individual is kept

in the next generation [18];

Search Based Software Engineering in Membrane Computing 161

• apply selection operator and select N chromosomes from the offspring popula-
tion along with the old population, using different selectors: best chromosome
selection, binary tournment selection.

None of these methods worked for our problem. The algorithm was stuck in a
local optima. In order to overcome this problem we change the reinsertion method:
the best 50% of the current generation and the best 50% of the new offspring are
retained. In the next evolution, the crossover operator will use a parent that came
from the old population and a parent that came from the offspring population and
will create a new individual. This reinsertion method was inspired and adapted
from paper [5].

P = {x1, y1, x2, y2, . . . , x25, y25}, where x1, x2, . . . , x25 ∈ OldPopulation and
y1, y2, . . . , y25 ∈ Offspringpopulation

To evaluate an individual we need to compute the objective function. To verify
if a chromosome is the solution, we need to simulate the system with the corre-
sponding input values and compare the simulation traces with the given steps.
The fitness function is based on the approach level and the branch distance. It
checkes if the input steps are exactly the needed ones (representing a solution)
or how far is the chromosome from the solution. The approach level records how
many steps were not executed by a particular input. The fewer steps executed,
the further away the input is from executing the steps. The branch distance is
computed using the conditions of the guards of the rule at which the evolution
diverted away from the current target step.

To compute the fitness function we need to perform a simulation of the system.
To simulate the system we use kPWorkbench.

3.3 Experiments

In our experiments we used the kP system presented in Example 1.

Experiment 1

consisted in generating test data for the following evolution steps:
Steps = {r10, (r1, r11), (r3, r12), (r4, r13), (r7, r14), r7, r7, r7, r7, t8}
The size of the input set is size = 5. In this example we have 10 steps, but

only the first 6 will receive inputs. The other steps will consume the inputs until
the system reaches the final configuration.

The maximum number of evolution is set to 50.
This experiment was made to find the suitable configuration for the algorithm,

including the reinsertion method. As described in Subsection 3.2, the first experi-
ments failed. Running 100 times the algorithm for each configuration, we couldn’t
find a solution. Only for the new reinsertion method the algorithm was successful
with a success rate of 75%. Also, the average number of evolutions needed to find
a solution was 37.

162 A. Ţurlea, M. Gheorghe, F.Ipate

There are many input sets that create the given scenario. Table 3.3 contains
some examples of solutions obtained using during this experiment. The first column
shows the number of generations needed to find the solution.

Evolutions Input1 Input 2 Input 3 Input 4 Input 5

45 1f 2x 1t 1d 1f 3x 3d 2x 2d 1o
41 1f 2x 1t 1d 2x 2d 1f 6x 3d 1o
33 1f 1f 1t 5x 1d 1o 5x 4d
32 1f 1t 1d 1x 1f 4x 5d 1o 1x
28 1f 1t 1d 1o 2x 3x 1d 1f 1x 4d
27 1f 1t 1d 1o 1t 2d 1f 3d
43 1f 1t 1x 3x 1d 2x 1d 1o 1f 4x 4d

Table 2. Example of solutions for Experiment 1

Experiment 2

consisted in generating test data for other examples of evolution steps, using the
configuration establish during Experiment 1. One of the following evolution steps
set we used was:

Steps = {r10, (r1, r11), (r3, r12), (r4, r13), (r6, r14), r6, r6, r6, r6, t8}
The size of the input set is size = 5. In this example we have 10 steps, but only

the first 6 will receive inputs. The other steps will consume the inputs until the
system reaches the final configuration. The maximum number of evolution is set
to 50. Running 100 times the algorithm, we couldn’t find a solution. The success
rate for this example was 62% and the average number of evolutions needed to
find a solution was 36.

4 Conclusions

In conclusion, we used genetic algorithms to generate test data for kP systems. The
algorithm input is reperesented by a kP system model and a set of computation
steps, the ouput being the set of input sets needed to create the given input
scenario. The algorithm uses kP systems that behave similar to EFSMs. We tried
to apply directly some algorithm defined for EFSMs, but it wasn’t successful. We
overcomed this problem by changing the reinsertion method of the population.
With this configuration, the algorithm was successful.

As future work, we will extend this algorithm to other kP systems, starting
from using different kinds of rules also.

Search Based Software Engineering in Membrane Computing 163

Acknowledgements

This work is supported by a grant of the Romanian National Authority for Scien-
tific Research, CNCS-UEFISCDI, project number PN-III-P4-ID-PCE-2016-0210.

