
Beyond Generalized Multiplicities:
Register Machines over Groups

Artiom Alhazov1, Rudolf Freund2, Sergiu Ivanov3

1 Vladimir Andrunachievici Institute of
Mathematics and Computer Science
Academiei 5, Chişinău, MD-2028, Moldova
E-mail: artiom@math.md

2 TU Wien, Institut für Logic and Computation
Favoritenstraße 9–11, 1040 Wien, Austria
E-mail: rudi@emcc.at

3 IBISC, Université Évry, Université Paris-Saclay
23, boulevard de France, 91034 Évry, France
E-mail: sergiu.ivanov@univ-evry.fr

Summary. Register machines are a classic model of computing, often seen as a canonical
example of a device manipulating natural numbers. In this paper, we define register
machines operating on general groups instead. This generalization follows the research
direction started in multiple previous works. We study the expressive power of register
machines as a function of the underlying groups, as well as of allowed ingredients (zero
test, partial blindness, forbidden regions). We put forward a fundamental connection
between register machines and vector addition systems. Finally, we show how registers
over free groups can be used to store and manipulate strings.

1 Introduction

Register machines are traditionally seen as a model of computing manipulating
non-negative numbers. However, quite some time ago integer numbers were al-
ready considered as the base set for register contents [8]. Such machines are tradi-
tionally called blind as long as they do not allow testing registers for zero, except
eventually testing all registers for zero at the end. The computational power of
such blind register machines is inferior to that of “conventional” register machines
over natural numbers [2]. If the register machine is not allowed to go below zero,
but can neither explicitly test its registers for zero, it is called partially blind.

Even further, we need not restrict the definition of the model to numbers. For
example, Section 3 of [2] gives a very general definition of register machines whose
registers may contain elements of any set A. However, going this far up the abstrac-
tion scale loses too much structure: almost nothing can be said about such general

2 A. Alhazov, R. Freund, and S. Ivanov

constructs. In this paper, we focus on a level of abstraction which is in between
the two: we consider register machines over finitely presented groups. This gener-
alization comes in as a natural sequel to multiple previous works. For example, [9]
introduced integer vector addition systems by lifting the traditional restriction on
the vectors to only contain non-negative components. Subsequently, [7] generalized
P systems (compartmentalized multiset rewriting systems [18]) to allow multiplic-
ities of objects to come from Abelian groups instead of just natural numbers.
Finally, papers [2, 3] come back on the less general case of integer multiplicities
and show a number of new properties of integer vector addition systems and blind
register machines.

As almost any work on register machines, studies on register machines over
groups have multiple interesting consequences for P systems. The present paper
lays the ground for further exploration of P systems with generalized multisets
and raises a number of important questions, for example, about the ways in which
multiplicities from non-commutative groups can be interpreted. As we will show
later, registers containing elements of the free group can be used to emulate strings;
what would be the meaning of string multiplicities in P systems?

In this work, we define register machines over arbitrary finite families of groups,
with or without zero test, as well as partially blind register machines, and register
machines with forbidden regions (Section 3). Each of these ingredients is meant
to generalize individual features which appear in the classic definition of regis-
ter machines. We then study the computational power of the variants we define:
we compare the generating and the accepting modes, single- and multi-register
machines, vector addition systems with and without states (Section 4).

As it often happens, all of the results we present in this paper originate from
the fruitful discussions the team of authors had during the Brainstorming Week
on Membrane Computing 2019 in Seville, Spain. Even though this work is not
explicitly situated within the domain of membrane computing, we believe that it
may have an important influence on the study of generalized multiplicities in P
systems. We would therefore like to thank the organizing team for giving us the
opportunity to work on these exciting topics.

2 Preliminaries

In this paper, we use the symbols R, Z, and N to refer to the set of real numbers,
integer numbers, and the set of natural numbers including 0.

For an alphabet V , by V ∗ we denote the free monoid generated from the el-
ements of V under the operation of concatenation, i.e., containing all possible
strings over V. The empty string is denoted by λ. The family of all recursively
enumerable sets of strings is denoted by RE, the corresponding family of recur-
sively enumerable sets of Parikh sets (vectors of natural numbers) and of number
sets is denoted by PsRE and NRE, respectively. For an extensive introduction to
the theory of formal languages, we recommend [18, 19].

Beyond Generalized Multiplicities: RMs over Groups 3

Given a set A, a total function f : A×A→ A is called a binary operation over A.
We will use the infix notation afb to refer to f(a, b), for a, b ∈ A. A relation over
a set A is any subset R ⊆ A × A. As for binary operations, we will also use the
infix notation aRb for (a, b) ∈ R.

A relation ≤ ⊆ A×A is a called a total order if the following statements hold
for every three elements a, b, c ∈ A:

• antisymmetry: if a ≤ b and b ≤ a then a = b,
• transitivity: if a ≤ b and b ≤ c then a ≤ c,
• totality: either a ≤ b or b ≤ a.

For a, b ∈ A and a total order ≤ on A, we will sometimes write b ≥ a as equivalent
to a ≤ b, and use a < b (a > b) to denote that a ≤ b and a 6= b (a ≥ b and a 6= b).

2.1 Groups and Group Presentations

Groups

A group is the structure G = (G′, ◦) where G′ is the set of elements (the underlying
set) and ◦ : G′ × G′ → G′ a binary operation over G′ satisfying the following
properties (group axioms):

• closure: for any a, b ∈ G′, a ◦ b ∈ G′,
• associativity : for any a, b, c ∈ G′, (a ◦ b) ◦ c = a ◦ (b ◦ c),
• identity : there exists a (unique) element e ∈ G′, called the identity, such that

e ◦ a = a ◦ e = a for all a ∈ G′, and
• invertibility: for any a ∈ G′, there exists a (unique) element a−1, called the

inverse of a, such that a ◦ a−1 = a−1 ◦ a = e.

The group G is called commutative or Abelian, if for any a, b ∈ G′, a◦ b = b◦a.
A subgroup of the group (G, ◦) is any group (H, ◦) with H ⊆ G and the same

group operation ◦.
For any element b ∈ G′, the order of b is the smallest number n ∈ N such that

bn = e provided such n exists, and then we write ord (b) = n. If no such n exists,
{bn | n ≥ 1} is an infinite subset of G′ and we write ord (b) =∞.

In the following, we will often use the same symbol G to refer both to a group
and to its underlying set.

Representations of groups

The definitions and examples from group theory we exhibit now follow the expo-
sition given in [1] and [2], based on the notions in [10]. In what follows, we will
use strings for representing group elements.

For any set B, the set B−1 is defined to contain the symbols representing the
“inverses” of the elements of B, i.e., B−1 =

{
b−1 | b ∈ B

}
. B (not containing the

identity) is called a generator set of the group G if every element a from G can be

4 A. Alhazov, R. Freund, and S. Ivanov

written as a finite product/sum of elements from B ∪ B−1, i.e., a = b1 ◦ · · · ◦ bm
for b1, . . . , bm ∈ B ∪B−1. In this paper, we restrict ourselves to finitely presented
groups, i.e., having a finite presentation 〈B | R〉 with B being a finite generator set
and moreover, R being a finite set of relations among these generators. Informally,
the group G = 〈B | R〉 is the largest one generated by B subject only to the group
axioms and the relations in R. We will restrict ourselves to relations of the form
b1 ◦ · · · ◦ bm = e with b1, . . . , bm ∈ B; omitting the identity e we write b1 ◦ · · · ◦ bm,
which then is called relator.

Example 1. The free group F (B) = (I (B) , ◦) can be written as 〈B | ∅〉 (or even
simpler as 〈B〉) because it has no restricting relations.

Example 2. The cyclic group of order n has the presentation 〈{a} | {an}〉 (or, omit-
ting the set brackets, as 〈a | an〉). It is also known as Zn or as the quotient group
Z/nZ.

Example 3. Z is a special case of an Abelian group generated by 1 and its in-
verse −1, i.e., Z is the free group generated by B = {1}. Zd is the Abelian group
generated by the unit vectors (0, . . . , 1, . . . , 0) and their inverses (0, . . . ,−1, . . . , 0).
It is well known that every finitely generated Abelian group is a direct sum of a
torsion group and a free Abelian group, where the torsion group may be written
as a direct sum of finitely many quotient groups of the form Z/pkZ, with p a prime
and k ∈ N, and the free Abelian group is a direct sum of finitely many copies of
Z.

