A new methodology to tackle the P versus NP problem

Mario J. Pérez-Jiménez

Research Group on Natural Computing Dpt. Computer Science and Artificial Intelligence University of Seville, Spain Academia Europaea (The Academy of Europe)

www.cs.us.es/~marper

marper@us.es

17th Brainstorming Week on Membrane Computing Sevilla, Spain, February 5, 2019

Computers ...

as a singular ...

Limits to what computers can do?

The P versus NP problem

- * Finding solutions versus checking the correctness of solutions.
- * **Proofs** versus verifying their correctness.
- Central problem of Computer Science.

The P versus NP problem

It is widely believed that it is harder

* to solve a problem than to check the correctness of a solution

It is widely believed that $\mathbf{P} \neq \mathbf{NP}$.

P: class of problems which can be "quickly" solved.

Attacking the P versus NP problem

NP-complete problems: hardest in the class NP.

Classical approach (1970):

- $\mathbf{P} \neq \mathbf{NP}$.
 - * Find <u>an</u> NP-complete problem such that it <u>does not belong to</u> the class P.
- $\mathbf{P} = \mathbf{NP}$.
 - * Find <u>an</u> NP-complete problem such that it belongs to the class P.

Tractability versus intractability

Tractable problem with regard to a complexity measure:

- It can be solved by a DTM using a polynomial amount of resources.
- The upper bound of the computational resources is polynomial.
- P: class of decision tractable problems.

Intractable problem with regard to a complexity measure:

- The lower bound of the computational resources is exponential.
- There exist intractable problems with regard to any complexity measure.

Tractability versus intractability

NP-complete problems are considered presumably intractable problems.

 $(\mathbf{P} \neq \mathbf{NP}) \iff (Any \ \mathbf{NP}\text{-complete problem is intractable with regard to the time})$

 $(\mathbf{P} = \mathbf{NP}) \iff$ (Any **NP**-complete problem is tractable with regard to the time)

Computing models

Computing model: A mathematical theory.

* *Resolution* of an abstract problem by means of a *mechanical procedure*.

Efficiency of computing models:

★ Ability to provide polynomial-time solutions to intractable problems.

Presumed efficiency of computing models:

 $\star\,$ Ability to provide polynomial-time solutions to $NP\-$ complete problems.

Efficiency and presumed efficiency

Non-efficient computing models: only problems in ${\bf P}$ can be solved in poly-time.

The model of **DTM**s is non-efficient.

The model of **NDTM**s is presumably efficient.

If $\mathbf{P} \neq \mathbf{NP}$ then:

- * The model of **NDTM**s is efficient.
- \star Any presumably efficient computing model is an efficient one.
- A computing model can be neither efficient nor presumably efficient (Ladner theorem).

Extension of a computing model

Given two computing models M_1 and M_2 :

* M_2 is an extension of M_1 if every mechanical procedure of M_1 is also a mechanical procedure of M_2 .

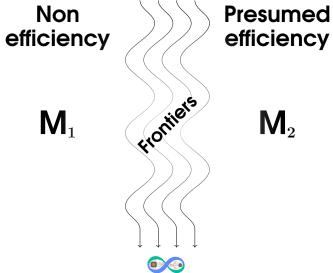
If M_2 is an *extension* of M_1 then M_2 can be obtained from M_1 by **adding** some syntactic or semantic **ingredients**.

Frontiers of the efficiency

Let M_1 and M_2 be two computing models such that:

- (a) M_1 is non-efficient.
- (b) M_2 is an extension of M_1
- (c) M_2 is presumably efficient.

Passing from M_1 to M_2 :


- $\star\,$ Passing from non efficiency to presumed efficiency.
- Provides a frontier between tractability of abstract problems and the presumed intractability.

Frontiers of the efficiency

12/19

Efficiency and presumed efficiency

A new methology to tackle the **P** versus **NP** problem:

- $\mathbf{P} = \mathbf{NP}$: the ingredients added to obtain M_2 from M_1 do not play a relevant role to obtain efficient solutions to **NP**-complete problems in M_2 .
- $\mathbf{P} \neq \mathbf{NP}$: the ingredients added to obtain M_2 from M_1 are crucial to obtain efficient solutions to **NP**-complete problems in M_2 .

Efficiency and presumed efficiency of membrane systems

Let ${\mathcal R}$ be a class of recognizer membrane systems.

- * \mathcal{R} is non-efficient if and only if $\mathbf{P} = \mathbf{PMC}_{\mathcal{R}}$.
- * \mathcal{R} is presumably efficient if and only if $NP \cup co-NP \subseteq PMC_{\mathcal{R}}$.

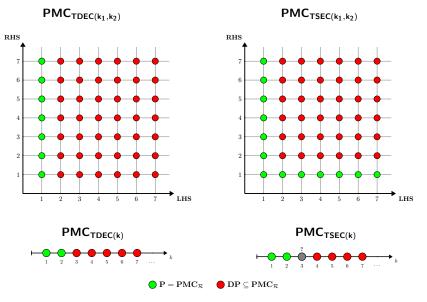
Frontiers: Cell-like with active membranes

Non – Efficiency	Presumed Efficiency	
NAM	АМ	(adding rules)
$AM^0(-d,+ne)$	$AM^0(+d,+ne)$	(adding rules)
AM ⁰ (− <i>d</i> ,+ <i>ne</i>)	AM(-d,+ne)	(polarization)

$$AM^0(+d, -ne)?$$

Frontiers: Cell-like with symport/antiport rules

Non – Efficiency	Presumed Efficiency	
CDC (1)	CDC(2)	(length)
CSC(2)	CSC(<mark>3</mark>)	(length)
CSC (2)	CDC (2)	(kind)
CSC (2)	CDC (2)	(kind)
CSC	CSC	(environment)



Frontiers: Tissue-like with symport/antiport rules

Non – Efficiency	Presumed Efficiency	
тс	трс	(adding rules)
TDC(1)	TDC(2)	(length)
TDA(1)	TDA(3)	(length)
TDS(1)	TDS(<mark>3</mark>)	(length)
тс	т <mark>s</mark> с	(adding rules)
TS <mark>S</mark>	тs <mark>с</mark>	(direction)
TSS	TSA	(direction)
TS (3)	TSA (3)	(direction)
TSS(2)	TSS(3)	(length)
TSA(2)	TSA(<mark>3</mark>)	(length)
TSC	тѕс	(environment)
TSC (3)	TSC (3)	(environment)
TSC (2)	TDC (2)	(kind of rules)
TŜC	TDC	(kind of rules)
$\widehat{TSC}(k), k \geq 2$	$\widehat{TDC}(k), k \geq 2$	(kind of rules)

Frontiers: Tissue-like with evolutional communication rules

THANK YOU FOR YOUR ATTENTION!

19/19