References

1. Dragomir, C., Ipate, F., Konur, S., Lefticaru, R., Mierla, L.: Model checking kernel
p systems. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg,
G., Salomaa, A. (eds.) Membrane Computing. Lecture Notes in Computer Science,
vol. 8340, pp. 151–172. Springer Berlin Heidelberg (2014)

2. Gheorghe, M., Ipate, F., Dragomir, C., Mierla, L., Valencia-Cabrera, L., Garćıa-
Quismondo, M., Pérez-Jiménez, M.J.: Kernel P Systems - Version I. Eleventh Brain-
storming Week on Membrane Computing (11BWMC) pp. 97–124 (2013)

3. Gheorghe, M., Ipate, F., Lefticaru, R., Pérez-Jiménez, M.J., Turcanu, A.,
Valencia-Cabrera, L., Garćıa-Quismondo, M., Mierla, L.: 3-col problem mod-
elling using simple kernel P systems. International Journal of Computer Math-
ematics 90(4), 816–830 (2013). https://doi.org/10.1080/00207160.2012.743712,
https://doi.org/10.1080/00207160.2012.743712

4. Gheorghe, M., Ipate, F., Lefticaru, R., Turlea, A.: Testing identifiable kernel p sys-
tems using an x-machine approach. In: International Conference on Membrane Com-
puting. pp. 142–159. Springer (2018)

5. Harman, M., McMinn, P.: A theoretical & empirical analysis of evolutionary testing
and hill climbing for structural test data generation. In: Proceedings of the 2007
international symposium on Software testing and analysis. pp. 73–83. ACM (2007)

6. Ipate, F., Gheorghe, M.: Finite state based testing of P systems. Natu-
ral Computing 8(4), 833 (2009). https://doi.org/10.1007/s11047-008-9099-3,
https://doi.org/10.1007/s11047-008-9099-3

7. Ipate, F., Gheorghe, M.: Testing non-deterministic stream X-machine
models and P systems. Electronic Notes in Theoretical Computer Sci-
ence 227, 113–126 (2009). https://doi.org/10.1016/j.entcs.2008.12.107,
https://doi.org/10.1016/j.entcs.2008.12.107

8. Ipate, F., Gheorghe, M., Lefticaru, R.: Test generation from P sys-
tems using model checking. Journal of Logic and Algebraic Program-
ming 79(6), 350–362 (2010). https://doi.org/10.1016/j.jlap.2010.03.007,
https://doi.org/10.1016/j.jlap.2010.03.007

9. Kalaji, A.S., Hierons, R.M., Swift, S.: An integrated search-based approach for au-
tomatic testing from extended finite state machine (EFSM) models. Information &
Software Technology 53(12), 1297–1318 (2011)

10. Khan, M.E., Khan, F.: A comparative study of white box, black box and grey box
testing techniques. International Journal of Advanced Computer Sciences and Ap-
plications 3(6), 12–1 (2012)

11. Lefticaru, R., Gheorghe, M., Ipate, F.: An empirical eval-
uation of P system testing techniques. Natural Computing
10(1), 151–165 (2011). https://doi.org/10.1007/s11047-010-9188-y,
https://doi.org/10.1007/s11047-010-9188-y

164 A. Ţurlea, M. Gheorghe, F.Ipate

12. Lefticaru, R., Ipate, F.: Automatic state-based test generation using genetic algo-
rithms. In: Proc. SYNASC’07. pp. 188–195. IEEE Computer Society (2007)

13. Lefticaru, R., Ipate, F.: Functional search-based testing from state machines. In: First
International Conference on Software Testing, Verification, and Validation, ICST
2008, Lillehammer, Norway, April 9-11, 2008. pp. 525–528 (2008)

14. Mitchell, M.: An introduction to genetic algorithms. MIT Press (1998)
15. Păun, G.: Computing with membranes. Tech. rep., Turku Centre for Computer Sci-

ence (1998)
16. Păun, G.: Computing with membranes. Journal of Computer and Sys-

tem Sciences 61(1), 108–143 (2000). https://doi.org/10.1006/jcss.1999.1693,
https://doi.org/10.1006/jcss.1999.1693

17. The P systems website. http://ppage.psystems.eu, [Online; accessed 12/05/2018]
18. Turlea, A., Ipate, F., Lefticaru, R.: A hybrid test generation ap-

proach based on extended finite state machines. In: 18th Interna-
tional Symposium on Symbolic and Numeric Algorithms for Scien-
tific Computing, SYNASC 2016, Timisoara, Romania, September 24-
27, 2016. pp. 173–180 (2016). https://doi.org/10.1109/SYNASC.2016.037,
https://doi.org/10.1109/SYNASC.2016.037

New applications for an old tool

Luis Valencia-Cabrera, David Orellana-Mart́ın,
Ignacio Pérez-Hurtado, Mario J. Pérez-Jiménez

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: {lvalencia, dorellana, perezh, marper}@us.es

Summary. First, the dependency graph technique, not so far from its current appli-
cation, was developed trying to find the shortest computations for membrane systems
solving instances of SAT. Certain families of membrane systems have been demonstrated
to be non-efficient by means of the reduction of finding an accepting computation (respec-
tively, rejecting computation) to the problem of reaching from a node of the dependency
graph to another one.

In this paper, a novel application to this technique is explained. Supposing that a
problem can be solved by means of a kind of membrane systems leads to a contradiction
by means of using the dependency graph as a reasoning method. In this case, it is demon-
strated that a single system without dissolution, polarizations and cooperation cannot
distinguish a single object from more than one object.

An extended version of this work will be presented in the 20th International Confer-
ence on Membrane Computing.