Example 4. A very well-known example of a non-Abelian group is the hexagonal
group with the finite presentation

〈
a, b, c | a2, b2, c2, (abc)2

〉
. The relators a2, b2,

and c2 indicate that all three generators a, b, and c are self-inverse.

Remark 1. In this paper, we will restrict ourselves to finitely generated groups, for
which the word equivalence problem u = v is decidable, i.e., there exists a decision
procedure telling us whether u ◦ v−1 = e for two strings u and v. In this case, we
call G recursive or computable. If the set of relators R in a presentation 〈B | R〉
of G is computable (recursive), we call this a computable (recursive) presentation.
Clearly, any finitely presented group is computable.

A group (G,+) in which the group operation can be interpreted as addition is
called additive. For such groups, the inverse of b ∈ G is often written as −b, the
neutral element e as 0, and the sum a+(−b) as a−b, whenever no ambiguity arises.
Another kind of groups are multiplicative groups, in which the group operation
can be thought of as multiplication. For such groups, the inverse of b ∈ G is usually
written as b−1, and the group operation as multiplication: a · b or ab.

For Abelian groups, further shortcut notation is introduced to capture chained
applications of the operation to a single element. Consider z ∈ Z and a ∈ G. The
scalar product of a by z is defined as follows (using either additive or multiplicative
notation):

Beyond Generalized Multiplicities: RMs over Groups 5

za =

az =

∑z
i=1 a, z > 0,

a0 = 0 (group identity), z = 0,

(−a)−z =
∑z

i=1(−a), z < 0.

A linearly or totally ordered group is construct (A,+,≤) where (A,+) is a
group, ≤ ⊆ A×A is a total order on A and, for any triple a, b, c ∈ A, the fact that
a ≤ b implies that c+ a ≤ c+ b and a+ c ≤ b+ c.

2.2 Register Machines

Register machines are well-known universal devices for computing (generating or
accepting) sets of vectors of natural numbers. The article [13] is one of the reference
works on the universality of register machines.

Definition 1. A register machine is the construct M = (m,B, l0, lh, P), where

• m is the number of registers,

• B is a set of labels bijectively labeling the instructions in the set P ,

• l0 ∈ B is the initial label,

• lh ∈ B is the final label, and

• P is the set of instructions.

The labeled instructions in P can be of the following forms:

• p : (ADD (r) , q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.

Increment the value of register r and non-deterministically jump to instruction
q or s.

• p : (SUB (r) , q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.

If the value of register r is not zero then decrement the value of register r
(decrement case) and jump to instruction q, otherwise jump to instruction s
(zero-test case).

• lh : HALT .

Stop the execution of the register machine.

A configuration of a register machine is the tuple C = (q, r1, . . . , rm), in which
r1, . . . , rm are the values of the registers and q is the current instruction label which
indicates which is the next instruction to execute. This label is often called the
state of the machine. An n-step computation of a register machine is a sequence of
configurations (Ci)0≤i≤n in which the configuration Ci+1 is obtained from Ci by
applying to Ci the instruction given by the current instruction label of Ci. The first
configuration C0 of a computation is usually referred to as the initial configuration
and its current instruction label must be l0. If, in the last configuration Cn, the
current instruction label is be lh, Cn is called a halting configuration and the whole
computation is called a halting computation.

6 A. Alhazov, R. Freund, and S. Ivanov

A register machine M can be seen as an accepting device, a generating device,
or as a device computing functions or relations. In the accepting case, the first k
registers of M are designated as input registers, and are initialized to a k-vector of
natural numbers v (the input vector). If there exists a halting computation of M
starting with this initial configuration, then v is accepted by M . Without losing
generality, we may only consider computations in which all registers are empty in
the halting configuration.

On the other hand, in the generating case, a single initial configuration is
fixed for all computations of M , the first k registers are designated as the output
registers, and for every halting computation of M , the k-vector contained in the
output registers in the halting configuration is said to be generated by M . Without
losing generality, we may only consider those computations of M in which all
registers with indices greater than k are empty in the halting configuration.

Finally, we can designate input and output registers (these may be disjoint) and
see M as establishing a binary relation between the contents of the input registers
in the initial configurations and the output registers in the halting configurations.
If this relation is functional, i.e., M associates at most one output vector to any
input vector, M can be seen as defining a function.

In this paper, we will only consider the accepting and the generating cases. We
will denote by Lacc(M) (respectively, by Lgen(M)) the set of input vectors accepted
(respectively, generated) by the register machine M . Similarly, for a family X of
register machines, we will denote by Lacc(X) (respectively, by Lgen(X)) the family
of sets of vectors accepted (respectively, generated) by the register machines in the
family X . We will use the same notations to denote the sets of languages accepted
(respectively, generated) by any other computing device M or any other family of
computing devices X . In case the operating mode is fixed by the definition of the
device (e.g., vector addition systems always generate), we omit the corresponding
subscript.

We use the notation RM to refer to the family of register machines defined
as above. It is folklore (e.g., see [16]) that Lacc(RM) = PsRE. Similarly, register
machines generate any recursively enumerable set of vectors of natural vectors,
Lgen(RM) = PsRE. A proof sketch: consider L ∈ PsRE, then build the machine
M such that it first non-deterministically generates a vector, and then runs a
sequence of instructions recognizing precisely the vectors in L.

Blind and Partially Blind Machines

Several papers consider weaker kinds of register machines: blind and partially blind
register machines, for example, see [2, 6, 8].

In partially blind register machines, the SUB instruction has the form p :
(SUB(r), q): if the register r is not empty, it is decremented and the register ma-
chine moves to state q, otherwise the machine crashes—the computation stops in a
non-halting configuration, yielding no result. In blind register machines, the regis-

Beyond Generalized Multiplicities: RMs over Groups 7

ters are allowed to contain negative values, meaning that the decrement instruction
always succeeds. However, valid computations of a blind machine are required to
have 0 in all non-output registers in halting configurations. The definitions of blind
and partially blind machines may vary from source to source: notably some sources
define blind register machines as partially blind, but without the zero check at the
end [6].

In this paper, we will give uniform definitions of various types of register ma-
chines.

A General Model for Register Machines

For the record, we recall here a very general definition of a register-machine-like
device given in [3].

Definition 2. A register-machine-like device over the set A is the tuple MA =
(m,A,B, l0, lh, P), where

• m ∈ N is the number of registers,

• A is the set of values the registers may contain,

• B is a finite set of instruction labels,

• l0 is the initial label,

• lh is the final label,

• P is a mapping associating an instruction to every label in B.

An instruction p is a function p : Am → Am × 2Q associating to every m-tuple of
values from A another m-tuple of such values and a set of new instruction labels
from B. A configuration C ∈ B × Am of MA is a tuple combining an instruction
label and the values of the m registers of MA.

2.3 Vector Addition Systems (VAS)

A vector addition system (VAS) of dimension n ∈ N is defined to be the pair
(w0,W), where w0 ∈ Nn is the start vector, and W is a finite set of vectors
from Zn, called addition vectors. An addition vector w ∈W is said to be applicable
to a vector x ∈ Nn if x + w ∈ Nn, i.e., if all the components of the vector x + w
are non-negative. A VAS evolves from the start vector w0 by sequentially adding
applicable addition vectors from W .

A vector addition system with states (VASS) is a VAS equipped with a finite
state control. Essentially, state labels are assigned to addition vectors and a graph
of states is given which defines the possible sequences of application of addition
vectors.

An extended model lifting the restriction that the valid vectors must have non-
negative components has recently been defined in [9] and studied in [3]: An integer

8 A. Alhazov, R. Freund, and S. Ivanov

vector addition system (Z-VAS) of dimension n ∈ N is the pair (w0,W), where
w0 ∈ Zn is the start vector and W ⊆ Zn is finite set of addition vectors. A Z-VAS
evolves from w0 by sequentially applying the addition vectors from W . The set of
vectors generated by a Z-VAS is defined to be the set of reachable vectors.

