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Agust́ın Riscos-Núñez
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Preface

The Sixteenth Brainstorming Week on Membrane Computing (BWMC) was held
in Sevilla, from January 30 to February 2, 2018, in the organization of the Research
Group on Natural Computing (RGNC) from the Department of Computer Science
and Artificial Intelligence of Sevilla University. The first edition of BWMC was
organized at the beginning of February 2003 in Rovira i Virgili University, Tarrag-
ona, and all the next editions took place in Sevilla at the beginning of February,
each year.

In the style of previous meetings in this series, the sixteenth BWMC was con-
ceived as a period of active interaction among the participants, with the emphasis
on exchanging ideas and cooperation. Several “provocative” talks were delivered,
mainly devoted to open problems, research topics, conjectures waiting for proofs,
followed by an intense cooperation among the about 30 participants – see the list
in the end of this preface. The efficiency of this type of meetings was again proved
to be very high and the present volume is only part of the proof of this assertion.

The papers included in this volume, arranged in the alphabetic order of the au-
thors, were collected in the form available at a short time after the brainstorming;
several of them are still under elaboration. The idea is that the proceedings are a
working instrument, part of the interaction started during the stay of authors in
Sevilla, meant to make possible a further cooperation, this time having a written
support.

A selection of papers from this volume will be considered for publication in
the forthcoming Journal of Membrane Computing, published by Springer-Verlag
(www.springer.com/41965).

Other papers elaborated during the 2018 edition of BWMC will be submitted
to other journals or to suitable conferences. The reader interested in the final
version of these papers is advised to check the current bibliography of membrane
computing available in the domain website http://ppage.psystems.eu.

***
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L. Ciencialová, E. Csuhaj-Varjú, G. Vaszil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

P Colony Automata with LL(k)-like Conditions
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Introducing the Concept of Activation and
Blocking of Rules in the General Framework for
Regulated Rewriting in Sequential Grammars⋆

Artiom Alhazov1, Rudolf Freund2, and Sergiu Ivanov3

1 Institute of Mathematics and Computer Science
Academiei 5, Chişinău, MD-2028, Moldova
artiom@math.md

2 Faculty of Informatics, TU Wien
Favoritenstraße 9–11, 1040 Vienna, Austria
rudi@emcc.at

3 IBISC, Université Évry, Université Paris-Saclay
23 Boulevard de France, 91025, Évry, France
sergiu.ivanov@univ-evry.fr

Summary. We introduce new possibilities to control the application of rules based on
the preceding application of rules which can be defined for a general model of sequential
grammars and we show some similarities to other control mechanisms as graph-controlled
grammars and matrix grammars with and without applicability checking as well as gram-
mars with random context conditions and ordered grammars. Using both activation and
blocking of rules, in the string and in the multiset case we can show computational com-
pleteness of context-free grammars equipped with the control mechanism of activation
and blocking of rules even when using only two nonterminal symbols.

1 Introduction

Nearly thirty years ago, the monograph on regulated rewriting by Jürgen Dassow
and Gheorghe Păun [2] already gave a first comprehensive overview on many con-
cepts of regulated rewriting, especially for the string case. Yet as it turned out later,
many of the mechanisms considered there for guiding the application of produc-
tions/rules can also be applied to other objects than strings, e.g., to n-dimensional
arrays [4]. Even in the emerging field of P systems [10, 14] where mostly multisets
are considered, such regulating mechanisms were used [1]. As exhibited in [6], for
comparing the generating power of grammars working in the sequential derivation

⋆ The work is supported by National Natural Science Foundation of China (61320106005,
61033003, and 61772214) and the Innovation Scientists and Technicians Troop Con-
struction Projects of Henan Province (154200510012).
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mode, many relations between various regulating mechanisms can be established
in a very general setting without any reference to the underlying objects the rules
are working on, using a general model for graph-controlled, programmed, random-
context, and ordered grammars of arbitrary type based on the applicability of
rules.

In the second section, we recall some notions from formal language theory as
well as the main definitions of the general framework for sequential grammars
elaborated in [6]. Then we define the new concept of activation and blocking of
rules based on the applicability of rules within this general framework for regulated
rewriting. In Section 3 some general results for sequential grammars using the
control mechanism of activation or activation and blocking of rules are established.
Specific results on computational completeness for strings, multisets, and arrays as
underlying objects then are shown in Section 4. In Section 5 we establish our main
results for strings and multisets showing that context-free (string and multiset)
grammars with activation and blocking of rules are computationally complete even
when only two non-terminal symbols are used, which establishes a sharp border
as one non-terminal symbol is not sufficient. Finally, a summary of the results
obtained in this paper and some future research topics extending the notions and
results obtained in this paper are given in Section 6.

2 Definitions

After some preliminaries from formal language theory, we define our general model
for grammars and recall some notions for string, array, and multiset grammars and
languages in the general setting of this paper. Then we formulate the models of
graph-controlled, programmed, matrix grammars with and without appearance
checking, as well as random-context grammars, based on the applicability of rules.

2.1 Preliminaries

The set of integers is denoted by Z, the set of non-negative integers by N0, and
the set of positive integers (natural numbers) by N. An alphabet V is a finite non-
empty set of abstract symbols. Given V , the free monoid generated by V under
the operation of concatenation is denoted by V ∗; the elements of V ∗ are called
strings, and the empty string is denoted by λ; V ∗ \ {λ} is denoted by V +. Let
{a1, ..., an} be an arbitrary alphabet; the number of occurrences of a symbol ai in
x is denoted by |x|ai

; the Parikh vector associated with x with respect to a1, ..., an
is

(
|x|a1

, ..., |x|an

)
. The Parikh image of a language L over {a1, ..., an} is the set

of all Parikh vectors of strings in L, and we denote it by Ps (L). For a family
of languages FL, the family of Parikh images of languages in FL is denoted by
PsFL.

A (finite) multiset over the (finite) alphabet V , V = {a1, ..., an}, is a mapping
f : V −→ N0 and represented by ⟨f (a1) , a1⟩ ... ⟨f (an) , an⟩ or by any string x the
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Parikh vector of which with respect to a1, ..., an is (f (a1) , ..., f (an)). In the fol-
lowing we will not distinguish between a vector (m1, ...,mn) , its representation by
a multiset ⟨m1, a1⟩ ... ⟨mn, an⟩ or its representation by a string x having the Parikh
vector

(
|x|a1

, ..., |x|an

)
= (m1, ...,mn). Fixing the sequence of symbols a1, ..., an in

the alphabet V in advance, the representation of the multiset ⟨m1, a1⟩ ... ⟨mn, an⟩
by the string am1

1 ...amn
n is unique. The set of all finite multisets over an alphabet

V is denoted by V ◦.
For more details of formal language theory the reader is referred to the mono-

graphs and handbooks in this area [2, 12].

2.2 A General Model for Sequential Grammars

We first recall the main definitions of the general model for sequential grammars
as established in [6], grammars generating a set of terminal objects by derivations
where in each derivation step exactly one rule is applied to exactly one object.
This does not cover rules involving more than one object – as, for example, splicing
rules – or other derivation modes – as, for example, the maximally parallel mode
considered in many variants of P systems [10].

A (sequential) grammar G is a construct (O,OT , w, P,=⇒G) where

• O is a set of objects;
• OT ⊆ O is a set of terminal objects;
• w ∈ O is the axiom (start object);
• P is a finite set of rules;
• =⇒G⊆ O ×O is the derivation relation of G.

We assume that each of the rules p ∈ P induces a relation =⇒p⊆ O ×O with
respect to =⇒G fulfilling at least the following conditions: (i) for each object
x ∈ O, (x, y) ∈ =⇒p for only finitely many objects y ∈ O; (ii) there exists a
finitely described mechanism as, for example, a Turing machine, which, given
an object x ∈ O, computes all objects y ∈ O such that (x, y) ∈ =⇒p. A rule
p ∈ P is called applicable to an object x ∈ O if and only if there exists at
least one object y ∈ O such that (x, y) ∈ =⇒p; we also write x =⇒p y. The
derivation relation =⇒G is the union of all =⇒p, i.e., =⇒G= ∪p∈P =⇒p. The

reflexive and transitive closure of =⇒G is denoted by
∗

=⇒G.

In the following we shall consider different types of grammars depending on
the components of G (where the set of objects O is infinite, e.g., V ∗, the set of
strings over the alphabet V ), especially with respect to different types of rules
(e.g., context-free string rules). Some specific conditions on the elements of G,
especially on the rules in P , may define a special type X of grammars which then
will be called grammars of type X.

The language generated by G is the set of all terminal objects (we also assume
v ∈ OT to be decidable for every v ∈ O) derivable from the axiom, i.e.,

L (G) =
{
v ∈ OT | w ∗

=⇒G v
}
.
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The family of languages generated by grammars of type X is denoted by L (X).

Let G = (O,OT , w, P,=⇒G) be a grammar of type X. If for every G of type
X we have OT = O, then X is called a pure type, otherwise it is called extended ;
X is called strictly extended if for any grammar G of type X, w /∈ OT and for all
x ∈ OT , no rule from P can be applied to x.

In many cases, the type X of the grammar allows for (one or even both of) the
following features:

A type X of grammars is called a type with unit rules if for every grammar
G = (O,OT , w, P,=⇒G) of type X a grammar G′ =

(
O,OT , w, P ∪ P (+),=⇒G′

)
of type X exists such that =⇒G ⊆ =⇒G′ and

• P (+) =
{
p(+) | p ∈ P

}
,

• for all x ∈ O, p(+) is applicable to x if and only if p is applicable to x, and
• for all x ∈ O, if p(+) is applicable to x, the application of p(+) to x yields x

back again.

A type X of grammars is called a type with trap rules if for every grammar
G = (O,OT , w, P,=⇒G) of type X a grammar G′ =

(
O,OT , w, P ∪ P (−),=⇒G′

)
of type X exists such that =⇒G ⊆ =⇒G′ and

• P (−) =
{
p(−) | p ∈ P

}
,

• for all x ∈ O, p(−) is applicable to x if and only if p is applicable to x, and
• for all x ∈ O, if p(−) is applicable to x, the application of p(−) to x yields an

object y from which no terminal object can be derived anymore.

2.3 Specific Types of Objects

String grammars

In the general notion as defined above, a string grammar GS is represented as(
(N ∪ T )

∗
, T ∗, w, P,=⇒P

)
where N is the alphabet of non-terminal symbols, T is the alphabet of terminal
symbols, N ∩T = ∅, w ∈ (N ∪ T )

+
, P is a finite set of rules of the form u → v with

u ∈ V ∗ (for generating grammars, u ∈ V +) and v ∈ V ∗ (for accepting grammars,
v ∈ V +), with V := N ∪ T ; the derivation relation for u → v ∈ P is defined by
xuy =⇒u→v xvy for all x, y ∈ V ∗, thus yielding the well-known derivation relation
=⇒GS

for the string grammar GS . In the following, we shall also use the common
notation GS = (N,T,w, P ) instead, too. We remark that, usually, the axiom w
is supposed to be a non-terminal symbol, i.e., w ∈ V \ T , and is called the start
symbol.

As special types of string grammars we consider string grammars with arbitrary
rules and context-free rules of the form A → v with A ∈ N and v ∈ V ∗. The



Activation and Blocking of Rules in Sequential Grammars 5

corresponding types of grammars are denoted by ARB an CF , thus yielding the
families of languages L (ARB), i.e., the family of recursively enumerable languages
(also denoted by RE), as well as L (CF ), i.e., the familiy of context-free languages,
respectively.

Observe that the types ARB and CF are types with unit rules and trap rules
(for p = w → v ∈ P , we can take p(+) = w → w and p(−) = w → F where F /∈ T
is a new symbol – the trap symbol).

We refer to [6] where some examples for string grammars of specific types
illustrating the expressive power of this general framework are given.

Array grammars

We now introduce the basic notions for n-dimensional arrays and array grammars,
for example, see [4, 11, 13].

Let d ∈ N. Then a d-dimensional array A over an alphabet V is a func-
tion A : Zd → V ∪ {#}, where shape (A) =

{
v ∈ Zd | A (v) ̸= #

}
is finite

and # /∈ V is called the background or blank symbol. We usually write A =
{(v,A (v)) | v ∈ shape (A)}.

The set of all d-dimensional arrays over V is denoted by V ∗d. The empty array
in V ∗d with empty shape is denoted by Λd. Moreover, we define V +d = V ∗d\{Λd}.

Let v ∈ Zd, v = (v1, . . . , vd). The translation τv : Zd → Zd is defined by
τv (w) = w + v for all w ∈ Zd, and for any array A ∈ V ∗d we define τv (A), the
corresponding d-dimensional array translated by v, by (τv (A)) (w) = A (w − v)
for all w ∈ Zd. The vector (0, . . . , 0) ∈ Zd is denoted by Ωd.

A d-dimensional array rule p over V is a triple (W,A1,A2), where W ⊆ Zd is a
finite set and A1 and A2 are mappings from W to V ∪{#} such that shape (A1) ̸=
∅. We say that the array B2 ∈ V ∗d is directly derivable from the array B1 ∈ V ∗d

by the d-dimensional array rule (W,A1,A2), i.e., B1 =⇒p B2, if and only if there
exists a vector v ∈ Zd such that B1 (w) = B2 (w) for all w ∈ Zd \ τv (W ) as well
as B1 (w) = A1 (τ−v (w)) and B2 (w) = A2 (τ−v (w)) for all w ∈ τv (W ), i.e., the
subarray of B1 corresponding to A1 is replaced by A2, thus yielding B2. In the
following, we shall also write A1 → A2, because W is implicitly given by the finite
arrays A1,A2.

A d-dimensional array grammar GA is represented as(
(N ∪ T )

∗d
, T ∗d, {(v0, S)} , P,=⇒GA

)
where

• N is the alphabet of non-terminal symbols;
• T is the alphabet of terminal symbols, N ∩ T = ∅;
• {(v0, S)} is the start array (axiom) with S ∈ N and v0 ∈ Zd;
• P is a finite set of d-dimensional array rules over V , V := N ∪ T ;
• =⇒GA

is the derivation relation induced by the array rules in P according to
the explanations given above, i.e., for arbitrary B1,B2 ∈ V ∗d, B1 =⇒GA

B2 if
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and only if there exists a d-dimensional array rule p = (W,A1,A2) in P such
that B1 =⇒p B2.

A d-dimensional array rule p = (W,A1,A2) in P is called #-context-free, if
shape (A1) = {Ωd}. A d-dimensional array grammar is said to be of type d-ARBA,
d-#-CFA if every array rule in P is of the corresponding type, i.e., an arbitrary and
#-context-free d-dimensional array rule, respectively. The corresponding families
of d-dimensional array languages of typeX are denoted by L (X), i.e., L (d-ARBA)
and L (d-#-CFA) are the families of recursively enumerable and #-context-free
d-dimensional array languages, respectively.

Observe that the types d-ARBA and d-#-CFA are types with unit rules and
trap rules – for p = (W,A1,A2), we can take p(+) = (W,A1,A1) and p(−) =
(W,A1,AF ) with AF (v) = F for v ∈ W , where F is a new non-terminal symbol
– the trap symbol.

Multiset grammars

Gm =
(
(N ∪ T )

◦
, T ◦, w, P,=⇒Gm

)
is called amultiset grammar ;N is the alphabet

of non-terminal symbols, T is the alphabet of terminal symbols, N ∩ T = ∅, w is a
non-empty multiset over V , V := N ∪ T , and P is a (finite) set of multiset rules
yielding a derivation relation =⇒Gm

on the multisets over V ; the application of the
rule u → v to a multiset x has the effect of replacing the multiset u contained in x
by the multiset v. For the multiset grammar Gm we also write (N,T,w, P,=⇒Gm

).
As special types of multiset grammars we consider multiset grammars with

arbitrary rules as well as context-free (non-cooperative) rules of the form A → v
with A ∈ N and v ∈ V ◦; the corresponding types X of multiset grammars are
denoted by mARB and mCF , thus yielding the families of multiset languages
L (X). Observe that mARB and mCF are types with unit rules and trap rules
(for p = w → v ∈ P , we can take p(+) = w → w and p(−) = w → F where F
is a new symbol – the trap symbol). Even with arbitrary multiset rules, it is not
possible to get Ps (L (ARB)) [8]:

L (mCF ) = Ps (L (CF )) ⫋ L (mARB) ⫋ Ps (L (ARB)) .

2.4 Register Machines

As a computationally complete model able to generate/accept all sets in PsRE =
Ps (L (ARB)) we use register machines/deterministic register machines:

A register machine is a construct M = (n,LM , RM , p0, h) where n, n ≥ 1, is
the number of registers, LM is the set of instruction labels, p0 is the start label,
h is the halting label (only used for the HALT instruction), and RM is a set of
(labeled) instructions being of one of the following forms:

• p : (ADD (r) , q, s) increments the value in register r and continues with the
instruction labeled by q or s,
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• p : (SUB (r) , q, s) decrements the value in register r and continues the computa-
tion with the instruction labeled by q if the register was non-empty, otherwise
it continues with the instruction labeled by s;

• h : HALT halts the machine.

M is called deterministic if in all ADD-instructions p : (ADD (r) , q, s) q = s;
in this case we write p : (ADD (r) , q). Deterministic register machines can accept
all recursively enumerable sets of vectors of natural numbers with k components
using k + 2 registers, for instance, see [9].

2.5 Graph-controlled and Programmed Grammars

A graph-controlled grammar (with applicability checking) of type X is a construct

GGC = (G, g,Hi,Hf ,=⇒GC)

where G = (O,OT , w, P,=⇒G) is a grammar of type X; g = (H,E,K) is a labeled
graph where H is the set of node labels identifying the nodes of the graph in a
one-to-one manner, E ⊆ H × {Y,N} ×H is the set of edges labeled by Y or N ,
K : H → 2P is a function assigning a subset of P to each node of g; Hi ⊆ H
is the set of initial labels, and Hf ⊆ H is the set of final labels. The derivation
relation =⇒GC is defined based on =⇒G and the control graph g as follows: For
any i, j ∈ H and any u, v ∈ O, (u, i) =⇒GC (v, j) if and only if

• u =⇒p v by some rule p ∈ K (i) and (i, Y, j) ∈ E (success case), or
• u = v, no p ∈ K (i) is applicable to u, and (i,N, j) ∈ E (failure case).

The language generated by GGC is defined by

L(GGC) =
{
v ∈ OT | (w, i) =⇒∗

GGC
(v, j) , i ∈ Hi, j ∈ Hf

}
.

If Hi = Hf = H, then GGC is called a programmed grammar. The families of
languages generated by graph-controlled and programmed grammars of type X
are denoted by L (X-GCac) and L (X-Pac), respectively. If the set E contains
no edges of the form (i,N, j), then the graph-controlled grammar is said to be
without applicability checking ; the corresponding families of languages are denoted
by L (X-GC) and L (X-P ), respectively.

As a special variant of graph-controlled grammars we consider those where
all labels are final; the corresponding family of languages generated by graph-
controlled grammars of type X is abbreviated by L

(
X-GCallfinal

ac

)
. By definition,

programmed grammars are just a subvariant where in addition all labels are also
initial.

The notions and concepts with/without applicability checking were introduced
as with/without appearance checking in the original definition for string grammars
because the appearance of the non-terminal symbol on the left-hand side of a
context-free rule was checked, which coincides with checking for the applicabil-
ity of this rule in our general model; in both cases – applicability checking and
appearance checking – we can use the abbreviation ac.
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2.6 Matrix Grammars

A matrix grammar (with applicability checking) of type X is a construct

GM = (G,M,F,=⇒GM
)

where G = (O,OT , w, P,=⇒G) is a grammar of type X, M is a finite set of
sequences of the form (p1, . . . , pn), n ≥ 1, of rules in P , and F ⊆ P . For w, z ∈ O
we write w =⇒GM

z if there are a matrix (p1, . . . , pn) in M and objects wi ∈ O,
1 ≤ i ≤ n+ 1, such that w = w1, z = wn+1, and, for all 1 ≤ i ≤ n, either

• wi =⇒G wi+1 or
• wi = wi+1, pi is not applicable to wi, and pi ∈ F .

L(GM ) =
{
v ∈ OT | w =⇒∗

GM
v
}
is the language generated by GM . The family

of languages generated by matrix grammars of typeX is denoted by L (X-MATac).
If the set F is empty, then the grammar is said to be without applicability checking ;
the corresponding family of languages is denoted by L (X-MAT ).

We mention that in this paper we choose the definition where the sequential
application of the rules of the final matrix may stop at any moment.

2.7 Random-Context Grammars

The following general notion of a random context-grammar had already been in-
troduced in [7, 1] in a similar way before it was formulated in [6].

A random-context grammar GRC of type X is a construct (G,P ′,=⇒GRC
)

where

• G = (O,OT , w, P,=⇒G) is a grammar of type X;
• P ′ is a set of rules of the form (q,R,Q) where q ∈ P , R ∪Q ⊆ P ;
• =⇒GRC

is the derivation relation assigned to GRC such that for any x, y ∈ O,
x =⇒GRC

y if and only if for some rule (q,R,Q) ∈ P ′, x =⇒q y and, moreover,
all rules from R are applicable to x as well as no rule from Q is applicable to
x.

A random-context grammar GRC = (G,P ′,=⇒GRC
) of type X is called a

grammar with permitting contexts of type X if for all rules (q,R,Q) in P ′ we have
Q = ∅, i.e., we only check for the applicability of the rules in R.

A random-context grammar GRC = (G,P ′,=⇒GRC
) of type X is called a

grammar with forbidden contexts of type X if for all rules (q,R,Q) in P ′ we have
R = ∅, i.e., we only check for the non-applicability of the rules in Q.

L(GRC) =
{
v ∈ OT | w =⇒∗

GRC
v
}

is the language generated by GRC . The
families of languages generated by random context grammars, grammars with
permitting contexts, and grammars with forbidden contexts of type X are denoted
by L (X-RC), L (X-pC), and L (X-fC), respectively.



Activation and Blocking of Rules in Sequential Grammars 9

2.8 Ordered Grammars

An ordered grammar GO of type X is a construct (Gs,≺,=⇒GO
) where

• Gs = (O,OT , w, P,=⇒G) is a grammar of type X;
• ≺ is a partial order relation on the rules in P ;
• =⇒GO

is the derivation relation assigned to GO such that for any x, y ∈ O,
x =⇒GO

y if and only if for some rule q ∈ P x =⇒q y and, moreover, no rule
p from P with q ≺ p is applicable to x.

L(GO) =
{
v ∈ OT | w =⇒∗

GO
v
}
is the language generated by GO. The family

of languages generated by ordered grammars of type X is denoted by L (X-O).

2.9 Grammars with Activation and Blocking of Rules

We now define our new concept of regulating the application of rules at a specific
moment by activation and blocking relations.

A grammar with activation and blocking of rules (an AB-grammar for short)
of type X is a construct

GM = (G,L, fL, A,B, L0,=⇒GAB
)

where G = (O,OT , w, P,=⇒G) is a grammar of type X, L is a finite set of labels
with each label having assigned one rule from P by the function fL, A,B are finite
subsets of L× L× N, and L0 is a finite set of tuples of the form

(
q,Q, Q̄

)
, q ∈ L,

with the elements of Q, Q̄ being of the form (l, t), where l ∈ L and t ∈ N, t > 1.
A derivation in GM starts with one element

(
q,Q, Q̄

)
from L0 which means

that the rule labeled by q has to be applied to the initial object w in the first step
and for the following derivation steps the conditions given by Q as activations of
rules and Q̄ as blockings of rules have to be taken into account in addition to the
activations and blockings coming along with the application of the rule labeled
by q. The role of L0 is to get a derivation started by activating some rule for the
first step although no rule has been applied so far, but probably also providing
additional activations and blockings for further derivation steps.

A configuration of GM in general can be described by the object derived so
far and the activations Q and blockings Q̄ for the next steps. In that sense, the
starting tuple

(
q,Q, Q̄

)
can be interpreted as

(
{(q, 1)} ∪Q, Q̄

)
, and we may also

simply write
(
Q′, Q̄

)
with Q′ = {(q, 1)} ∪ Q. We mostly will assume Q and Q̄ to

be non-conflicting, i.e., Q∩ Q̄ = ∅; otherwise, we interpret
(
Q′, Q̄

)
as

(
Q′ \ Q̄, Q̄

)
.

Given a configuration
(
u,Q, Q̄

)
, in one step we can derive

(
v,R, R̄

)
, and we

also write (
u,Q, Q̄

)
=⇒GAB

(
v,R, R̄

)
,

if and only if
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• u =⇒G v using the rule r such that (q, 1) ∈ Q and (q, r) ∈ fL, i.e., we apply
the rule labeled by q activated for this next derivation step to u; the new sets
of activations and blockings are defined by

R̄ =
{
(x, i) | (x, i+ 1) ∈ Q̄, i > 0

}
∪ {(x, i) | (q, x, i) ∈ B} ,

R = ({(x, i) | (x, i+ 1) ∈ Q, i > 0} ∪ {(x, i) | (q, x, i) ∈ A})
\

{
(x, i) | (x, i) ∈ R̄

}
(observe that R and R̄ are made non-conflicting by eliminating rule labels
which are activated and blocked at the same time);
or

• no rule r is activated to be applied in the next derivation step; in this case we
take v = u and continue with

(
v,R, R̄

)
constructed as before provided R is not

empty, i.e., there are rules activated in some further derivation steps; otherwise
the derivation stops.

The language generated by GAB is defined by

L(GAB) =
{
v ∈ OT |

(
w,Q, Q̄

)
=⇒∗

GAB

(
v,R, R̄

)
for some

(
Q, Q̄

)
∈ L0

}
.