1 Introduction

The computational efficiency of a model in a computing paradigm refers to its abil-
ity to provide polynomial time solutions for computationally hard problems, gener-
ally achieved by making use of an exponential workspace constructed in a natural
way. Aspects related to the computational efficiency within membrane computing
were first analyzed in 1999, with the introduction of a new computing model called
P system with active membranes [5]. These systems are non-cooperative (the left
hand side of any rule consists of only one object) and their membranes play a
relevant role in computations to the extent that new membranes can be created
by division rules. The membranes of these systems are supposed to have one of
three possible electrical polarizations: positive, negative or neutral. In this con-
text, it was given an ad-hoc solution to the Boolean satisfiability problem (SAT)

166 L. Valencia-Cabrera et al.

by means of such kind of P systems. More specifically, a P system with active
membranes which makes use of simple object evolution rules (only one object is
produced for this kind of rules), dissolution rules and division rules for elementary
and non-elementary membranes, is associated with every instance ϕ of SAT. Thus,
the syntactic structure of the formula is “captured” by the description of the sys-
tem and, furthermore, in this context a P system can only process one instance of
the problem. The solution provided runs in linear time with respect to the size of
the input formula ϕ, that is, the maximum between the number of variables and
the number of clauses in ϕ.

Usually, computational complexity theory deals with decision problems, that
is, problems requiring a yes/no answer. Each decision problem has a language
associated with it, in a natural way, so that solving such problems is defined
through the recognition of the corresponding language. Thus, in order to describe
in a formal way what solving a decision problem means, basic recognizer transition
P systems (initially called decision P systems) were defined [7].

Let us recall that an abstract problem can be solved by using a single Turing
machine, that is, for every instance of the problem, the Turing machine receiving
the input corresponding to that instance returns the correct answer. This is due
to the fact that these machines have an unlimited and unrestricted memory, given
the infinite tape it includes (consisting of an infinite number of cells). Bearing in
mind that the ingredients necessary to define a membrane system are finite, an
abstract problem should be solved, in general, by an infinite numerable family of
membrane systems, in such a way that each system in the family is in charge of
processing all the instances having the same size.

It seems interesting to analyze what kind of membrane systems are capable
of solving decision problems through only one unique system. In this context, it
is essential to clarify how the instances of the problem are introduced into the
system. Next, we consider the case in which the instances are directly introduced
inside the system (free of resources) by means of a representation of the problem
to be solved. It is important to remark that this means that the input alphabet
of the P system is the same one that the alphabet of the problem, so there is no
possibility of encoding, for instance, an instance of a problem from P to an object
yes or an object no.

Definition 1. Let X = (IX , θX) be a decision problem where IX is a language
over a finite alphabet ΣX . Let R be a class of recognizer membrane systems with
input membrane. We say that problem X is solvable in polynomial time by a single
membrane system Π from R, free of resources, denoted by X ∈ PMC1f

R , if the
following holds:

• The input alphabet of Π is ΣX .
• The system Π is polynomially bounded with regard to X; that is, there exists

a polynomial p(r) such that for each instance u ∈ IX , every computation of the
system Π with input multiset u performs at most p(|u|) steps.

New applications for an old tool 167

• The system Π is sound with regard to X; that is, for each instance u ∈ IX ,
if there exists an accepting computation of the system Π with input multiset u
then θX(u) = 1.

• The system Π is complete with regard to X; that is, for each instance u ∈ IX
such that θX(u) = 1, every computation of the system Π with input multiset u
is an accepting computation.

From the previous definition it is easy to prove that PMC1f
R ⊆ PMCR, for every

class R of recognizer membrane systems with input membrane.

2 Previous uses of the dependency graph

The dynamics of a membrane system provides, in a natural way, a tree of com-
putation. More precisely, the computation tree of a membrane system Π, denoted
Comp(Π), is a rooted labelled maximal tree, whose maximal branches will be
called computations of Π. A computation of Π is a halting computation if and
only if it is a finite branch. The labels of the leaves of Comp(Π) are called halting
configurations.

Given a semi-uniform or uniform solution (in polynomial time) for a decision
problem by means of a family of recognizer membrane systems, every instance of
the problem is processed by a system of the family. This system must be confluent,
so in order to know its answer for any instance it is enough to consider only one
computation of such system. In this context, an exciting challenge would be looking
for a computation with minimum length. For that, some weak metrics on the
degree of closeness configurations of a membrane system with a fixed structure
of membranes have been studied in [2]. In this context, in order to search for
the shortest paths in a graph providing a sound computation of the system, the
dependency graph associated with the set of rules of a recognizer membrane system
was introduced. This concept is based on the dependence among elements of the
alphabet with respect to the set of rules of the P system. Several weak metrics
over the set of configurations of the system based on the concept of dependency
graph were considered, starting from the notion of distance between two nodes of
the graph (the length of the shortest path connecting v1 and v2, or infinite if there
is no path from v1 to v2).

