
(Tissue) P Systems with Anti-Membranes

Artiom Alhazov1, Rudolf Freund2, Sergiu Ivanov3

1 Vladimir Andrunachievici Institute of
Mathematics and Computer Science
Academiei 5, Chişinău, MD-2028, Moldova
E-mail: artiom@math.md

2 TU Wien, Institut für Logic and Computation
Favoritenstraße 9–11, 1040 Wien, Austria
E-mail: rudi@emcc.at

3 IBISC, Université Évry, Université Paris-Saclay
23, boulevard de France, 91034 Évry, France
E-mail: sergiu.ivanov@univ-evry.fr

Summary. The concept of a matter object being annihilated when meeting its corre-
sponding anti-matter object is taken over for membranes as objects and anti-membranes
as the corresponding annihilation counterpart in P systems. Natural numbers can be
represented by the corresponding number of membranes with a specific label. Compu-
tational completeness in this setting then can be obtained with using only elementary
membrane division rules, without using objects. A similar result can be obtained for tis-
sue P systems with cell division rules and cell / anti-cell annihilation rules. In both cases,
as derivation modes we may take the standard maximally parallel derivation modes as
well as any of the maximally parallel set derivation modes (non-extendable (multi)sets of
rules, (multi)sets with maximal number of rules, (multi)sets of rules affecting the maximal
number of objects).

1 Introduction

The basic model of P systems as introduced in [12] can be considered as a dis-
tributed multiset rewriting system, where all objects – if possible – evolve in par-
allel in the membrane regions and may be communicated through the membranes.
Overviews on the field of P systems can be found in the monograph [13] and the
handbook of membrane systems [14]; for actual news and results we refer to the
P systems webpage [16] as well as to the Bulletin of the International Membrane
Computing Society.

Computational completeness (computing any partial recursive relation on non-
negative integers) can be obtained with using cooperative rules or with cat-
alytic rules (possibly) together with non-cooperative rules. We recall that non-
cooperative rules have the form a → w, where a is a symbol and w is a multiset,

30 A. Alhazov, R. Freund, and S. Ivanov

catalytic rules have the form ca → cw, where the symbol c is called the cata-
lyst, and cooperative rules have no restrictions on the form of the left-hand side.
Without additional control mechanisms, at least two catalysts are needed, see [7].
Using specific control mechanisms, as for example, rule labels or target agreement,
only one catalyst is needed, for example, see [6, 8, 9]. In [2, 1], another concept to
avoid cooperative rules is investigated: for any object a (matter), its anti-object
(anti-matter) a− is considered together with the corresponding annihilation rule
aa− → λ, which is assumed to exist in all membranes; this annihilation rule is
assumed to be a special non-cooperative rule having priority over all other rules in
the sense of weak priority (e.g., see [3], i.e., other rules then also may be applied if
objects cannot be bound by some annihilation rule any more). For spiking neural
P systems, the idea of anti-matter has been introduced in [11] with anti-spikes
as anti-matter objects. In [5] the power of anti-matter for solving NP-complete
problems is exhibited.

Although, as expected (for example, compare with the Geffert normal forms,
see [15]), the annihilation rules are rather powerful, it is still surprising that using
matter/anti-matter annihilation rules as the only non-cooperative rules, with the
annihilation rules having weak priority, computational completeness can already
be obtained without using any catalyst, see [2, 1], whereas usually at least one
catalyst is needed even when using other control mechanisms, for example, see [2].

Natural numbers can be represented by the corresponding number of mem-
branes with a specific label. Hence, in this paper we take over the idea of anti-
objects for membranes, i.e., for every membrane []h we take the anti-membrane
[]h− and the membrane / anti-membrane annihilation rule []h[]h−→ λ. In the
simplest case, we only use elementary membranes, but no objects, and elementary
membrane division, i.e., rules of the form []h→[]h′ []h′′ , possibly also allowing
membrane renaming rules of the form []h→[]h′ or membrane deletion rules of the
form []h→ λ. In this setting, computational completeness then can be obtained
with using only elementary membrane division rules, without using objects, to-
gether with anti-membranes and membrane / anti-membrane annihilation rules.