The family of languages generated by AB-grammars of type X is denoted by
L (X-AB). If the set B of blocking relations is empty, then the grammar is said to
be a grammar with activation of rules (an A-grammar for short) of type X; the
corresponding family of languages is denoted by L (X-A). In this case we might
not allow the second case in a derivation of the A-grammar that in a derivation
step no rule is activated to be applied. Moreover, an A-grammar is called an A1-
grammar if for all (p, q, t) ∈ A we have t = 1, which means that only the rule
applied in one derivation step activates the rules which can be applied in the next
step; in this case we may only write (p, q) instead of (p, q, 1). Moreover, in L0 we
may simply list the labels of the rules to be applied in the first step.

Example 1. Consider the string grammar GS =
(
(N ∪ T )

∗
, T ∗, w, P,=⇒P

)
with

N = {A,B,C}, T = {a, b, c}, w = ABC, and the set of rules
P = {A → aA,B → bB,C → cC,A → λ,B → λ,C → λ},
as well as the A1-grammar
GA = (G,L, fL, A, L0,=⇒GA

) with
L = {pa, pb, pc, pA, pB , pC}, and, writing p : r for the pairs (p, r) in fL,
fL = {pa : A → aA, pb : B → bB, pc : C → cC}

∪ {pA : A → λ, pB : B → λ, pC : C → λ}
A = {(pa, pb) , (pb, pc) , (pc, pa) , (pc, pA) , (pA, pB) , (pB , pC)} , and
P0 = {pa, pA} .

The underlying string grammar generates the regular set {a}∗ {b}∗ {c}∗, whereas
the A1-grammar GA generates {anbncn | n ∈ N0}: starting with the rule labeled
by pa from L0, the rules corresponding to the sequence of labels papbpc is applied
n ≥ 1 times, and finally we switch to the sequence of rules given by pApBpC
whereafter no rule can be applied any more. Starting with pA yields the empty
string.
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Only allowing blocking of rules would not make sense, but if we implicitly have
all rules activated in every derivation step, then blocking some of the rules with the
application of a rule in a derivation step for the next derivation step(s) allows us to
speak of a grammar with blocking of rules (a B-grammar for short) of type X; the
corresponding family of languages is denoted by L (X-B). Moreover, a B-grammar
is called a B1-grammar if for all (p, q, t) ∈ B we have t = 1, which means that the
rule applied in one derivation step can only block the rules to be applied in the
next step; in this case we again only write (p, q) instead of (p, q, 1). Moreover, in
L0 we may simply list the labels of the rules to be applied in the first step.

Example 2. We consider the same underlying string grammar as in Example 1,
GS =

(
(N ∪ T )

∗
, T ∗, w, P,=⇒P

)
with N = {A,B,C}, T = {a, b, c}, w = ABC,

and the set of rules
P = {A → aA,B → bB,C → cC,A → λ,B → λ,C → λ}. From the A1-grammar
as constructed in Example 1, we construct an equvalent B1-grammar
GB = (G,L, fL, B, L0,=⇒GB

) with
L = {pa, pb, pc, pA, pB , pC}, and, writing p : r for the pairs (p, r) in fL,
fL = {pa : A → aA, pb : B → bB, pc : C → cC}

∪ {pA : A → λ, pB : B → λ, pC : C → λ}
B = {(pa, L \ {pb}) , (pb, L \ {pc}) , (pc, L \ {pa, pA})}

∪ {(pA, L \ {pB}) , (pB , L \ {pC})} , and
P0 = {pa, pA} .

This B1-grammar GB generates the same language as the A1-grammar GA

constructed in Example 1, i.e., {anbncn | n ∈ N0}: instead of activating the next
rules to be applied, we block all the other rules.

3 General Results

In this section, we elaborate some general results holding true for many types
of grammars, some even holding for any type X, whereas some of them rely on
specific conditions on X.

3.1 General Results for Standard Control mechanisms

The main results elaborated for the relations between the specific regulating mech-
anisms in [6] and in [5] (not including the new mechanism of activation and block-
ing of rules) are depicted in Figure 1; most of these relations even hold for arbitrary
types X.

Theorem 1. The inclusions indicated by vectors as depicted in Figure 1 hold, the
additionally needed features of having unit and/or trap rules indicated by u and t,
respectively, aside the vector.
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L(X-GCac)

L
(
X-GCallfinal

ac

)

L(X-Pac) L(X-MATac)

L(X-GCallfinal)

L(X-P )

L(X-MAT )

L(X-RC)

u, t

L(X-fC)

L(X-O)

t
L(X-pC)

u

L(X)

Fig. 1. Hierarchy of control mechanisms for grammars of type X.

3.2 A1-Grammars and B1-Grammars

There is an interesting relation between A1-Grammars and B1-Grammars which
is quite surprising as usually forbidding rules to be applied does not yield the same
computational power as prescribing the rules to be applied in the next step as,
for example, in matrix grammars without ac. The conceptual reason behind this
result is that in B-grammars, by default, all rules are activated for every derivation
step.

Theorem 2. For any type X, L (X-A1) = L (X-B1).

Proof. We first show L (X-A1) ⊆ L (X-B1).

Let GA = (G,L, fL, A, L0,=⇒GA
) be an A1-grammar where the underlying

grammar G = (O,OT , w, P,=⇒G) is of type X, L is a finite set of labels with each
label having assigned one rule from P by the function fL, A is a finite subset of
L× L, and L0 ⊆ L is the set of initial rule labels.

Then we define the equivalent B1-grammar of type X GB as follows:

GB = (G,L, fL, B, L0,=⇒GB
) ,

B = {(l, L \ {m | (l,m) ∈ A}) | l ∈ L} ,
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i.e., B is constructed in such a way that instead of activating the rules to be applied
in the next derivation step, we block all the other rules – observe that by default
in B-grammars all rules are activated for every derivation step (compare this with
the construction of the B1-grammar in Example 2 from the A1-grammar given in
Example 1).

We now show the other direction, L (X-A1) ⊇ L (X-B1).

Let GB = (G,L, fL, B, L0,=⇒GB
) be a B1-grammar where the underlying

grammar G = (O,OT , w, P,=⇒G) is of type X, L is a finite set of labels with each
label having assigned one rule from P by the function fL, B is a finite subset of
L× L, and L0 ⊆ L is the set of initial rule labels.

Then we define the equivalent A1-grammar of type X GA as follows:

GA = (G,L, fL, A, L0,=⇒GA
) ,

A = {(l, L \ {m | (l,m) ∈ B}) | l ∈ L} ,
i.e., A is constructed from B in such a way that only those rules are activated to
be applied in the next derivation step which are not blocked according to B. ⊓⊔

It remains as an open question if a similar result also holds for arbitrary A-
and B-grammars.

3.3 Matrix Grammars and A1-Grammars

Our first result shows a close connection between matrix grammars without ap-
pearance checking and A1-grammars:

Theorem 3. For any type X, L (X-MAT ) ⊆ L (X-A1).

Proof. Let GM = (G,M,F,=⇒GM
) be a matrix grammar with the underly-

ing grammar G = (O,OT , w, P,=⇒G) being a grammar of type X; let M =
{(pi,1, . . . , pi,ni

) | 1 ≤ i ≤ n} with pi,j ∈ P , 1 ≤ j ≤ ni, 1 ≤ i ≤ n.

We construct the equivalent A1-grammar

GA = (G,L, fL, A, L0,=⇒GA
) ,

L = {li,j | 1 ≤ j ≤ ni, 1 ≤ i ≤ n} ,
fL = {(li,j , pi,j) | 1 ≤ j ≤ ni, 1 ≤ i ≤ n} ,
A = {(li,j , li,j+1) | 1 ≤ j < ni, 1 ≤ i ≤ n}

∪ {(li,ni , lj,1) | 1 ≤ j ≤ n, 1 ≤ i ≤ n} ,
L0 = {li,1 | 1 ≤ i ≤ n} .

We mention that according to our definitions the sequential application of the rules
of the chosen matrix may stop at any moment if the next rule cannot be applied,
in which case also the simulation in the A1-grammar stops. ⊓⊔

We immediately infer the following for the special cases of strings, multisets,
and arrays as underlying objects:

Corollary 1. For X ∈ {CF,mCF} ∪ {d-#-CFA | d ∈ N},
L (X-MAT ) ⊆ L (X-A1) .



14 A. Alhazov, R. Freund, S. Ivanov

3.4 Random Context Grammars and AB-Grammars

For any type X with unit rules, random context grammars of type X can be
simulated by AB-grammars of type X.

Remark 1. In order to keep proofs shorter, in the following, instead of specifying
the set of rules P , the set of labels L, and the function fL assigning rules to the
labels separately, we will only specify the corresponding labeled rules of the form
l : r with l ∈ L, r ∈ P , and (l, r) ∈ fL. Moreover, for X ∈ {A,B}, instead of
(p, q, t) ∈ X, we write (p, q, t)X .

Theorem 4. For any type X with unit rules, L (X-RC) ⊆ L (X-AB).

Proof. Let (G,R,=⇒GRC
) be a random context grammar with the underlying

grammar G = (O,OT , w, P,=⇒G) being of a type X with unit rules, where

R = {(ri, Pi, Qi) | 1 ≤ i ≤ n} , ri ∈ P, 1 ≤ i ≤ n,
Pi = {pi,j | 1 ≤ j ≤ mi, 1 ≤ i ≤ n} ,mi ≥ 0, 1 ≤ i ≤ n,
Qi = {qi,j | 1 ≤ j ≤ ni, 1 ≤ i ≤ n} , ni ≥ 0, 1 ≤ i ≤ n.

Then we construct an AB-grammar GAB of type X as follows:

GAB = (G′, L, fL, A,B, L0,=⇒GA
) ,

G′ = (O,OT , w, P
′,=⇒G′) ,

P ′ = P ∪ {r+ | r ∈ P} ;
L0 = {lri | 1 ≤ i ≤ n} ;

the application of a random context rule (ri, Pi, Qi) is simulated by the following
sequence of labeled rules together with suitable activations and blockings of rules:

• lri : ri
+, (lri , lri,1)A, (lri , l̄ri,j ,mi+j)A, 1 ≤ j ≤ ni; at the beginning, the check-

ing of all rules which should not be applicable is initiated, and the sequence of
applicability checkings for the rules in Pi is started;

• lri,j : pi,j
+, (lri,j , lri,j+1)A, 1 ≤ j < mi;

• lri,mi : pi,mi
+, (lri,mi , l̂ri , ni + 1)A; when all rules in Pi have been checked to

be applicable, the application of rule ri after further ni steps is activated; yet
if any of the rules in Qi is applicable, then this application of rule ri is blocked;

• l̄ri,j : qi,j
+, (l̄ri,j , l̂ri , ni − j + 1)B , 1 ≤ j ≤ ni;

• l̂ri : ri, (l̂ri , lrk), 1 ≤ k ≤ n; after the successful application of rule r we may
continue with trying to apply any random context rule from R.

We finally observe that only unit rules and no trap rules as in other simulations
known from [6] are needed to obtain this result. ⊓⊔

3.5 AB-Grammars and Graph-Controlled Grammars

Already in [6] graph-controlled grammars have been shown to be the most powerful
control mechanism, and they can also simulate AB-grammars with the underlying
grammar being of any arbitrary type X.
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Theorem 5. For any type X, L (X-AB) ⊆ L (X-GCac).

Proof. Let GAB = (G,L, fL, A,B, L0,=⇒GA
) be an AB-grammar with the under-

lying grammar G = (O,OT , w, P,=⇒G) being of any type X. Then we construct
a graph-controlled grammar

GGC = (G, g,Hi,Hf ,=⇒GC)

with the same underlying grammar G. The simulation power is captured by the
structure of the control graph g = (H,E,K). The node labels in H, identifying
the nodes of the graph in a one-to-one manner, are obtained from GAB as all
possible triples of the forms

(
q,Q, Q̄

)
or

(
q̄, Q, Q̄

)
with q ∈ L and the elements

of Q, Q̄ being of the form (r, t), r ∈ L and t ∈ N such that t does not exceed
the maximum time occurring in the relations in A and B, hence, this in total is a
bounded number. We also need a special node labeled ∅, where a computation in
GGC ends in any case when this node is reached.

All nodes can be chosen to be final, i.e., Hf = H. Hi = L0 is the set of initial
labels, i.e., we start with one of the initial conditions as in the AB-grammar.

The idea behind the node
(
q,Q, Q̄

)
is to describe the situation of a configuration

derived in the AB-grammar where q is the label of the rule to be applied and Q, Q̄
describe the activated and blocked rules for the further derivation steps in the
AB-grammar. Hence, as already in the definition of an AB-grammar, we therefore
assume Q ∩ Q̄ = ∅.

Now let g(l) denote the rule r assigned to label l, i.e., (l, r) ∈ fL. Then, the set
of rules assigned to

(
q,Q, Q̄

)
is taken to be {g(q)}. The set of rules assigned to ∅

is taken to be ∅.
As it will become clear later in the proof why, the nodes

(
q̄, Q, Q̄

)
are assigned

the set of rules {g(l) | (l, 1) ∈ Q, l ̸= q}; we only take those nodes where this set
is not empty.

When being in node
(
q,Q, Q̄

)
, we have to distinguish between two possibilities:

• If g(q) is applicable to the object derived so far, a Y-edge has to go to every
node which describes a situation corresponding to what would have been the
next configuration in the AB-grammar. We then compute

R̄ =
{
(x, i) | (x, i+ 1) ∈ Q̄, i > 0

}
∪ {(x, i) | (q, x, i) ∈ B} ,

R = ({(x, i) | (x, i+ 1) ∈ Q, i > 0} ∪ {(x, i) | (q, x, i) ∈ A})
\

{
(x, i) | (x, i) ∈ R̄

}
(observe that R and R̄ are made non-conflicting) as well as – if it exists –
t0 := min{t | (x, t) ∈ R}, i.e., the next time step when the derivation in the
AB-grammar could continue. Hence, we take a Y-edge to every node

(
p, P, P̄

)
where p ∈ {x | (x, t0) ∈ R} and

P̄ =
{
(x, i) | (x, i+ t0 − 1) ∈ R̄, i > 0

}
,

P = {(x, i) | (x, i+ t0 − 1) ∈ R} .
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If t0 := min{t | (x, t) ∈ R} does not exist, this means that R is empty and we
have to make a Y-edge to the node ∅.

• If g(q) is not applicable to the object derived so far, we first have to check that
none of the other rules activated at this step could have been applied, i.e., we
check for the applicability of the rules in the set of rules

Ū := {g(l) | (l, 1) ∈ Q, l ̸= q}

by going to the node
(
q̄, Q, Q̄

)
with a N-edge; from there no Y-edge leaves, as

this would indicate the unwanted case of the applicability of one of the rules
in Ū , but with a N-edge we continue the computation in any node

(
p, P, P̄

)
with p, P , P̄ computed as above in the first case. We observe that in case R̄
is empty, we can omit the path through the node

(
q̄, Q, Q̄

)
and directly go

to the nodes
(
p, P, P̄

)
which are obtained as follows: we first check whether

t0 := min{t | (x, t) ∈ Q, t > 1} exists or not; if not, then the computation
has to end with a N-edge to node ∅. Otherwise, a N-edge goes to every node(
p, P, P̄

)
with p ∈ {x | (x, t0) ∈ Q} and

P̄ =
{
(x, i) | (x, i+ t0 − 1) ∈ Q̄, i > 0

}
,

P = {(x, i) | (x, i+ t0 − 1) ∈ Q} .

where the simulation may continue.

In this way, every computation in the AB-grammar can be simulated by the graph-
controlled grammar with taking a correct path through the control graph and
finally ending in node ∅; due to this fact, we could also choose the node ∅ to be
the only final node, i.e., Hf = {∅}. On the other hand, if we have made a wrong
choice and wanted to apply a rule which is not applicable, although another rule
activated at the same moment would have been applicable, we get stuck, but the
derivation simulated in this way still is a valid one in the AB-grammar, although in
most standard types X, which usually are strictly extended ones, such a derivation
does not yield a terminal object. Having taken Hf = {∅}, such paths would not
even lead to successful computations in GGC .

In any case, we conclude that the graph-controlled grammar GGC generates the
same language as the AB-grammar GAB , which observation concludes the proof.
⊓⊔

The power of rule activation is really strong and in most cases the additional
power of blocking is not needed. As a special variant of graph-controlled gram-
mars we consider those where all labels are final; the corresponding family of
languages generated by graph-controlled grammars of type X is abbreviated by
L
(
X-GCallfinal

ac

)
.

Theorem 6. For any strictly extended type X with unit rules and trap rules,

L
(
X-GCallfinal

ac

)
⊆ L (X-A) .
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Proof. Let
GGC = (G, g,Hi,Hf ,=⇒GC)

be a graph-controlled grammar where G = (O,OT , w, P,=⇒G) is a strictly ex-
tended grammar of type X; g = (H,E,K), E ⊆ H × {Y,N} × H is the set of
edges labeled by Y or N , K : H → 2P is a function assigning a subset of P to
each node of g; Hi ⊆ H is the set of initial labels, and Hf is the set of final labels
coinciding with the whole set H, i.e., Hf = H .

Then we construct an equivalent A-grammar

GA = (G′, L, fL, A, L0,=⇒GA
)

as follows:
The underlying grammar G′ is obtained from G by adding all unit and trap

rules, i.e., G′ = (O,OT , w, P
′,=⇒G′) with P ′ = P ∪ {p+, p− | p ∈ P}. G′ again is

strictly extended and w /∈ OT , hence, also in GA rules have to be applied before
terminal objects are obtained. For any node in g labeled by l with the assigned set
of rules Pl we assume it to be described by Pl = {pl,i | 1 ≤ i ≤ nl}. Moreover, for
pl,i we take a label (l, i) into L and ((l, i), pl,i) into fL.

We now sketch how the transitions from a node in g labeled by l with the
assigned set of rules Pl can be simulated:

For each rule pl,i in Pl, 1 ≤ i ≤ nl, (l, Y, k) ∈ E and pk,j ∈ Pk, we take
((l, i), (k, j)) into A.

If no rule in Pl can be applied, a trickier construction is needed: as long as
we assume that at some moment when going through the control graph a rule
will be applicable, we guess in which node k this will happen as well as a path
h0 = l−h1−· · ·−hn = k in g following only N-edges from node l to node k which
does not contain a loop. For any such path we introduce a label (l̄, h1, . . . , (k, j))
in L and (l̄, h1, . . . , (k, j)) : pk,j

+ in fL. Moreover, we use the following activations
in A:

• ((l̄, h1, . . . , (k, j)), {q− | q ∈
∪

0≤i≤k−1 Phi
, 1) is used to check in the next step

that no rule along the path from node l to node k is applicable, whereas in the
second next step only the designated rule pk,j can be applied, i.e., we take

• ((l̄, h1, . . . , (k, j)), pk,j , 2) into A.

What remains to be settled is how a derivation in the A-grammar starts:
As w /∈ OT , at least one rule must be applied to obtain a terminal object;

hence, we check all possibilities that a rule in an initial node in Hi or along a path
in g following only N-edges from such an initial node can be applied; for each such
rule pk,j in node k we introduce an initial label (k, j) in L and also take it into

L0 as well as (k, j) : pk,j
+ into fL which allows for starting with pk,j using the

activation ((k, j), (k, j)) in A. As by construction pk,j is applicable it is guaranteed
that any continuation of the computation will follow a Y-edge in g and thus the
simulation in GA will also follow the simple simulation of an applicable rule and
its continuation with a direct activation of rule in a set assigned to a node directly
reachable from node k by a Y-edge.
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In total, the construction given above guarantees that the simulation of a com-
putation in GGC by a computation in GA starts correctly and continues until no
rule can be applied any more. As we have assumed all nodes in g to be final and
X to be a strictly extended type, i.e., no rules can be applied to a terminal object
any more, the only condition to get a result is to obtain a terminal object at the
end of a computation. This observation completes our proof. ⊓⊔

As programmed grammars are just a special case of graph-controlled grammars
with all labels being final, we immediately infer the following result:

Corollary 2. For any strictly extended type X with unit rules and trap rules,

L (X-Pac) ⊆ L (X-A) .

4 Special Results for Specific Objects

In this section we show computational completeness results for AB-grammars
based on corresponding well-known computational completeness for other control
mechanisms.

4.1 Special Results for Arrays

In both the one- and the two-dimensional case, it has been shown, see [4], that even
matrix grammars without ac are sufficient to generate any recursively enumerable
array language, i.e., for d ∈ {1, 2}, L (d-#-CFA-MAT ) = L (d-ARBA) (the main
reason for such a result is the “#-sensing” ability of the rules of type d-#-CFA).
Based on Theorem 3, we immediately infer the following result:

Theorem 7. For d ∈ {1, 2},

L (d-#-CFA-A1) = L (d-#-CFA-MAT ) = L (d-ARBA) .

For arbitrary dimensions d ∈ N, we have (see [4])

L (d-#-CFA-O) = L (d-ARBA) .

Hence, based on Corollary 2 and Theorem 1 we obtain the following result:

Theorem 8. For any d ∈ N and for any control mechanism Y ,
Y ∈

{
O, fC,RC,MATac, Pac, GCallfinal

ac , GCac, A,AB
}
,

L (d-ARBA) = L (d-#-CFA-Y ) .



Activation and Blocking of Rules in Sequential Grammars 19

4.2 Special Results for Strings

It is well-known, for example see [2], that L (CF -RC) = L (ARB). Based on
Theorem 4, we immediately infer the following computational completeness result:

Theorem 9. L (CF -AB) = L (CF -RC) = L (ARB) = RE.

Based on Corollary 2, we even obtain the following stronger result:

Theorem 10. L (CF -A) = L (CF -Pac) = L (CF -GCac) = L (CF -RC) = RE.

4.3 Special Results for Multisets

As in the case of multisets the structural information contained in the sequence
of symbols cannot be used, arbitrary multiset rules are not sufficient for obtaining
all sets in Ps (L (ARB)). Yet we can show that even with A-grammars we obtain
the following:

Theorem 11. PsRE = Ps (L (ARB)) = L (mARB-A).

Proof. It is folklore, for example see [8] and [6], that

PsRE = Ps (L (ARB)) = L (mARB-fC) = L (mARB-RC) ,

hence, by Theorem 4, we also obtain PsRE = L (mARB-AB). Based on Corol-
lary 2, we even obtain PsRE = L (mARB-Pac) = L (mARB-A) . ⊓⊔

5 Computational Completeness for Context-Free
AB-Grammars with Two Non-Terminal Symbols

In this section, we state our main results for context-free string and multiset gram-
mars showing that computational completeness can already be obtained with two
non-terminal symbols, which result is optimal with respect to the number of non-
terminal symbols.

Theorem 12. Any recursively enumerable set of strings can be generated by a
context-free AB-grammar using only two non-terminal symbols.

Proof. (Sketch) The main technical details of how to use only two non-terminal
symbols A and B for generating a given recursively enumerable language follow the
construction given in [6] for graph-controlled grammars. The most important to be
shown here is how to simulate the ADD- and SUB-instructions of a deterministic
register machine with the contents of the two working registers being given by the
number of symbols A and B; only at the end, both numbers are zero, whereas in
between, during the whole computation, at least one symbol A or B is present.
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The initial string is A, and one A is also the last symbol to be erased at the end
in order to obtain a terminal string.

In the following, we use X to specify one of the two non-terminal symbols A
and B, and Y then stands for the other one. For any label p of the register machine
we use two labels p and p′. The simulations in the AB-grammar work as follows:

• p : (ADD(X), q) is simulated by p : X → XX and p′ : Y → Y X with
(p, p′, 1)B as well as (p, q, 2)A, (p, q

′, 3)A, and (p′, q, 1)A, (p
′, q′, 2)A;

• p : (SUB(X), q, s) is simulated by p : X → λ and p′ : Y → Y with
(p, p′, 1)B as well as (p, q, 2)A, (p, q

′, 3)A, and (p′, s, 1)A, (p
′, s′, 2)A;

in both cases, the application of the rule labeled by p blocks the rule labeled by p′;
in any case, for the next rule labeled r to be simulated, both r and r′ are activated,
again r′ following r one step later.

For the halting label h, only the labeled rule h : A → λ is to be activated. ⊓⊔
This result is optimal with respect to the number of non-terminal symbols:

as it has been shown in [3], even for graph-controlled context-free grammars one
non-terminal symbol is not enough, hence, the statement immediately follows from
Theorem 5.

We now show a similar result for multset grammars.

Theorem 13. Any recursively enumerable set of multisets can be generated by an
AB-grammar using context-free multiset rules and only two non-terminal symbols.

Proof. Given a recursively enumerable set of multisets L over the terminal alpha-
bet T = {a1, . . . , ak}, we can construct a register machine ML generating L in the
following way: instead of speaking of a number n in register r we use the nota-
tion ar

n, i.e., a configuration of ML is represented as a string over the alphabet
V = T ∪ {ak+1, ak+2} with the two non-terminal symbols ak+1, ak+2.