Also, in some kind of recognizer membrane systems, it is possible to consider
a directed graph (also called dependency graph) verifying the following properties:
(a) it can be constructed from the set or rules of the system in polynomial time,
that is, in a time bounded by a polynomial function depending on the total number
of rules and the maximum length of them; and (b) the accepting computations
of such systems can be characterized by means of a “reachability” property in
the dependency graph associated with it (the existence of a path in the graph
between two specific nodes). Therefore, dependency graphs provide a technique
to tackle the limits on efficient computations in membrane systems; that is, the
non-efficiency of such systems.

168 L. Valencia-Cabrera et al.

3 Dependency graph as a technique to prove negative
results in membrane systems

Let R be a class of recognizer membrane systems such that every system from R
is associated with a dependency graph verifying the following property: a compu-
tation of a system from R is an accepting computation if and only if there exists
a path between two distinguished nodes in the dependency graph associated with
the system. In this situation, it is possible to show that some decision problem
X = (IX , θX) cannot be solved in polynomial time in a uniform way by means of a
single membrane system, free of resources, from R. This remark is illustrated by
an example.

The ONLY-ONE-OBJECT problem is the decision problem X = (IX , θX) defined
as follows: IX = {an | n ∈ N, n ≥ 1} and θX(an) = 1 if and only if n = 1. It
is easy to design a deterministic Turing machine which takes two computation
steps, solving the ONLY-ONE-OBJECT problem. Let us see that ONLY-ONE-OBJECT

/∈ PMC1f
AM0(−d,+ne).

Theorem 1. There is no recognizer membrane system from the class AM0(−d,+ne)
solving the ONLY-ONE-OBJECT problem in polynomial time by a single membrane
system and free of resources.

Proof. Let us assume that there exists a recognizer membrane system Π from
AM0(−d,+ne) verifying the following: (a) the input alphabet of Π is the sin-
gleton {a}; (b) every computation of Π with input multiset {a} is an accepting
computation; and (c) every computation of Π with input multiset {an}, for each
n > 1, is a rejecting computation.

Let us denote by GΠ+{a} (respectively, GΠ+{an}, for each n > 1) the depen-
dency graph associated with the system Π + {a} (resp. Π + {an}). Then, for
each n > 1, we have GΠ+{a} = GΠ+{an}, since there would always be an edge
(sΠ , (a, iin)) in the dependency graph, and the rest of the graph would remain the
same. Besides, every computation of Π + {a} is an accepting computation if and
only if every computation of Π + {an}, for each n > 1, is an accepting compu-
tation, which is a contradiction of the initial hypothesis, thus there cannot exist
such membrane system.

4 Conclusions

Along this work, some of the main results concerning the use of dependency graphs
within membrane computing to analyze the computational efficiency of computing
models have been reviewed. It is worth pointing out that, albeit the P versus NP
problem is the most important one in Computer Science, there are other interesting
problems in the field of Computational Complexity Theory, also below P. When
using polynomial precomputed resources, problems from P can be easily solved.
But considering membrane systems free of precomputed resources, things change

New applications for an old tool 169

in such a way that there cannot be trivial solutions that could be obtained at first.
Then, it would be useful to study these kinds of systems to solve problems below
this complexity class. In this case, with this technique it has been demonstrated
that there is no solution to the ONLY-ONE-OBJECT problem by means of a single
membrane system from AM0(−d,+ne).

Adapting currently used methodologies to new applications is an interesting
future research line to improve existing results and obtain new ones. Besides, the
search for new techniques to demonstrate the non-efficiency or the inability for cer-
tain membrane systems to solve some decision problems is critical when addressing
the P versus NP and other interesting problems in the field of Computational
Complexity Theory.

Acknowledgements

This work was supported in part by the research project TIN2017-89842-P, co-
financed by Ministerio de Economı́a, Industria y Competitividad (MINECO) of
Spain, through the Agencia Estatal de Investigación (AEI), and by Fondo Eu-
ropeo de Desarrollo Regional (FEDER) of the European Union.

References

1. A. Alhazov, M.J. Pérez-Jiménez. Uniform solution to QSAT using polarizationless ac-
tive membranes. In J. Durand-Lose, M. Margenstern (eds.) Machines, Computations,
and Universality 5th International Conference, MCU 2007, Orléans, France, Septem-
ber 10-13, 2007. Proceedings. Lecture Notes in Computer Science, 4664 (2007), 122-
133.

2. A. Cordón-Franco, M. A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez.
Weak metrics on configurations of a P system. In Gh. Paun, A. Riscos, Á. Romero,
F. Sancho (eds.) Proceedings of the Second Brainstorming Week on Membrane Com-
puting, Report RGNC 01/2004, 2004, pp. 139-151.

3. M. A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, F.J. Romero-
Campero. On the power of dissolution in P systems with active membranes. In R.
Freund, Gh. Păun, G. Rozenberg, A. Salomaa (eds.) Membrane Computing, 6th Inter-
national Workshop, WMC 2005, Vienna, Austria, July 18-21, 2005, Revised Selected
and Invited Papers. Lecture Notes in Computer Science, 3850 (2006), 224-240.