Natural numbers can also be represented by the corresponding number of cells
with a specific label. Hence, a similar computational completeness result can also
be obtained for tissue P systems with cell division rules and cell / anti-cell annihi-
lation rules.

In both cases, as derivation modes we may take the standard maximally parallel
derivation modes as well as any of the maximally parallel set derivation modes
(non-extendable (multi)sets of rules, (multi)sets with maximal number of rules,
(multi)sets of rules affecting the maximal number of objects).

2 Prerequisites

The set of integers is denoted by Z, and the set of non-negative integers by N.
Given an alphabet V , a finite non-empty set of abstract symbols, the free monoid

(Tissue) P Systems with Anti-Membranes 31

generated by V under the operation of concatenation is denoted by V ∗. The ele-
ments of V ∗ are called strings, the empty string is denoted by λ, and V ∗\{λ} is
denoted by V +. For an arbitrary alphabet V = {a1, . . . , an}, the number of occur-
rences of a symbol ai in a string x is denoted by |x|ai , while the length of a string x
is denoted by |x| =

∑
ai∈V |x|ai . The Parikh vector associated with x with respect

to a1, . . . , an is (|x|a1 , . . . , |x|an). The Parikh image of an arbitrary language L
over {a1, . . . , an} is the set of all Parikh vectors of strings in L, and is denoted by
Ps(L). For a family of languages FL, the family of Parikh images of languages
in FL is denoted by PsFL, while for families of languages over a one-letter (d-
letter) alphabet, the corresponding sets of non-negative integers (d-vectors with
non-negative components) are denoted by NFL (NdFL).

A (finite) multiset over a (finite) alphabet V = {a1, . . . , an}, is a mapping f :

V → N and can be represented by 〈af(a1)1 , . . . , a
f(an)
n 〉 or by any string x for which

(|x|a1 , . . . , |x|an) = (f(a1), . . . , f(an)). In the following we will not distinguish
between a vector (m1, . . . ,mn), a multiset 〈am1

1 , . . . , amn
n 〉 or a string x having

(|x|a1 , . . . , |x|an) = (m1, . . . ,mn). Fixing the sequence of symbols a1, . . . , an in an
alphabet V in advance, the representation of the multiset 〈am1

1 , . . . , amn
n 〉 by the

string am1
1 . . . amn

n is unique. The set of all finite multisets over an alphabet V is
denoted by V ◦.

The family of regular and recursively enumerable string languages is denoted
by REG and RE, respectively. For more details of formal language theory the
reader is referred to the monographs and handbooks in this area as [4] and [15].

Register machines

A register machine is a tuple M = (m,B, l0, lh, P), where m is the number of
registers, B is a set of labels, l0 ∈ B is the initial label, lh ∈ B is the final
label, and P is the set of instructions bijectively labeled by elements of B. The
instructions of M can be of the following forms:

• l1 : (ADD(j), l2, l3), with l1 ∈ B\{lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Increases the value of register j by one, followed by a non-deterministic jump
to instruction l2 or l3. This instruction is usually called increment.

• l1 : (SUB(j), l2, l3), with l1 ∈ B\{lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
If the value of register j is zero then jump to instruction l3; otherwise, the
value of register j is decreased by one, followed by a jump to instruction l2.
The two cases of this instruction are usually called zero-test and decrement,
respectively.

• lh : HALT . Stops the execution of the register machine.

A configuration of a register machine is described by the contents of each register
and by the value of the current label, which indicates the next instruction to be
executed. Computations start by executing the instruction l0 of P , and terminate
with reaching the HALT-instruction lh.

For useful results on the computational power of register machines, we refer to
[10].