We start with one ak+1 and first generate an arbitrary multiset over T step by
step adding one element am from T and at the same time multiply the number
of symbols ak+1 by pm, where pm is the m-th prime number. At the end of this
procedure, for the multiset a1

n1 . . . ak
nk we have obtained am

nm in each register
m, 1 ≤ m ≤ k, and ak+1

p1
n1 ...pk

nk in register k+1. As for example, already shown
in [9], only using registers k + 1 and k + 2, a deterministic register machine M ′

L

simulating any number of registers by this prime number encoding can compute
starting with ak+1

p1
n1 ...pk

nk and halt if and only if a1
n1 . . . ak

nk ∈ L. Only with
halting, all registers of M ′

L are cleared to zero, i.e., we end up with only one ak+1

in ML when this deterministic register machine M ′
L has reached its halting label

h. So the last step of ML before halting is just to eliminate this last ak+1. During
the whole computation of ML, the sum of symbols ak+1 and ak+2 is greater than
zero. Hence, it only remains to show how to simulate the instructions of a register
machine, which is done in a similar way as in the preceding proof; we use X to
specify one of the two non-terminal symbols ak+1 and ak+2, and Y then stands for
the other one, i.e., X,Y ∈ {ak+1, ak+2}. For any label p of the register machine
we use two labels p and p′. The simulations in the AB-grammar work as follows:
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• a non-deterministic ADD-instruction p : (ADD(X), q, s) is simulated by
branching into two deterministic ADD-instructions even twice:
p : X → X and p′ : Y → Y with (p, p′, 1)B as well as
(p, (p,X, q), 2)A, (p, (p,X, s), 2)A, and (p′, (p, Y, q), 1)A, (p

′, (p, Y, s), 1)A;

in the third step of the simulation, we already know whether X is present or
else we have to use Y ; this now allows us to simulate the four deterministic
ADD-instructions (p, α, β) : (ADD(X), β), α ∈ {X,Y }, β ∈ {q, s}, in a simpler
way by using the rules
(p, α, β) : α → αX
and the activations
((p, α, β), β, 1)A, ((p, α, β), β

′, 2)A;

• p : (ADD(X), q) is simulated by p : X → XX and p′ : Y → Y X with
(p, p′, 1)B as well as (p, q, 2)A, (p, q

′, 3)A, and (p′, q, 1)A, (p
′, q′, 2)A;

• p : (SUB(X), q, s) is simulated by p : X → λ and p′ : Y → Y with
(p, p′, 1)B as well as (p, q, 2)A, (p, q

′, 3)A, and (p′, s, 1)A, (p
′, s′, 2)A;

in both cases, the application of the rule labeled by p blocks the rule labeled
by p′; in any case, for the next rule labeled r to be simulated, both r and r′

are activated, again r′ following r one step later;

• for the halting label h, only the labeled rule h : ar+1 → λ is to be activated.

When the final rule h : ar+1 → λ is applied, no further rule is activated, thus
the derivation ends yielding the multiset a1

n1 . . . ak
nk ∈ L as terminal result. ⊓⊔

6 Conclusion

We have considered the concept of regulating the applicability of rules based on
the application of rules in the preceding step(s) within a very general model for
sequential grammars and compared the resulting computational power in relation
to various other control mechanisms based on the applicability of rules in the un-
derlying grammar, especially for graph-controlled and matrix grammars as well as
random context grammars. Even only using the structural features of the sequences
of applied rules, yet not taking into account the features of the underlying objects
(e.g., strings, multisets, arrays), general simulation results are obtained. Then we
also established some special computational completeness results for string, array,
and multiset grammars only using activation of rules. Using both activation and
blocking of rules in the case of string and multiset grammars with context-free
rules, computational completeness can already be obtained with only two non-
terminal symbols, which is a sharp result, as only one non-terminal symbol is not
sufficient.

The concept of activation and blocking of rules can also be used when rules
are applied in parallel, which is an attractive idea for the area of P systems where
several variants of parallel derivation modes are common.
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Summary. We introduce several variants of input-driven tissue P automata where the
rules to be applied only depend on the input symbol. Both strings and multisets are
considered as input objects; the strings are either read from an input tape or defined
by the sequence of symbols taken in, and the multisets are given in an input cell at the
beginning of a computation, enclosed in a vesicle. Additional symbols generated during a
computation are stored in this vesicle, too. An input is accepted when the vesicle reaches a
final cell and it is empty. The computational power of some variants of input-driven tissue
P automata is illustrated by examples and compared with the power of the input-driven
variants of other automata as register machines and counter automata.

1 Introduction

In the basic model of membrane systems as introduced at the end of the last
century by Gheorghe Păun, e.g., see [9] and [30], the membranes are organized
in a hierarchical membrane structure (i.e., the connection structure between the
compartments/regions within the membranes being representable as a tree), and
the multisets of objects in the membrane regions evolve in a maximally parallel
way, with the resulting objects also being able to pass through the surrounding
membrane to the parent membrane region or to enter an inner membrane. Many
variants of membrane systems, for obvious reasons mostly called P systems, have
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been investigated during nearly two decades, most of them being computationally
complete, i.e., being able to simulate the computations of register machines. If an
arbitrary graph is used as the connection structure between the cells/membranes,
the systems are called tissue P systems, see [21].

Instead of multisets of plain symbols coming from a finite alphabet, P systems
quite often operate on more complex objects (e.g., strings, arrays), too. A com-
prehensive overview of different variants of (tissue) P systems and their expressive
power is given in the handbook which appeared in 2010, see [31]. For a short view
on the state of the art on the domain, we refer the reader to the P systems web-
site [34] as well as to the Bulletin series of the International Membrane Computing
Society [33].

The notion and concept of input-driven push-down automata goes back to
the seminal paper [22] as well as the papers [6] and [10] improving the complexity
measures shown in [22]. The main idea of input-driven push-down automata is that
the input letters uniquely determine whether the automaton pushes a symbol, pops
a symbol, or leaves the pushdown unchanged. Input-driven push-down automata
have been rediscovered at the beginning of this century under the name of visibly
pushdown automata, see [3] and [4]. Since then, variants of input-driven push-
down automata have gained growing interest, especially because closure properties
and decidable questions of the language classes defined by these devices turn out
to be similar to those of regular languages. Several new variants of input-driven
automata have been developed, for example, using stacks or queues, see [5], [19],
and [20]. For complexity issues of input-driven push-down automata, the reader is
referred to [24, 25, 26, 27].

The so-called point mutations, i.e., insertion, deletion, and substitution, which
mean inserting or deleting one symbol or replacing one symbol by another one in
a string or multiset are very simple biologically motivated operations. For exam-
ple, on strings graph-controlled insertion-deletion systems have been investigated
in [13], and P systems using these operations at the left or right end of string
objects were introduced in [16], where also a short history of using these point
mutations in formal language theory can be found.

The operations of insertion and deletion in multisets show a close relation
with the increment and decrement instructions in register machines. The power of
changing states in connection with the increment and decrement instructions then
can be mimicked by moving the whole multiset representing the configuration of a
register machine from one cell to another one in the corresponding tissue system
after the application of an insertion or deletion rule. Yet usually moving the whole
multiset of objects in a cell to another one, besides maximal parallelism, requires
target agreement between all applied rules, i.e., that all results are moved to the
same target cell, e.g., see [15].

A different approach has been introduced in [2]: in order to guarantee that the
whole multiset is moved even if only one point mutation is applied, the multiset
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is enclosed in a vesicle, and this vesicle is moved from one cell to another one
as a whole, no matter if a rule has been applied or not. Requiring that one rule
has to be applied in every derivation step, a characterization of the family of
sets of (vectors of) natural numbers defined by partially blind register machines,
which itself corresponds with the family of sets of (vectors of) natural numbers
obtained as number (Parikh) sets of string languages generated by graph-controlled
or matrix grammars without appearance checking, is obtained.

The idea of using vesicles of multisets has already been used in variants of P
systems using the operations drip and mate, corresponding with the operations
cut and paste well-known from the area of DNA computing, see [14]. Yet in that
case, always two vesicles (one of them possibly an axiom available in an unbounded
number) have to interact. In the model as introduced in [2] and also to be adapted
in this paper, the rules are always applied to the same vesicle. The point mutations,
i.e., insertion, deletion, and substitution, well-known from biology as operations
on DNA, have also widely been used in the variants of networks of evolutionary
processors (NEPs), which consist of cells (processors) each of them allowing for
specific operations on strings, and in each derivation step, after the application of a
rule, allow the resulting string to be sent to another cell provided specific conditions
(for example, random context output and input filters). A short overview on NEPs
is given in [2], too.

In this paper, we now introduce input-driven tissue P automata where the
rules to be applied only depend on the input symbol. Taking strings as input
objects, these are either read from an input tape or defined by the sequence of
symbols taken in, and as a kind of additional storage we use a multiset of different
symbols enclosed in a vesicle which moves from one cell of the tissue P system to
another one depending on the input symbol; the input symbol at the same time
also determines whether (one or more) symbols are added to the multiset in the
vesicle or removed from there. The given input is accepted if the whole input has
been read and the vesicle has reached a final cell and is empty at this moment.
When using multisets as input objects, these are enclosed in the vesicle in the
input cell at the beginning of a computation, which vesicle then will also carry
the additional symbols. The given input multiset is accepted if no input symbols
are present any more and the vesicle has reached a final cell and is empty at this
moment.

As rules operating on the multiset enclosed in the vesicle when read-
ing/consuming an input symbol we use insertion, deletion, and substitution of
multisets, applied in the sequential derivation mode. As restricted variants, we
consider systems without allowing substitution of multisets and systems only al-
lowing symbols to be inserted or deleted (or substituted) as it is common when
using point mutation rules.

Multiset automata have already been considered in [7], where models for finite
automata, linear bounded automata, and Turing machines working on multisets
are discussed. When dealing with multisets only, the tissue P automata considered
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in this paper can be seen as one of the variants of multiset pushdown automata as
investigated in [18], where no checking for the emptiness of the multiset memory
during the computation is possible. Various lemmas proved there then can imme-
diately be adapted for our model. Moreover, also the input-driven variants can be
defined in a similar manner, although input-driven multiset pushdown automata
have not yet been considered in that paper.

We should also like to mention that the control given by the underlying com-
munication structure of the tissue P system could also be interpreted as having a
P system with only one membrane but using states instead. For a discussion on
how to use and interpret features of (tissue) P systems as states we refer to [1],
where also an example only using the point mutation rules insertion and deletion
is given. Moreover, we will also consider another alternative model very common
in the P systems area, i.e., P systems with antiport and symport rules, which were
introduced in [29]; for an overview, we refer to [31], Chapter 5. One-membrane P
systems using antiport rules in a sequential manner and with specific restrictions
on the rules then are an adequate model for (input-driven) P automata, yet the
restrictions are less visible than in the model of input-driven tissue P automata.
On the other hand, when dealing with strings instead of multisets, the way how to
read or define the input string in P systems with antiport rules has already been
investigated thoroughly, e.g., see [8], [28], and [11] for an overview.

The rest of the paper now is structured as follows: In Section 2 we recall some
well-known definitions from formal language theory. The main definitions for the
model of (input-driven) tissue P automata as well as its variants to be considered
in this paper are given in Section 3, and there we also present the definition of the
alternative model of (input-driven) one-membrane P automata with (restricted)
antiport rules; moreover we also give some first examples and results. Further
illustrative examples and some more results, especially for input-driven tissue P
automata are exhibited in Section 4. As upper bound for the family of sets of
vectors of natural numbers accepted by input-driven tissue P automata we get the
family of sets of vectors of natural numbers generated by partially blind register
machines, and as upper bound for the family of sets of strings accepted by input-
driven tissue P automata we get the family of sets of strings accepted by partially
blind counter automata. A summary of the results obtained in this paper and an
outlook to future research are presented in Section 5.

2 Prerequisites

We start by recalling some basic notions of formal language theory. An alphabet is
a non-empty finite set. A finite sequence of symbols from an alphabet V is called
a string over V . The set of all strings over V is denoted by V ∗; the empty string
is denoted by λ; moreover, we define V + = V ∗ \ {λ}. The length of a string x is
denoted by |x|, and by |x|a we denote the number of occurrences of a letter a in a
string x.
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A multiset M with underlying set A is a pair (A, f) where f : A→ N is a map-
ping, with N denoting the set of natural numbers (non-negative integers). If M =
(A, f) is a multiset then its support is defined as supp(M) = {x ∈ A | f(x) > 0}. A
multiset is empty (respectively finite) if its support is the empty set (respectively
a finite set). If M = (A, f) is a finite multiset over A and supp(M) = {a1, . . . , ak},
then it can also be represented by the string a

f(a1)
1 . . . a

f(ak)
k over the alphabet

{a1, . . . , ak} (the corresponding vector (f(a1), . . . , f(ak)) of natural numbers is
called Parikh vector of the string af(a1)

1 . . . a
f(ak)
k ), and, moreover, all permuta-

tions of this string precisely identify the same multiset M (they have the same
Parikh vector). The set of all multisets over the alphabet V is denoted by V ◦.

The family of all recursively enumerable sets of strings is denoted by RE, the
corresponding family of recursively enumerable sets of Parikh vectors is denoted
by PsRE. For more details of formal language theory the reader is referred to the
monographs and handbooks in this area, such as [32].

2.1 Insertion, Deletion, and Substitution

For an alphabet V , let a→ b be a rewriting rule with a, b ∈ V ∪ {λ}, and ab 6= λ;
we call such a rule a substitution rule if both a and b are different from λ and we
also write S(a, b); such a rule is called a deletion rule if a 6= λ and b = λ, and it
is also written as D(a); a → b is called an insertion rule if a = λ and b 6= λ, and
we also write I(b). The sets of all insertion rules, deletion rules, and substitution
rules over an alphabet V are denoted by InsV , DelV , and SubV , respectively.
Whereas an insertion rule is always applicable, the applicability of a deletion and
a substitution rule depends on the presence of the symbol a. We remark that
insertion rules, deletion rules, and substitution rules can be applied to strings
as well as to multisets. Whereas in the string case, the position of the inserted,
deleted, and substituted symbol matters, in the case of a multiset this only means
incrementing the number of symbols b, decrementing the number of symbols a,
or decrementing the number of symbols a and at the same time incrementing the
number of symbols b.

These types of rules and the corresponding notations can be extended by al-
lowing more than one symbol on the left-hand and/or the right-hand side, i.e.,
a, b ∈ V ∗, and ab 6= λ. The corresponding sets of all extended insertion rules,
deletion rules, and substitution rules over an alphabet V are denoted by Ins∗V ,
Del∗V , and Sub

∗
V , respectively.

2.2 Register Machines

Register machines are well-known universal devices for computing (generating or
accepting) sets of vectors of natural numbers.

Definition 1. A register machine is a construct M = (m,B, I, h, P ) where

• m is the number of registers,
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• B is a set of labels bijectively labeling the instructions in the set P ,
• I ⊆ B is the set of initial labels, and
• h ∈ B is the final label.

The labeled instructions of M in P can be of the following forms:

• p : (ADD (r) ,K), with p ∈ B \ {lh}, K ⊆ B, 1 ≤ r ≤ m.
Increase the value of register r by one, and non-deterministically jump to one
of the instructions in K.

• p : (SUB (r) ,K, F ), with p ∈ B \ {lh}, K,F ⊆ B, 1 ≤ r ≤ m.
If the value of register r is not zero then decrease the value of register r by one
(decrement case) and jump to one of the instructions in K, otherwise jump to
one of the instructions in F ( zero-test case).

• h : HALT .
Stop the execution of the register machine.

A configuration of a register machine is described by the contents of each reg-
ister and by the value of the current label, which indicates the next instruction to
be executed.

In the accepting case, a computation starts with the input of a k-vector of
natural numbers in its first k registers and by executing one of the initial instruc-
tions of P (labeled with l ∈ I); it terminates with reaching the HALT -instruction.
Without loss of generality, we may assume all registers to be empty at the end of
the computation.

By L(RM) we denote the family of sets of vectors of natural numbers accepted
by register machines. It is folklore (e.g., see [23]) that PsRE = L(RM).

Partially blind register machines

In the case when a register machine cannot check whether a register is empty
we say that it is partially blind: the registers are increased and decreased by one
as usual, but if the machine tries to subtract from an empty register, then the
computation aborts without producing any result (that is we may say that the
subtract instructions are of the form p : (SUB (r) ,K, abort); instead, we simply
will write p : (SUB (r) ,K).

Moreover, acceptance now by definition also requires all registers to be empty
at the end of the computation, i.e., there is an implicit test for zero at the end of a
(successful) computation, that is why we say that the device is partially blind. By
L(PBRM) we denote the family of sets of vectors of natural numbers accepted by
partially blind register machines. It is known (e.g., see [12]) that partially blind
register machines are strictly less powerful than general register machines (hence,
than Turing machines); moreover, L(PBRM) characterizes the Parikh sets of lan-
guages generated by graph-controlled or matrix grammars without appearance
checking.
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2.3 Counter Automata

Register machines can also be equipped with an input tape to be able to process
strings, and the registers then are only used as auxiliary storage. We then call the
registers counters and the automaton a counter automaton (we mention that in
the literature slightly different definitions with respect to the instructions may be
found). The additional instruction needed then is a read instruction reading one
symbol from the input tape:

p : (read(a),K), with p ∈ B \ {h}, K ⊆ B, and a ∈ T .

T is the input alphabet, i.e., in sum we obtain a counter automaton as a construct

M = (m,B, I, h, P, T ).

A counter automaton accepts an input w ∈ T ∗ if and only if it starts in some
initial state and with w on its input tape, and finally M reaches h having read the
whole input string w. Without loss of generality, we again may assume all registers
to be empty at the end of the computation.

It is folklore (e.g., see [23]) that the family of string languages accepted by
counter automata equals RE (in fact, only two counters are needed).

Partially blind counter automata

As in the case of register machines, a counter automaton is called partially blind
if it cannot check whether a register is empty, and acceptance by definition re-
quires the whole input to be read and all counters to be empty at the end of the
computation. For basic results on partially blind counter automata we refer to
the seminal paper [17]. The family of string languages accepted by partially blind
counter automata is denoted by L(PBCA).

2.4 Input-Driven Register Machines and Counter Automata

An input-driven register machine / counter automaton (an IDRM∗ and IDCA∗,
respectively, for short) can be defined in the following way: any decrement of an
input register r / any reading of a terminal symbol a is followed by fixed sequences
of instructions on the working registers / counters only depending on the input
register r / the terminal symbol a. If each such sequence is of length exactly one,
then we speak of a real-time input-driven register machine / counter automaton
(an IDRM and IDCA, respectively, for short).

In the case of an IDCA, these sequences are of the form

p : (read(a),K)→ q : (α(r),Kq), q ∈ K,

with α ∈ {ADD,SUB}, 1 ≤ r ≤ m, and they could be written as one extended
instruction

p : (read(a), α(r),
⋃

q∈K Kq).
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In a similar way, for an IDCA∗ we replace α(r) by the whole sequence of in-
structions following the reading of the input symbol a. A similar notation can be
adapted for the case of a SUB-instruction on an input register instead of read(a).
Moreover, analogous definitions and notations hold for the partially blind variants
of input-driven register machines / counter automata.

Remark 1. We emphasize that we have chosen a very restricted variant of what it
means that the actions on the working registers only depend on the input symbol
just read: no matter which label the read instruction read(a) has, it must always be
followed by the same sequence α(r); only the branching to labels from

⋃
q∈K Kq)

allows for taking different actions afterwards. ut

Remark 2. Allowing a set of initial labels as well as sets of labels in the ADD-
and SUB-instructions may look quite unusual, but especially for the input-driven
automata this feature turns out to be essential:

Assume we had allowed only one initial label i in any input-driven counter
automaton. Now consider the finite multiset language {a, b}: assume there is an
input-driven partially blind counter automaton accepting {a, b}. By definition,
the instruction assigned to the initial label i must be a read instruction. With the
initial label i, only one of the read instructions read(a) or read(b) can be assigned,
hence, only a or only b can be accepted, a contradiction.

A similar argument holds for partially blind register machines taking the input
set of two-dimensional vectors {(1, 0), (0, 1)}: the instruction assigned to i must
be a SUB-instruction either on register 1 or on register 2, again leading to a
contradiction.

On the other hand, with our more general definition, we get closure under
union for free for L(X), X ∈ {IDRM, IDCA, IDRM∗, IDCA∗}. ut

3 Tissue P Automata as Multiset Pushdown Automata

We now define a model of a tissue P automaton and its input-driven variants, first
for the case of working with multisets as input objects:

Definition 2. A tissue P automaton (a tPA∗ for short) is a tuple

Π = (L, V,Σ, Γ,R, g, I, F )

where

• L is a set of labels identifying in a one-to-one manner the |L| cells of the tissue
P system Π;

• V is the alphabet of the system;
• Σ ⊆ V is the (non-empty) input alphabet of the system;
• Γ ⊆ V is the (possibly empty) memory alphabet of the system, Γ ∩Σ = ∅;
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• R is a set of rules of the form (i, p) where i ∈ L and p ∈ Ins∗V ∪Del∗V ∪Sub∗V ,
i.e., p is an extended insertion, deletion or substitution rule over the alphabet
V ; we may collect all rules from cell i in one set and then write Ri = {(i, p) |
(i, p) ∈ R}, so that R =

⋃
i∈LRi; moreover, for the sake of conciseness, we

may simply write Ri = {p | (i, p) ∈ R}, too;
• g is a directed graph describing the underlying communication structure of Π,

g = (N,E) with N = L being the set of nodes of the graph g and the set of
edges E ⊆ L× L;

• I ⊆ L is the set of labels of initial cells one of them containing the input
multiset w at the beginning of a computation;

• f ⊆ L is the set of labels of final cells for acceptance.

If in the definition above we take p ∈ InsV ∪ DelV ∪ SubV instead of p ∈
Ins∗V ∪Del∗V ∪ Sub∗V , then we speak of a tPA instead of a tPA∗.

A tPA∗ Π now works as follows: The computation of Π starts with a vesicle
containing the input multiset w in one of the initial cells i ∈ I, and the computation
proceeds with derivation steps until a specific output condition is fulfilled.

In each derivation step, with the vesicle enclosing the multiset w being in cell k,
one rule from Rk is applied to w and the resulting multiset in its vesicle is moved
to a cell m such that (k,m) ∈ E.

As we are dealing with membrane systems, the classic output condition is to
only consider halting computations; yet in case of automata, the standard accep-
tance condition is reaching a final state, which in our case means reaching a final
cell h, and, moreover, the vesicle to be empty. We will take these two conditions
as our mode of acceptance in this paper, as with the vesicle being empty no decre-
ment rule can be applied any more and, moreover, it is guaranteed that we have
“read the whole input”. Only requiring the vesicle to be empty or else requiring
to have reached a final cell with the vesicle containing no input symbol any more,
are two other variants of acceptance.

The set of multisets accepted by Π is denoted by Psacc(Π). The families of
sets of vectors of natural numbers accepted by tPA∗ and tPA with at most n
cells are denoted by Ln(tPA

∗) and Ln(tPA), respectively. If n is not bounded, we
simply omit the subscript in these notations. In order to specify which rules are
allowed in the tPA∗ and tPA, we may explicitly specify I∗, D∗, S∗ and I,D, S,
respectively, to indicate the use of (extended) insertion, deletion, and substitution
rules. For example, L(tPA, ID) then indicates that only insertion and deletion
rules are used.

Remark 3. The model of a tPA∗ comes very close to the model of a multiset push-
down automaton as introduced in [18]; in fact, the family of sets of vectors of
natural numbers accepted by these multiset pushdown automata equals L(tPA∗).
A formal proof would go far beyond the scope of this paper, but the basic simi-
larity of these two models becomes obvious when identifying the cells in the tPA∗
with the states in the multiset pushdown automaton; moving the vesicle from one
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cell to another one corresponds to changing the states. As shown for the states
of the multiset pushdown automata in [18], we could also restrict ourselves to
only one initial as well as only one final cell in the general case, as this does not
restrict the computational power of a tPA∗. On the other hand, for any of the
following restricted variants this need not be true any more, especially for the
input-driven variants defined later; in this context we also remind the arguments
given in Remark 2. ut

The following result shows that having more than one rule in a cell is not
necessary:

Lemma 1. For any tPA∗ Π there exists an equivalent tPA∗ Π ′ such that every
cell contains at most one rule.

Proof. (Sketch) Let Π = (L, V,Σ, Γ,R, g, I, F ) be a tPA∗. The equivalent tPA∗
Π ′ = (L′, V,Σ, Γ,R′, g′, I ′, F ′) then is constructed as follows:

For every cell k with Rk containing nk rules, instead of cell k we take nk copies
of that cell, cells (k, 1), . . . , (k, nk), into Π ′, each of it containing one of the rules
from Rk, say pk,l, 1 ≤ l ≤ nk. The connection graph g then has to be enlarged to
a graph g′ containing all the edges

{((k, l), (j,m)) | (k, j) ∈ g, 1 ≤ l ≤ nk, 1 ≤ m ≤ nj}.

If cell k contains no rule, we rename it to cell (k, 1), and no rule is contained in
this cell, too.

The new sets of labels of initial and final cells are obtained by taking all copies
of the original cell labels, i.e., we take

I ′ = {(k, l) | (k ∈ I, 1 ≤ l ≤ nk},
F ′ = {(k, l) | (k ∈ F, 1 ≤ l ≤ nk}.

We now immediately infer Ps(Π) = Ps(Π ′). ut

Remark 4. It is easy to avoid having more than one final cell: based one the pre-
ceding proof, we introduce a new final cell f ′, i.e., we take F ′ = {f ′}, with this
new cell not containing any rule; moreover, we add all edges

{((k, l), f ′) | ((k, l), (j,m)) ∈ g′, j ∈ F}.

This new cell corresponds to the label of the final HALT instruction in a register
machine or a counter automaton. ut

Remark 5. Having only one initial cell cannot be shown by only using a new struc-
ture: we may add a new single initial cell i′ containing a substitution rule S(a, a)
for some a ∈ V , and add all edges

{(i′, (k, l)) | (k, l) ∈ I ′}.
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If we want to avoid substitution rules, we may add two new cells containing the
rules I(a) and D(a), respectively, use the first one as the only new initial cell only
having an arc to the second one from where to branch as described above.

Continuing the discussions from Remark 2 and Remark 3 we mention that
both constructions are not feasable for the input-driven variants to be defined in
Subsection 3.2. ut

The following result is based on the fact that the insertion, deletion, or sub-
stitution of a multiset over V can easily be simulated by a sequence of insertions
and deletions:

Lemma 2. For any tPA∗ Π there exists an equivalent tPA Π ′ even not using
substitution rules.

Proof. Let Π = (L, V,Σ, Γ,R, g, I, F ) be a tPA∗. According to Lemma 2, without
loss of generality, we may assume every cell to contain only one rule. The equivalent
tPA Π ′ then is constructed as follows:

Let u → v be a substitution rule with u = u1 . . . uk and v = v1 . . . vm. Then
the following sequence of deletion and insertion rules has the same effect as u→ v:

D(u1)→ . . . D(uk)→ I(v1)→ . . . I(vm)

Taking cells for each of these rules and the corresponding connections into Π ′, it
is easy to see that following this path in Π ′ has the same effect as the application
of the original rule in Π. Similar arguments hold true if u = λ or v = λ, too,
i.e., in case of an insertion or a deletion rule, respectively. In sum, we conclude
Ps(Π) = Ps(Π ′). ut

Now let L(mARB) denote the family of sets of multisets generated by arbitrary
multiset grammars.