4. C.H. Papadimitriou. Computational Complexity, Addison–Wesley, Massachusetts,
1995.

5. Gh. Păun. P systems with active membranes: attacking NP–complete problems,
Journal of Automata, Languages and Combinatorics, 6, 1 (2001), 75-90. A prelimi-
nary version in Centre for Discrete Mathematics and Theoretical Computer Science,
CDMTCS Research Report Series-102, May 1999, 16 pages.

6. Gh. Păun. Further twenty six open problems in membrane computing. In M.
A. Gutiérrez-Naranjo, A. Riscos-Núñez, F.J. Romero-Campero, D. Sburlan (eds.)
Proceedings of the Third Brainstorming Week on Membrane Computing, Fénix Edi-
tora, Sevilla, 2005, 249-262.

170 L. Valencia-Cabrera et al.

7. M.J. Pérez-Jiménez, Á. Romero-Jiménez, F. Sancho-Caparrini. Decision P systems
and the P 6= NP conjecture. In Gh. Păun, Gr. Rozenberg, A. Salomaa, C. Zandron
(eds.) Membrane Computing 2002. Lecture Notes in Computer Science, 2597 (2003),
388-399. A preliminary version in Gh. Păun, C. Zandron (eds.) Pre-proceedings of
Workshop on Membrane Computing 2002, MolCoNet project-IST-2001-32008, Pub-
lication No. 1, Curtea de Arges, Romanian, August 19-23, 2002, pp. 345-354.

The DBSCAN Clustering Algorithm on
P Systems

György Vaszil

Department of Computer Science, Faculty of Informatics
University of Debrecen
Kassai út 26, 4028 Debrecen, Hungary
vaszil.gyorgy@inf.unideb.hu

Summary. We show how to implement the DBSCAN clustering algorithm (Density
Based Spatial Clustering of Applications with Noise) on membrane systems using evolu-
tion rules with promoters and priorities.

1 Introduction

Clustering is the process of partitioning elements of a dataset according to some
similarity measure in such a way that elements in the same cluster are similar,
elements in different clusters are dissimilar. Clustering analysis is widely used in
several areas of data mining as a tool to discover implicit patterns and deduce
knowledge based on the data, or it can also be used for preprocessing before the
application of other algorithms. The reader is referred to [3] for more details about
clustering, and the area of data mining in general.

The density based clustering of applications with noise (DBSCAN) clustering
algorithm was introduced in [2]. It clusters data points based on density (a point
is dense if it has many neighbors within a given radius. The algorithm can be
summarized in the following steps:

Input: A set of points, the neighborhood radius ε, and the density threshold
MinPts.

1. Mark all points “univisited”.
2. Pick an unvisited point p,

• change its mark to “visited”, and
• count the number of points in its ε neighborhood to see if it is a core point,

that is, if the number of points in its ε neighborhood is at least MinPts.
• If p is not a core point, mark it as “noise”, otherwise create C as a new

cluster and add p to C, together with those points in its ε neighborhood
which do not belong to any cluster yet.

172 György Vaszil

3. Pick an unvisited point p′ in C

• change the mark of p′ to “visited”,
• count the number of points in its ε neighborhood to see if it is a core point.
• If p′ is a core point, add those points to C in its ε neighborhood which do

not belong to any cluster yet.
• If there are unvisited points in C, go back to 3.

4. If there are unvisited points in the data set, go back to 2.

Output: The clustering result.

In the following we intend to give an implementation of this algorithm in terms
of P systems. The system will use evolution rules with promoters and priorities.
Our goal is to exploit the parallelism of P systems in order to parallelize, and thus,
to speed up the DBSCAN algorithm which in its original version works with O(n2)
time complexity on a sequential machine (where n is the number of points to be
clustered). On P systems, the running time can be reduced to O(n).

Ours is not the only proposal for clustering with P systems. As examples, see
[4], or see [9] for a so called k-nearest base clustering algorithm on P systems with
active membranes, and [8] for clustering with splicing P systems. Even a DBSCAN
algorithm implementation was already presented in [11], we believe however, that
our present proposal is conceptually simpler.

2 Preliminaries and Definitions

Let O be a finite nonempty set (the set of object) and N be the set of non-negative
integers. A multiset M (or an multiset M for short), over O is a pair (O, f), where
f : O → N is mapping which gives the multiplicity of each object a ∈ O. The set
supp(M) = {a ∈ O | f(a) > 0} is called the support of M . If supp(M) = ∅, then
M is the empty multiset. If a ∈ supp(M), then a ∈ M , and a ∈n M if f(a) = n.
In the following we represent a multiset M over O = {a1, . . . , ak} by the string

a
M(a1)
1 . . . a

M(ak)
k (or any of its permutations).

Membrane systems, or P systems, were introduced in [5] as computing mod-
els inspired by the functioning of the living cell. The main component of such a
system is a membrane structure with membranes enclosing regions as multisets of
objects. Each membrane has an associated set of operators working on the objects
contained by the region. These operators can be of different types, they can change
the objects present in the regions or they can provide the possibility of transferring
the objects from one region to another one. The evolution of the objects inside
the membrane structure from an initial configuration to a final configuration cor-
responds to a computation having a result which is derived from some properties
of the final configuration.