An integer vector addition system with states (Z-VASS) is a Z-VAS equipped
with a state control and is defined as a tuple (w0, Q, q0, qh, p, δ), where w0 ∈ Zn

is the start vector, Q is a finite set of state labels, q0 ∈ Q is the starting state,
qh ∈ Q is the halting state, p : Q \ {qh} → Zn is a function assigning a vector to
every state from Q \ {qh}, and δ : Q→ 2Q is a state transition function assigning
to each state the set of possible successor states. A Z-VASS starts in w0 and in
state q0, applies the addition vector p(q0), and non-deterministically moves into
one of the states from δ(q0). This process is iteratively repeated, until the halting
state qh is reached. The vector language generated by a Z-VASS is defined as the
set of all vectors which are reachable in the halting state qh.

It was shown in [11] that VASS are equivalent in expressive power to VAS (with-
out states): any n-dimensional VASS can be simulated by an (n+ 3)-dimensional
VAS. On the other hand, in [3, Section 6], it is proved that Z-VASS are strictly
more powerful than Z-VAS. This is one first example showing that changing the
nature of the objects on which a model of computing operates can affect its ex-
pressive power in important ways.

3 Register Machines over Groups

3.1 General Definition

In this section we extend the definition of register machines to allow their registers
to contain elements of arbitrary finitely presented groups.

Definition 3. Let m ∈ N and take the finite family of finitely presented groups
G = (Gi)1≤i≤m, with Gi = 〈Bi | Ri〉. A G-register machine (or a register machine
over the family G) is the construct MG = (G, B, l0, lh, P), where

• B is the set of labels bijectively labeling the instructions in the set P ,

• l0 ∈ B is the initial label,

• lh ∈ B is the final label, and

• P is the set of instructions.

The labeled instructions in P can be of the following forms:

• p : (ADD(r, b), T), with p ∈ B\{lh}, T ⊆ B, 1 ≤ r ≤ m, b ∈ Br.

Add the generator b of the group Gr = 〈Br | Rr〉 to the current contents of the
register r, then non-deterministically jump to one of the instructions in T .

Beyond Generalized Multiplicities: RMs over Groups 9

• lh : HALT .

Stop the execution of the register machine.

A configuration of a G-register machine is, like in the case of a classical register
machine, the tuple C = (q, r1, . . . , rm), in which ri ∈ Gi, 1 ≤ i ≤ m, are the values
of the registers, and q is the current instruction label which indicates the next
instruction to execute. This label is called the state of the machine. We define
the computations, halting, generating, and accepting for register machines over
the family G in the same way as for conventional register machines in Section 2.2.
In particular, k ≤ m registers are designated as input registers in the accepting
case, (respectively, as output registers in the generating case), meaning that the G-
register machine accepts (respectively, generates) vectors of the form (g1, . . . , gk),
where gj , 1 ≤ j ≤ k, belongs to a group Gi ∈ G, 1 ≤ i ≤ m, where different indices
i are assigned to different indices j.

Remark 2. Note that the ADD instructions as we define them here allow a non-
deterministic choice between more than two target states, as different from the
classical definition, in which only two target states are allowed. We allow a set
of possible target states because it simplifies the formulations of many properties
and results, without critically affecting the power of the model: indeed, multiple
target states can be easily simulated by a chain of dummy branching instructions.

Example 5. Consider the following family of 3 groups Z3 = (Z,Z,Z), where Z is
the usual Abelian group of integer numbers which can be presented in this way:
Z = 〈1 | a+b+(−a)+(−b)〉. A Z3-register machine MZ3 is almost a blind 3-register
machine: indeed, the three registers of MZ3 may contain any integer number, an
increment of a register r, r ∈ {1, 2, 3}, is done by the operation ADD(r, 1), and a
decrement by the operation ADD(r,−1). Nevertheless, MZ3 is not a blind register
machine, because no zero check is performed at the end of a computation: the only
restriction on the halting configuration is to have lh as the current instruction label.

Given a finite family of finitely generated computable groups G, we will use the
notation G-RM to refer to the family of G-register machines. We will sometimes
also use the notation ∗-RM =

⋃
G G-RM .

Remark 3. We observe that, in contrast to the original definition of register ma-
chines, the definition of G-register machines only introduces increment instructions
p : (ADD(r, b), T) and no decrement instructions p : (SUB(r, b), q, s), as decre-
menting by an element e ∈ Bi corresponds to incrementing by −e. On the other
hand, there is no direct check for zero in these ADD-instructions.

Remark 4. Register machines over groups as we define them here are somewhat
similar to previous works on automata operating on groups (e.g. [17]). However,
in our work, we rather focus on generalizing the ingredients forming register ma-
chines and describing them in a general setting, instead of analyzing their power
as language recognizers.

10 A. Alhazov, R. Freund, and S. Ivanov

Remark 5. We could extend the classical model of register machines to operate on
other algebraic structures than groups. In this paper, we choose to focus on groups
because these objects are rather well studied and there have already been previous
works on using groups as a substrate for computation (e.g., [5]).

Vector Addition Systems over Groups

Even though register machines and vector addition systems are traditionally seen
as quite different models and research on one often does not discuss the other
(see, for example, the classic works [13] and [4]), the connection between the two
is clearly rather strong, especially when considered in a more general setting. For
example, Z-VASS are equivalent in power to blind register machines [3]. In the
present paper, we explicitly enforce this connection by defining vector addition
systems over groups in terms of register machines over groups.

Definition 4. Consider a finitely generated computable group (G, ◦). A vector ad-
dition system with states over G (a G-VASS) is a tuple (g0,M), where g0 ∈ G is
the start element and M is a (G)-register machine (i.e., a machine with a single
register over the group G) working in generating mode and whose only register is
initialized with g0.

Definition 5. Consider a finitely generated computable group (G, ◦). A vector ad-
dition system over G (a G-VAS) is a G-VASS with the following structure on the
instructions of the underlying register machine:

• l0 : (ADD(1, 0), B) ∈ P : the initial instruction does not modify the contents of
the register, but allows non-deterministically jumping to any other instruction,
including the halting instruction.

• all instructions labelled by l ∈ B\{l0, lh} have the form l : (ADD(0, g), B\{l0}),
with g ∈ G: the underlying machine can jump from any non-initial instruction
to any other non-initial instruction, including the halting instruction.

Example 6. Integer vector addition systems (with states), as introduced in [9] and
studied in [3], are vector addition systems (with states) over the product group
Zn = Z×· · ·×Z. Indeed, the elements of Zn are n-vectors of integer numbers, and
the state control of the (Zn)-register machine corresponds to the state control of
the integer VASS. On the other hand, since the register machine associated with a
VAS over Zn can halt at any time, any vector it reaches belongs to the generated
language.

Given a finitely generated computable group G, we will use the notations
G-V ASS and G-V AS to refer to the families of G-VASS and G-VAS, respec-
tively. Since vector addition systems are only considered as generating devices, we
will use the notations L(G-V ASS) and L(G-V AS) to refer to the families of sets
of elements of G generated by G-VASS and G-VAS, respectively.

Beyond Generalized Multiplicities: RMs over Groups 11

3.2 Blindness, Partial Blindness, and the Zero Test

A G-register machine as defined in the previous section is quite “blind”: it has no
mechanism to make the choice of the new instruction depend on the values of the
registers. A classical way to introduce such a dependence is by allowing an explicit
zero-test instruction.

Definition 6. Let m ∈ N and take the finite family of finitely generated computable
groups G = (Gi)1≤i≤m, with Gi = 〈Bi | Ri〉. A G-register machine with zero test
is the construct MG = (G, B, l0, lh, P) such that MG is a G-register machine, and
the set P is also allowed to contain instructions of the following form:

• p : (0TEST (r), s, z), with p ∈ B\{lh}, s, z ∈ B, 1 ≤ r ≤ m.

Test if the current value of register r is equal to the neutral element of the
group Gr; if yes, jump to instruction z, if not, jump to instruction s.

Configurations, computations, halting, generating, and accepting for G-register
machines with zero test are defined as for G-register machines in Section 3.

Example 7. Consider the same family of 3 copies of the group of integers as in
Example 5, Z3 = (Z,Z,Z). A Z3-register machine with zero test is almost like a
conventional register machine: increment and decrement are done by the instruc-
tions ADD(r, 1) and ADD(r,−1), and zero test by the TEST (r) instructions.
However, the registers of a Z3-register machine with zero test are allowed to con-
tain arbitrary integers.