Corollary 1. L(tPA∗, IDS) = L(tPA, ID) = L(mARB) = L(PBRM).

Proof. (Sketch) The equality L(tPA∗, IDS) = L(tPA, ID) follows from the defi-
nitions and Lemma 2.

The equality L(tPA∗, IDS) = L(mARB) is a consequence of the observation
discussed above in Remark 3 that L(tPA∗, IDS) corresponds to the family of
sets of multisets accepted by multiset pushdwon automata as defined in [18]. In
a similar way, interpreting the cells in a tissue P automaton as the states of a
partially blind register machine and seeing the correspondence of the acceptance
conditions, we also infer the equality L(tPA∗, IDS) = L(PBRM). The details are
left to the reader. ut
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3.1 Accepting Strings

The tissue P automata defined above can also be used to accept sets of strings
by assuming the input string to be given on a separate input tape, from where
the symbols of the input string are read from left to right. As when going from
register machines to counter automata, we use the additional instruction (read
instruction) read(a) with a ∈ Σ, Σ being the input alphabet. The corresponding
automata then are defined as follows:

Definition 3. A tissue P automaton for strings (a tPAL∗ for short) is a tuple

Π = (L, V,Σ, Γ,R, g, I, F )

where L, V , Σ, Γ , R, g, I, F are defined as for a tPA∗, except that besides
insertion, deletion, and substitution rules we also allow rules of the form read(a)
with a ∈ T , i.e., read instructions.

If we only take rules from InsV ∪DelV ∪SubV instead of Ins∗V ∪Del∗V ∪Sub∗V ,
then we speak of a tPAL instead of a tPAL∗.

A tPAL∗ Π now works as follows: The computation of Π starts with the input
string on the input tape as well as an empty vesicle in one of the initial cells i ∈ I,
and the computation proceeds with derivation steps until the whole input string
has been read and the vesicle has reached a final cell, again being empty at the
end of the computation.

In each derivation step, with the vesicle enclosing the multiset w being in cell
k, one rule from Rk is applied, either reading a symbol from the input tape or
affecting w, and the resulting multiset in its vesicle then is moved to a cell m such
that (k,m) ∈ E.

The set of strings accepted by Π is denoted by L(Π). The families of sets
of strings accepted by tPAL∗ and tPAL with at most n cells are denoted by
Ln(tPAL

∗) and Ln(tPAL), respectively. If n is not bounded, we simply omit the
subscript in these notations. In order to specify which rules are allowed in the tPA∗
and tPA, we again may explicitly specify I∗, D∗, S∗ and I,D, S, respectively, to
indicate the use of (extended) insertion, deletion, and substitution rules.

As for tissue P automata accepting multisets, also for the ones accepting strings
we obtain some similar results as shown above:

Lemma 3. For any tPAL∗ Π there exists an equivalent tPAL∗ Π ′ such that every
cell contains at most one rule.

Lemma 4. For any tPAL∗ Π there exists an equivalent tPAL Π ′ even not using
substitution rules.

Corollary 2. L(tPAL∗, IDS) = L(tPAL, ID) = L(PBCA).
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3.2 Input-Driven Tissue P Automata

We now define the input-driven variants of tPA∗ and tPA as well as tPAL∗ and
tPAL:

Definition 4. A tPA∗ Π = (L, V,Σ, Γ,R, g, I, F ) is called input-driven (and
called a tIDPA∗ for short) if the following conditions hold true:

• to each cell, (at most) one rule is assigned;
• any decrement of an input register r is followed by some fixed sequence of

instructions on the working registers only depending on the input register r
before a cell with the next decrement instruction on an input register is reached.
Such a sequence of instructions may even be of length zero.

If each such sequence is of length exactly one, then we speak of a real-time input-
driven tIDPAL∗ (a tIDPArt∗ for short).

Definition 5. A tPAL∗ Π = (L, V,Σ, Γ,R, g, I, F ) is called input-driven (and
called a tIDPAL∗ for short) if the following conditions hold true:

• to each cell, (at most) one rule is assigned;
• any reading of a terminal symbol a by a read instruction read(a) is followed by

some fixed sequence of instructions on the working registers only depending on
the the terminal symbol a before a cell with the next read instruction is reached.
Such a sequence of instructions may even be of length zero.

If each such sequence is of length exactly one, then we speak of a real-time input-
driven tPAL∗ (a tPALrt∗ for short).

The corresponding families of sets of vectors of natural numbers and of sets
of strings accepted by tissue P automata of type X with X being one of the
types tIDPA∗, tIDPA, tIDPA∗rt, tIDPArt as well as tIDPAL∗, tIDPAL,
tIDPAL∗rt, tIDPALrt, are denoted by L(X).

Remark 6. As already discussed in Remark 1 for input-driven register machines
and counter automata, we emphasize that we have chosen a very restricted variant
of what it means that the actions on the multiset in the vesicle only depend on
the input symbol just read: no matter in which cell we have the read instruction
read(a), it must always be followed by the same finite sequence of instructions not
including read instructions. ut

Remark 7. If we only have SUB-instructions on input registers / read instructions,
i.e., if the tPA∗ / tPAL∗ does not use the vesicle at all for storing any intermediate
information, then such a tPA∗ / tPAL∗ can be interpreted as a finite automaton
accepting a regular multiset / string language. In this case, the condition of not
having rules on the vesicle already subsumes the condition of the automaton being
input-driven. ut
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3.3 One-Membrane Antiport P Automata

The idea of using states instead of cells can also be “implemented” by using a
well-investigated model of membrane systems using antiport rules:

Definition 6. A one-membrane antiport P automaton (a 1APA∗ for short) is a
tuple Π = (V,Σ, Γ,Q,R, I, F ) where

• V is the alphabet of the system;
• Σ ⊆ V is the (non-empty) input alphabet of the system;
• Γ ⊆ V is the (possibly empty) memory alphabet of the system, Γ ∩Σ = ∅;
• Q ⊆ V , Q ∩ (Γ ∪Σ) = ∅, is the set of states;
• R is a set of rules of the form pu→ qv, p, q ∈ Q, u ∈ (Γ ∪Σ)∗, v ∈ Σ∗;
• I ⊆ Q is the set of initial states;
• F ⊆ Q is the set of final states.

The 1APA∗ can be seen as a membrane system consisting of only one mem-
brane with the rules pu→ qv interpreted as antiport rules (pu, out; qv, in), i.e., the
multiset pu leaves the membrane region and the multiset qv enters the membrane
region.

Π starts with an input multiset w0 together with one of the initial states p0,
i.e., with w0p0 in its single membrane region, and then applies rules from R until a
configuration with only pf ∈ F in the membrane region is reached, thus accepting
the input multiset w0.

For antiport P automata the acceptance of strings can be defined without
needing an input tape as follows, e.g., see [28]: the rules in R now are of the form
pu→ qv, p, q ∈ Q, u ∈ Γ ∗ and v ∈ (Γ ∪Σ)∗, i.e., the input symbols are now taken
from outside the membrane (from the environment); the sequence how the input
symbols are taken in defines the input string (we may assume v to contain only
one symbol from Σ; otherwise, we have to take any permutation of the symbols
taken in in one step for defining several input strings).

Using such rules and the interpretation of the input string as defined above, we
obtain the model of a one-membrane antiport P automaton for strings (a 1APAL∗

for short).

As in the preceding subsections we now can define specific variants of 1APA∗
and 1APAL∗, e.g., the corresponding input-driven automata. Yet as we have in-
troduced these models especially to show the correspondence with an automaton
model well-known in the area of P systems, we leave the technical details to the
interested reader.

4 Examples and Results

The concepts of tIDPA∗ and IDPBRM∗ are closely related:
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Theorem 1. L(tIDPA∗) ⊆ L(PBRM∗) and
L(tIDPA∗) = L(tIDPA∗, ID) = L(IDPBRM∗).

Proof. (Sketch) The inclusion L(IDPBRM∗) ⊆ L(PBRM∗) is obvious from the
definitions.

The equality L(tIDPA, ID∗) = L(IDPBRM∗) follows from the definitions of
these types of input-driven automata: as already mentioned earlier, the cells in a
tPA∗ correspond to the states in a PBRM . The acceptance conditions – the vesicle
being empty in a final cell in a tPA∗ and all registers being empty in a PBRM
when reaching the final label – directly correspond to each other, too. Moreover,
insertion and deletion rules directly correspond to ADD- and SUB-instructions.
Finally, the conditions for the input-driven variants requiring the same actions
for a consumed input symbol and the decrement of the corresponding register are
equivalent, too.

The equality L(tIDPA∗) = L(tIDPA∗, ID) follows from the possibility to
simulate substitution rules by a sequence of insertion and deletion rules. This
observation completes the proof. ut

Using similar arguments as in the preceding proof, now considering read in-
structions instead of decrements on input registers, we obtain the corresponding
result for the string case:

Theorem 2. L(tIDPAL∗) ⊆ L(PBCA∗) and
L(tIDPAL∗) = L(tIDPAL∗, ID) = L(IDPBCA∗).

In the real-time variants, we cannot use substitution rules in the input-driven
tissue P automata, as the simulation by deletion and insertion rules takes more
than one step:

Theorem 3. L(tIDPArt, ID) = L(IDPBRMrt) and
L(tIDPALrt, ID) = L(IDPBCArt).

We now illustrate the computational power of input-driven tissue P automata
accepting strings by showing how well-known string languages can be accepted.
We remark that in all cases the automaton has only one initial label and one final
label.

Example 1. The Dyck language LD over the alphabet of brackets { [ , ] } can easily
be accepted by the tIDPBCArt MD:

MD = (1, B = {1, 2, 3, 4, 5}, l0 = 1, lh = 5, P, T = { [ , ] }) ,
P = {1 : (read ( [ ) , {2}) , 2 : (ADD (1) , {1, 3}) ,

3 : (read ( ] ) , {4}) , 4 : (SUB (1) , {1, 3, 5}) 5 : HALT )}.

LD can also be accepted by the corresponding tIDPALrt ΠD:
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ΠD = (L = {1, 2, 3, 4, 5}, V,Σ, Γ,R, g = (L,E), I = {1}, F = {5}) ,
V = {a1, [ , ] },
Σ = { [ , ] },
Γ = {a1},
R = {(1, read ( [ )), (2, I (a1)), (3, read ( ] )), (4, D (a1))},
E = {(1, 2), (2, 1), (2, 3), (3, 4), (4, 1), (4, 3), (4, 5)}.

The two constructions elaborated above implement the following definition of
a well-formed bracket expression w over the alphabet of brackets { [ , ] }:

• for every prefix of w, the number of closing brackets ] must not exceed the
number of opening brackets [ ;

• the number of closing brackets ] in w equals the number of opening brackets [ .

Hence, during the whole computation, the (non-negative) difference between
the number of opening and the number of closing brackets is stored as the number
of symbols a1; at the end, this number must be zero, which is guaranteed by the
acceptance conditions. ut

L(IDPBCArt) even contains a non-context-free language:

Example 2. The language Lil = {anbmcndm | m,n ≥ 1} is not context-free, but
accepted by the following tIDPALrt Πil:

Πil = (L = {1, . . . , 9}, V,Σ, Γ,R, g = (L,E), I = {1}, F = {9}) ,
V = {a1, a2, a, b, c, d},
Σ = {a, b, c, d},
Γ = {a1, a2},
R = {(1, read ( a )), (2, I (a1)), (3, read ( b )), (4, I (a2)),

(5, read ( c )), (6, D (a1)), (7, read ( d )), (8, D (a2))},
E = {(1, 2), (2, 1), (2, 3), (3, 4), (4, 3),

(4, 5), (5, 6), (6, 5), (6, 7), (7, 8), (8, 7), (8, 9)}.

By this construction, we conclude Lil ∈ L(tIDPALrt, ID). ut

For the language considered in the next example we show that it is in
L(tIDPAL∗rt), but we claim that it is not in L(tIDPALrt):

Example 3. Let k > 2 and consider the string language Lk = {b1n . . . bkn | n ≥ 1},
which is not context-free, but accepted by the following tIDPAL∗rt Π:
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1start

read(a)

2

I(a1)

3

read(b)

4

I(a2)

5

read(c)

6

D(a1)

7

read(d)

8

D(a2)

9

Fig. 1. Graphic representation of the tIDPALrt Πil.

Πk = (L = {1, . . . , 2k + 1}, V,Σ, Γ,R, g = (L,E), I = {1}, F = {2k + 1}) ,
V = {ai, bi | 1 ≤ i ≤ k},
Σ = {bi | 1 ≤ i ≤ k},
Γ = {ai | 1 ≤ i ≤ k},
R = {(1, read ( b1 )), (2, I (a2 . . . ak))}
∪ {(2j − 1, read ( bj )), (2j,D (aj)) | 1 < j ≤ k},

E = {(2j − 1, 2j), (2j, 2j − 1), (2j, 2j + 1) | 1 ≤ j ≤ k}.

Without proof we claim that Lk /∈ L(tIDPALrt). ut

5 Conclusion and Future Research

In this paper, we have introduced tissue P automata as a specific model of multiset
automata as well as input-driven tissue P automata where the rules to be applied
depend on the input symbol. Taking strings as input objects, these are either read
from an input tape or defined by the sequence of symbols taken in, and as an
additional storage of a multiset of different symbols we use a vesicle which moves
from one cell of the tissue P system to another one depending on the input symbol;
the input symbol at the same time determines whether (one or more) symbols are
added to the multiset in the vesicle or removed from there and where the vesicle
moves afterwards. The given input is accepted if the whole input has been read
and the vesicle has reached a final cell and/or is empty at this moment. When
using multisets as input objects, these are enclosed in the vesicle in the input cell
at the beginning of a computation, which vesicle then will also take the additional
symbols. The given input multiset is accepted if no input symbols are present any
more and the vesicle has reached a final cell and is empty at this moment.

As rules operating on the multiset enclosed in the vesicle when read-
ing/consuming an input symbol we have used insertion, deletion, and substitution
of multisets, working in the sequential derivation mode. As restricted variants, we
have considered systems without allowing substitution of multisets and systems
only allowing symbols to be inserted or deleted (or substituted).
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We have shown how input-driven tissue P automata with multisets and strings
can be characterized by input-driven register machines and input-driven counter
automata, respectively. Moreover, we have exhibited some illustrative examples,
for example, how the Dyck language or even some non-contextfree languages can
be accepted by simple variants of input-driven tissue P automata.

Several challenging topics remain for future research: for example, a character-
ization of the language classes accepted by several variants of tissue P automata
accepting multisets or strings, especially for the input-driven variants, introduced
in this paper is still open.

As acceptance condition we have only considered reaching the final cell h with
an empty vesicle. The other variants of acceptance, i.e., only requiring the vesicle to
be empty or else requiring to have reached the final cell with the vesicle containing
no input symbol any more, are to be investigated in the future in more detail.
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Summary. We introduce a new acceptance mode for APCol systems (Automaton-like P
colonies), variants of P colonies where the environment of the agents is given by a string
and during functioning the agents change their own states and process the string similarly
to automata. In case of the standard variant, the string is accepted if it can be reduced
to the empty word. In this paper, we define APCol systems where the agents verify their
environment, a model resembling multihead finite automata. In this case, a string of
length n is accepted if during every halting computation the length of the environmental
string in the configurations does not change and in the course of the computation every
agent applies a rule to a symbol on position i of some of the environmental strings for
every i, 1 ≤ i ≤ n at least once. We show that these verifying APCol systems simulate
one-way multihead finite automata.

1 Introduction

Automaton-like P colonies (APCol systems, for short), introduced in [1], are vari-
ants of of P colonies (introduced in [9]) - very simple membrane systems inspired
by colonies of formal grammars. The interested reader is referred to [12] for de-
tailed information on P systems (membrane systems) and to [10] and [5] for more
information to grammar systems theory; for more details on P colonies consult [8]
and [4].

An APCol system consists of a finite number of agents - finite collections of
objects in a cell - and a shared environment. The agents have programs consisting
of rules. These rules are of two types: they may change the objects of the agents and
they can be used for interacting with the joint shared environment of the agents.
While in the case of standard P colonies the environment is a multiset of objects,
in case of APCol systems it is represented by a string. The number of objects
inside each agent is set by definition and it is usually a very small number: 1, 2 or
3. The environmental string is processed by the agents and it is used as an indirect
communication channel for the agents as well, since through the string, the agents
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are able to affect the behaviour of another agent. The reader may easily observe
that APCol systems resembling automata as well, the current configuration of
the system (the objects inside the agents) and the current environmental string
correspond to the current state of an automaton and the currently processed input
string.

The agents may perform rewriting, communication or checking rules [9]. A
rewriting rule a → b allows the agent to rewrite (evolve) one object a to object
b. Both objects are placed inside the agent. Communication rule c ↔ d makes
possible to exchange object c placed inside the agent with object d in the string. A
checking rule is formed from two rules r1, r2 of type rewriting or communication.
It sets a kind of priority between the two rules r1 and r2. The agent tries to apply
the first rule and if it cannot be performed, then the agent performs the second
rule. The rules are combined into programs in such a way that all objects inside
the agent are affected by execution of the rules. Thus, the number of rules in the
program is the same as the number of objects inside the agent.

The computation in APCol systems starts with the an input string, represent-
ing the initial state of the environment, and with each agents having only symbols
e inside.

A computational step means a maximally parallel action of the active agents,
i.e., agents that can apply their rules. Every symbol can be object of the action of
only one agent. The computation ends if the input string is reduced to the empty
word, there are no more applicable programs in the system, and meantime at least
one of the agents is in so-called final state. This mode of computation is called
accepting. APCol systems can also be used not only for accepting but generating
strings. For more detailed information on APCol systems we refer to [2, 3].

In this paper, we define a new variant of APCol systems, a model resembling
multihead finite automata, where the agents verify their environment. In this case,
a string of length n is accepted if during every halting computation the length of
the environmental string in the configurations does not change and in the course
of the computation every agent applies a rule to a symbol on position i of some of
the environmental strings for every i, 1 ≤ i ≤ n at least once. We show that these
verifying APCol systems simulate one-way multihead finite automata.

2 Preliminaries and Basic Notions

Throughout the paper we assume the reader to be familiar with the basics of the
formal language theory and membrane computing [13, 12].

For an alphabet Σ, the set of all words over Σ (including the empty word, ε),
is denoted by Σ∗. We denote the length of a word w ∈ Σ∗ by |w| and the number
of occurrences of the symbol a ∈ Σ in w by |w|a.

For a string x ∈ Σ∗, x[i] denotes the symbol at ith position of x, i.e., if
x = x1 . . . xn, xi ∈ Σ, then x[i] = xi. For every string x ∈ Σ∗, x[0] = ε.

For every string x ∈ Σ∗, perm(x) denotes the set of all permutations of x and
pref(x) denotes the set of prefixes of x.
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A multiset of objects M is a pair M = (O, f), where O is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : O → N ; f assigns to each
object in O its multiplicity in M . Any multiset of objects M with the set of
objects O = {x1, . . . xn} can be represented as a string w over alphabet O with
|w|xi

= f(xi); 1 ≤ i ≤ n. Obviously, all words obtained from w by permuting
the letters can also represent the same multiset M , and ε represents the empty
multiset.

2.1 One-way Multihead Finite Automata

We recall some basic notions concerning multi-head finite automata based on [7].
A non-deterministic one-way k-head finite automaton (a 1NFA(k), for short) is a
construct M = (Q,Σ, k, δ, ▷, ◁, q0, F ), where Q is the finite set of states, Σ is the
set of input symbols, k ≥ 1 is the number of heads, ▷ /∈ Σ and ◁ /∈ Σ are the
left and the right endmarkers, respectively, q0 ∈ Q is the initial state, F ⊆ Q is
the set of accepting states, and δ is the partial transition function which maps
Q× (Σ ∪ {▷, ◁})k into subsets of Q× {0, 1}k, where 1 means that the head moves
one tape cell to the right and 0 means that it remains at the same position. We
note that the heads can never move to the left of the left endmarker and to the
right of the right endmarker.

A configuration of a 1NFA(k) M = (Q,Σ, k, δ, ▷, ◁, q0, F ) is a triplet c =
(w, q, p), where w ∈ Σ∗ is the input, q ∈ Q is the current state, and p =
(p1, . . . , pk) ∈ {0, 1, . . . , |w| + 1}k gives the head positions. If a position pi is 0,
then head i is scanning the symbol ▷, if 1 ≤ pi ≤ |w|, then head i scans the pith
letter of w, and if pi = |w|+ 1, then the ith head is scanning the symbol ◁.

The initial configuration for an input w ∈ Σ∗ is (w, q0, (1, . . . , 1)), that is, a
1NFA(k) starts processing a nonempty input word with all of its heads positioned
on the first symbol of w.

In the course of the computation, M performs direct changes of its configura-
tions. Let w = a1 . . . an, be the input, a0 = ▷, an+1 = ◁. For two configurations,
c1 = (w, q, (p1, . . . , pk)) and c2 = (w, q′, (p′1, . . . , p

′
k)), we say that c2 directly follows

c1, denoted by c1 ⊢ c2, if (q
′, (d1, . . . , dk)) ∈ δ(q, (ap1

, . . . , apk
)) and p′i = pi + di,

1 ≤ i ≤ k. The reflexive transitive closure of ⊢ is denoted by ⊢∗. Note that due
to the restriction of the transition function, the heads cannot move beyond the
endmarkers.

The language L(M) accepted by a 1NFA(k) M = (Q,Σ, k, δ, ▷, ◁, q0, F ) is the
set of words w such that there is a computation which starts with ▷w◁ on the
input tape and ends when M reaches an accepting state, i.e.,

L(M) = {w ∈ Σ∗ | (w, q0, (1, . . . , 1)) ⊢∗ (w, qf , (p1, . . . , pk)), qf ∈ F}.

The class of languages accepted by 1NFA(k), for k ≥ 1, is denoted by
L(1NFA(k))

According to the definition of a 1NFA(k) M = (Q,Σ, k, δ, ▷, ◁, q0, F ), the heads
do not need to move away from the scanned tape cell after reading the input
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symbol. For technical reasons, we use a modified but equally powerful version of
this definition in such a way that the automaton reads the input symbols only
in the case when the head moves away from the tape cell containing the symbol.
Otherwise, it “scans” the empty word ε, that is, the symbol does not have any role
in the determination of the next configuration of the machine. For details and the
proof of the equivalence the reader is referred to [6].

Thus, we can simplify the notation for the elements of the transition relation
of one-way k-head finite automata, since we can assume that if (q′, (d1, . . . , dk)) ∈
δ(q, a1, . . . , ak), then dj = 0 if and only if aj = ε, 1 ≤ j ≤ k. As (d1, . . . , dk) ∈
{0, 1}k, we can simply denote the above transition as q′ ∈ δ(q, a1, . . . , ak): If aj ̸= ε
for some j, 1 ≤ j ≤ k, then the jth reading head is moved to the right, otherwise,
if aj = ε it remains in its current position.

2.2 APCol Systems

In the following we recall the notion of an APCol system (an automaton-like P
colony) where the environment of the agents is given in the form of a string [1].

As standard P colonies, agents of the APCol systems contain objects, each of
them is an element of a finite alphabet. Every agent is associated with a set of
programs, every program consists of two rules that can be one of the following two
types. The first one, called an evolution rule, is of the form a → b. This means
that object a inside of the agent is rewritten to object b. The second type, called
a communication rule, is of the form c ↔ d. When this rule is applied, object c
inside the agent and a symbol d in the string representing the environment (the
input string) are exchanged. If c = e, then the agent erases d from the input string
and if d = e, symbol c is inserted into the string.

The computation in APCol systems starts with an input string, representing
the environment, and with each agent having only symbols e inside.

A computational step means a maximally parallel action of the active agents,
i.e., agents that can apply their rules. Every symbol can be object of the action of
only one agent. The computation ends if the input string is reduced to the empty
word, there are no more applicable programs in the system, and meantime at least
one of the agents is in so-called final state.

An APCol system, for is a construct
Π = (O, e,A1, . . . , An), where

• O is an alphabet; its elements are called the objects,
• e ∈ O, called the basic object,
• Ai, 1 ≤ i ≤ n, are agents. Each agent is a triplet Ai = (ωi, Pi, Fi), where

– ωi is a multiset over O, describing the initial state (content) of the agent,
|ωi| = 2,

– Pi = {pi,1, . . . , pi,ki
} is a finite set of programs associated with the agent,

where each program is a pair of rules. Each rule is in one of the following
forms:
· a → b, where a, b ∈ O, called an evolution rule,
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· c ↔ d, where c, d ∈ O, called a communication rule,
– Fi ⊆ O∗ is a finite set of final states (contents) of agent Ai.

In the following we explain the work of an APCol system.
During the work of the APCol system, the agents perform programs. Since

both rules in a program can be communication rules, an agent can work with
two objects in the string in one step of the computation. In the case of program
⟨a ↔ b; c ↔ d⟩, a substring bd of the input string is replaced by string ac. Notice
that although the order of rules in the programs is usually irrelevant, here it is
significant, since it expresses context-dependence. If the program is of the form
⟨c ↔ d; a ↔ b⟩, then a substring db of the input string is replaced by string ca.
Thus, the agent is allowed to act only at one position of the string in the one step
of the computation and the result of its action to the string depends both on the
order of the rules in the program and on the interacting objects. In particular, we
have the following types of programs with two communication rules:

• ⟨a ↔ b; c ↔ e⟩ - b in the string is replaced by ac,
• ⟨c ↔ e; a ↔ b⟩ - b in the string is replaced by ca,
• ⟨a ↔ e; c ↔ e⟩ - ac is inserted in a non-deterministically chosen place in the

string,
• ⟨e ↔ b; e ↔ d⟩ - bd is erased from the string,
• ⟨e ↔ d; e ↔ b⟩ - db is erased from the string,
• ⟨e ↔ e; e ↔ d⟩; ⟨e ↔ e; c ↔ d⟩, . . . - these programs can be replaced by pro-

grams of type ⟨e → e; c ↔ d⟩.