Several variants of the basic notion have been introduced and studied proving
the power of the framework, see the monograph [6] for a comprehensive introduc-

The DBSCAN Clustering Algorithm on P Systems 173

tion, the handbook [7] for a summary of notions and results of the area, and the
volumes [1, 10] for various applications.

An n + 3-tuple Π = (O,w1, . . . , wn, R1, . . . , Rn, ρ) is a P system of degree n,
where

• O is a finite set called the alphabet of objects Π;
• wi, 1 ≤ i ≤ n, is a finite multiset of objects containing the initial contents of

compartment i of Π;
• Ri, 1 ≤ i ≤ n, is a finite set of rules of the form u → v or u → v|α with

u, α ∈ O∗ and v ∈ O ∪ {here, in, out};
• ρ ⊂ R × R is a priority relation defined on the rules of R =

⋃
1≤i≤nRi which

may also be empty.

For a P system Π = (O,w1, . . . , wn, R1, . . . , Rn, ρ) as above, an n-tuple c =
(u1, . . . , un) with ui ∈ O∗ for each i, is called a configuration of Π and c0 =
(w1, . . . , wn) is called its initial configuration. The multisets u1, . . . , un are also
called the contents of compartments 1, . . . , n, in configuration c.

A P system changes its configurations by applying its rules in the so-called
maximally parallel manner. A multiset of rules from Ri for some 1 ≤ i ≤ n, as
given above, is applicable to a configuration c, if and only if the union of the
multisets on the lefthand sides of the rules is a submultiset of ui, the contents of
the ith region. As a result of applying the rules to c, each object of the multisets on
the righthand sides of the rules replace the objects on the lefthand side. Moreover,
if the objects are moved to the respective neighboring regions according to the
target indicators here, in, out. Rules multisets are applied in all regions in parallel,
producing a series of configuration changes.

We say that the configuration c′ = (v1, . . . , vn) of Π is obtained directly from
c = (u1, . . . , un) by applying the rules in a maximally parallel manner, if the rule
multisets applied in the regions are maximal, that is, by adding any rule to the
multiset, they are not applicable simultaneously any more. A rule of the form
x→ y|α is applicable only if α ∈ O∗ (the promoter mutiset) is a submutiset of the
respective region.

When the priority relation ρ is nonempty, we denote by r1 > r2 if (r1, r2) ∈ ρ,
that is, if a rule r1 has higher priority than r2. In such a case, r2 can only be
applied to configurations where r1 is not applicable.

A sequence of configurations c0, c1, . . . of Π, obtained directly from each other
and starting from the initial configuration, is called a computation. The compu-
tation halts if no rule can be applied in the current configuration. The result of a
halting computation are the multisets of objects in the compartments at halting.

3 Implementing the DBSCAN Algorithm

In order to perform the clustering algorithm, let us construct a P system Π =
(O, [], w,R, ρ) with

174 György Vaszil

O = {pi, p′i, pi,j?, pi,j , p′i,j , pcri , pnsi , pnsi,j?, pcri,j , pncri,j | 1 ≤ i, j ≤ n} ∪
{Ei, Hi | 1 ≤ i ≤ n} ∪ {A,B,C,D, F, F ′, F ′′}.

The objects of the form pi represent the n points of the data set. We assume that
we have a distance function d : {p1, . . . , pn}2 → N.

The initial contents of the system is the multiset

w = Ap1 . . . pn,

corresponding to the n points, and a synchronizing symbol A.
Now we present the rules of R and at the same time, describe the functioning

of the system. Let R = Rpick ∪ Rcehck ∪ Rmark ∪ Rcheck2 ∪ Rmark2, and let us
describe these rule sets as follows.

Rpick = {Api → Bp′i | 1 ≤ i ≤ n}.

Using the single occurrence of A, the application of one of these rules picks a point
pi for some 1 ≤ i ≤ n by changing it to its primed version p′i. Now, in the presence
of p′i, the system checks whether the ith point is dense, that is, whether it has
more than MinPts points in its ε neighborhood. This is achieved by the rules

Rcheck = {pk → Eipk,i?|Bp′i , p
ncr
k,j → Eip

ncr
k,j |Bp′i , p

ns
k → Eip

ns
k,i?|Bp′i | for

1 ≤ i, j, k ≤ n, such that d(pi, pk) < ε} ∪ {B → C}

where d(pi, pk) denotes the distance between the locations of the ith and the kth
points. The application of these rules produce a number of Ei objects which is
equal to the number of points that are in the ε neighborhood of the ith point.