For a finite family of finitely generated computable groups G, we will use the
notation G-RM0 to refer to the family of G-register machines with zero test.

Allowing an explicit zero test instruction is known to strictly increase the com-
putational power of register machines (e.g., [8]). A much weaker way of introducing
a dependency between the contents of the registers and the choice of instructions
is the terminal zero test.

Definition 7. Let m ∈ N and take the finite family of finitely generated com-
putable groups G = (Gi)1≤i≤m, with Gi = 〈Bi | Ri〉. A G-register machine with a
terminal zero test (a blind G-register machine) is a construct MG = (G, B, l0, lh, P)
such that MG is a G-register machine and, in any halting configuration, all regis-
ters which have not been explicitly designated as output must contain the neutral
element of the corresponding group.

Computations, halting, generating, and accepting for G-register machines with
a terminal zero test are defined as for G-register machines in Section 3, with the
additional requirement of emptiness of the working registers, as indicated in the
previous definition.

We use the notation G-BRM to refer to the family of G-register machines with
a terminal zero test.

12 A. Alhazov, R. Freund, and S. Ivanov

Remark 6. Using the notation BRM refers to the original definition of blind reg-
ister machines which we take over for the general case of G-register machines.

Example 8. Consider the family of groups Z3 = (Z,Z,Z). A Z3-register machine
with a terminal zero test is a blind register machine, as usually defined in the
literature (e.g., [3, 8]).

Remark 7. Sheila Greibach’s original paper introducing blind and partially blind
register machines [8] considers them as recognizers of strings: these devices read the
string from the beginning to the end, using registers to store internal information.
Later works (e.g., [13]) tend to discard the string recognizer aspect, and instead
treat register machines as devices manipulating numbers exclusively. In general,
it is quite easy to encode any string as a number (using, for example, a prime
number encoding over the alphabet), therefore restricting registers machines to
numbers does not critically affect their expressiveness. In Section 3.4, we show how
to recover string-related behavior in register machines over groups with forbidden
regions.

3.3 Partial Blindness

The types of register machines over groups we have defined up to now do not di-
rectly generalize the classical register machines, which can be seen as defined over
the monoid of natural numbers (N,+): addition over the natural numbers is not
invertible, because negative numbers do not belong to N. To capture this restric-
tion, we directly draw inspiration from the definitions of VAS and conventional
partially blind register machines, and define partially blind register machines over
totally ordered groups.

Definition 8. Let m ∈ N and take the finite family of finitely generated computable
groups G = (Gi)1≤i≤m, with Gi = 〈Bi | Ri〉. Suppose one of the groups Gj,
1 ≤ j ≤ m, is totally ordered with the total order ≤j. A G-register machine with
a partially blind register j is a construct MG = (G, B, l0, lh, P) such that MG is a
G-register machine whose register j is only allowed to contain values aj ∈ Gj with
the property 0j ≤j aj.

Configurations, computations, halting, generating, and accepting for G-register
machines with some partially blind registers are defined as for G-register machines
in Section 3, with the additional restriction on the values of the partially blind
registers.

Example 9. Consider the family of groups Z3 = (Z,Z,Z). The group (Z,+) is
totally ordered with respect to the natural order. A Z3-register machine partially
blind in all of its 3 registers is a 3-register partially blind register machine in the
conventional sense, but without the final zero test.

Beyond Generalized Multiplicities: RMs over Groups 13

For a finite family of finitely generated computable groups G, we use the nota-
tion G-PBARM , with A ⊆ {1, . . . ,m}, to refer to the family of G-register machines
with partially blind registers with indices from A. This supposes that the groups
of G with indices from A are totally ordered.

When A = {1, . . . ,m}, i.e., all the registers are partially blind, we will omit
the subscript A from the notations, and we will refer to the register machine itself
as being partially blind. We use the particular notation G-PBRM to refer to the
family of register machines with all registers blind, and with the final zero test at
the end of successful computations.

Note finally that G-register machines with all registers blind and with the zero
test instruction directly generalize classic register machines.

3.4 Forbidden Regions

While G-register machines with partially blind registers are a generalization which
is rather close to conventional register machines, imposing a total order on a group
is a rather strong condition: for example, it entails the absence of elements of a
finite order [14], thus excluding cyclic groups from consideration. Notice, however,
that the total order is essentially used to define a forbidden subset of elements.
We can therefore define another generalization of conventional register machines
which imposes less constraints on the group.

Definition 9. Let m ∈ N and take the finite family of finitely generated computable
groups G = (Gi)1≤i≤m, with Gi = 〈Bi | Ri〉. Let F = (Fi)1≤i≤m be a family of
subsets of the groups in G: Fi ⊆ Gi, 1 ≤ i ≤ m. A G-register machine with
forbidden regions F is a construct MG = (G, B, l0, lh, P) such that MG is a G-
register machine whose register i is only allowed to contain the elements in Gi \Fi,
1 ≤ i ≤ m.

Configurations, computations, halting, generation, and acceptance for G-
register machines with forbidden regions are defined as for G-register machines
in Section 3, with the additional restriction on the values of registers: if a forbid-
den value appears in a register, the computation crashes without producing any
output.

Example 10. Consider the family of groups Z3 = (Z,Z,Z) and the family N̄ 3 =
(N̄ , N̄ , N̄), where N̄ = Z \ N. A Z3-register machine with the forbidden regions
N 3 is also a Z3-register machine partially blind in all of its registers.

Since groups suitably abstract a large number of objects and since forbidden
regions can be used to carve particular “shapes” out of a given group, multiple
connections with different domains can be traced for register machines over groups
and with forbidden regions.

Example 11. The dihedral group Dn is the group of symmetries of a regular poly-
gon with n sides and can be presented as follows: Dn =

〈
r, s | rn, s2, (sr)2

〉
[20].

14 A. Alhazov, R. Freund, and S. Ivanov

The infinite dihedral group D∞ can be seen as the group of symmetries of inte-
gers and can be presented as D∞ =

〈
r, s | s2, (sr)2

〉
. The Cayley graph of this

presentation can be depicted as follows [5]:

. . . sr2
r←− sr

r←− s
r←− sr−1

r←− sr−2 . . .
s �� s s �� s s �� s s �� s s �� s

. . . r−2
r−→ r−1

r−→ e
r−→ r

r−→ r2 . . .

In this picture, the lower and the upper lines are going into opposite directions,
which nicely fits as a representation of double-stranded DNA molecules, i.e., the
lower line going from the left 5′-end to the right 3′-end, whereas the complementary
upper line goes from the right 5′-end to the left 3′-end [5]. Thus, if the family G
contains D∞, a G-register machine can be seen as operating on a DNA molecule.
Forbidding the region F = {rk | k ∈ Z} ⊂ D∞ can be seen as restricting the
register machine to operate on one of the strands of the molecule (the upper one
on the figure).

Example 12. Take a finite alphabet of symbols V and consider the free group 〈V |
∅〉 = (I(V), ◦) over V . It follows from the definition of the free group that it
contains two types of elements:

• strings from the syntactic monoid V ∗: a1 ◦ · · · ◦ an, such that a1 . . . an ∈ V ∗;
• strings which include the inverses {a−1 | a ∈ V } of the elements of V .

Take now the singleton family of groups G = (〈V | ∅〉) and the singleton family of
forbidden regions F = (F), with F containing all the elements of G of the second
type. Then the only register of a G-register machine M with the forbidden regions
F will contain strings from V ∗ in any successful computation.

Remark 8. On a historical side-note, register machines as originally introduced by
Minsky in [15] came out as a consequence of reducing the tape alphabet of Turing
machines to two symbols, including the empty symbol. Such a reduction imposes
unary encoding of the working values and essentially transforms the tape into a
series of registers [12]. By generalizing register machines from natural numbers to
groups, we come back to computing devices operating on strings.

For a finite family of finitely generated computable groups G, we will use the
notation G-RM¬F to refer to the family of G-register machines with the forbidden
regions F .

Vector Addition Systems with Forbidden Regions

Since we define vector addition systems over groups as particular cases of register
machines, the idea of forbidden regions can be easily transported to VAS.