At the beginning of the work of the APCol system (at the beginning of the
computation), the environment is given by a string ω of objects which are different
from e. This string represents the initial state of the environment. Consequently,
an initial configuration of the APCol system is an (n+1)-tuple c = (ω;ω1, . . . , ωn)
where w is the initial state of the environment and the other n components are
multisets of strings of objects, given in the form of strings, the initial states the of
agents.

A configuration of an APCol systemΠ is given by (w;w1, . . . , wn), where |wi| =
2, 1 ≤ i ≤ n, wi represents all the objects inside the ith agent and w ∈ (O−{e})∗
is the string to be processed.

At each step of the computation every agent attempts to find one of its pro-
grams to use. If the number of applicable programs is higher than one, then the
agent non-deterministically chooses one of them. At one step of computation, the
maximal possible number of agents have to be active, i.e., have to perform a pro-
gram.

By applying programs, the APCol system passes from one configuration to
another configuration. A sequence of configurations started from the initial con-
figuration is called a computation. A configuration is halting if the APCol system
has no applicable program.

The result of computation depends on the mode in which the APCol system
works. In the case of accepting mode a computation is called accepting if and only
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if at least one agent is in final state and the string to be processed is ε. Hence, the
string ω is accepted by the APCol system Π if there exists a computation by Π
such that it starts in the initial configuration (ω;ω1, . . . , ωn) and the computation
ends by halting in the configuration (ε;w1, . . . , wn), where at least one of wi ∈ Fi

for 1 ≤ i ≤ n.
In [1] it was shown that the family of languages accepted by jumping finite

automata (introduced in [11]) is properly included in the family of languages ac-
cepted by APCol systems with one agent, and it was proved that any recursively
enumerable language can be obtained as a projection of a language accepted by
an APCol system with two agents.

3 Verifying APCol Systems

In this section we introduce a new variant of acceptance for APCol systems, mo-
tivated by the behaviour of multihead finite automata. In case of standard APCol
systems acceptance means identifying and erasing symbols of the current environ-
mental string. In case of verifying APCol systems, the agents only indicate that
they ”visit” a certain position in the current environmental string, i.e., rewrite the
symbol at that position to some symbol but not to the empty word. A string is
verified if the computation process is halting and for every i, 1 ≤ i ≤ n - supposed
that the length of the input string is n -, each agent rewrites a symbol at posi-
tion i in some of the environmental strings occurring in the computation process.
This means that the agents ”visit” each position (of the input string or that of its
descendant), i.e., they verify that the environment. To perform a transition, the
APCol systems work with the maximally parallel mode.

Definition 1. Let Π = (O, e,A1, . . . , An), n ≥ 1, be and APCol system working
with the maximally parallel mode. We say that Π verifies input string ω if the
following conditions hold.

• There exists a halting computation c in Π where

c = (ω;ω1, . . . , ωn) =⇒
(
ω(1);ω

(1)
1 , . . . , ω

(1)
n

)
=⇒ . . .

(
ω(s);w

(s)
1 , . . . , w

(s)
n

)
,

s ≥ 1, such that |ω| = |ω(j)| for 1 ≤ j ≤ s.
• Computation c satisfies the following property. Let ω(0) = ω. For every agent

Ak, 1 ≤ k ≤ n and for every i, 1 ≤ i ≤ m where |ω| = m, there exists j,
1 ≤ j ≤ s such that the symbol at the ith position of ω(j−1) is letter b and Ak

applies a rule a ↔ b to this position of ω(j−1).
Computation c is called a verification or a verifying computation.

The set of all words that can be verified by Π is called the language verified by
Π. We call a word, resp. a language strongly verified if every computation of the
word, resp. of every word in the language is verifying.

In the following we show that verifying APCol systems simulate one-way mul-
tihead finite automata.
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Theorem 1. Let M = (Q,Σ, n, δ, ▷, ◁, q0, F ), n ≥ 1, be an n-head finite automa-
ton. Then we can construct an APCol system Π with n+ 2 agents such that any
word w that can be accepted by M can strongly be verified by Π.

Proof. To prove the statement, we construct an APCol system Π = (O, e,Aini,
A1, . . . , An, Afin) such that each agent Aj , 1 ≤ j ≤ n simulates the work of
the jth reading head of M and only that. Agent Aini serves for initializing the
simulation and agent Afin checks whether the agents visited every position in
the environmental string. The verifying process in Π corresponds to an accepting
process in M : if a symbol a was scanned by reading heads {i1, . . . , ir} ⊆ {1, . . . , n},
then this fact will be indicated by a symbol a(x) in the environmental string of Π,
where x ∈ perm(i1 . . . ır); i1, . . . , ir are the numbers of reading heads that scanned
symbol a. Every computation step in M is simulated by a sequence of computation
steps performed by agents A1, . . . An.

The input word for Π is of the form ▷w.
To help the easier reading, we will present only the agents together with their

programs.
Π has agent Aini for initializing the simulation and also for assisting the check-

ing whether every position has been visited or not.
It has the following programs:
(1) ⟨e → q0,1, e → e⟩ ,
(2) ⟨q0,1 ↔ ▷, e → e⟩ ,
(3)

⟨
e → e, ā(x) → a′

(x)
⟩
,

where q0 is the initial state and x ∈ perm(1 . . . n), a ∈ Σ.
Programs (1) and (2) are for initializing the simulation, programs of type (3)

are for checking whether or not all positions have been visited.
Every agent Aj simulates the work of the reading head j, 1 ≤ j ≤ n.
For every transition relation

s ∈ δ(q, a1, . . . , an)

of M , where a1, . . . , an ∈ Σ ∪ {ε}, agent Aj , 1 ≤ j ≤ n − 1 has the following
programs.

(We recall that if aj ̸= ε for some j, 1 ≤ j ≤ k, then the jth reading head is
moved to the right, otherwise, if aj = ε it remains in its current position.)

(0)
⟨
e → ▷j , e → ▷′j

⟩
,

(1)
⟨
▷′j ↔ sj , e → e

⟩
,

(1a)
⟨
▷′j ↔ sj , ▷j ↔ e

⟩
,

(1b) ⟨▷′1 ↔ q1, e → e⟩ ,
(1c) ⟨▷′1 ↔ q1, ▷1 ↔ e⟩ ,
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(2)
⟨
sj → s′j , e → a

(xj)
j

⟩
,

(2a)
⟨
sj → s′j , e → a

(x)
j

⟩
,

(2b)
⟨
q1 → s′j , e → a

(xj)
j

⟩
,

(2c)
⟨
q1 → s′j , e → a

(x)
j

⟩
,

(3)
⟨
axjj ↔ ▷j , s

′
j ↔ a

(x)
j

⟩
,

(3a)
⟨
s′j ↔ ▷j , a

x
j ↔ a

(x)
j

⟩
,

(4)
⟨
▷j ↔ s′j , a

(x)
j → sj+1

⟩
,

(4a)
⟨
▷j ↔ s′j , a

(xj)
j → sj+1

⟩
,

(5)
⟨
sj+1 ↔ ▷′j , s

′
j → e

⟩
,

where x ∈ pref(perm(1 . . . n)), |x|j = 0, if aj ̸= ε and x ∈ pref(perm(1 . . . n))
and |x|j = 1 if aj = ε. Furthermore, y ∈ pref(perm(1 . . . n)) and |y|j = 1.

For j = n and s = (q′, p1, . . . , pn), agent Aj has the same programs (0)-(3a),
and programs (4),(4a) and (5) are changed as follows:

(5) ⟨▷n → p′1, e → e⟩ ,
(6) ⟨p′1 ↔ ▷n, e → e⟩ ,
We present a brief explanation of the programs. The first program, (0) is used

for initialization. it generates two symbols of ▷j - the first to mark the position of
reading head and the second to exchange for symbol of the simulated transition.
The simulation of the move of the jth reading head starts with program (1). If it
is simulation of the first step and the first head, then program (1c) is used. For the
first use of other heads the program (1a) is used. The program (1b) is executed
when the system simulates not the first step of computation. The input string
has the form qjα, where q is the state in transition relation s ∈ δ(q, a1, . . . , an),
its subscript j refers to the jth reading head, and α ∈ Σ∗ such that |α| = |w|
(w is the input word). Then qj is changed for ▷j in the environmental string,
implying that no action of some other agent can be performed. Meantime, Aj

changes sj for s′j and makes a guess whether symbol aj is to be scanned or the

reading head will remain at the same position. This is done by introducing a
(xj)
j

or a
(x)
j , programs (2) or (2a). Superscript xj refers to that letter aj has not been

scanned by reading head j (x is the sequence of the number of reading heads
that already scanned this symbol). When agent A1 does the same thing (uses
one of programs (2b), (2c)), it also nondeterministically chooses transition s from
the possible transitions δ(q, a1, . . . , an) for given q ∈ Q and arbitrary sequence of
symbols a1, . . . , an. After then, programs (3) or (3a) perform the corresponding

action, namely change ▷ja
(x)
j to a

(xj)
j s′j or leave the two letters unchanged. (Notice

that the order of rules in this type of programs is important). In the first case we
simulate that the jth reading head scanned aj , in the second case it remained at
the same position. Note that if the reading head is in the position of cell with
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symbol a, the symbol a is not marked as read in this moment. The symbol a is
read when head is leaving the cell with this symbol. After then, by programs (4),
(5), agent Aj will return to state (▷′j , e) and the simulation of the move of the next
reading head in transition s starts, i.e., the environmental string will have sj+1 as
first letter. If j = n, then the first letter in the environmental string is changed to
q′1, meaning that M entered state q′ and the simulation of the first reading head
starts.

The computation is successful if it is halting and all positions have been visited
by each agents. This is checked by agent Afin and then Ainit. The programs of
Afin are as follows.

(0) ⟨e → e, e → h⟩ ,
(1) ⟨e ↔ qf,1, e → h⟩ ,
(2)

⟨
h ↔ c(z), e → e

⟩
,

(3)
⟨
c(x) → c̄(x), e → e

⟩
,

(4)
⟨
c̄(x) ↔ h, e → e

⟩
,

(5)
⟨
c(y) ↔ #, e → e

⟩
,

(6) ⟨h ↔ ▷j , e → e⟩ ,
(7) ⟨▷j → e, e ↔ h⟩ ,
(8) ⟨# → #, e → e, ⟩ ,

where 1 ≤ j ≤ n, c ∈ Σ, z = pref(perm(1 . . . n)), x = perm(1 . . . n), and
y ̸= perm(1 . . . n).

Agent Afin nondeterministically consumes all symbols in the environmental
string. It checks if each of them has been visited by every agent. This is done by
introducing symbol h in the environmental string. Then, programs of the form (3)
and (4), indicates that the symbol was visited by all agents. If there is a symbol
which does not satisfy this property (program (5)), then symbol # is introduced
which implies that the system will never stop (program (8)). Suppose that this
is not the case, then after a while Afin will not be able to perform any of its
programs. It is easy to see that Afin visited all letters in the environmental word.
To complete the proof, Ainit has to visit all symbols as well. This is done by its
programs of type (3). Since Afin visited all symbols, Ainit will do that too, thus,
the computation halts.

The reader my observe that the agents simulate the transitions of M and
that no agent can work simultaneously. Furthermore, programs of different agents
cannot interfere. Thus, the language accepted by M can be verified by Π. Fur-
thermore, every accepting computation of a word in Π is a verifying computation,
thus Π strongly verifies the language accepted by Π.

4 Conclusions

In this paper we demonstrated a further connection between APCol systems and
automata, as we proved that verifying APCol systems simulate one-way multi-
head finite automata. The new concept, the verifying computation opens further
research directions: describing two-way multihead finite automata, jumping mul-
tihead finite automata in terms of APCol systems. We plan investigations in these
topics in the future.
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Summary. We investigate the possibility of the deterministic parsing (that is, parsing
without backtracking) of languages characterized by (generalized) P colony automata.
We define a class of P colony automata satisfying a property which resembles the LL(k)
property of context-free grammars, and study the possibility of parsing the characterized
languages using a k symbol lookahead, as in the LL(k) parsing method for context-free
languages.

1 Introduction

The computational model called P colony is similar to tissue-like membrane sys-
tems, where multisets of objects are used to describe the contents of the cells and
environment and then are processed by the cells in the corresponding colony using
rules which enable the evolution of the objects present in the cells and the ex-
change of objects between the environment and the cells. These computing agents
have a very confined functionality: they can store a restricted amount of objects
at a given time (this is called the capacity of the system) and they can process
a restricted amount of information. The way the information processing is done
is really simple: The rules are either of the form a → b (for changing an object a
into an object b inside the cell), or a ↔ b (for exchanging an object a inside a cell
with an object b in the environment). A rule set is called a program, it consists of
exactly the same number of rules as the capacity of the system. When a program
is executed, the k (the capacity of the system) rules that it contains are applied to
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velopment and Innovation Fund of Hungary, financed under the K 16 funding scheme.
Also supported by the construction EFOP-3.6.3-VEKOP-16-2017-00002, a project fi-
nanced by the European Union, co-financed by the European Social Fund.
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the k objects simultaneously. During a computational step, every colony member
cell execute one of their programs in parallel. A computation ends when the sys-
tem reaches one of its the final configurations (usually given as the set of halting
configurations, that is, those situations when no programs can be applied by any
of the cells).

There are many theoretical results concerning P colonies. Despite the fact that
they are extremely simple computing systems, they are computationally complete,
even with very restricted size parameters and other syntactic or functioning re-
strictions. For these, and more topics, results, see [5, 6, 4, 3, 8, 9, 11, 12].

P colony automata were introduced in [2]. They are called automata, because
they accept string languages by assuming an initial input tape and an input string
in the environment. The available types of rules are extended by so called tape
rules. These types of rules in addition to manipulating the objects as their non-tape
counterparts, also read the processed objects from the input tape.

To overcome the difficulty that different tape rules can read different symbols
in the same computational step, generalized P colony automata were introduced
in [13] and studied further in [15, 14]. The main idea of this computational model
was to get the process of input reading closer to other kinds of membrane systems,
especially to antiport P systems and P automata. The latter, introduced in [10] (see
also [7]) are P systems using symport and antiport rules (see [16]), characterizing
string languages.

This generality is used in the generalized P colony automata theory, that is,
the idea of characterizing strings through the sequences of multisets processed
during computations. A computation in this model defines accepted multiset se-
quences, which are transformed into accepted symbol sequences / strings. In this
model there is no input string, but there are tape and non-tape rules equally for
evolution and communication rules. In a single computational step, this system is
able to read more than one symbol, thus reading a multiset. This way generalized
P colony automata are able to avoid the conflicts present in P Colony automata,
where simultaneous usage of tape rules in a single computational step can arise
problems. After getting the result of a computation, that is, the accepted sequence
of multisets, it is possible to map them to strings in a similar way as shown in P
automata.

In [13], some basic variants of the model were introduced and studied from the
point of view of their computational power. In [15, 14] we continued the investi-
gations structuring our results around the capacity of the systems, and different
types of restrictions imposed on the use of tape rules in the programs of the sys-
tems. In the present paper we study the possibility of deterministically parsing
the languages characterized by these devices. We define the so called LL(k) condi-
tion for these types of automata, which enables deterministic parsing with a one
symbol lookahead, as in the case of context-free LL(k) languages, and present an
initial result showing that using P colony automta we can deterministically parse
context-free languages that are not LL(k) in the “original” sense.
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2 Preliminaries and Definitions

Let V be a finite alphabet, let the set of all words over V be denoted by V ∗, and
let ε be the empty word. We denote the number of occurrences of a symbol a ∈ V
in w by |w|a.

A multiset over a set V is a mapping M : V → N where N denotes the set of
non-negative integers. This mapping assigns to each object a ∈ V its multiplicity
M(a) in M . The set supp(M) = {a | M(a) ≥ 1} is the support of M . If V is a
finite set, then M is called a finite multiset. A multiset M is empty if its support
is empty, supp(M) = ∅. The set of finite multisets over the alphabet V is denoted
by M(V ). A finite multiset M over V will also be represented by a string w over
the alphabet V with |w|a = M(a), a ∈ V , the empty multiset will be denoted by
∅.

We say that a ∈ M if M(a) ≥ 1, and the cardinality of M , card(M) is defined
as card(M) = Σa∈MM(a). For two multisets M1,M2 ∈ M(V ), M1 ⊆ M2 holds, if
for all a ∈ V , M1(a) ≤ M2(a). The union of M1 and M2 is defined as (M1 ∪M2) :
V → N with (M1∪M2)(a) = M1(a)+M2(a) for all a ∈ V , the difference is defined
for M2 ⊆ M1 as (M1 −M2) : V → N with (M1 −M2)(a) = M1(a)−M2(a) for all
a ∈ V .

A genPCol automaton of capacity k and with n cells, k, n ≥ 1, is a construct

Π = (V, e, wE , (w1, P1), . . . , (wn, Pn), F )

where

• V is an alphabet, the alphabet of the automaton, its elements are called objects;
• e ∈ V is the environmental object of the automaton, the only object which is

assumed to be available in an arbitrary, unbounded number of copies in the
environment;

• wE ∈ (V − {e})∗ is a string representing a multiset from M(V − {e}), the
multiset of objects different from e which is found in the environment initially;

• (wi, Pi), 1 ≤ i ≤ n, specifies the i-th cell where wi is (the representation of) a
multiset over V , it determines the initial contents of the cell, and its cardinality
|wi| = k is called the capacity of the system. Pi is a set of programs, each
program is formed from k rules of the following types (where a, b ∈ V ):

– tape rules of the form a
T→ b, or a

T↔ b, called rewriting tape rules and
communication tape rules, respectively; or

– nontape rules of the form a → b, or a ↔ b, called rewriting (nontape) rules
and communication (nontape) rules, respectively.

A program is called a tape program if it contains at least one tape rule.
• F is a set of accepting configurations of the automaton which we will specify

in more detail below.

A genPCol automaton reads an input word during a computation. A part
of the input (possibly consisting of more than one symbols) is read during each
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configuration change: the processed part of the input corresponds to the multiset
of symbols introduced by the tape rules of the system.

A configuration of a genPCol automaton is an (n + 1)-tuple (uE , u1, . . . , un),
where uE ∈ M(V − {e}) is the multiset of objects different from e in the envi-
ronment, and ui ∈ M(V ), 1 ≤ i ≤ n, are the contents of the i-th cell. The initial
configuration is given by (wE , w1, . . . , wn), the initial contents of the environment
and the cells. The elements of the set F of accepting configurations are given as
configurations of the form (vE , v1, . . . , vn), where

• vE ∈ M(V − {e}) denotes a multiset of objects different from e being in the
environment, and

• vi ∈ M(V ), 1 ≤ i ≤ n, is the contents of the i-th cell.

In order to describe the functioning of genPCol automata, let us define the
following multisets. Let r be a rewriting or a communication rule (tape or nontape),
and let us denote by left(r) and right(r) the objects on the left and on the right
side of r, respectively.

Let also, for α ∈ {left, right} and for any program p, α(p) =
∪

r∈p α(r) where
the union denotes multiset union (as defined above), and for a rule r and program
p = ⟨r1, . . . , rk⟩, the notation r ∈ p denotes the fact that r is one of the rules of
the program, that is, r = rj for some j, 1 ≤ j ≤ k.

Moreover, for any tape program p we also define read(p) as the multiset of
symbols (different from e) on the right side of rewriting tape rules and on the
left side of communication tape rules, that is, read(p) =

∪
r∈p,r=a

T→b,b̸=e
right(r)∪∪

r∈p,r=a
T↔b,a̸=e

left(r). If p is not a tape program, that is, p contains no tape rules,

then read(p) = ∅.
Let us also denote by export(p) and import(p) the multiset of objects that are

sent out to the environment and brought inside the cell when applying the program
p, respectively, that is, export(p) =

∪
r∈p left(r), import(p) =

∪
r∈p right(r) for

all communication rules r of the program p. Moreover, by create(p) we denote the
multiset of symbols produced by the rewriting rules of program p, thus, create(p) =∪

r∈p right(p) for the rewriting rules r of p.
Let c = (uE , u1, . . . , un) be a configuration of a genPCol automaton Π, and

let UE = uE ∪ {e, e, . . .}, thus, the multiset of objects found in the environment
(together with the infinite number of es which are always present). The set of
programs

(p1, . . . , pn) ∈ (P1 ∪ {#})× . . .× (Pn ∪ {#})

is applicable in configuration c, if the following conditions hold.

• The selected programs are applicable in the cells (the left sides of the rules
contain the same symbols that are present in the cell), that is, for each 1 ≤ i ≤
n, if pi ∈ Pi then left(pi) = ui;

• the symbols to be brought inside the cells by the programs are present in the
environment, that is,

∪
pi ̸=#,1≤i≤n import(pi) ⊆ UE ;
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• the set of selected programs is maximal, that is, if any pi = # is replaced by
some p′i ∈ Pi, 1 ≤ i ≤ n, then the above conditions are not satisfied any more.

Let us denote by Appc be the set of all applicable sets of programs in the
configuration c = (uE , u1, . . . , un), that is,

Appc = {Pc = (p1, . . . , pn) ∈ (P1 ∪ {#})× . . .× (Pn ∪ {#}) | where Pc

is a set of applicable programs in the configuration c}.

Let c = (uE , u1, . . . , un) be a configuration of the genPCol automaton. By
applying a set of applicable programs Pc ∈ Appc , the configuration c is changed

to a configuration c′ = (u′
E , u

′
1, . . . , u

′
n), denoted by c

Pc=⇒ c′, if the following
properties hold:

• If (p1, . . . , pn) = Pc and pi ∈ Pi, then u′
i = create(pi) ∪ import(pi), otherwise,

if pi = #, then u′
i = ui, 1 ≤ i ≤ n. Moreover,

• U ′
E = UE −

∪
pi ̸=#,1≤i≤n import(pi)∪

∪
pi ̸=#,1≤i≤n export(pi) (where U

′
E again

denotes u′
E ∪ {e, e, . . .} with an infinite number of es).

Thus, in genPCol automata, we apply the programs in the maximally parallel
way, that is, in each computational step, every component cell nondeterministically
applies one of its applicable programs. Then we collect all the symbols that the
tape rules “read” (these multisets are denoted by read(p) for a program p above):
this is the multiset read by the system in the given computational step. For any
Pc, a set of applicable programs in a configuration c, let us denote by read(Pc)
the multiset of objects read by the tape rules of the programs of Pc, that is,

read(Pc) =
∪

pi ̸=#, (p1,...,pn)=Pc

read(pi).

Then we can also define the set of multisets which can be read in any configu-
ration of the genPCol automaton Π as

in(Π) = {read(Pc) | Pc ∈ Appc}.

Remark 1. Although the set of configurations of a genPCol automaton Π is infinite
(because the multiset corresponding to the contents of the environment is not
necessarily finite), the set in(Π) is finite. To see this, note that the applicability
of a program by a component cell also depends on the contents of the particular
component. Since at most one program can be applied in a component in one
computational step, and the number of programs associated to each component
is finite, the number of different sets of applicable programs in any configuration,
that is, the set Appc.

A successful computation defines this way an accepted sequence of multisets:
u1u2 . . . us, ui ∈ in(Π), for 1 ≤ i ≤ s, that is, the sequence of multisets entering
the system during the steps of the computation.
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Let Π = (V, e, wE , (w1, P1), . . . , (wn, Pn), F ) be a genPCol automaton. The set
of input sequences accepted by Π is defined as

A(Π) = {u1u2 . . . us | ui ∈ in(Π), 1 ≤ i ≤ s, and there is a configuration

sequence c0, . . . , cs, with c0 = (wE , w1, . . . , wn), cs ∈ F, and

ci
Pci=⇒ ci+1 with ui+1 = read(Pci) for all 0 ≤ i ≤ s− 1}.

Let Π be a genPCol automaton, and let f : in(Π) → 2Σ
∗
be a mapping, such

that f(u) = {ε} if and only if u is the empty multiset.
The language accepted by Π with respect to f is defined as

L(Π, f) = {f(u1)f(u2) . . . f(us) ∈ Σ∗ | u1u2 . . . us ∈ A(Π)}.

Let us denote the class of languages accepted by generalized PCol automata
with capacity l and with mappings from the class F

• by L(genPCol,F , com-tape(l)) when all the communication rules are tape rules,
• by L(genPCol,F , all-tape(l)) when all the programs must have at least one

tape rule, and
• by L(genPCol,F , ∗(l)) when programs with any kinds of rules are allowed.

Let V and Σ be two alphabets, and let MFIN (V ) ⊆ M(V ) denote the set of
finite subsets of the set of finite multisets over an alphabet V . Consider a mapping
f : D → 2Σ

∗
for some D ∈ MFIN (V ). We say that f ∈ FTRANS, if for any

v ∈ D, we have |f(v)| = 1, and we can obtain f(v) = {w}, w ∈ Σ∗ by applying
a deterministic finite transducer to any string representation of the multiset v,
(as w is unique, the transducer must be constructed in such a way that all string
representations of the multiset v as input result in the same w ∈ Σ∗ as output,
and moreover, as f should be nonerasing, the transducer produces a result with
w ̸= ε for any nonempty input).

Besides the above defined class of mappings, we also use the so called permu-
tation mapping. Let fperm : M(V ) → 2Σ

∗
where V = Σ be defined as follows. For

all v ∈ M(V ), we have

f(v) = {a1a2 . . . as | |v| = s, a1a2 . . . as is a permutation of the elements of v}.

We denote the language classes that can be characterized with these types
of input mappings as LX(genPCol, Y (k)), where X ∈ {fperm,TRANS}, Y ∈
{com-tape, all-tape, ∗}.