Now we mark the point corresponding to p′i core or non-core, depending on the
number of its ε neighbors with the following rules. If m = MinPts, then we have

Rmark = {p′i → pcri |C(Ei)m > p′i → pnsi |C | 1 ≤ i ≤ n} ∪
{pj,i? → p′j,i|Dpcri , p

ns
j,i? → p′j,i|Dpcri | 1 ≤ i, j ≤ n} ∪

{pj,i? → pj |Dpns
i
, pnsj,i? → pnsj |Dpns

i
| 1 ≤ i, j ≤ n} ∪

{Ei → ε|C | 1 ≤ i ≤ n} ∪ {C → D,D → F}

where the symbol > shows the priority among the first group of rules in Rmark.
The rules here are used for two consecutive steps: First, the chosen point is marked
core or noise (based the number of points in its ε neighborhood) by changing p′i
to pcri or to pnsi depending on the number of Ei symbols that are present (these
were created in the previous step, their number corresponds to the number of
neighbors). Second, if the point is marked core, its ε neighborhood is also added
to this cluster (the cluster denoted by i).

The next group of rules serves to see if the recently created cluster (cluster i)
can be expanded further.

The DBSCAN Clustering Algorithm on P Systems 175

Rcheck2 = {pcrj,i → Hip
cr
j,i|Fp′k,i

, pncrj,i → Hip
ncr
j,i |Fp′k,i

, pnsj → Hip
ns
j,i?|Fp′k,i

,

pj → Hipj,i?|Fp′k,i
| for 1 ≤ i, j, k ≤ n, such that d(pj , pk) < ε} ∪

{F → F ′}.

These rules examine the neighborhood of the kth point which has recently been
added to the cluster denoted by i. The number of Hi symbols is the same as the
number of points in the ε neighborhood of point (k).

The next group of rules is the following.

Rmark2 = {p′k,i → pcrk,i|F ′(Hi)m > p′k,i → pncrk,i |F ′ | 1 ≤ i, k ≤ n} ∪
{pj,i? → p′j,i|F ′′pcrk,i

, pnsj,i? → p′j,i|F ′′pcrk,i
| 1 ≤ i, j, k ≤ n} ∪

{pj,i? → pj |F ′′pncr
k,i
, pnsj,i? → pnsj |F ′′pncr

i
| 1 ≤ i, j ≤ n} ∪

{Hi → ε|F ′ | 1 ≤ i ≤ n} ∪ {F ′ → F ′′}
{F ′′ → F |p′k,i

> F ′′ → A | 1 ≤ i, k ≤ n},

where m = MinPts, as before. Similarly to Rmark, these rules decide whether the
cluster denoted by i should be expanded with the elements of the ε neighborhood of
point (k). If the number of neighbors is sufficient, they are added to the cluster, and
also marked for further investigation. If there are points which are newly added to
the cluster, that is, if further neighborhood checks are necessary, then the symbol
F ′ is changed to F ′′, and then back to F , so the rules in Rcheck2 become applicable
again, and the checking process can repeated. If no new points are added to the
cluster, F ′′ is changed to A, so the rules in Rcheck are activated, and the search
for additional clusters can start with the identification of a yet unclassified point
by Rpick.

To see how the system Π operates, consider the initial configuration

Ap1 . . . pn.

By applying a rule Api → Bp′i ∈ Rpick for some 1 ≤ i ≤ n, a not yet classified
point (i) is chosen from the point set (1), . . . , (n), and we obtain

Bp1 . . . p
′
i . . . pn.

To show how the system works, we start with a more general case

Bx1 . . . p
′
i . . . xn,

where xi ∈ {pi, pnsi , pcri , pcri,j , pncri,j }.
Now, because B is present, the rules of Rcheck are applicable, so we get

C . . . p′i . . . y1Ei . . . ylEi . . .

where yj ∈ {pk,i?, pnsk,i? | for some 1 ≤ k ≤ n}, 1 ≤ j ≤ l. All symbols which
correspond to unclassified points or noise points (k) in the ε neighborhood of

176 György Vaszil

point (i) are marked as candidates for inclusion in the same cluster as (i) (denoted
by the index i?).

If the number of neighbors (equal to the number of Ei symbols) is not sufficient
(less than MinPts), we get

D . . . pnsi . . . y1 . . . yl . . . ,

and then
Fx1 . . . p

ns
i . . . xn

by the rules of Rmark. Now F is changed to F ′, F ′′, and then back to A, when the
rules of Rpick become applicable again, and the system continues with choosing
an other point for examination.

Otherwise, if the number of neighbors of point (i) are sufficient, we get

D . . . pcri . . . y1 . . . yl . . . ,

and then
F . . . pcri . . . p′X1,i . . . p

′
Xl,i

. . . ,

where 1 ≤ Xj ≤ n, 1 ≤ j ≤ l, marking the point (i) as core point, and marking its
neighbors as members of the cluster denoted by i.