32 A. Alhazov, R. Freund, and S. Ivanov

3 P Systems with Active Membranes and Anti-Membranes

For using anti-matter as a frontier of tractability, we refer to [5], where some
standard definition of P systems with active membranes can be found. We here
consider a special rather restricted model, where no objects are used and inside
the skin membrane only the following types of rules for elementary membranes are
used:

elementary membrane division []h→[]h′ []h′′

the elementary membrane []h is divided into two membranes, possibly chang-
ing the label h of the parent membrane []h to two new labels h′, h′′ for the
child membranes []h′ and []h′′

changing membrane label []h→[]h′

the label h of the elementary membrane []h is changed to h’

elementary membrane deletion []h→ λ
the elementary membrane []h is deleted

membrane / anti-membrane annihilation []h[]h−→ λ
the elementary membrane []h and its corresponding anti-membrane []h′ an-
nihilate each other

Formally, a P system with active membranes and anti-membranes (a PAMS for
short) is a construct Π = (H ∪ {0},[]0, w0, R) where H is the set of membrane
labels used in the membrane rules specified in R, []0 denotes the skin membrane
enclosing the initial set of elementary membranes w0 with labels from H, and R
is the set of rules of the forms described above, with the labels of the elementary
membranes taken from H.

In any computation step of Π a multiset of rules is chosen from the set R in
such a way that no further rule can be added to it so that the obtained multiset
would still be applicable to the existing membranes in the skin membrane. We
emphasize that membrane / anti-membrane annihilation rules have weak priority
over all other rules, i.e., as long as membrane / anti-membrane annihilation rules
may bind some membranes, other rules are not allowed to yet be taken into the
multiset of rules constructed to be maximal.

A configuration of the system can be represented by the membranes inside the
skin membrane. Starting from a given initial configuration and applying evolution
rules as described above, we get transitions among configurations; a sequence of
transitions forms a computation. A computation is halting if it reaches a configu-
ration where no rule can be applied any more.

In the generative case, a halting computation has associated a result, in the
form of the number of membranes with the same labels present in the skin mem-
brane; their numbers represents a vector of natural numbers. In the accepting case,
all (vectors of) non-negative integers are accepted whose input, given as the cor-
responding numbers of membranes in the skin membrane in addition to w0, leads

(Tissue) P Systems with Anti-Membranes 33

to a halting computation. The set of non-negative integers and the set of (Parikh)
vectors of non-negative integers generated/accepted as results of halting computa-
tions in Π are denoted by Nδ(Π) and Psδ(Π), respectively, with δ ∈ {gen, acc}.
The corresponding families of sets of non-negative integers and the sets of vectors
of non-negative integers generated/accepted by PAMSs are denoted by Nδ(PAMS)
and Psδ(PAMS), respectively.

4 Tissue P Systems with Cell Division and Anti-Cells

Instead of considering elementary membranes inside the skin membrane, we may
also consider cells floating in a common environment. Then instead of anti-
membranes, we consider anti-cells, i.e., cells with the anti-label. Again, we here
consider a special rather restricted model, where no objects are used and only the
following types of rules for cells in the tissue P system are used:

cell division #h→#h′#h′′

the cell #h is divided into two cells, possibly changing the label h of the parent
cell #h to two new labels h′, h′′ for the child cells #h′ and #h′′

changing cell label #h→#h′

the label h of cell #h is changed to h’

cell deletion #h→ λ
the cell []h is deleted

cell / anti-cell annihilation #h#h−→ λ
the cell #h and its corresponding anti-cell #h− annihilate each other

Formally, a tissue P system with anti-cells (a tPAMS for short) is a construct
Π = (H,w0, R) where H is the set of cell labels used in the rules specified in R,
w0 is the initial set of cells with labels from H, and R is the set of rules of the
forms described above, with the labels of the cells taken from H.

In any computation step of Π a multiset of rules is chosen from the set R in
such a way that no further rule can be added to it so that the obtained multiset
would still be applicable to the existing cells. We emphasize that again we assume
cell / anti-cell annihilation rules to have weak priority over all other rules, i.e., as
long as cell / anti-cell annihilation rules may bind some cells, other rules are not
allowed to yet be taken into the multiset of rules constructed to be maximal.

A configuration of the system can be represented by the currently existing
cells. Starting from a given initial configuration and applying evolution rules as
described above, we get transitions among configurations; a sequence of transitions
forms a computation. A computation is halting if it reaches a configuration where
no rule can be applied any more.