Now we recall an example from [14] to demonstrate the above defined notions.

Example 1. Let Π = ({a, b, c}, e, ∅, (ea, P ), F ) be a genPCol automaton where

P = {⟨e → a, a
T↔ e⟩, ⟨e → b, a

T↔ e⟩, ⟨e → b, b
T↔ a⟩, ⟨e → c, b

T↔ a⟩,

⟨a → b, b
T↔ a⟩, ⟨a → c, b

T↔ a⟩}
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with all the communication rules being tape rules. Let also F = {(v, ca) | a ̸∈ v}
be the set of final configurations.

A possible computation of this system is the following:

(∅, ea) ⇒ (a, ea) ⇒ (aa, ea) ⇒ (aaa, eb) ⇒ (aab, ba) ⇒ (bba, ba) ⇒ (bbb, ac)

where the first three computational steps read the multiset containing an a, the
last three steps read a multiset containing a b, thus the accepted multiset sequence
of this computation is (a)(a)(a)(b)(b)(b).

It is not difficult to see that similarly to the one above, the computations which
end in a final configuration (a configuration which does not contain the object a
in the environment) accept the set of multiset sequences

A(Π) = {(a)n(b)n | n ≥ 1}.

The set of multisets which can be read by Π is in(Π) = {a, b} (where a and b
denote the multisets containing one copy of the object a and b, respectively).

If we consider fperm as the input mapping, we have

L(Π, fperm) = {anbn | n ≥ 1}.

On the other hand, if we consider the mapping f1 ∈ FTRANS where f1 :
in(Π) → 2Σ

∗
with Σ = {c, d, e, f} and f1(a) = {cd}, f1(b) = {ef}, we get

the language
L(Π, f1) = {(cd)n(ef)n | n ≥ 1}.

The computational capacity of genPCol automata was investigated in [13, 15,
14]. It was shown that with unrestricted programs systems of capacity one generate
any recursively enumerable language, that is,

LX(genPCol, ∗(k)) = L(RE), k ≥ 1, X ∈ {perm, TRANS}.

A similar result holds for all-tape systems with capacity at least two.

LX(genPCol, all-tape(k)) = L(RE) for k ≥ 2, X ∈ {perm, TRANS}.

.

3 P Colony Automata and the LL(k) Condition

Let U ⊂ Σ∗ be a finite set of strings over some alphabet Σ. Let us denote by
FIRSTk(U) for some k ≥ 1, the set of length k prefixes of the elements of U , that
is, let

FIRSTk(U) = {prefk(u) ∈ Σ∗ | u ∈ U}

where prefk(u) denotes the string of the first k symbols of u if |u| ≥ k, or
prefk(u) = u otherwise.
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Definition 1. Let Π = (V, e, wE , (w1, P1), . . . , (wn, Pn), F ) be a genPCol automa-
ton, let f : in(Π) → 2Σ

∗
be a mapping as above, and let c0, c1, . . . , cs be a sequence

of configurations with ci =⇒ ci+1 for all 0 ≤ i ≤ s− 1.
We say that the P colony Π is LL(k) for some k ≥ 1 with respect to the

mapping f , if for any two distinct sets of programs applicable in configuration
cs, P1, P2 ∈ Acccs with P1 ̸= P2, if u1 = read(P1) and u2 = read(P2), then
FIRSTk(f(u1)) ∩ FIRSTk(f(u2)) = ∅.

The class of context-free LL(k) languages will be denoted by L(CF,LL(k)) (see for
example the monograph [1] for more details), while the the languages characterized
by genPCol automata satisfying the above defined condition, with input mapping
of type fperm or f ∈ TRANS, will be denoted by LX(genPCol,LL(k)), X ∈
{perm, TRANS}.

Let us illustrate the above definition with an example.

Example 2. Let Π = ({a, b, c, d, f, g, e}, e, ∅, (ea, P1), F ) where

P1 = {⟨e → b, a
T↔ e⟩, ⟨e → e, b

T↔ a⟩, ⟨e → c, a
T↔ e⟩, ⟨e → f, a

T↔ e⟩,

⟨e → d, c
T↔ b⟩, ⟨b → c, d

T↔ e⟩, ⟨e → g, f
T↔ b⟩, ⟨b → f, g

T↔ e⟩} and

F = {(v, ce), (v, fe) | v ∈ V ∗, b ̸∈ v}.

The language characterized by Π is

L(Π, fperm) = {a} ∪ {(ab)na(cd)n | n ≥ 1} ∪ {(ab)na(fg)n | n ≥ 1}.

To see this, consider the possible computations of Π. The initial configuration
is (∅, ea) and there are three possible configurations that can be reached, namely
(we denote by ⇒u a configuration change during which the multiset of symbols u
was read by the automaton)

1. (∅, ea) ⇒a (a, ce),
2. (∅, ea) ⇒a (a, fe),
3. (∅, ea) ⇒a (a, be).

The first two cases are non-accepting states, but the derivations cannot be contin-
ued, so let us consider the third one.

(a, be) ⇒b (b, ea) ⇒a (ba, be) ⇒b (bb, ea) ⇒a . . . ⇒b (b
i, ea).

At this point, the computation can follow two different paths again, either

(bi, ae) ⇒a (bia, ec) ⇒c (b
i−1ac, db) ⇒d (bi−1acd, ce) ⇒c . . . ⇒d (acidi, ce),

or

(bi, ae) ⇒a (bia, ef) ⇒f (bi−1af, gb) ⇒g (bi−1afg, fe) ⇒f . . . ⇒g (af igi, fe).
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In the first phase of the computation, the system produces bs and sends them to
the environment, then in the second phase these bs are exchanged to cds or fgs.
The system can reach an accepting state when all the bs are used, that is, when
an equal number of abs and either cds or fgs were produced.

Note that the system satisfies the LL(1) property, the symbol that has to be
read, in order to accept a desired input word, determines the set of programs that
has to be used in the next computational step.

As a consequence of the above example, we can state the following.

Theorem 1. There are context-free languages in LX(genPCol,LL(1)), X ∈ {perm,
TRANS}, which are not in L(CF,LL(k)) for any k ≥ 1.

Proof. The language L(Π, fperm) ∈ Lperm(genPCol,LL(1)) from Example 2 is
not in L(CF,LL(k)) for any k ≥ 1. If we consider the mapping f1 ∈ TRANS,
f1 : {a, b, c, d, f, g} → {a, b, c, d, f, g} with f1(x) = x for all x ∈ {a, b, c, d, f, g},
then L(Π, f1) = L(Π, fperm), thus, LTRANS(genPCol,LL(1)) also contains the
non-LL(k) context-free language.

4 Conclusions

We have investigated the possibility of deterministically parsing languages char-
acterized by P colony automata. We have given the definition of an LL(k)-like
property for (generalized) P colony automata, and shown that languages which
are not LL(k) in the “original” context-free sense for any k ≥ 1 can be character-
ized by LL(1) P colony automata with different types of input mappings.

The properties of these language classes for different ks and different types of
input mappings are open to further investigations.
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ment: P colonies. Multiple-Valued Logic and Soft Computing 12(3-4), 201–215 (2006)
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1 Introduction

Membrane computing [19] is a research field initiated twenty years ago [17, 18] by
Gheorghe Păun. Initially inspired by the structure and functioning of the living
cells, the field has known a fast development, different types of membrane systems
(or P systems) being investigated.

Having so many computational models (cell-like, tissue-like P systems, P
colonies, kernel P systems) and also different software implementations for these
models, it is important to devise testing methodologies that ensure that the imple-
mentation conforms with the specification. The testing task is not trivial, given the
fact that the models are parallel and non-deterministic. Previous works on P sys-
tems testing include testing cell-like P systems with methods like finite state-based
inspired [13], stream X-machine based testing [14], mutation testing for evaluating
the efficiency of the test sets [16], model-checking based testing [15].

In this paper we will present a testing approach for kernel P systems, which is
based on the X-machine testing approach and has as core concept the identifiability
of multisets of rules. Kernel P systems are a model introduced in [9], which can be
simulated using a software framework, called kPWorkbench [5] or some earlier
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variants (so called simple kP systems) using P-Lingua and the MeCoSim simulator
[11].

This paper is structured as follows: Section 2 presents the preliminaries regard-
ing kP systems and theoretical background regarding automata and X-machine
based testing. Section 3 introduces the concept of identifiable kernel P systems,
while Section 4 illustrates our testing approach for kP systems. Finally, conclusions
are presented in Section 5.

2 Preliminaries

This section briefly presents the notations used, then gives the basic definitions
regarding kernel P systems [9] and presents the previous testing approaches for
automata and X-machines, that have been applied also for testing simple cell-like
P systems.

In the following we introduce the notations used in the paper. For a finite
alphabet A = {a1, ..., ap}, A∗ represents the set of all strings (sequences) over A.
The empty string is denoted by λ and A+ = A∗ \{λ} denotes the set of non-empty
strings. An denotes the set of all strings of length n, n ≥ 0, with members in the
alphabet A, and A[n] =

⋃
0≤i≤nA

i denotes the set of all strings of length at most
n.

For a string u ∈ A∗, |u|a denotes the number of occurrences of a in u, where
a ∈ A. For a subset S ⊆ A, |u|S denotes the number of occurrences of the symbols
from S in u. The length of a string u is given by

∑
ai∈A |u|ai . The length of the

empty string is 0, i.e. |λ| = 0.
A multiset over A is a mapping f : A → N. Considering only the elements

from the support of f (where f(aij ) > 0, for some j, 1 ≤ j ≤ p), the multiset is

represented as a string a
f(ai1 )
i1

. . . a
f(aip )

ip
, where the order is not important. In the

sequel multisets will be represented by such strings.

2.1 Kernel P systems

In the following we will give a formal definition of kernel P systems (or kP sys-
tems) [9]. We start by introducing the concept of a compartment type utilised later
in defining the compartments of a kernel P system (kP system).

Definition 1. T is a set of compartment types, T = {t1, . . . , ts}, where ti =
(Ri, σi), 1 ≤ i ≤ s, consists of a set of rules, Ri, and an execution strategy, σi,
defined over Lab(Ri), the labels of the rules of Ri.

Kernel P systems have features inspired by object-oriented programming, for
example one compartment type can have one or more instances. These instances
share the same set of rules and execution strategies (so will deliver the same
functionality), but they may contain different multisets of objects and different
neighbours according to the graph relation specified.
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Definition 2. A kP system of degree n is a tuple kΠ = (A,µ,C1, . . . , Cn, i0),
where

• A is a finite set of elements called objects;
• µ defines the membrane structure, which is a graph, (V,E), where V is a set

of vertices representing components (compartments), and E is a set of edges,
i. e., links between components;

• Ci = (ti, wi,0), 1 ≤ i ≤ n, is a compartment of the system consisting of a
compartment type, ti, from a set T and an initial multiset, wi,0 over A; the
type ti = (Ri, σi) consists of a set of evolution rules, Ri, and an execution
strategy, σi;

• i0 is the output compartment where the result is obtained.

In this paper we will only deal with a simplified version of kP systems having
one single compartment as this does not affect the general method introduced here
and makes the presentation easier to follow. For details regarding the ways of
flattening an arbitrary P system, including the kP system discussed in this paper,
we refer mainly to [7], but similar approaches are also presented in other papers
([20], [1]). The kP system will be denoted kΠ = (A,µ1, C1, 1), where µ1 denotes
the graph with one node.

Within the general kP systems framework, the following types of evolution
rules have been considered so far:

• rewriting and communication rule: x→ y{g}, where g represents a guard (will
be formally explained in Def. 4), x ∈ A+ and y ∈ A∗, where y is a multiset with
potential different compartment type targets (each symbol from the right side of
the rule can be sent to a different compartment, specified by its type; if multiple
compartments of the same type are linked to the current compartment, then
one is randomly chosen to be the target). Unlike cell-like P systems, the targets
in kP systems indicate only the types of compartments to which the objects will
be sent, not particular instances (for example, y = (a1, t1) . . . (ah, th), where
h ≥ 0, and for each 1 ≤ j ≤ h, aj ∈ A and tj indicates a compartment type
from T ).

• structure changing rules: membrane division, membrane dissolution, link cre-
ation and link destruction rules, which all may also incorporate complex guards
and that are covered in detail in [9]. However, this type of rules will not be
considered in the following discussion.

Remark 1. In the context of one compartment kP systems, there will be no need to
specify the target compartment, so the rules will be simple communication rules,
which in addition can have guards. Each rule occurring in the following discussion
has the form r : x → y{g}, where r identifies the rule and is called label, x → y
is the rule itself and g is its guard. The part x → y is also called the body of
the rule, denoted also b(r). The guards are constructed using multisets over A, as
operands, and relational or Boolean operators. The definition of the guards is now
introduced. We start with some notations.
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For a multiset w over A and an element a ∈ A, we denote by |w|a the number
of objects a occurring in w. Let us denote Rel = {<,≤,=, 6=,≥, >}, the set of
relational operators, γ ∈ Rel, a relational operator, and an a multiset, consisting
of n copies of a. We first introduce an abstract relational expression.

Definition 3. If g is the abstract relational expression denoting γan and w a
multiset, then the guard g applied to w denotes the relational expression |w|aγn.

The abstract relational expression g is true for the multiset w, if |w|aγn is true.
We consider now the following Boolean operators ¬ (negation), ∧ (conjunc-

tion) and ∨ (disjunction). An abstract Boolean expression is defined by one of the
following conditions:

• any abstract relational expression is an abstract Boolean expression;
• if g and h are abstract Boolean expressions then ¬g, g∧h and g∨h are abstract

Boolean expressions.

The concept of a guard, introduced for kP systems, is a generalisation of the
promoter and inhibitor concepts utilised by some variants of P systems.

Definition 4. If g is an abstract Boolean expression containing gi, 1 ≤ i ≤ q,
abstract relational expressions and w a multiset, then g applied to w means the
Boolean expression obtained from g by applying gi to w for any i, 1 ≤ i ≤ q.

As in the case of an abstract relational expression, the guard g is true with
respect to the multiset w, if the abstract Boolean expression g applied to w is true.

Example 1. If g is the guard defined by the abstract Boolean expression ≥ a4∧ <
b2 ∨¬ > c and w a multiset, then g applied to w is true if it has at least 4 a′s and
less than 2 b′s or no more than one c.

In addition to its evolution rules, each compartment type in a kP system has
an associated execution strategy. The rules corresponding to a compartment can
be grouped in blocks, each having one of the following strategies:

In kP systems the way in which rules are executed is defined for each compart-
ment type t from T – see Def. 1. As in Def. 1, Lab(R) is the set of labels of the
rules R.

Definition 5. For a compartment type t = (R, σ) from T and r ∈ Lab(R),
r1, . . . , rs ∈ Lab(R), the execution strategy, σ, is defined by the following

• σ = λ, means no rule from the current compartment will be executed;
• σ = {r} – the rule r is executed;
• σ = {r1, . . . , rs} – one of the rules labelled r1, . . . , rs will be non-determin-

istically chosen and executed; if none is applicable then nothing is executed;
this is called alternative or choice;

• σ = {r1, . . . , rs}∗ – the rules are applied an arbitrary number of times ( arbitrary
parallelism);



Testing Identifiable Kernel P Systems 83

• σ = {r1, . . . , rs}> – the rules are executed according to the maximal parallelism
strategy;

• σ = σ1& . . .&σs, means executing sequentially σ1, . . . , σs, where σi, 1 ≤ i ≤ s,
describes any of the above cases; if one of σi fails to be executed then the rest
is no longer executed.

These execution strategies and the fact that in any compartment several blocks
with different strategies can be composed and executed offer a lot of flexibility to
the kP system designer, similarly to procedural programming.

Definition 6. A configuration of a kP system, kΠ, with n compartments, is a
tuple c = (c1, . . . , cn), where ci ∈ A∗, 1 ≤ i ≤ n, is the multiset from compartment
i. The initial configuration is (w1, . . . , wn), where wi ∈ A∗ is the initial multiset
of the compartment i, 1 ≤ i ≤ n.

A transition (or computation step), introduced by the next definition, is the
process of passing from one configuration to another.

Definition 7. Given two configurations c = (c1, . . . , cn) and c′ = (c′1, . . . , c
′
n) of a

kP system, kΠ, with n compartments, where for any i, 1 ≤ i ≤ n, ui ∈ A∗, and a
multiset of rules Mi = r

n1,i

1,i . . . r
nki,i

ki,i
, nj,i ≥ 0, 1 ≤ j ≤ ki, ki ≥ 0, a transition or

a computation step is the process of obtaining c′ from c by using the multisets of
rules Mi, 1 ≤ i ≤ n, denoted by c =⇒(M1,...,Mn) c′, such that for each i, 1 ≤ i ≤ n,
c′i is the multiset obtained from ci by first extracting all the objects that are in the
left-hand side of each rule of Mi from ci and then adding all the objects a that are
in the right-hand side of each rule of Mi represented as (a, ti) and all the objects b
that are in the right-hand side of each rule of Mj, j 6= i, such that b is represented
as (b, ti).

In the theory of kP systems, each compartment might have its own execution
strategy. In the sequel we focus on three such execution strategies, namely max-
imal parallelism, arbitrary parallelism (also called asynchronous execution) and
sequential execution. These will be denoted by max, async and seq, respectively.
When in a transition from c to c′ using (M1, . . . ,Mm), we intend to refer to a
specific transition mode tm, tm ∈ {max, async, seq}, then this will be denoted by

c =⇒(M1,...,Mm)
tm c′.

A computation in a P system is a sequence of transitions (computation steps).
A configuration is called final configuration, if no rule can be applied to it. In

a final configuration the computation stops.
As usual in P systems, we only consider terminal computations, i.e., those

arriving in a final configuration and using one of the above mentioned transition
modes. We are now ready to define the result of a computation.

Definition 8. For a kP system kΠ using the transition mode tm, tm ∈ {max,
async, seq}, in each compartment, we denote by Ntm(Π) the number of objects
appearing in the output compartment of a final configuration.
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Two kP systems kΠ and kΠ ′ are called equivalent with respect to the transition
mode tm, tm ∈ {max, async, seq}, if Ntm(kΠ) = Ntm(kΠ ′).

In this paper we will only deal with kP systems having one single compartment
as this does not affect the general method introduced here and makes the presen-
tation easier to follow. Indeed, limiting the investigation to one compartment kP
systems does not affect the generality of it due to the fact that there are ways of
flattening an arbitrary P system, including the kP system discussed in this paper,
into a P system with one single compartment. For details regarding the flattening
of a P system we refer mainly to [7], but similar approaches are also presented
in other papers ([20], [1]). Such a kP system will be denoted kΠ = (A,µ1, C1, 1),
where µ1 denotes the graph with one node. The rules on the right-hand side will
have multisets over A, as in the case of one single compartment there is no need
to indicate where objects are sent to.

2.2 The W -method for testing finite cover automata

In the following subsection we introduce the basic finite cover automata concepts
[3, 12] and the W -method for generating test suites from finite cover automata
[13]. We will consider only deterministic finite automata.

Finite Cover Automata

Definition 9. A finite automaton (abbreviated FA) is a tuple A = (V,Q, q0, F, h),
where:

• V is the finite input alphabet;
• Q is the finite set of states;
• q0 ∈ Q is the initial state;
• F ⊆ Q is the set of final states;
• h : Q× V → Q is the next-state function.

Definition 10. Let A = (V,Q, q0, F, h) be a FA, U ⊆ V ∗ a finite language and l
the length of the longest sequence(s) in U . Then A is called a deterministic finite
cover automaton (DFCA) of U if LA ∩ V [l] = U . A minimal DFCA for U is a
DFCA for U having the least number of states.

The concept of DFCA was introduced by Câmpeanu et al. [2], [3]. A minimal
DFCA have considerably fewer states than the minimal FA that accepts U .

The W -method

In conformance testing there is a formal specification of the system (for example a
FA) and the aim is to generate a test suite such that whenever the implementation
under test (IUT) passes all tests, it is guaranteed to conform to the specification.
The IUT is unknown but it is assumed to behave like some element from a set of
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models, called fault model. In the case of the W -method, the fault model consists of
all FAs A′ with the same input alphabet V as the specification A, whose number of
statesm′ does not exceed the number of statesm of A by more than k (m′−m ≤ k),
where k ≥ 0 is a predetermined integer that must be estimated by the tester.

The W -method was originally devised for when the conformance relation is
automata equivalence [4], but in this paper we are interested in conformance for
bounded sequences. This problem is described in [10] as follows: given an FA
specification A and an integer l ≥ 1 (the upper bound) such that LA contains at
least one sequence of length l, we want to construct a set of sequences of length
less than or equal to l that can establish whether the implementation behaves as
specified for all sequences in V [l]. Since LA contains at least one sequence of length
l, A is a DFCA for LA ∩ V [l] and so the test suite will check whether the IUT
model A′ is also a DFCA for LA ∩ V [l].

A test suite will be a finite set Yk ⊆ V [l] of input sequences that, for every
A′ in the fault model that is not V [l]-equivalent to A, will produce at least one
erroneous output. That is, A and A′ are V [l]-equivalent whenever A and A′ are
Yk-equivalent.

Suppose the specification A used for test generation is a minimal DFCA for
LA ∩ V [l]. The W -method for bounded sequences, as developed in [12], involves
the selection of two sets of input sequences, S and W , as follows:

Definition 11. S ⊆ V ∗ is called a proper state cover of A if for every state q of
A there exists s ∈ S such that h(q0, s) = q and |s| = level(q).

Definition 12. W ⊆ V ∗ is called a strong characterisation set of A if for every
two states q1 and q2 of A and every j ≥ 0, if q1 and q2 are V [j]-distinguishable
then q1 and q2 are (W ∩ V [j])-distinguishable.

Naturally, in the above definition, it is sufficient for q1 and q2 to be (W ∩V [j])-
distinguishable when j is the length of the shortest sequences that distinguish
between q1 and q2.

Once S and W have been selected, the test suite is obtained using the formula:
Yk = SV [k + 1](W ∪ {λ}) ∩ V [l] \ {λ} [12].

2.3 X-machine based testing

This subsection presents the X-machine based testing methodology, giving the
formal definitions for X-machines, the test transformation of an X-machine and
l-bounded conformance test suites. For more details and complete proofs [10] can
be consulted, here only the main results are given.

An X-machine is a finite automaton in which transitions are labelled by partial
functions on a data set X instead of mere symbols [6].

Definition 13. An X-machine (XM) is a tuple Z = (Q,X,Φ,H, q0, x0) where:

• Q is a finite set of states;
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• X is the (possible infinite) data set;
• Φ is a finite set of distinct processing functions; a processing function is a

non-empty (partial) function of type X → X;
• H is the (partial) next-state function, H : Q× Φ→ Q;
• q0 ∈ Q is the initial state;
• x0 ∈ X is the initial data value.

We regard an X-machine as a finite automaton with the arcs labelled by
functions from the set Φ, which is often called the type of Z. The automaton
AZ = (Φ,Q,H, q0) over the alphabet Φ is called the associated finite automaton
(FA) of Z. The language accepted by the automaton is denoted by LAZ

.

Definition 14. A computation of Z is a sequence x0, . . . xn, with xi ∈ X, 1 ≤
i ≤ n, such that there exist φ1, . . . , φn ∈ Φ with φi(xi−1) = xi, 1 ≤ i ≤ n and
φ1 . . . φn ∈ LAZ

. The set of computations of Z is denoted by Comp(Z).

A sequence of processing functions that can be applied in the initial data value
x0 is said to be controllable.

Definition 15. A sequence φ1, . . . , φn ∈ Φ∗, with φi ∈ Φ, 1 ≤ i ≤ n, is said to be
controllable if there exist x1, . . . xn ∈ X such that φi(xi−1) = xi, 1 ≤ i ≤ n. A set
P ⊆ Φ∗ is called controllable if for every p ∈ P , p is controllable.

Let us assume we have an X-machine specification Z and an (unknown) IUT
that behaves like an element Z ′ of a fault model. In this case, the fault model
will be a set of X-machines with the same data set X, type Φ and initial data
value x0 as the specification. The idea of test generation from an X-machine is to
reduce checking that the IUT Z ′ conforms to the specification Z to checking that
the associated automaton of the IUT conforms to the associated automaton of the
X-machine specification.

Definition 16. The test transformation of Z is the (partial) function t : Φ∗ → X∗

defined by:

• t(λ) = x0. (1)
• Let p ∈ Φ∗ and φ ∈ Φ.

– Suppose t(p) is defined. Let t(p) = x0 . . . xn.
· If xn ∈ domφ then:
· If p ∈ LAZ

then t(pφ) = t(p)φ(xn). (2)
· Else t(pφ) = t(p). (3)

· Else t(pφ) is undefined. (4)
– Otherwise, t(pφ) is undefined. (5)

Lemma 1. Let t be a test transformation of Z and p = φ1 . . . φn, with φ1, . . . , φn ∈
Φ.

• Suppose p is controllable and let x1, . . . , xn ∈ X such that φi(xi−1) = xi, 1 ≤
i ≤ n.
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– If p ∈ LAZ
, then t(p) = x0 . . . xn.

– If p /∈ LAZ
, then t(p) = x0 . . . xk+1, where 0 ≤ k ≤ n − 1, is such that

φ1 . . . φk ∈ LAZ
and φ1 . . . φkφk+1 /∈ LAZ

.
• If p is not controllable, then t(p) is not defined.

In order to establish that the associated automaton of the IUT Z ′ conforms
to the associated automaton of the X-machine specification Z, we have to be able
to identify the processing functions that are applied when the computations of Z
and Z ′ are examined.

Definition 17. Φ is called identifiable if for all φ1, φ2 ∈ Φ, whenever there exists
x ∈ X such that φ1(x) = φ2(x), φ1 = φ2.

If Φ is identifiable, then we are able to establish if a controllable sequence of
processing functions is correctly implemented by examining the computations of
the specification Z and the implementation Z ′, as shown by the following lemma.