Now, the newly added points (X1), . . . , (Xl), corresponding to the symbols
p′X1,i

, . . . , p′Xl,i
have to be checked, which is done by the rules of Rcheck2 If the ε

neighborhood of a point (k) contains a sufficient number of points, then similarly
to Rcheck, the rules of Rcheck2 introduce a sufficient number of Hi symbols for
the rule p′k,i → pcrk,i to be applicable, and point (k) is marked as a core point,
denoted by a corresponding symbol pcrk,i. Otherwise, if the number of neighbors is
not sufficient, then point (k) is marked as non-core, denoted by the symbol pncrk,i

introduced by the rule p′k,i → pncrk,i .
These checks are executed in parallel for all p′Xk,i

, resulting in marking some of
them core, some of them non-core, and priming all neighbors of core points in two
computational steps, using the rules in Rcheck2 and Rmark2. If the result contains
primed points, that is, points that have to be checked by counting the number of
their neghbors, then F ′′ is rewritten to F , so the process can start all over again,
otherwise it is rewritten to A, meaning that the cluster denoted by i cannot be
expanded any more, the search for new clusters can begin by picking a new point
using the rules of Rpick.

If all points are classified, then no rule of Rpick can be used, the system halts
in a configuration containing the symbol A, and with all points (i), 1 ≤ i ≤ n,
having a corresponding symbol, which is either

• pcri : point (i) is a core point, belonging to the cluster denoted by i,
• pcri,j : point (i) is a core point, belonging to the cluster denoted by j,
• pncri,j : point (i) is a non-core point, belonging to the cluster denoted by j,
• pnsi : point (i) is a noise point, it does not belong to any cluster.

The DBSCAN Clustering Algorithm on P Systems 177

4 Conclusion

We have shown how to implement the DBSCAN clustering algorithm on P systems.
The model we used worked with evolution rules, promoters and priorities, Due to
the parallel nature of P systems, our implementation has a time complexity of
O(n) which is clear improvement compared to the time complexity of O(n2) of a
sequential DBSCAN implementation. Our P system implementation presented in
in this paper is not the first one, but we believe that it is conceptually more simple
than the implementation presented in [11].

Considering the parallelity of our approach, the points of the dataset are ex-
amined by the algorithm one-by-one, but the number of neighbors of the examined
points is calculated in parallel. Moreover, all points examined in step 3 of the al-
gorithm (see the introduction for the numbering of the steps of the algorithm) are
examined in parallel which further reduces the time complexity of the P system
implementation. An interesting challenge would be to find a way in which the par-
allelity of the algorithm can further be increased, and thus, the time complexity
further reduced.

Acknowledgments

This research is supported in part by project no. K 120558 of the National Re-
search, Development and Innovation Fund of Hungary, financed under the K 16
funding scheme, and by the EFOP-3.6.1-16-2016-00022 project, co-financed by the
European Union and the European Social Fund.

References

1. Ciobanu, G., Pérez-Jiménez, M.J., Păun, G. (eds.): Applications of Membrane Com-
puting. Natural Computing Series, Springer (2006)

2. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering
clusters a density-based algorithm for discovering clusters in large spatial databases
with noise. In: Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining. pp. 226–231. KDD’96, AAAI Press (1996)

3. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 3rd edn. (2011)

4. Jiang, Y., Peng, H., Huang, X., Zhang, J., Shi, P.: A novel clustering algorithm based
on p systems. International journal of innovative computing, information & control:
IJICIC 10, 753–765 (01 2014)

5. Păun, G.: Computing with membranes. Journal of Computer and System Sciences
61(1), 108 – 143 (2000)

6. Păun, G.: Membrane Computing: An Introduction. Springer-Verlag, Berlin, Heidel-
berg (2002)

7. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-
puting. Oxford University Press, Inc., New York, NY, USA (2010)

178 György Vaszil

8. Xu, J., Liu, X., Xue, J.: Cluster analysis by a class of splicing p systems. In: Park,
J.J.J.H., Pan, Y., Kim, C.S., Yang, Y. (eds.) Future Information Technology. pp.
575–581. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

9. Xue, J., Liu, X.: A k-nearest based clustering algorithm by
P systems with active membranes. JSW 9(3), 716–725 (2014),
https://doi.org/10.4304/jsw.9.3.716-725

10. Zhang, G., Pérez-Jiménez, M.J., Gheorghe, M.: Real-life Applications with Mem-
brane Computing. Springer Publishing Company, Incorporated (2017)

11. Zhao, Y., Liu, X., Li, X.: An improved DBSCAN algorithm based on cell-like P
systems with promoters and inhibitors. PLoS ONE 13, e0200751 (Dec 2018)

Author Index

Alhazov, Artiom, 1, 29, 41

Battyányi, Péter, 59

Cienciala, Luděk, 79
Ciencialová, Lucie, 79
Csuhaj-Varjú, Erzsébet, 79

Freund, Rudolf, 1, 29, 41, 91

Gheorghe, Marian, 151

Ipate, Florentin, 151
Ivanov, Sergiu, 1, 29, 41

Leporati, Alberto, 109

Manzoni, Luca, 109
Mauri, Giancarlo, 109

Orellana-Mart́ın, David, 117, 127, 139, 165

Pérez-Hurtado, Ignacio, 139, 165
Pérez-Jiménez, Mario de Jesús, 41, 117, 127, 139, 165
Porreca, Antonio E., 109

Riscos-Núñez, Agust́ın, 117, 127, 139

Ţurlea, Ana, 151

Valencia-Cabrera, Luis, 117, 127, 165
Vaszil, György, 59, 171

Zandron, Claudio, 109