34 A. Alhazov, R. Freund, and S. Ivanov

In the generative case, a halting computation has associated a result, in the
form of the number of cells present in the system; their numbers represents a vector
of natural numbers. In the accepting case, all (vectors of) non-negative integers
are accepted whose input, given as the corresponding numbers of initial cells in
addition to w0, leads to a halting computation. The set of non-negative integers and
the set of (Parikh) vectors of non-negative integers generated/accepted as results
of halting computations in Π are denoted by Nδ(Π) and Psδ(Π), respectively,
with δ ∈ {gen, acc}. The corresponding families of sets of non-negative integers
and the sets of vectors of non-negative integers generated/accepted by tPAMSs
are denoted by Nδ(tPAMS) and Psδ(tPAMS), respectively.

5 Results

As a first result, we observe that rules changing membrane label, i.e., []h→[]h′ , and
elementary membrane deletion rules, i.e., []h→ λ, are not needed and can be re-
placed by using only elementary membrane division and suitable membrane / anti-
membrane annihilation rules.

Lemma 1. Rules changing membrane label, i.e., []h→[]h′ , and elementary mem-
brane deletion rules, i.e., []h→ λ, can be simulated by elementary membrane
division and membrane / anti-membrane annihilation rules.

Proof. A rule changing the membrane label, i.e., []h→[]h′ , can be simulated by
the rules []h→[]h′ []h′′ , []h′′→[]g[]g− , and []g[]g−→ λ, where h′′, g, g− are new
labels (separately for each label h).

An elementary membrane deletion rule, i.e., []h→ λ, can be simulated by the
rules []h→[]g[]g− and []g[]g−→ λ, where g, g− are new labels (separately for
each label h). ut

A similar result obviously also holds for tPAMS: rules changing a cell label,
i.e., #h→#h′ , and cell deletion rules, i.e., #h→ λ, are not needed and can be
replaced by using only cell division and suitable cell / anti-cell annihilation rules.
The corresponding proof verbatim follows the proof of Lemma 1, just replacing
the notation []h by #h.

Corollary 1. Rules changing cell label, i.e., #h→#h′ , and cell deletion rules, i.e.,
#h→ λ, can be simulated by cell division and cell / anti-cell annihilation rules.

A PAMS only using elementary membrane division and membrane / anti-
membrane annihilation rules is called a PAMS in normal form. As an immediate
consequence of Lemma 1 we obtain the following normal form theorem:

Theorem 1. For every PAMS Π we can construct a PAMS Π ′ in normal form
such that Nδ(Π) = Nδ(Π

′) and Psδ(Π) = Psδ(Π
′), with δ ∈ {gen, acc}.

(Tissue) P Systems with Anti-Membranes 35

A similar normal form result obviously also holds for tPAMS as an immediate
consequence of Corollary 1:

Corollary 2. For every tPAMS Π we can construct a tPAMS Π ′ in normal form
such that Nδ(Π) = Nδ(Π

′) and Psδ(Π) = Psδ(Π
′), with δ ∈ {gen, acc}.

5.1 Computational Completeness

We now show that PAMSs characterize the families NRE and PsRE, respectively.
The main proof idea – as used very often in the area of P systems – is to simulate
(the computations of) register machines, as carried out in a similar way in [1] for
P systems with anti-matter.

Theorem 2. For any Y ∈ {N,Ps} and δ ∈ {gen, acc},

Yδ(PAMS) = Y RE.

Proof. Let M = (m,B, l0, lh, P) be a register machine. We now construct a PAMS
Π which simulates (the computations of) M :

• Π = (H ∪ {0},[]0, w0, R);
• H = {r, r− | 1 ≤ r ≤ m} ∪ {l, l′ | l ∈ B} ∪ {#,#−} is the set of labels for the

elementary membranes inside the skin membrane;
the label r, 1 ≤ r ≤ m, is for the copies of membrane []r representing the
contents of register r; the labels r− are for the corresponding anti-membranes;

• in the generating case, initially the skin membrane contains only the elemen-
tary membrane []l0 ; in the accepting case, suitable copies of membranes for
representing the input vector are to be added;

• R contains the rules described in the following.

The contents of register r is represented by the number of copies of the ele-
mentary membrane []r, 1 ≤ r ≤ m, and for each membrane []r we also consider
the corresponding anti-membrane []r− .

The instructions of M are simulated by the following rules in R1:

• l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Simulated by the rules

[]l1 →[]r[]l2 and []l1 →[]r[]l3 .