Lemma 2. Let Z and Z ′ be XMs with type Φ. Suppose Φ is identifiable. Let p =
φ1 . . . φn ∈ Φ∗, with φi ∈ Φ, 1 ≤ i ≤ n, be a controllable sequence. Suppose t(p) is
a computation of Z if and only if t(p) is a computation of Z ′. Then p ∈ LAZ

if
and only if p ∈ LA′

Z
.

Definition 18. Let Z be an X-machine and C a fault model for Z. An l-bounded
conformance test suite for Z w.r.t. C, l > 0, is a set T ⊆ X[l + 1] such that
for every Z ′ ∈ C the following holds: if T ∩ Comp(Z) = T ∩ Comp(Z ′) then
Comp(Z) ∩X[l + 1] = Comp(Z ′) ∩X[l + 1].

That is, whenever any element of T is a computation of Z if and only if it is a
computation of Z ′, Z ′ conforms to Z for sequences of length up to l. The following
theorem shows that the test transformation defined earlier provides a mechanism
for converting test suites for finite automata into set suites for X-machines.

Theorem 1. Let Z be an XM with type Φ, data set X and initial data value x0.
Suppose Φ is identifiable and LAZ

∪Φ[l] is controllable. Let C be a set of XMs such
that for every Z ′ ∈ C, LA′

Z
∩Φ[l] is controllable. Let P ⊆ Φ[l], such that, for every

Z ′ ∈ C, whenever P ∩ LAZ
= P ∩ LA′

Z
we have LAZ

∩ Φ[l] = LA′
Z
∩ Φ[l]. Then

t(P ) is an l-bounded conformance test suite for Z w.r.t. C.

Let l > 0 be a predefined upper bound. We assume that Φ is identifiable and
LAZ

∩ Φ[l] is controllable. We assume that AZ , the associated automaton of Z, is
a minimal DFCA for LAZ

∪ Φ[l] (if not, this is minimised 3). Suppose the fault
model C is the set of X-machines Z ′ with the same data set X, type Φ and initial
data value x0 as Z such that LAZ′ ∩ Φ[l] is controllable, whose number of states
m′ does not exceed the number of states m of Z by more than k (m′ −m ≤ k),
k ≤ 0. Then an l-bounded conformance test suite for Z w.r.t. C is

3 The minimisation preserves the controlability requirements as the set LAZ ∩ Φ[l] re-
mains unchanged.
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Tk = t(SΦ[k + 1](W ∪ {λ}) ∩ Φ[l] \ {λ}),

where S is a proper state cover of AZ , W is a strong characterisation set of AZ

and t is a test transformation of Z.

3 Identifiable transitions in kernel P systems

The concept of identifiable transitions in cell-like P systems was first introduced
in [10] and then extended to kernel P systems in [8]. We now aim to present the
identifiability concept in the context of kP systems and then illustrate how it is
used as basis for kP systems testing. The identifiability concept is first introduced
for simple rules and then is generalised for multisets of rules.

Definition 19. Two rules r1 : x1 → y1{g1} and r2 : x2 → y2{g2} from R1, are
said to be identifiable in configuration c, if they are applicable to c and if c =⇒r1 c′

and c =⇒r2 c′ then b(r1) = b(r2).

According to the above definition the rules r1 and r2 are identifiable in c if
when the result of applying them to c is the same then their bodies, x1 → y1
and x2 → y2, are identical. The rules are not identifiable when the condition from
Definition 19 is not satisfied.

A multiset or rules M = rn1
1 . . . rnk

k ,M ∈ R∗1, where ri : xi → yi{gi}, 1 ≤ i ≤ k,
is applicable to the multiset c iff xn1

1 . . . xnk

k ⊆ c and gi is true in c for 1 ≤ i ≤ k.

Definition 20. The multisets of rules M ′,M ′′ ∈ R∗1, are said to be identifiable, if
there is a configuration c where M ′ and M ′′ are applicable and if c =⇒M ′

c′ and
c =⇒M ′′

c′ then M ′ = M ′′.

Example 2. Considering the rules r1 : a → x{≥ a}, r2 : b → y{≥ b}, r3 : a →
y{≥ a}, r4 : b→ x{≥ b}, and the configuration ab it is clear that the multisets of
rules M ′ = r1r2 and M ′′ = r3r4 are not identifiable in the configuration c = ab,
as c = ab =⇒M ′

c′ = xy and c = ab =⇒M ′′
c′ = xy, but M ′ 6= M ′′.

A kP system kΠ has its rules identifiable if any two multisets of rules,M ′,M ′′ ∈
R∗1, are identifiable.

Given a multiset of rules M = rn1
1 . . . rnk

k , where ri : xi → yi{gi}, 1 ≤ i ≤ k, we
denote by rM the rule xn1

1 . . . xnk

k → yn1
1 . . . ynk

k {g1∧· · ·∧gk}, i.e., the concatenation
of all the rules in M . One can observe that the applicability of the multiset of rules
M to a certain configuration is equivalent to the applicability of the rule rM to
that configuration. It follows that one can study first the usage of simple rules.

Remark 2. For any two rules ri : xi → yi, 1 ≤ i ≤ 2, when we check whether they
are identifiable or not one can write them as ri : uvi → wzi{gi}, 1 ≤ i ≤ 2, where
for any a ∈ V , a appears in at most one of the v1 or v2, i.e., all the common
symbols on the left-hand side of the rules are in u. Let us denote by cr1,r2 , the
configuration uv1v2. Obviously this is the smallest configuration in which r1 and
r2 are applicable, given that g1 and g2 are true in uv1v2.
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Remark 3. If ri : xi → yi {gi}, 1 ≤ i ≤ 2, are applicable in a configuration c and
c ⊆ c′ then they are not always applicable to c′. They are applicable to c′ when
all gi, 1 ≤ i ≤ 2, are true in c′.

Remark 4. If the rules r1, r2 are not applicable to cr1,r2 then there must be minimal
configurations c where the rules are applicable and they are minimal, i.e., there is
no c1, c1 ⊂ c where the rules are applicable. Such minimal configurations where
r1, r2 are applicable are of the form tcr1,r2 , where t ∈ A∗, t 6= λ.

In the following we introduce some theoretical results, characterising the iden-
tifiability or non-identifiability or rules and multisets of rules under certain condi-
tions. The complete proofs for these the results are given in [8].

Lemma 3. Two rules which are identifiable in a configuration c are identifiable in
any configuration containing c in which they are applicable.

Lemma 4. Two rules which are identifiable in a minimal configuration c are iden-
tifiable in any other minimal configuration c′ where they are applicable.

Corollary 1. Two rules r1 and r2 identifiable in a minimal configuration tcr1,r2 ,
t ∈ A∗, are identifiable in any configuration in which they are applicable.

Corollary 2. Two multisets of rules M1 and M2 identifiable in tcrM1
,rM2

, t ∈ A∗,
are identifiable in any configuration in which they are applicable.

From now on, we will always verify the identifiability (or non identifiability)
only for the smallest configurations associated with rules or multisets of rules and
will not mention these configurations anymore in the results to follow.

The applicability of two rules (multisets of rules) to a certain configuration
depends not only on the fact that there left hand sides (the concatenation of the
left hand sides) must be contained in the configuration and the guards must be
true, but takes into account the execution strategy.

Remark 5. For the async transition mode two multisets of rules (and two rules)
applicable in a configuration are also applicable in any other bigger configuration,
when the corresponding guards are true. For the seq mode this is true only for
multisets with one single element and obviously for simple rules. In the case of
the max mode the applicability of the multisets of rules (or rules) to various
configurations depends on the contents of the configurations and other available
rules. For instance if we consider a P system containing the rules r1 : a → a {≥
a}; r2 : ab→ abb {≤ b100}; r3 : bb→ c {≥ b2} and the configuration c = ab then in
c only r1 and r2 are applicable and identifiable, but in c1 = abb, containing c, r1 is
no longer applicable, but instead we have r2 and the multiset r1r3 applicable. In
ab101 r2 and any multiset containing it are not applicable due to the guard being
false; also r1 is no longer applicable, but r1r

55
3 is now applicable, due to maximal

parallelism.
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Remark 6. In the following results whenever we refer to arbitrary rules or multisets
of rules they are always meant to be applicable with respect to the transition mode.

Theorem 2. The rules r1 : x1 → y1 {g1} and r2 : x2 → y2 {g2}, are not identifi-
able if and only if they have the form r1 : uv1 → wv1 {g1} and r2 : uv2 → wv2 {g2}
and for any a ∈ A, a appears in at most one of v1 or v2.

Corollary 3. The rules r1 : uv1 → wz1 {g1} and r2 : uv2 → wz2 {g2}, such that
for any a ∈ A, a appears in at most one of v1 or v2, are identifiable if and only if
v1 6= z1 or v2 6= z2.

Theorem 3. If r1 and r2 are identifiable then rn1 and rn2 are identifiable, for any
n ≥ 1.

4 Testing identifiable kernel P systems

In order to generate test suites for a kernel P system using the X-machine test-
ing method, first a corresponding X-machine model needs to be constructed. As
discussed in Section 2, multi-compartment P systems can be flattened into one
membrane P systems and there are different ways to realise this [1, 7, 20]. Conse-
quently, we will illustrate the testing approach using an one-membrane kP system
model kΠ = (V, T, µ1, w1, R1, 1). The main idea is to construct an X-machine
Zt = (Qt, X, Φ,Ht, qt0, x0), corresponding to the computation tree of kΠ. As the
computation tree of the kP system might be infinite, we will consider only computa-
tions of maximum l steps, where l > 0 is a predefined integer. Let R1 = {r1, . . . , rn}
be the set of rules of kΠ. As only finite computations are considered, for every rule
ri ∈ R1 there will be some Ni such that, in any step, ri can be applied at most
Ni times, 1 ≤ i ≤ n. Thus the X-machine Zt = (Qt, X, Φ,Ht, qt0, x0) is defined as
follows:

• Qt is the set of nodes of the computation tree of maximum l steps;
• qt0 is the root node;
• X is the set of multisets with elements in V ;
• x0 is the initial multiset w1;
• Φ is the set of (partial) functions induced by the application of multisets of

rules ri11 . . . rinn , 0 ≤ i1 ≤ N1, . . . , 0 ≤ in ≤ Nn, i1 + . . . in > 0;
• Ht is the next-state function determined by the computation tree.

Remark 7. Note that, by definition, LAZ
is controllable, i.e. any sequence of pro-

cessing functions from the associated automaton AZ can be applied in the initial
data x0 (corresponding to the initial multiset w1). Intuitively a path in the DFCA
corresponds to a path in the computation tree of the kP system.

Remark 8. The set of (partial) functions, Φ, from the above definition is identifiable
(according to Definition 17) if and only if the corresponding multisets of rules are
pairwise identifiable (according to Definition 20).
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Example 3. Let us consider one compartment kP system kΠ1 = (V, V, µ1, w1,
R1, 1), where V = {a, b, c}, w1 = ab, and

R1 =

{
r1 : a→ b{≥ a∧ ≥ b} r2 : ab→ bc{≤ a∧ ≥ b}
r3 : c→ b{≥ b∧ ≤ c100} r4 : c→ cc{≤ c100}

}
Let us build the computation tree considering that rules are applied in the

maximally parallel mode. The initial configuration w1 = ab is at the root of the tree
(level 0 of the tree). Two computation steps are possible from the root: ab =⇒r1 b2

and ab =⇒r2 bc. Then the configurations b2 and bc are at the first level of the
tree. No rule can be applied in b2 (this is a terminal configuration of kΠ1), but
two computation steps exist form bc: bc =⇒r3 b2 and bc =⇒r4 bc2. The new
configurations produced represent the second level of the tree. Again, no rule can
be applied in b2, but there are three computation steps from bc2: bc2 =⇒r23 b3,
bc2 =⇒r3r4 b2c2 and bc2 =⇒r24 bc4. No rule can be applied in b3, but there are three
computation steps from b2c2 and five from bc4: b2c2 =⇒r23 b4, b2c2 =⇒r3r4 b3c2 and
b2c2 =⇒r24 b2c4; bc4 =⇒r43 b5, bc4 =⇒r33r4 b4c2, bc4 =⇒r23r

2
4 b3c4, bc4 =⇒r3r

3
4 b2c6

and bc4 =⇒r44 bc8. The configurations produced by these eight multisets of rules
represent the fourth level of the tree.

It can be easily checked that any two of the above multisets of rules are iden-
tifiable, according to Corollary 3, and consequently they produce different results
when applied to the same configuration – see above.

Let the upper bound on the number of computation steps considered be l = 4.
For this value of l, the rules r1 and r2 have been applied at most once, so N1 = 1
and N2 = 1, whereas rules r3 and r4 have been applied at most four times, so
N3 = 4 and N4 = 4. Therefore the type Φ of the X-machine Zt corresponding
to the computation tree is the set of partial functions induced by the multisets
ri11 r

i2
2 r

i3
3 r

i4
4 , 0 ≤ i1 ≤ 1, 0 ≤ i2 ≤ 2, 0 ≤ i3 ≤ 4, 0 ≤ i4 ≤ 4, i1 + i2 + i3 + i4 > 0.

The associated automaton AZt is as represented in Figure 1.

Let LAZt ⊆ Φ∗ be the language accepted by the associated automaton AZt . In
order to apply the test generation method presented in Section 2.3, an X-machine
Z whose associated automaton AZ is a DFCA for LAZt needs to be constructed
first.

Let ≤ be a total order on Qt such that q1 ≤ q2 whenever level(q1) ≤ level(q2)
and denote q1 < q2 if q1 ≤ q2 and q1 6= q2. In other words, the node at the superior
level in the tree is before the node at the inferior level; if the nodes are at the same
level then their order is arbitrarily chosen. Define P t = {q ∈ Qt | ¬∃q′ ∈ Qt · q′ ∼
q, q′ < q} and [q] = {q′ ∈ Qt | q′ ∼ q ∧ ¬∃q′′ ∈ P t · q′′ ∼ q′, q′′ < q} for every
q ∈ P t (i.e. [q] denotes the set of all states q′ for which q is the minimum state
similar to q′). Then we have the following result (the proof is given in [10]).

Theorem 4. Let Z = (Q,X,Φ,H, q0, x0), where Q = {[q] | q ∈ P t}, q0 = [qt0],
H([q], φ) = [Ht(q, φ)] for all q ∈ P t and φ ∈ Φ. Then AZ is a minimal DFCA for
LAZt .
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Fig. 1. The associated automaton AZt corresponding to the computation tree for kΠ1

and l = 4

Remark 9. Consider Zt as in the previous example. P t = {qt0, qt1, qt2, qt4, qt7}; [qt0] =
{qt0, qt8, qt9, qt10, qt11, qt12, qt13, qt14, qt15}, [qt1] = {qt1, qt3, qt5}, [qt2] = {qt2}, [qt4] = {qt4, qt6},
[qt7] = {qt7}. Then Z = (Q,X,Φ,H, q0, x0), where Q = {[qt0], [qt1], [qt2], [qt4], [qt7]} and
q0 = [qt0]. The associated automaton of Z is a minimal DFCA for LAZt and is as
represented in Figure 2.

Once the X-machine Z has been constructed the test generation process entails
the following steps:

1. Construct the sets S and W (proper state cover and characterisation
sets, respectively).
It can be easily remarked from Fig. 2. that λ, r1, r2, r2 r4, r2 r4 r

2
4 are the se-

quences of minimum length4 that reach [qt0], [qt1], [qt2], [qt4] and [qt7], respectively.

4 Notation: for rules r and r′, rr′ denotes the application of rules r and r′ in one single
step, whereas r r′ (separated by space) denotes the application of rule r in one step



Testing Identifiable Kernel P Systems 93

[qt
0]

[qt
1] [qt

2]

[qt
4]

[qt
7]

r1 r2

r3

r4r2
3

r3r4

r2
4

r4
3

r3
3r4

r2
3r

2
4

r3r
3
4

r4
4

Fig. 2. The DFCA for LAZt

Consequently S = {r1, r2, r2 r4, r2 r4 r24} is a proper state cover of Z. Further-
more, since r1 distinguishes [qt0] from all remaining states and r3, r3r4 and r43
hold the same property for [qt2], [qt4] and [qt7], respectively, W = {r1, r3, r3r4, r43}
is a strong characterisation set of Z.

2. Determine the fault model of the IUT.
This entails establishing the transitions that a (possibly faulty) implementation
is capable to perform. For example, when the correct application of rules (in
the P system specification) is in the maximally parallel mode max, one fault
that we may consider is when the rules are applied in a less restrictive mode
such that the asynchronous mode async. Hence the notion of controllability
for P systems is defined by considering this, less restrictive, application mode.

Definition 21. A sequence of multisets of rules p = M1...Mm, with Mi ∈
R∗1, 1 ≤ i ≤ m, is said to be controllable if there exist configurations u0 =
w1, u1, . . . , um, ui ∈ V ∗, 0 ≤ i ≤ m, such that ui−1 =⇒Mi

FM ui, 1 ≤ i ≤
m, where u =⇒M

FM u′ denotes a computation step in the fault model from
configuration u to configuration u′ by applying the multiset of rules M .

followed by the application of rule r′ in the following step; the second notation is also
used for multisets of rules.
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Consider again the P system kΠ1 as in Example 3. Then ab =⇒r2 bc and
bc =⇒r4 bc2, but bc2 =⇒r4 bc3 does not hold since the rules of kΠ1 must
be applied in the maximally parallel mode. However, if we consider that in
the fault model of the IUT rules may be applied in the asynchronous mode,
the sequence r2 r4 r4 is controllable. The fault model is also determined by
the maximum number of states m + k that the IUT may have, where m is
the number of states of the X-machine Z and k ≥ 0 is a non-negative integer
estimated by the tester.

3. Construct an l-bounded conformance test suite.
This is Tk = t(Yk), where Yk = SΦ[k+ 1](W ∪ {λ})∩Φ[l] \ {λ} and t is a test
transformation of Z.
According to [4], the upper bound for the number of sequences in SΦ[k+ 1]W
is m2 · rk+1 and the total length of all sequences is not greater that m2 · (m+
k) · rk+1, where r is the number of elements of Φ. In particular, for k = 0,
the respective bounds are m2 · r and m3 · r. The increase in size produced by
replacing W with W ∪ {λ} in the above formula is negligible. Note that these
bounds refer to the worst case; in an average case, the size of Yk is much lower.
Furthermore, the size of t(Yk) is normally significantly lower than the size of
Yk since only the controllable sequences are in the domain of t.
The construction of Yk is straightforward, so we illustrate only the construction
of the test transformation t with an example. Consider again rule application
mode is maximal parallelism for kΦ and the asynchronous mode for the fault
model. Consider the sequences s0 = λ, s1 = r2, s2 = s1 r4, s3 = s2 r4, s4 =
s3 r4, s5 = s4 r1 and s6 = s5 r1. By rule (1) of Definition 16, t(s0) = x0 = ab.
As ab =⇒r2 bc, by rule (2) t(s1) = ab bc. Similarly, as bc =⇒r4 bc2, by rule
(2) t(s2) = ab bc bc2. On the other hand r4 cannot be applied in configuration
bc2 in the maximally parallel mode, but bc2 =⇒r4

FM bc3 (in the asynchronous
mode) and so, by rule (2), t(s3) = ab bc bc2 bc3. Furthermore, bc3 =⇒r4

FM bc4

and so, by rule (3) of Definition 16, t(s4) = t(s3) = ab bc bc2 bc3. As r1 cannot
be applied in bc4, by rule (4) t(s5) is undefined. Furthermore, by rule (5), t(s6)
is also undefined, so no test sequences will be generated for s5 and s6.

5 Conclusions

This paper presents a testing approach for kernel P systems that, under certain
conditions, ensures that the implementation conforms to the specification. The
methodology is based on the identifiable kernel P systems concept, which is es-
sential for testing, and has been introduced for one-compartment kP systems with
rewriting rules, but could be extended.
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Summary. Spiking neural P systems (SN P systems, for short) are a class of distributed
and parallel computing models inspired from biological spiking neurons. In this paper,
we introduce a variant called SN P systems with addition/subtraction computing on
synapses (CSSN P systems). CSSN P systems are inspired and motivated by the shunting
inhibition of biological synapses, while incorporating ideas from dynamic graphs and
networks. We consider addition and subtraction operations on synapses, and prove that
CSSN P systems are computationally universal as number generators, under a normal
form (i.e. a simplifying set of restrictions).

Key words: Membrane computing, Spiking neural P system, Computing on synapse,
Computationally universal

1 Introduction

Brain is a rich source of inspiration for informatics. Specifically, it has provided
plenty of ideas to construct high performance computing models, as well as to
design efficient algorithm. Inspired from the biological phenomenon that neurons
cooperate in the brain by exchanging spikes via synapses, various neural-like com-
puting models have been proposed. In the framework of membrane computing,
a kind of distributed and parallel neural-like computing model were proposed in
2006 [1], which is called spiking neural P systems (SN P systems for short).

SN P systems have neurons that process only one type of symbols, the spike,
based on the indistinct signal used by biological neurons. Neurons are placed on
nodes of a directed graph, and the edges between neurons are called synapses, again
based on synapses of biological neurons. SN P systems processes spikes by applying
rules, and two of the most common types are firing rules and forgetting rules: the
former rules produce one or more spike, which is/are sent from the source neuron

⋆ Corresponding author.



98 Y. Jiang, Z. Chen

to every neuron connected by a synpase, while the latter rules remove spikes from
the neuron.

Since the human brain and biological neurons are rich sources of computing
ideas, many variants of SN P systems have been introduced, taking inspiration from
biological phenomena, e.g. synapse weight, neuron division, astrocytes, inhibitory
synapses, as in [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Investigation on
the theoretical and practical usefulness have also been applied to these variants:
their computing power in relation to well-known models of computation, e.g. finite
automata, register machines, grammars, computing numbers or strings as in [17,
18, 19, 20, 21, 22, 23, 24, 25, 26]; computing efficiency in solving hard problems,
as in [27, 28].

Moreover, practical applications and software for simulations have been devel-
oped for SN P systems and their variants: to design logic gates, logic circuits [29]
and databases [30], to perform basic arithmetic operations [31][32], to represent
knowledge [33], to diagnose fault [34, 35, 36], to approximately solve combinatorial
optimization problems [37].

In this work, we introduce a variant of SN P systems which we refer to as SN
P systems with addition/subtraction computing on synapses (CSSN P systems,
for short). CSSN P systems take inspirations and motivations from biological,
mathematical and computing sources.

Biologically, it is known that not only neurons but also synapses can process
spikes, as in [38]. Synapses monitor the spikes go through it and change the value
of spikes according to their excitatory or inhibitory. Hence, it is natural to consider
addition/subtraction computing of two consecutive spikes on synapses.

The mathematical and computing inspirations are taken from the study of
dynamic graphs. Since SN P systems are in essence static graphs, it is natural to
consider them for dynamic graphs as well.

In the survey of dynamic graphs, two main kinds of structural evolutions of the
graphs are identified: node-centric evolutions, i.e. nodes or vertices are the focus,
and edge-centric evolutions, i.e. edges are the focus. In the framework of SN P
systems, several works have focused on dynamism for the neuron, as in [28][13].
More recently, SN P systems with structural plasticity were introduced in [39],
with subsequent works in [40, 41, 42]. In these systems, synapses can be created or
removed by plasticity rules of neurons, hence, structural evolution of the systems
are more edge-centric.

For CSSN P systems however, we further focus on synapse dynamism, but this
time we add an addition or subtraction computing to each synapse in the system.
Specifically, for two consecutive spikes get through the synapse, if excitatory spike
come first, the synapse does addition, otherwise, subtraction. Furthermore, we
show that CSSN P systems are computationally universal, under a normal form
(m. ore details below), for generating numbers

This work is organized as follows: Section 2 provides the definition of CSSN
P systems and their semantics; Section 3 provides an example of CSSN P sys-
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tems; Section 4 provides universality result on CSSN P systems; At last, Section
5 concludes this work and provides further directions for research.

2 Spiking Neural P Systems with Computing on Synapses

In this section we define our proposed variant, and provides the semantics. A
spiking neural P system with computing on synapses, CSSN P system for short,
of degree m ≥ 1 is a construct of the form

Π = (O, σ1, σ2, . . . , σm, syn, in, out),

where:

1. O = {a} is a singleton alphabet, and a is called spike;
2. σ1, σ2, . . . , σm are neurons of the form σi = (ni, Ri), 1 ≤ i ≤ m; ni ≥ 0 is the

initial number of spikes contained in the neuron σi; Ri is a finite set of rules
of the following two forms:

(a) Firing rule: E/ac → ap; d, where E is a a regular expression over {a},
c ≥ 1, d ≥ 0, with the restriction c ≥ p. Specifically, when d = 0, it can be
omitted;

(b) Forgetting rule: as → λ, for some s ≥ 1, with the restriction that for each
rule E/ac → ap; d of type (1) from Ri, we have as /∈ L(E);

3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} is the set of synapses between neurons,
with restriction (i, i) /∈ syn for 1 ≤ i ≤ m, which means no σi has a synapse
to itself;

4. in, out ∈ {1, 2, . . . ,m} indicate the input and output neuron, respectively.

The in or out elements in the construction can be omitted, depending on
whether they exist in the system or not. For a given neuron σi (also called neuron
i or simply σi), we illustrate σi as an oval, and synapses between neurons as
arcs. The input neuron has a synapse or arc from the environment, i.e. everything
outside or not part of the system, while the output neuron has a synapse to the
environment.

The firing rule of the form E/ac → ap; d with c ≥ p ≥ 1 is called an extended
rule; if p = 1, the rule is called a standard rule. As a convention, if L(E) = {ac},
the rule can be simply written as ac → ap; d. Specifically, if d = 0, it can be
omitted and the rule can be simply written as ac → ap.