Beyond Generalized Multiplicities: RMs over Groups 15

Definition 10. Consider a finitely generated computable group (G, ◦) and a subset
F ⊆ G. A vector addition system over G (respectively, with states) with the
forbidden region F is a vector addition system (respectively, with states) whose
underlying (G)-register machine belongs to (G)-RM(F).

Example 13. A Zn-VAS with the forbidden region F = {(x1, . . . , xn) | ∃i : xi < 0}
is an n-component vector addition system as classically defined.

Given a finitely generated computable group G, we will use the notation
G-V ASS¬F (respectively, G-V AS¬F) to refer to the family of G-VASS (respec-
tively, G-VAS) with the forbidden region F .

4 Expressive Power of RM and VAS over Groups

In this section we will a give a series of results characterizing the power of register
machines over groups with or without ingredients. We start by considering the
simplest case: no ingredients and singleton group families.

4.1 Singleton Group Families

For register machines with no ingredients, there is little difference between consid-
ering non-singleton and singleton group families. In this section, we will use the
notation C = (Ck)0≤k≤n to refer to an n-step computation of a G-register machine,
where Ck is a vector of elements of the groups in G collecting the contents of the
registers at step k. Notice that this definition of computation and configurations
discards the instruction label, as opposed to the more general definition given in
Section 3.

Proposition 1. Consider a G-register machine M over a non-singleton family
G = (Gi)1≤i≤m, m > 1. Then there exists a singleton family G0 = (G), a family
of projections π = (pi : G→ Gi)1≤i≤m, and a G0-register machine M0 such that,

for any n-step computation C of M there exists an n-step computation C0 of M0

with the following property:

Ck[j] = pj(C
0
k), 1 ≤ j ≤ m,

where C0
k ∈ C0, Ck ∈ C, and Ck[j] is the j-th element of the vector Ck.

Proof. It suffices to take the group G to be the direct product [10] of the
groups in G: G =

∏m
i=1Gi. The G0-register machine M0 will thus have a sin-

gle register containing vectors of values of the groups in G. Any ADD(j, b) in-
struction of M will be represented in M0 by an instruction ADD(1,b), where
b = (e1, . . . , ej−1, b, ej+1, . . . , em) is a vector consisting of the neutral elements of
the groups in G, except for the j-th element. ut

16 A. Alhazov, R. Freund, and S. Ivanov

The converse statement is not true, because any vectors from the direct product
of G can appear in the ADD instructions of M0, thus affecting multiple compo-
nents of the vector from G at once. However, unsurprisingly, any computing step
of M0 can still be simulated by M in multiple steps.

Proposition 2. Consider the non-singleton family of groups G = (Gi)1≤i≤m, m >
1, and take the singleton family G0 = (G), where G is the direct product of the
groups in G and π = (pi : G→ Gi)1≤i≤m is the corresponding family of projections.

Then, for any G0-register machine M0 there exists a G-register machine M such
that, for any n-step computation C0 of M0, there exists an n′-step computation C
of M , n′ > n, with the property:

C0[j] = pj(C
0
0) and Cn′ [j] = pj(C

0
n), 1 ≤ j ≤ m,

where C0 and Cn′ are the first and the last configurations of the computation C,
and C0

0 and C0
n are the first and the last configurations of the computation C0.

Proof (sketch). M simulates the instruction p : (ADD(0,b), T) of M0 by the
following sequence of instructions:

p0 :
(
ADD

(
0, p0(b)

)
, {p1}

)
,

pj :
(
ADD

(
j, pj(b)

)
, {pj+1}

)
, 1 < j < m,

pm :
(
ADD

(
m, pm(b)

)
, T
)
.

This ensures that M simulates M0 with a constant-time slowdown and proves the
statement of the proposition. ut

The two previous propositions imply that, in a somewhat counter-intuitive
way, blind single-register machines are a little more efficient than multi-register
machines, because the former may require less computational steps to achieve a
given configuration than the latter. This statement, however, becomes false with
the addition of some of the ingredients we considered in the previous sections.
Indeed, the zero test in a single-register machine over a direct product of groups
requires that all components of the combined register should be zero; it is impos-
sible to individually test the components. Similarly, transposing the total orders
on some or all of the groups of the family G to their direct product is not gener-
ally possible. Forbidden regions are, on the other hand, more flexible and can be
directly carried over from individual groups to components of the elements of the
product.

The conclusion we make from these arguments is that, when no additional
ingredients are considered, the power of register machines over groups does not
depend on the number of registers.

Theorem 1. Consider the family of finitely presented computable groups G =
(Gi)1≤i≤m and a G-register machine M . Then there exists a G0-register machine
M0 over the singleton family G0 = (

∏m
i=1Gi) such that LX(M) = LX(M0), with

X ∈ {acc, gen}.

Beyond Generalized Multiplicities: RMs over Groups 17

4.2 Generation and Acceptance: No Ingredients

As a consequence of the definition of VASS over groups, Theorem 1 implies that
any G-register machine working in the generating mode can be simulated by a
VASS over the direct product of the groups in G.

Corollary 1. Consider the family of finitely presented computable groups G =
(Gi)1≤i≤m and a G-register machine M . Then there exists a G-VASS A over the
product G =

∏m
i=1Gi such that Lgen(M) = L(A).

The similar statement for register machines in accepting mode does not hold.
In fact, an accepting register machine either accepts or rejects any contents of the
input registers.

Proposition 3. Consider the family of finitely generated computable groups G, a
subfamily Gin and a G-register machine M whose input registers correspond exactly
to the groups from Gin. Then Lacc(M) ∈

{
∅,
∏

G∈Gin G
}

.

Proof. M can accept the empty language by never reaching the halting state.
Suppose now that it accepts some input vector x ∈

∏
G∈Gin G. Since the state

transitions ofM do not depend on the values of its registers, and since no particular
conditions are checked at halting, the sequence of actions applied to accept x can
be applied to accept any other x′ ∈

∏
G∈Gin G, meaning that M will accept all

possible vectors in
∏

G∈Gin G. ut

We therefore conclude that generation is at least as powerful as acceptance for
G-register machines without any additional ingredients.

Theorem 2. Consider the family of finitely generated computable groups G.
Then Lacc(G-RM) ⊆ Lgen(G-RM).

Proof. According to Proposition 3, it suffices to show how to generate the empty
language and the language of all vectors over the groups corresponding to the
output registers. The empty language can be generated by never reaching the
halting state. The language of all vectors can be generated by non-deterministically
adding the corresponding generators and their inverses to the output registers. ut

The inclusion from the previous theorem is not strict. The following example
shows a case in which the generating and accepting power are equal.

Example 14. Consider the singleton group 1 containing the single element e and a
group family G containing 1. Then the languages accepted by G-register machines
with the input register containing elements from 1 is equal to the languages gen-
erated by G-register machines with the output register containing elements from
1. Indeed, the only two possible languages which can be accepted or generated are
∅ and {e}. As discussed previously, the first language is accepted/generated by
never reaching the halting state, and the second language is accepted/generating
by halting immediately.

18 A. Alhazov, R. Freund, and S. Ivanov

On the other hand, generating G-register machines are not restricted to gener-
ating all possible combinations of values of their output registers, as the following
example shows.

Example 15. Consider the generating (Z)-register machine M with two states and
whose only non-halting state is associated with the instruction ADD(1, 1) adding
1 to the contents of its only register. When the register of M is initialized to 0, M
only generates the set of natural numbers N.

The difference in power between the accepting mode and the generating mode
puts forward an asymmetry in the definition of the two semantics: in the generating
mode, the registers have the “knowledge” about their initial values, whereas in the
accepting mode, no information about the register contents whatsoever is available.

4.3 Generation and Acceptance: The Zero Test

In this subsection we exhibit that allowing the zero test instruction equalizes the
power of the accepting and generating modes. In line with the usual terminology,
we will use the term “increment register i by b” to refer to composing the contents
of register i with the generator b, and the term “decrement i by b” to refer to
composing the contents of register i with the inverse of the generator b.

Lemma 1. Let m ∈ N and take the finite family of finitely presented groups
G = (Gi)1≤i≤m, with Gi = 〈Bi | Ri〉. Then there exists another family of finitely
presented groups G′ such that Lgen(G-RM0) ⊆ Lacc(G′-RM0).