• l1 : (SUB (r) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ r ≤ m.
As rules common for the simulations of all SUB-instructions, we have

[]r− →[]#− , 1 ≤ r ≤ m,

and the annihilation rules

[]r[]r− → λ, 1 ≤ r ≤ m, and []#[]#− → λ

36 A. Alhazov, R. Freund, and S. Ivanov

as well as the trap rules

[]#− → []#[]# and []# → []#[]#;

these last two rules lead the system into an infinite computation whenever
a membrane with one of the trap symbols # or #− is left without being
annihilated.

The zero test for instruction l1 is simulated by the rules

[]l1 → []l1′ []r− and []l′1 → []#[]l3 .

The membrane labeled by #, generated by the second rule []l′1 → []#[]l3 can
only be eliminated if the anti-membrane []r− generated by the first rule []l1
→ []l1′ []r− is not annihilated by []r, i.e., only if register r is empty, which
allows for applying the rule []r− → []#− and for using the annihilation rule
[]#[]#− → λ afterwards in the next derivation step.

The decrement case for instruction l1 is simulated by the rule

[]l1 →[]l2 []r− .

The anti-membrane []r− either correctly annihilates one copy of membrane []r,
thus decrementing the register r, or else traps an incorrect guess by forcing the
anti-membrane []r− to evolve to []#− and then to []#[]# in the next two
steps in case register r is empty.

We finally observe that these two remaining derivation steps for trapping the
decrement case as well as the remaining derivation step for correctly completing
the decrement case or the zero test case do not influence the correct simulation
of another SUB-instruction, even on the same register r, as the involved symbols
have evolved at least one step before they could influence the symbols being
generated by the new simulation sequence.

• lh : HALT . Simulated by []lh → λ.

When the computation in M halts, the membrane []lh is removed, and no
further rules can be applied provided the simulation has been carried out correctly,
i.e., if no membranes labeled by trap symbols # are present in this situation. The
remaining membranes in the system represent the result computed by M . ut

For δ ∈ {gen, acc}, let us denote the families of sets of non-negative integers
and the sets of vectors of non-negative integers generated/accepted by PAMSs in
normal form by Nδ(NFPAMS) and Psδ(NFPAMS), respectively.

Then, by combining Lemma 1 and Theorem 2, we obtain the following result:

Theorem 3. For any Y ∈ {N,Ps} and δ ∈ {gen, acc},

Yδ(NFPAMS) = Y RE.

(Tissue) P Systems with Anti-Membranes 37

Similar results obviously also hold for tissue P systems with anti-cells; the
corresponding proofs again verbatim follow the proofs of Theorems 2 and 3, just
replacing the notation []h by #h.

Corollary 3. For any Y ∈ {N,Ps} and δ ∈ {gen, acc},

Yδ(PAMS) = Y RE.

Corollary 4. For any Y ∈ {N,Ps} and δ ∈ {gen, acc},

Yδ(NFPAMS) = Y RE.

5.2 Derivation Modes

So far, we only have considered the maximally parallel derivation mode. Yet a
thorough investigation of the proofs given so far in this section shows that in a
successful derivation each rule need only be applied at most once, which means
that instead of the maximally parallel derivation mode we can use any of the set
derivation modes, where each rule can only be applied once, defined as follows:

setmax take a non-extendable set of rules
setmaxrules take a non-extendable set of rules with the maximal number of rules

possible
setmaxobjects take a non-extendable set of rules affecting the maximal number

of objects

The concept of using the maximal number of rules or objects can also be taken
over for the maximally parallel derivation mode:

max take a non-extendable multiset of rules
maxrules take a non-extendable multiset of rules with the maximal number of

rules possible
maxobjects take a non-extendable multiset of rules affecting the maximal number

of objects

Let us now specify the derivation mode

γ ∈ {max,maxrules,maxobjects, setmax, setmaxrules, setmaxobjects, }

as additional subscript to δ, δ ∈ {gen, acc}, for denoting the set of natural numbers
and the set of vectors of natural numbers obtained by PAMS and tPAMS, i.e., we
now write Nγ,δ and Psγ,δ, respectively.