Proof. Let MG = (G, B, l0, lh, P) be a G-register machine with zero test. We con-
sider MG as a generating device, where 1 ≤ j ≤ k are the output registers. We
now construct a register machine with zero test MG′ = (G′, B′, l′0, l′h, P ′) with

G′ = (G1, . . . Gk, G1, . . . Gk, Gk+1, . . . Gm+k),

i.e., every output register of MG appears in two copies, and the first copy is des-
ignated as an input register of MG′ , which now becomes an accepting device with
the input registers 1 ≤ k ≤ m. Given any input in the input registers, G′ simulates
MG in the registers k + 1, . . . ,m+ k representing the registers 1, . . . ,m using the
instructions in P ′ with each register j in an instruction of P replaced by the cor-
responding register k+ j in the instructions of P ′. With MG reaching lh, also MG′

reaches lh. After that, in a final procedure, G′ checks if the contents of register j
equals the contents of register j + k for every 1 ≤ j ≤ k. In the success case, G′
enters the final label l′h.

For j = 1, . . . , k, starting with p1, sequences of instructions
pj : (0TEST (j), p̂j , p

′
j),

p′j : (0TEST (k + j), p′j , pj+1),
p̂j : (ADD(j,−b), {p̄j}),

Beyond Generalized Multiplicities: RMs over Groups 19

p̄j : (0TEST (j + r), p̃j , p̄j), and
p̃j : (ADD(j + k,−b), {pj})
simultaneously decrement related registers j and j + k, 1 ≤ j ≤ k, down to zero.
In this construction, we define an instance of the rule p̂j and an instance of the
rule p̃j for every generator b of the group Gj , which allows testing registers j and
j + k for equality independently of the number of generators of the corresponding
(finitely generated) group. In the success case, i.e., if both have been checked to
be equal, the procedure continues with the next pair of registers. At the end, in
the success case, we take pk+1 = l′h. In the failure case, an infinite loop is entered.
We leave the remaining details of the construction to the interested reader. For
example, to allow non-deterministic branching from a label p to q and s, without
modifying the registers, we can use a working register r and a generator b as well
as the sequence of instructions p : (ADD(r, b), {p′}) and p′ : (ADD(r,−b), {q, s}).
Moreover, if there is no working register in MG , we add one in MG′ .

We conclude that the set generated by MG equals the set accepted by MG′ . ut

Lemma 2. Let m ∈ N and take the finite family of finitely presented groups
G = (Gi)1≤i≤m, with Gi = 〈Bi | Ri〉. Then there exists another family of finitely
presented groups G′ such that Lacc(G-RM0) ⊆ Lgen(G′-RM0).

Proof. We now start with an accepting G-register machine with zero test MG =
(G, B, l0, lh, P) and construct a generating register machine with zero test MG′ =
(G′, B′, l′0, l′h, P ′), again using a similar construction of additional registers as in the
proof of Lemma 1. MG′ randomly generates two copies of the output in registers
i and i + k, 1 ≤ i ≤ k. Then MG′ simulates an accepting computation of MG in
the registers k + 1, . . . ,m+ k of MG′ . In case lh is reached in that way, instead of
halting MG′ finally decreases all working registers k + 1, . . . ,m+ k to zero:

For j = k + 1, . . . ,m+ k, starting with pk+1 = lh, sequences of instructions
pj : (0TEST (j), p̂j , pj+1) and
p̂j : (ADD(j,−b), {pj , pj})
are carried out in a deterministic way, finishing with the HALT-instruction with
label l′h = pm+k. We conclude that the set accepted by MG equals the set generated
by MG′ . ut

As an immediate consequence of the two preceding lemmas, we conclude that
the generating and the accepting power of register machines over groups with the
zero test instruction is equal.

Theorem 3. Lacc(∗-RM0) = Lgen(∗-RM0).

A result similar to the one stated in Lemma 2 also holds true for blind register
machines:

Corollary 2. Let m ∈ N and take the finite family of finitely presented groups
G = (Gi)1≤i≤m, with Gi = 〈Bi | Ri〉. Then there exists another family of finitely
presented groups G′ such that Lacc(G-BRM) ⊆ Lgen(G′-BRM).

20 A. Alhazov, R. Freund, and S. Ivanov

Proof. We can use the same construction as described in the proof of Lemma 2,
except for the final procedure decrementing all working registers to zero, which
is not needed as by definition acceptance for blind register machines requires all
working registers to be zero. ut

4.4 Vector Addition Systems over Groups

One of the classical results on vector addition systems is that, in the conventional
definition of the model, adding a state control does not increase the power, because
the states can be simulated using 3 additional components of vectors [11, Lemma
2.1]. This result can be naturally generalized to vector addition systems over groups
with forbidden regions.

Theorem 4. Consider a finitely generated computable group G, the product G′ =
G × Z3, its subset F = {(g, a, b, c) ∈ G′ | a < 0 or b < 0 or c < 0}, and an
arbitrary G-VASS A. Then there exists a G′-VAS with the forbidden region F
whose computations modulo the natural projection p : G′ → G are exactly the
computations of A.

Proof. The construction from the proof of [11, Lemma 2.1] can be directly carried
over to our setting: the three components over Z with forbidden negative values can
be used to encode the current state and to compute the next one unambiguously.
We do not recall the cited construction here because it is rather technical and out
of the scope of this article. ut

We can immediately generalize this result by replacing Z in the previous state-
ment by a different group into which one can injectively (monomorphically) embed
Z.

Theorem 5. Consider a finitely generated computable group G, and a totally or-
dered group Z such that there exists an injective homomorphism of totally ordered
groups i : Z → Z. Take the product G′ = G × Z3, its subset F = {(g, a, b, c) ∈
G′ | a <Z i(0) or b <Z i(0) or c <Z i(0)}, and an arbitrary G-VASS A. Then
there exists a G′-VAS with the forbidden region F whose computations modulo the
natural projection p : G′ → G are exactly the computations of A.

Proof. The injective homomorphism i delimits a totally ordered subgroup of Z
which is isomorphic to Z, allowing to perform the same operations as in the proof
of [11, Lemma 2.1]. ut

Remark 9. The result [11, Lemma 2.1] as well as the two generalizations we give
here do not necessarily state the equality between the families of languages gener-
ated by VAS with and without states. Indeed, the language generated by a VASS
is usually taken to contain all the vectors which the VASS reaches while also being
in a terminal or halting state, while the language of a VAS is often taken to be
simply its reachability set. In Definition 5, this behavior is captured by allowing
the underlying register machine of a G-VAS to halt at any time.

Beyond Generalized Multiplicities: RMs over Groups 21

A consequence of the fact that only the elements a G-VASS produces in its
halting state contribute to the generated language is that a G-VASS can generate
the empty language ∅ by never reaching the halting state. On the other hand, the
language of a G-VAS always includes at least the start element. This observation
together with the fact that we define G-VAS as a particular case of G-VASS implies
the following statement.

Proposition 4. For any finitely generated computable group G, it holds that
L(G-V AS) (L(G-V ASS).

Since this strict inclusion is rather trivial and does not reflect the intrinsic
computing power of vector addition systems, in the rest of this section we will only
consider G-VASS generating non-empty languages. In this setting, the increase in
power due to the state control depends strongly on the underlying group. For
example, Zn-V AS (Zn-V ASS, as shown in [3, Lemmas 6 and 7]. On the other
hand, it follows trivially from Proposition 3 and Example 14 that adding states to
vector addition systems over the singleton group 1 does not increase the power.
We generalize these observations in the following statement.

Theorem 6. If a finitely generated computable group G contains an element of
order greater than 2, then L(G-V AS) (L(G-V ASS) \ {∅}.

Proof. Suppose that g is the element of G whose order is greater than 2. Suppose
that there exists such a G-VAS A with the start element g0 ∈ G that L(A) = {e, g},
where e is the neutral element of G. Then there exist two elements h0, h1 ∈ G
such that g0h0 = e and g0h1 = g, and A executes the operations corresponding to
adding h0 to g0 to generate e, and corresponding to adding h1 to g0 to generate g.
Since ord(g) > 2, g 6= e, and either h0 6= e, or h1 6= e, or both. Let h ∈ {h0, h1}
such that h 6= e. Then, if A executes the sequence of actions corresponding to h0,
and afterwards the one corresponding to h, it will generate g0h0h = h. If h /∈ {e, g},
then L(A)) {e, g}, which is a contradiction.

Now suppose that h ∈ {e, g}. By construction, h 6= e, so h = g. Suppose
that A carries out the sequence of actions corresponding to h0, then the sequence
corresponding to h, and then the same sequence again. It would generate g0h0hh =
h2 = g2. By hypothesis, ord(g) > 2, meaning that g2 /∈ {e, g}. But in this case
L(A)) {e, g}, which is again a contradiction.

We conclude the proof by remarking that the language {e, g} can be generated
by a G-VASS with the starting element e and whose underlying register machine
contains the single instruction l : (ADD(1, g), {lh}). ut

It follows immediately from the previous theorem that the state control already
makes a difference for vector addition systems over Z3 = Z/3Z, the group of
addition modulo 3. Indeed, it is impossible to construct a Z3-VAS generating {0, 1}:
any attempt would end up putting the element 2 into the generated language.

Corollary 3. L(Z3-V AS) (L(Z3-V ASS) \ {∅}.

22 A. Alhazov, R. Freund, and S. Ivanov

On the other hand, the state control does not increase the power of vector
addition systems over the two-element group Z2 = Z/2Z.

Proposition 5. L(Z2-V AS) = L(Z2-V ASS) \ {∅}.

Proof. Only the following non-empty languages over Z2 exist: {0}, {1}, and {0, 1}.
The first two ones can be generated by a Z2-VAS whose underlying register is
initialized to 0 or 1, respectively, and whose underlying register machine always
halts immediately.

The third one is generated by a Z2-VAS with the start element g0 ∈ {0, 1}
and with the underlying register machine containing only one instruction l :
(ADD(1, 1), {l, lh}). ut

Even though Theorem 6 gives a sufficient criterion for the state control to
strictly augment the expressive power of G-VAS, we do not claim that this criterion
is necessary. Establishing a necessary and sufficient criterion is left as an open
problem.

We conclude this discussion about the frontier between the power of G-VAS
and G-VASS by recalling that the paper [3] considers uniform families of VAS,
Z-V AS∪, which are essentially an extension of vector addition systems allowing
a finite number of start vectors instead of only one of them. In a similar fashion,
we can consider uniform families of G-VAS. We denote these by G-V AS∪. For a
finite group H, languages generated by uniform families of H-VAS turn out to be
the same as those generated by H-VASS.

Proposition 6. For a finite group H, L(H-V AS∪) = L(H-V ASS).

Proof. Since H is finite, H-VASS generate finite languages. Hence, any given H-
VASS A can be “simulated” by a uniform family of H-VAS without any addition
elements (the underlying register machine halts immediately) and whose start
elements form exactly L(A). ut

5 Generating and Accepting Strings

In this section, we will show how the idea to use the free group constrained to the
syntactic monoid introduced in Example 12 can be used to turn register machines
over groups into devices recognizing and generating strings. We assume that the
reader is familiar with regular and context free grammars, finite-state and push-
down automata, as well as Turing machines. For an extensive introduction to the
domain of formal languages, we refer to [19].

For an alphabet V , we will use the symbol V to refer to the free group 〈V | ∅〉
whenever no ambiguity occurs. We will also use the notation FV to refer to the
elements of the free group V which do not appear in the syntactic monoid V ∗:
FV = {x ∈ V | x /∈ V ∗} = V \ V ∗.

Beyond Generalized Multiplicities: RMs over Groups 23

Our first result shows that a register machine with only one register containing
values from V can simulate a regular grammar. The symbol REGV stands for the
class of all regular languages over the alphabet V .

Theorem 7. Lgen

(
(V)-RM¬(FV)

)
= REGV .

Proof. Consider an arbitrary regular language L and the regular grammar G =
(N,V, P, S) generating it, where N is the set of non-terminal symbols, V is the
set of terminal symbols, N ∩ V = ∅, P is the set of productions, and S is the
starting symbol. We will construct a (V)-register machine with the forbidden region
FV which will generate the language L. We associate the instruction labels l(A)
(defined below) with every non-terminal A ∈ N and we construct the program of
M in the following way:

• for every rule A → aB, A,B ∈ N , a ∈ V , we add a fresh label lA to the set
l(A) and the instruction lA : (ADD(1, a), l(B)) to the program of M ;

• for every rule A → a, A ∈ N , a ∈ V , we add a fresh label lA to the set l(A)
and the instruction lA : (ADD(1, a), {lh}) to the program of M ;

• for every rule A → λ, A ∈ N , we add a fresh label lA to the set l(A) and the
instruction lA : (ADD(1, λ), {lh}) to the program of M , where λ is the empty
string and the neutral element of the group V.

The set of instruction labels of M is therefore B =
⋃

A∈N l(A). Without losing
generality, we may assume that l(S) only contains one element, which will serve
as the starting label for M .

By construction, M faithfully simulates the regular grammar G by reflecting
the current non-terminal symbol in the instruction label, by adding the corre-
sponding symbol to the only register containing the generated string, and by non-
deterministically jumping to one of the instruction labels corresponding to the new
non-terminal symbol if a rule A→ aB is applied. ut

A symmetric result can be proved for the accepting mode, except that in this
case we need the terminal zero test to ensure that the input string has been read
completely. In this statement, we combine the notation BRM and the subscript
¬(FV) to refer to register machines with both the terminal zero test and forbidden
regions.

Theorem 8. Lacc

(
(V)-BRM¬(FV)

)
= REGV .

Proof. Consider a regular language L and a (non-deterministic) finite automaton
FA = (Q,V, δ, q, F) recognizing it, where Q is the set of states, V is the set of
input symbols, δ : Q × V → 2Q is the transition function giving a set of target
states based on the current state and the symbol on the tape, q is the starting
state, and F ⊆ Q is the set accepting states. We construct a (V)-register machine
with the forbidden region FV which accepts the reverse image of the language L,
i.e., Lacc(M) = {sR | s ∈ L} = LR, where sR is the reverse of s.

24 A. Alhazov, R. Freund, and S. Ivanov

We denote lh(p) = {lh} if p ∈ F and lh(p) = ∅ otherwise. We define the
following mapping from the set of states of FA to the set of labels of M :

l(p) = {pa | p ∈ Q, a ∈ V, δ(p, a) 6= ∅} ∪ lh(p).

We also use the natural extension l(Q′) =
⋃

p∈Q l(p), for Q′ ⊆ Q.

For every pair p ∈ Q and a ∈ V for which δ(p, a) 6= ∅, we add the following
to M :

1. the label pa to the set of labels B;

2. the instruction pa :
(
ADD(1, a−1), l(δ(p, a))

)
to the program.

Finally, we add the instruction l0 : (ADD(1, λ), l(q)) to M , where q is the starting
state of FA.

To recognize the string sR ∈ LR, M first non-deterministically jumps to one of
the labels qa by performing the instruction l0 which does not modify the register. In
the following step, the machine performs ADD(1, a−1). If the string in its register
has the form wb, w ∈ V ∗, b ∈ V \ {a}, then this operation results in the forbidden
string wba−1 and M aborts. Otherwise the value of the register becomes w, M
non-deterministically jumps to one of the labels in l(δ(q, a)), and repeats the same
procedure.

Whenever the machine simulates a jump to a state p ∈ F , it may choose to
jump to the instruction lh and halt. If it does so while the register does not contain
the empty string λ, the terminal zero test will fail and the computation will abort.
If, on the other hand, it does not jump to lh after updating its register to λ, the
subsequent instruction ADD(1, a−1) aborts the computation.

We conclude the proof by recalling that regular languages are closed under the
reverse image. ut

Registers containing elements from V can also be used as stacks, allowing to
simulate pushdown automata. We only give sketches of the proofs of the following
results, the omitted details being very similar to those appearing in the previous
proof.

Theorem 9. Consider two alphabets V and R, the corresponding free groups V and
R, and the regions FV = V \V ∗ and FR = R\R∗. Then (V,R)-register machines
with terminal zero test and with the family of forbidden regions (FV , FR) accept
all context-free languages that can be accepted by a pushdown automaton with the
tape alphabet V and the stack alphabet R.