Moreover, we use the bracket notation [t]PAMS to indicate that we mean both
PAMS and tPAMS, respectively, and in a similar way for PAMS and tPAMS in
normal form.

With any of these derivation modes, using sets or multisets of rules, we now get
the same normal form and computational completeness results as for the maximally
parallel derivation mode max as established so far:

38 A. Alhazov, R. Freund, and S. Ivanov

For the [t]PAMS to be transformed into normal form we observe that in the
construction of the normal form given in the proof of Lemma 1, for each membrane
label we used new additional labels and thus the corresponding new rules are
independent from other such rules needed for simulating the change of a membrane
label or the deletion of a membrane; hence, if in one of the set modes, one such
rule is replaced to get the normal form, all the simulating rules are also needed
only once, too, during the simulation sequences.

Hence, we can summarize the results obtained in this paper in the following
form, for any of the derivation modes defined above.

We first state our normal form theorem:

Theorem 4. For every [t]PAMS Π we can construct a [t]PAMS Π ′ in normal
form such that

Yγ,δ(Π) = Yγ,δ(Π
′)

for any Y ∈ {N,Ps} and any δ ∈ {gen, acc} as well as any

γ ∈ {max,maxrules,maxobjects, setmax, setmaxrules, setmaxobjects}.

As our main result, we have shown computational completeness for PAMS and
tPAMS, even in normal form, with all the derivation modes as defined above: we
again emphasize that in the proofs given so far in this section, in a successful
derivation each rule need only be applied at most once, hence, the simulations of
the instructions of a register machine work for the set modes as well. On the other
hand, whether the trap rule []# → []#[]# is applied only once or as often as
possible makes no difference for the desired effect to keep the system trapped in
an infinite loop.

Theorem 5. For any Y ∈ {N,Ps} and δ ∈ {gen, acc},

Yγ,δ([NF][t]PAMS) = Y RE

for any

γ ∈ {max,maxrules,maxobjects, setmax, setmaxrules, setmaxobjects}.

Finally we mention that computational completeness can also be extended from
the generating and accepting case to the computing case, i.e., PAMS and tPAMS,
even in normal form, can also compute any partial recursive function or relation.

6 Conclusion

In this paper we have taken over the idea of matter and anti-matter objects in
P systems to P systems with active membranes, now considering membranes and

(Tissue) P Systems with Anti-Membranes 39

anti-membranes as the objects interacting with each other in annihilation rules,
which we assume to have weak priority over all other rules. We have investigated a
restricted model of P systems with active membranes, without any objects in the
whole system and instead only elementary membranes in the skin membrane. In
this model, natural numbers are represented as copies of elementary membranes
with a specific label. In such a variant of P systems with active membranes, com-
putations of register machines can be simulated by using only (a special variant of)
elementary membrane division rules and membrane/anti-membrane annihilation
rules.

Moreover, we have established similar results for tissue P systems with cell
division rules and cell / anti-cell annihilation rules. In both cases, as derivation
modes we may also take the standard maximally parallel derivation mode(s) as well
as any of the maximally parallel set derivation modes (non-extendable (multi)sets
of rules, (multi)sets with maximal number of rules, (multi)sets of rules affecting
the maximal number of objects) to obtain computational completeness.

In a more general model, we need not restrict ourselves to elementary mem-
branes interacting with each other in membrane / anti-membrane annihilation
rules. In fact, we may consider a variant where in such a reaction only the out-
ermost membranes of two non-elementary membranes react, emitting the interior
membrane structure into the skin membrane. In such a variant, non-elementary
membrane division becomes relevant, as well as rules allowing for putting a new
membrane around a given membrane structure, i.e., rules of the form []h →
[[]h′]h′′ . Finally, as it is common in P systems with active membranes, in ad-
dition objects may be added and guide the membrane rules (yet still evolution
rules for the objects may be forbidden). Such variants remain to be investigated
in some future papers based on this one.

Acknowledgements

The ideas for this paper came up in the inspiring atmosphere of the Brainstorming
Week on Membrane Computing in Sevilla this year.