Proof (sketch). The proof idea is very close to that employed in Theorem 8: we
construct a register machine M with two registers. The first register contains the
input string which it non-deterministically “reads” by appending symbols a−1 and
aborting when the symbol was not guessed correctly. The second register contains
the stack. M pushes a symbol z ∈ R on the stack by performing ADD(2, z) and

Beyond Generalized Multiplicities: RMs over Groups 25

pops a symbol by non-deterministically performing ADD(2, z−1). At the end of
the computation, both registers must be empty for M to accept. We conclude the
sketch of the proof by recalling that context-free languages are closed under the
mirror image. ut

The proof of Lemma 2 can be directly generalized to register machines with
forbidden regions, yielding the following corollary for the generating mode.

Theorem 10. Consider two alphabets V and R, the corresponding free groups
V and R, and the regions FV = V \ V ∗ and FR = R \ R∗. Then (V,R)-register
machines with terminal zero test and with the family of forbidden regions (FV , FR)
generate all context-free languages that can be accepted by a pushdown automaton
with the tape alphabet V and the stack alphabet R.

Finally, we remark that two registers containing strings over the same alphabet
can be used to directly simulate the tape of a Turing machine. Our construction
is very similar to an automaton with two independent stacks.

Without losing generality, we will only consider Turing machines whose input
is placed entirely to the left of their head.

Theorem 11. Consider the alphabet V , the free group V over V , and the region
FV = V \V ∗. (V,V)-register machines with the zero test instruction and the family
of forbidden regions (FV , FV) can directly simulate a Turing machine by starting
with the initial tape contents in the first register and halting with the final tape
contents in the first register.

Proof (sketch). A register machine M simulates a given Turing machine T by
keeping the string representing the tape contents to the left of the head in the first
register, and the reverse of the tape contents to the right of the head in the second
register. At every step, M checks if the second register is not empty, and if not,
non-deterministically guesses the symbol T is reading. To write a symbol a on the
tape, M simply performs ADD(2, a). To simulate a move of the head of T to the
left, M non-deterministically reads a symbol from the first register and adds it
to the second register. To simulate a move to the right, M non-deterministically
reads a symbol a from the second register and adds a to the first register. If the
second register is empty, M simulates the action of T corresponding to reading
an empty tape cell. If the head should move to the right, M adds the symbol
representing the empty tape cell (different from the empty string λ) to the first
register. Similarly, if M must simulate a move of the head to the left while its
first register is empty, it adds the symbol representing the empty tape cell to the
second register. ut

6 Conclusion and Open Problems

In this paper we focused on generalizing the model of register machines to operate
on groups instead of natural or integer numbers, thus continuing previous works

26 A. Alhazov, R. Freund, and S. Ivanov

aiming at generalizing related models of computing, such as vector addition sys-
tems and P systems [2, 3, 7, 9]. Generalizing register machines to groups allowed
us to put forward the fundamental connection between vector addition systems
and register machines, as well as to reveal an unexpected possibility to operate on
registers containing strings, without any encoding.

The definitions and basic tools exhibited in this paper illustrate some of the
consequences of the way in which register machines are generalized. One interesting
class of problems which is still left open is the role of the nature of the underlying
group in defining the frontiers of computational power. For example, Theorem 6
approaches one such separation between vector addition systems with and without
states, but does not give a crisp borderline. On the other hand, the impact of the
group being commutative is still to be explored.

References

1. Alhazov, A., Aman, B., Freund, R., Păun, Gh.: Matter and anti-matter in membrane
systems. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) Descriptional Complex-
ity of Formal Systems – 16th International Workshop, DCFS 2014, Turku, Finland,
August 5-8, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8614, pp.
65–76. Springer (2014). https://doi.org/10.1007/978-3-319-09704-6 7

2. Alhazov, A., Belingheri, O., Freund, R., Ivanov, S., Porreca, A.E., Zandron, C.:
Purely catalytic P systems over integers and their generative power. In: Leporati,
A., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) Membrane Computing – 17th
International Conference, CMC 2016, Milan, Italy, July 25-29, 2016, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 10105, pp. 67–82. Springer (2016).
https://doi.org/10.1007/978-3-319-54072-6 5

3. Alhazov, A., Belingheri, O., Freund, R., Ivanov, S., Porreca, A.E., Zandron, C.:
Semilinear sets, register machines, and integer vector addition (p) systems. In: Pro-
ceedings of the 17th International Conference on Membrane Computing, CMC 2016.
pp. 27–42 (2016)

4. Büning, H.K., Lettmann, T., Mayr, E.W.: Projections of vector addition system
reachability sets are semilinear. Theoretical Computer Science 64(3), 343–350 (May
1989). https://doi.org/10.1016/0304-3975(89)90055-8

5. Freund, R.: Control mechanisms for array grammars on Cayley grids. In: Durand-
Lose, J., Verlan, S. (eds.) Machines, Computations, and Universality – 8th Inter-
national Conference, MCU 2018, Fontainebleau, France, June 28-30, 2018, Proceed-
ings. Lecture Notes in Computer Science, vol. 10881, pp. 1–33. Springer (2018).
https://doi.org/10.1007/978-3-319-92402-1 1

6. Freund, R., Ibarra, O.H., Păun, Gh., Yen, H.C.: Matrix languages, register ma-
chines, vector addition systems. In: Gutiérrez-Naranjo, M., Riscos-Núñez, A., Romero
Campero, F., Sburlan, D. (eds.) Proceedings of the Third Brainstorming Week on
Membrane Computing. pp. 155–168. University of Sevilla (2005)

7. Freund, R., Ivanov, S., Verlan, S.: P systems with generalized multisets over totally
ordered abelian groups. In: Rozenberg, G., Salomaa, A., Sempere, J.M., Zandron, C.
(eds.) Membrane Computing – 16th International Conference, CMC 2015, Valencia,
Spain, August 17–21, 2015, Revised Selected Papers. Lecture Notes in Computer

Beyond Generalized Multiplicities: RMs over Groups 27

Science, vol. 9504, pp. 117–136. Springer (2015). https://doi.org/10.1007/978-3-319-
28475-0 9

8. Greibach, S.A.: Remarks on blind and partially blind one-way multicounter machines.
Theoretical Computer Science 7(3), 311–324 (1978). https://doi.org/10.1016/0304-
3975(78)90020-8

9. Haase, C., Halfon, S.: Integer vector addition systems with states. In: Ouaknine, J.,
Potapov, I., Worrell, J. (eds.) Reachability Problems: 8th International Workshop,
RP 2014, Oxford, UK, September 22–24, 2014. Proceedings, pp. 112–124. Springer
(2014). https://doi.org/10.1007/978-3-319-11439-2 9

10. Holt, D.F., Eick, B., O’Brien, E.A.: Handbook of Computational Group Theory. CRC
Press (2005)

11. Hopcroft, J., Pansiot, J.J.: On the reachability problem for 5-dimensional
vector addition systems. Theoretical Computer Science 8(2), 135–159 (1979).
https://doi.org/10.1016/0304-3975(79)90041-0

12. Ivanov, S.: On the power and universality of biologically-inspired models of com-
putation. (Étude de la puissance d’expression et de l’universalité des modèles de
calcul inspirés par la biologie). Ph.D. thesis, University of Paris-Est, France (2015),
https://tel.archives-ouvertes.fr/tel-01272318

13. Korec, I.: Small universal register machines. Theoretical Computer Science 168(2),
267–301 (1996). https://doi.org/10.1016/S0304-3975(96)00080-1

14. Levi, F.W.: Ordered groups. In: Proceedings of the Indian Academy of Sciences.
vol. A16, pp. 256–263 (1942)

15. Minsky, M.: Recursive unsolvability of Post’s problem of tag and other topics in the
theory of Turing machines. Annals of Mathematics, second series 74, 437–455 (1961)

16. Minsky, M.L.: Computation. Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, NJ (1967)

17. Mitrana, V., Stiebe, R.: Extended finite automata over groups. Discrete Ap-
plied Mathematics 108(3), 287 –300 (2001). https://doi.org/10.1016/S0166-
218X(00)00200-6

18. Păun, Gh., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-
puting. Oxford University Press, Inc., New York, NY, USA (2010)

19. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, 3 volumes.
Springer, New York, NY, USA (1997)

20. Thomas W. Judson, R.A.B.: Abstract Algebra: Theory and Applications (2018)