References

1. Alhazov, A., Aman, B., Freund, R.: P systems with anti-matter. In: Gheorghe, M.,
Rozenberg, G., Salomaa, A., Sośık, P., Zandron, C. (eds.) Membrane Computing -
15th International Conference, CMC 2014, Prague, Czech Republic, August 20-22,
2014, Revised Selected Papers. Lecture Notes in Computer Science, vol. 8961, pp.
66–85. Springer (2014). https://doi.org/10.1007/978-3-319-14370-5 5

2. Alhazov, A., Aman, B., Freund, R., Păun, Gh.: Matter and anti-matter
in membrane systems. In: Maćıas-Ramos, L.F., Mart́ınez-del-Amor, M.A.,
Păun, Gh., Riscos-Núñez, A., Valencia-Cabrera, L. (eds.) Proceedings of the
Twelfth Brainstorming Week on Membrane Computing. pp. 1–26 (2014),
http://www.gcn.us.es/files/12bwmc/001 bwmc2014AntiMatter.pdf

40 A. Alhazov, R. Freund, and S. Ivanov

3. Alhazov, A., Sburlan, D.: Static sorting P systems. In: Ciobanu, G., Pérez-Jiménez,
M.J., Păun, Gh. (eds.) Applications of Membrane Computing, pp. 215–252. Natural
Computing Series, Springer (2006). https://doi.org/10.1007/3-540-29937-8 8

4. Dassow, J., Păun, Gh.: Regulated Rewriting in Formal Language Theory. Springer
(1989), https://www.springer.com/de/book/9783642749346

5. Dı́az-Pernil, D., Peña-Cantillana, F., Alhazov, A., Freund, R., Gutiérrez-Naranjo,
M.A.: Antimatter as a frontier of tractability in membrane computing. Fundamenta
Informaticae 134(1-2), 83–96 (2014). https://doi.org/10.3233/FI-2014-1092

6. Freund, R.: Purely catalytic P systems: Two catalysts can be sufficient for
computational completeness. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Ro-
gozhin, Yu. (eds.) CMC14 Proceedings – The 14th International Conference on
Membrane Computing, Chişinău, August 20–23, 2013. pp. 153–166. Institute of
Mathematics and Computer Science, Academy of Sciences of Moldova (2013),
http://www.math.md/cmc14/CMC14 Proceedings.pdf

7. Freund, R., Kari, L., Oswald, M., Sośık, P.: Computationally universal P systems
without priorities: two catalysts are sufficient. Theoretical Computer Science 330(2),
251–266 (2005). https://doi.org/10.1016/j.tcs.2004.06.029

8. Freund, R., Oswald, M.: Catalytic and purely catalytic P automata: control mecha-
nisms for obtaining computational completeness. In: Bensch, S., Drewes, F., Freund,
R., Otto, F. (eds.) Fifth Workshop on Non-Classical Models for Automata and Ap-
plications - NCMA 2013, Ume̊a, Sweden, August 13 - August 14, 2013, Proceedings.
books@ocg.at, vol. 294, pp. 133–150. Österreichische Computer Gesellschaft (2013)

9. Freund, R., Păun, Gh.: How to obtain computational completeness in P systems with
one catalyst. In: Neary, T., Cook, M. (eds.) Proceedings Machines, Computations and
Universality 2013, MCU 2013, Zürich, Switzerland, September 9-11, 2013. EPTCS,
vol. 128, pp. 47–61 (2013). https://doi.org/10.4204/EPTCS.128.13

10. Minsky, M.L.: Computation. Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, NJ (1967)

11. Pan, L., Păun, Gh.: Spiking neural P systems with anti-matter.
International Journal of Computers, Communications & Con-
trol 4(3), 273–282 (2009). https://doi.org/10.15837/ijccc.2009.3.2435,
http://univagora.ro/jour/index.php/ijccc/article/download/2435/901

12. Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences
61(1), 108–143 (2000). https://doi.org/10.1006/jcss.1999.1693

13. Păun, Gh.: Membrane Computing: An Introduction. Springer (2002).
https://doi.org/10.1007/978-3-642-56196-2

14. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press (2010)

15. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer (1997).
https://doi.org/10.1007/978-3-642-59136-5

16. The P Systems Website. http://ppage.psystems.eu/