The semantics of applying firing rules are as follows: if the neuron σi contains
k spikes, ak ∈ L(E) and k ≥ c, then the firing rule E/ac → ap; d ∈ Ri can be
applied, i.e., the number of spikes k in σi satisfies the requirement for applying
the rule. Applying such a rule means consuming c spikes from σi and producing p
spikes after d time units, thus k−c spikes remains in σi. If d = 0, then the produced
spikes are released immediately, and if d = 1, then the spikes are emitted in the
next step, and so on. In the case d ≥ 1, if the rule is applied at step t, neuron
σi becomes closed in the interval [t, t+ d), i.e., it cannot receive spikes and spikes
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sent to it while it is closed are lost. At step t+ d, neuron σi becomes open, i.e., it
can receive spikes again, and at the same time it sends p spikes to come across all
the synapses such that (i, j) ∈ syn.

The semantics of applying forgetting rules is as follows: if the neuron contains
exactly s spikes, then the forgetting rule as → λ can be used, and this means that
all s spikes are removed from the neuron.

The semantics of computing synapse is as follows: each synapse from syn mon-
itors the flow of spikes come across it, and do the computation according to the
dynamic status of these spikes. Specifically, synapses will do addition, subtraction
or nothing according to the comparison result of two consecutive flows of spikes,
and the spikes sent to the receiving neuron (neuron σj such that (i, j) ∈ syn) will
be the results of these computation.

For each synapse (i, j) ∈ syn, there are several flows of spikes comes across the
synapse during the computation of the system, i.e. there is a spike train on the
synapse. In this case, synapse will compare the number of spikes come across it
consecutively, and get excitatory, inhibitory, or normal accordingly. We say that
two flows of spikes ap and aq come across the synapse consecutively, i.e. spikes ap

at step t and spikes aq at step t + 1, then there are three kinds of relationship
between ap and aq.

case 1: p < q, the synapse gets excited and do addition, and the receiving neuron
σj will get spikes ap+q;

case 2: p = q, the synapse gets normal and do nothing, and the receiving neuron
σj will get spikes ap;

case 3: p > q, the synapse gets inhibited and do subtraction, and the receiving
neuron σj will get spikes ap−q.

Specially, it is possible that during the computation of the system, there is only
one flow of spikes comes across the synapse, for instance, spikes as come across
the synapse in one step. In this case, there is no comparison and the synapse does
not compute, and the receiving neuron σj will get spikes as.

A configuration of the system at a given step is the contribution of spikes
among neurons, and the status of each neuron, whether closed or open. The ini-
tial configuration is given by ni of each neuron σi. The system reaches a halting
configuration when there is no rule can be applied and all neurons are open. A
computation is defined as a sequence of configuration transitions, from an initial
configuration, and following rule application semantics and synapse computing
semantics. A computation halts if the system reaches a halting configuration.

The result of the computation can be defined in various ways in SN P systems.
In this work we use the following definition: when a computation halts, the number
of spikes present in the output neuron is said to be computed by an CSSN P system
Π. We denote the set of all number computed in this way by Π as Ngen(Π). In
Ngen(Π) we have Π able to generate numbers (we also say that Π works in the
generative mode).
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CSSN P systems can also accept numbers i.e. Π works in the acceptive mode.
When working in the acceptive mode, the output neuron is ignored, and Π work
as follows: a number is introduced into Π as the number of spikes present in the
input neuron in the initial configuration, and the number is accepted by Π if
the computation halts. The set of numbers accepted this way by Π is denoted as
Nacc(Π).

The families of all sets of Nα(Π), with α ∈ {gen, acc} are denoted as
NαSNPCOSm(rulek, consr, forgq), with at most m ≥ 1 neurons in the system,
at most k ≥ 1 rules in each neuron, consuming at most r ≥ 1 spikes in any firing
rule of any neuron, and forgetting at most q ≥ 1 spikes in any forgetting rule
of any neuron. We note that the parameter for the delay for the firing rules are
specified in other literature, e.g. in [], but here we do not use it so the parameter
is omitted.

3 An Example

In this section we provide an example Π1 to further clarify the semantics of CSSN
P systems, which is shown in Fig. 1.

The system Π1 is composed of two neurons, labeled with 1 and 2, and they are
the input and output neuron, respectively. Formally, system Π1 is a structure of
the form Π = (O, σ1, σ2, syn, 1, 2), where:

• O = {a};
• σ1 = (5, R1), with R1 = {a5 → a4, a5/a2 → a2, a5/a3 → a3, a3 → a3, a3 →

a2, a2 → a2};
• σ2 = (0, R2), with R2 = ∅;
• syn = {(1, 2)}.

a5

a5 → a4

a5/a2 → a2

a5/a3 → a3

a3 → a3

a3 → a2

a2 → a2

1

2/out

Fig. 1. A simple example of an SN P system with computing synapse

Neuron σ1 fires at the first step of the computation. As shown in the table
below, there are four sets of rules to apply. Also, the flow of spikes on synapse
(1, 2), computing on synapse, and spikes received by σ2 are present in detail.
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rules to apply flow of spikes computing on synapse spikes received
on synapse by σ2

a5 → a4 a4 none a4

a5/a2 → a2, a3 → a3 a2a3 addition a5

a5/a2 → a2, a3 → a2 a2a2 none a2

a5/a3 → a3, a2 → a2 a3a2 subtraction a

From the table we can see that: when working in the generative mode, the set
of all number computed by Π is {1, 2, 4, 5}, i.e. Πgen = {1, 2, 4, 5}.

4 Universality Results

In this section, we present universality results for SN P systems with computing
on synapses, for the generating modes.

Theorem 1. NgenSNPCOS∗(rule3, cons5, forg5) = NRE.

Proof. In order to prove Theorem, it is enough to simulate a register machine M
with an CSSN P system Π with restrictions in the Theorem statement. Before
constructing Π, we provide a general overview of the computation as follows:
each register r in M corresponds to a σr in Π. If r stores the number n, then
σr stores 2n spikes. If M applies an instruction li that performs some operation
OP ∈ {ADD,SUB,HALT}, this means that a corresponding neuron σli becomes
activated in order to simulate OP . Without loss of generality, register 1 of M is
the output register and this register is never subjected to a SUB instruction. In
this way, the spikes in σ1 are never decremented.

In what follows, we provide the modules in most cases in a graphical manner
for easier reference. The initial configuration of Π is such that all neurons are
empty, except for σl0 which contains three spikes. The three spikes in σl0 begins
the computation of Π, corresponding to simulating the initial instruction l0 of M .

Module ADD : The module simulating li : (ADD(r), lj , lk) is given in Fig. 2.
Once σli is activated, both neurons li1 and li2 receive three spikes.
With three spikes inside, neuron li2 applies the rule a3/a2 → a2 first, and then

the rule a → λ. As a result, the spike trains on synapses (li2 , r) and (li2 , li4) are
a2λ, and the computing on these synapses is subtraction. In this way, σr receive
two spikes, corresponding to incrementing the register r by one, and σli4

also gets
two spikes.

With three spikes inside, neuron li1 applies the rule a3/a → a first, and then
it must nondeterministically choose to apply either a2 → a2 or a2 → λ. If the
former rule is chosen, then the spike trains on synapses (li1 , li3) and (li1 , li4) are
aa2, and the synapses does addition. In this way, σli3

receives three spikes, gets
activated, and sends three spikes to σlj , which makes neuron lj activated; σli4
receives five spikes (three from synapse (li1 , li4) and two from synapse (li2 , li4)),
which are forgotten according to the rule a5 → λ. If the latter rule is applied,
then the spike trains on synapses (li1 , li3) and (li1 , li4) are aλ, and the synapses
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a3 → a3

li

a3/a → a

a2 → a2

a2 → λ

li1

a3/a2 → a2

a → λ

li2

a3 → a3

a → λ

li3

a5 → λ
a3 → a3

li4

r

lj lk

Fig. 2. Module ADD

does subtraction. In this way, σli3
receives one spikes, which is forgotten according

to the rule a → λ; σli4
receives three spikes (one from synapse (li1 , li4) and two

from synapse (li2 , li4)), gets activated, and sends three spikes to σlk , which makes
neuron lk activated.

The functioning of the ADD module correctly simulates li : (ADD(r), lj , lk)
by incrementing σr with two spikes, followed by nondeterministically activating
either σlj or σlk .

Module SUB : The module for simulating li : (SUB(r), lj , lk) is given in Fig. 3.
In the instruction li of M , we have two case, depending if r stores an empty or
nonempty value.

Once σli is activated, both neurons r and li1 receive three spikes.
With three spikes inside, neuron li1 applies the rule a3/a → a first, and then

the rule a2 → a2. As a result, the spike trains on synapses (li1 , li3) and (li1 , li4)
are aa2, and the computing on these synapses is addition. In this way, both σli3
and σli4

receive three spikes.
Now, let’s take a look at neuron σr.
On one hand, if register r stores a nonempty value n ≥ 1, this means that

initially there are at least two spikes in σr. After receiving three spikes from σli ,
σr contains at least five spikes (in general it contains 2n+ 3, n ≥ 1 spikes). Only
the rule a5(a2)∗/a5 → a2 can be applied by σr. Five spikes are removed from σr

(hence, only 2(n−1) spikes remain in σr) and two spikes is produced. The removal
of five spikes corresponds to decrementing register r by one. Through the neuron



104 Y. Jiang, Z. Chen

a3 → a3
li

a3(aa)+/a5 → a2

a3 → λ

r

a3/a → a

a2 → a2

li1

a2 → a2

li2

a5 → a3

a3 → λ
a2 → λ

li3

a5 → λ
a3 → a3

a2 → λ

li4

lj lk

Fig. 3. Module SUB

li2 , the two spikes arrives at σli3
and σli4

. Together with the three spikes from

σli1
, there are both five spikes in σli3

and σli4
. The rule a5 → a3 is applied by σli3

,

and the rule a5 → λ is applied by σli4
. In this way, three spikes arrives at σlj , but

not σlk . At this point, σlj becomes activated.
On the other hand, if register r stores an empty value, this means that initially

there is no spike in σr. When the three spikes from σli are available in σr, only the
rule a3 → λ can be applied. The three spikes are removed (hence, no spike remains
in σr) and no spike is produced. As a result, there are both three spikes in σli3

and σli4
. The rule a3 → λ is applied by σli3

, and the rule a3 → a3 is applied by
σli4

. In this way, three spikes arrives at σlk , but not σlj . At this point, σlk becomes
activated.

We also need to check if there is interference among several SUB modules
operating on the same σr, i.e. when more than one SUB instruction operates on
register r. However, due to the forgetting rule a2 → λ in neurons li3 and li4 , there
is no problem or interference. As shown in Fig. 3, each neuron r sends two spikes
to all neurons with label li2 , then to all neurons with label li3 and li4 in the SUB
module, but all these neurons will forget the two spikes immediately, except for the
neurons σli3

and σli4
from the module of the SUB instruction whose simulation
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proceeds correctly and which also receives three spikes from the corresponding
neuron li1 .

The functioning of the SUB module correctly simulates the li : (SUB(r), lj , lk)
operation by either decrementing σr and activating σlj , otherwise by activating
σlk . What remains now is to output the result of the computation.

Module OUTPUT : The module for halting the computation and producing the
output is given in Fig. 4. Since the output register 1 is never decremented, this
means that no SUB module operates on σ1, and the number of spikes in σ1 is
always of the form 2n. Once neuron lh becomes activated, it produces a single
spike so that σ1 becomes activated at the next step.

a3 → a

lh
a(aa)+/a2 → a

a → λ

1 out

Fig. 4. Module OUTPUT

If register 1 is nonempty, rule a(aa)+/a2 → a in σ1 is applied since σ1 now
has 2n + 1 spikes. This rule consumes two spikes, and one spike is sent to σout.
The rule will continue to be applied and consume two spikes each step, stopping
only when σ1 has exactly one spike, which is removed by the rule a → λ. In this
way, the spike train on synapse (1, out) is of the form aa . . . aλ, which begins with
n number of spikes and is ended with λ, i.e. n − 1 pairs of consecutive aa, and
then one pair of aλ. For the n− 1 pairs of consecutive aa, synapse (1, out) will do
nothing, so σout receives one spike for each computing on synapse, i.e. n−1 spikes
together. For the last pair of aλ, synapse will do subtraction, so σout receives one
spike. Hence, the spikes stored in σout is the generated number, i.e. (n−1)+1 = n,
which is exactly the number stored in output register 1 of M .

We note that all modules make use of at most three rules in each neuron, with
any rule consuming at most five spikes, and forgetting at most five spike. Hence,
the parameters of the Theorem are satisfied, and this completes the proof.

5 Final Remarks

In this work, we introduced spiking neural P systems with computing synapses (in
short, CSSN P systems). Such systems incorporate not only biological inspiration,
e.g. the shunting inhibition, but also computational and mathematical inspirations,
e.g. dynamic graphs or time-varying networks.

Our result in this work show that CSSN P systems are computationally uni-
versal, even with a normal form. The normal form, as given by parameters in the
theorem, includes: at most three rules in each neuron, with any rule consuming
at most five spikes, and forgetting at most five spike, and all these rules have no
delay.
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We suspect that the result provided in this work could still be improved, i.e.
improve the normal form. It is likely we can reduce cons5 to cons4 and forg5 to
forg4. How to reduce these and other parameters in the system, using CSSN P
semantics, remains open.

Another open problem is to consider more complicated synapse, e.g. synapse
computes by multiplication or division. It is also worth considering computing
synapses for SN P systems with anti-spikes.
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Summary. In P systems with active membranes, the question of understanding the
power of non-confluence within a polynomial time bound is still an open problem. It is
known that, for shallow P systems, that is, with only one level of nesting, non-confluence
allows them to solve conjecturally harder problems than confluent P systems, thus reach-
ing PSPACE. Here we show that PSPACE is not only a bound, but actually an exact
characterization. Therefore, the power endowed by non-confluence to shallow P systems
is equal to the power gained by confluent P systems when non-elementary membrane
division and polynomial depth are allowed, thus suggesting a connection between the
roles of non-confluence and nesting depth.

1 Introduction

While families of confluent recognizer P systems with active membranes with
charges are known to characterize the complexity class PSPACE when working in
polynomial time [9, 10], their computational power when the nesting level is con-
strained to one (i.e., only one level of membranes inside the outermost membrane,
usually called shallow P systems) is reduced to the class P#P, which is conjec-
turally smaller [1]. While confluent P systems can make use of nondeterminism,
they are constrained in returning the same result for all computations starting
from the same initial configuration. However, by accepting when at least one com-
putation accepts, like nondeterministic Turing Machines (TM) traditionally do,
P systems can make use of the entire power of nondeterminism: uniform families
of non-confluent recognizer P systems with active membranes with charges can
solve PSPACE-complete problems even in the shallow case and even when send-
in rules are disallowed (i.e., for monodirectional systems) [4]. Here we show that, in
fact, PSPACE is a characterization of this kind of shallow non-confluent P systems
when they work in polynomial time. This result shows that the complex relation
between computational power, nesting depth, and monodirectionality present for
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confluent P systems is absent in the non-confluent case. In particular, in the con-
fluent case, systems with no nesting characterize P [11] whereas, additional nesting
gives additional power [2] until reaching PSPACE when unlimited nesting is al-
lowed [9, 10]. In the monodirectional case even unlimited nesting cannot escape
PNP, which is conjecturally smaller [3]. Non-confluent systems, on the other hand,
characterize NP when there are no internal membranes [8], and immediately gain
the full power of PSPACE with only one level of nesting. Furthermore, at least
for shallow systems, this provides an exact characterization. It is therefore natu-
ral to ask what is the relation between the mechanisms that empower confluent
P systems and the full power of non-confluence. Are the former ones only a way
to simulate the latter?

2 Basic Notions

For an introduction to membrane computing and the related notions of formal
language theory, we refer the reader to The Oxford Handbook of Membrane Com-
puting [6]. Here we recall the formal definition of P systems with active membranes
using only elementary division rules.

Definition 1. A P system with active membranes with elementary division rules
of initial degree d ≥ 1 is a tuple

Π = (Γ,Λ, µ,wh1
, . . . , whd

, R)

where:

• Γ is an alphabet, i.e., a finite non-empty set of symbols, usually called objects;
• Λ is a finite set of labels for the membranes;
• µ is a membrane structure (i.e., a rooted unordered tree, usually represented

by nested brackets) consisting of d membranes labelled by elements of Λ in a
one-to-one way;

• wh1 , . . . , whd
, with h1, . . . , hd ∈ Λ, are multisets (finite sets whose elements

have a multiplicity) of objects in Γ , describing the initial contents of the d
regions of µ;

• R is a finite set of rules.

Each membrane possesses, besides its label and position in µ, another attribute
called electrical charge, which can be either neutral (0), positive (+) or negative (−)
and is always neutral before the beginning of the computation.

The rules in R are of the following types:

(a) Object evolution rules, of the form [a → w]αh
They can be applied inside a membrane labelled by h, having charge α and
containing an occurrence of the object a; the object a is rewritten into the
multiset w (i.e., a is removed from the multiset in h and replaced by the
objects in w).
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(b) Send-in communication rules, of the form a [ ]αh → [b]βh
They can be applied to a membrane labelled by h, having charge α and such
that the external region contains an occurrence of the object a; the object a is
sent into h becoming b and, simultaneously, the charge of h is changed to β.

(c) Send-out communication rules, of the form [a]αh → [ ]βh b
They can be applied to a membrane labelled by h, having charge α and con-
taining an occurrence of the object a; the object a is sent out from h to the
outside region becoming b and, simultaneously, the charge of h becomes β.

(e) Elementary division rules, of the form [a]αh → [b]βh [c]γh
They can be applied to a membrane labelled by h, having charge α, contain-
ing an occurrence of the object a but having no other membrane inside (an
elementary membrane); the membrane is divided into two membranes having
label h and charges β and γ; the object a is replaced, respectively, by b and c,
while the other objects of the multiset are replicated in both membranes.

The instantaneous configuration of a membrane of label h consists of its
charge α and the multiset w of objects it contains at a given time. It is denoted
by [w]αh . The (full) configuration C of a P system Π at a given time is a rooted,
unordered tree. The root is a node corresponding to the external environment
of Π, and has a single subtree corresponding to the current membrane structure
of Π. Furthermore, the root is labelled by the multiset located in the environ-
ment, and the remaining nodes by the configurations [w]αh of the corresponding
membranes. In the initial configuration of Π, the configurations of the membranes
are [wh1

]0h1
, . . . , [whd

]0hd
.

A P system is shallow if it contains at most one level of membranes inside
the outermost membrane. This means that all the membranes contained in the
outermost membrane are elementary, i.e., they contain no other nested membrane.

A computation step changes the current configuration according to the follow-
ing set of principles:

• Each object and membrane can be subject to at most one rule per step, except
for object evolution rules: inside each membrane, several evolution rules can
be applied simultaneously.

• The application of rules is maximally parallel : each object appearing on the
left-hand side of evolution, communication, or division rules must be subject
to exactly one of them (unless the current charge of the membrane prohibits
it). Analogously, each membrane can only be subject to one communication or
division rule (types (b)–(e)) per computation step; these rules will be called
blocking rules in the rest of the paper. In other words, the only objects and
membranes that do not evolve are those associated with no rule, or only to
rules that are not applicable due to the electrical charges.

• When several conflicting rules can be applied at the same time, a nondeter-
ministic choice is performed; this implies that, in general, multiple possible
configurations can be reached after a computation step.

• In each computation step, all the chosen rules are applied simultaneously (in an
atomic way). However, in order to clarify the operational semantics, each com-
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putation step is conventionally described as a sequence of micro-steps whereby
each membrane evolves only after their internal configuration (including, re-
cursively, the configurations of the membrane substructures it contains) has
been updated. In particular, before a membrane division occurs, all chosen ob-
ject evolution rules must be applied inside it; this way, the objects that are
duplicated during the division are already the final ones.

• The outermost membrane cannot be divided, and any object sent out from it
cannot re-enter the system again.

A halting computation of the P system Π is a finite sequence C = (C0, . . . , Ck) of
configurations, where C0 is the initial configuration, every Ci+1 is reachable from Ci
via a single computation step, and no rules of Π are applicable in Ck. A non-
halting computation C = (Ci : i ∈ N) consists of infinitely many configurations,
again starting from the initial one and generated by successive computation steps,
where the applicable rules are never exhausted.

P systems can be used as language recognisers by employing two distinguished
objects yes and no: in this case we assume that all computations are halting, and
that either one copy of object yes or one of object no is sent out from the outermost
membrane, and only in the last computation step, in order to signal acceptance
or rejection, respectively. If all computations starting from the same initial con-
figuration are accepting, or all are rejecting, the P system is said to be confluent.
In this paper we deal, however, with non-confluent P systems, where multiple
computations can have different results and the overall result is established as for
nondeterministic TM: it is acceptance iff an accepting computation exists [7].

In order to solve decision problems (or, equivalently, decide languages) over
an alphabet Σ, we use families of recogniser P systems Π = {Πx : x ∈ Σ⋆}.
Each input x is associated with a P system Πx deciding the membership of x in
a language L ⊆ Σ⋆ by accepting or rejecting. The mapping x 7→ Πx must be
efficiently computable for inputs of any length, as discussed in detail in [5].

Definition 2. A family of P systems Π = {Πx : x ∈ Σ⋆} is (polynomial-time)
uniform if the mapping x 7→ Πx can be computed by two polynomial-time deter-
ministic Turing machines E and F as follows:

• F (1n) = Πn, where n is the length of the input x and Πn is a common P system
for all inputs of length n, with a distinguished input membrane.

• E(x) = wx, where wx is a multiset encoding the specific input x.
• Finally, Πx is simply Πn with wx added to its input membrane.

The family Π is said to be (polynomial-time) semi-uniform if there exists a sin-
gle deterministic polynomial-time Turing machine H such that H(x) = Πx for
each x ∈ Σ⋆.

Any explicit encoding of Πx is allowed as output of the construction, as long
as the number of membranes and objects represented by it does not exceed the
length of the whole description, and the rules are listed one by one. This restric-
tion is enforced in order to mimic a (hypothetical) realistic process of construction
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of the P systems, where membranes and objects are presumably placed in a con-
stant amount during each construction step, and require actual physical space
proportional to their number; see also [5] for further details on the encoding of
P systems.

In the following, we denote the class of problems solvable by polynomial-
time uniform or semi-uniform families of non-confluent shallow P systems with

active membranes with charges by NPMC
[⋆]
AM(depth-1,−d,−ne), where [⋆] denotes

optional semi-uniformity. If no restriction on the depth of the membrane structure
is present, but both non-elementary division and dissolution rules are forbidden,

then the corresponding class of problems is denoted by NPMC
[⋆]
AM(−d,−ne).

3 Nondeterministic Simulation with Oracles

Let Π be a semi-uniform family of non-confluent shallow recognizer P systems
with active membranes with charges, and let H be the TM of the semi-uniformity
condition of Π. We are going to define a machine M working in polynomial space
such that on inputH and x Turing machineM accepts iff the P systemH(x) = Πx

of Π accepts in polynomial time. Notice that a single machine M suffices for all
families of P systems. The machine associated with a specific familyΠ of P systems
can be obtained by “hard-coding” the input H to M .

First of all, on input H and x, machine M simulates machine H with x as
input to obtain a polynomial-size description of Πx. To simplify the description of
the procedure used by machine M to simulate Πx, we will assume M to work as
a nondeterministic polynomial-time TM with access to an oracle for a problem in
NPSPACE = PSPACE. As the following result shows, both this nondeterministic
behaviour and the oracle queries can still all be simulated using a polynomial-space
deterministic TM.

Proposition 1. NPNPSPACE = PSPACE.

Proof. Clearly NPNPSPACE ⊇ PSPACE, hence only the opposite inclusion needs
to be proved. Let N be a polynomial-time nondeterministic TM with access to an
oracle for a language L ∈ NPSPACE. Let D be a deterministic polynomial space
TM built in the following way:

• D simulates N until a query is performed. This simulation, including the non-
deterministic choices of N , can be performed in polynomial space by D, since
NP ⊆ PSPACE.

• Since L ∈ NPSPACE andNPSPACE = PSPACE, there exists a deterministic
polynomial space TM deciding L that can be simulated by D to answer any
query performed by N while still using only a polynomial amount of space.
Once a query has been answered, D can resume the simulation of N .

Since D can faithfully simulate N and its oracle queries, D can recognize the same
language as N , thus showing that NPNPSPACE ⊆ PSPACE, as desired. ⊓⊔
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We can now describe how the simulation of Πx is carried on by M . In the
following, we assume that the size of the input x is n, and that each computation
of Πx requires at most T time steps before halting and producing a result. By
hypothesis T is polynomial with respect to n.

3.1 Simulation of the Outermost Membrane

The main idea of this construction is to simulate the evolution of the outermost
membrane directly by means of a nondeterministic polynomial-time TM. All inter-
actions with the internal membranes are performed via nondeterministic guesses.
That is, for each communication rule and for each time step, the number of rules
that are applied between the outermost and the inner membranes is guessed in
a nondeterministic way. If yes has been sent out by the simulation of the out-
ermost membrane, an oracle query is performed to check whether all performed
interactions with the inner membranes were consistent with this information, that
is, if a computation of the inner membranes able to perform the guessed interac-
tions actually exists. If the query returns a positive answer, then a computation of
the entire system actually producing yes exists. In any other case, the simulating
machine rejects (since either an invalid simulation of the outermost membrane –
and of the P system – was produced, or the simulation itself was correct but the
simulated computation was a rejecting one).

To perform this construction we build a table T indexed by pairs of the form
(r, t), where r ∈ R is either a send-in rule from the outermost membrane to one
of the internal membranes or a send-out rule from one of the internal membranes
to the outermost membrane, and t ∈ {0, . . . , T − 1} is a time step. The entry
T (r, t) represent the number of times rule r has been applied at the time step t.
It is important to notice that table T can be stored using a polynomial amount
of space. In fact, the number of entries is limited by the size of R (which, by
uniformity condition, is polynomial in the input size n), and by the number T of
time steps needed for the P system to halt. We only need to prove that each entry
T (r, t) can be stored in a polynomial amount of space.

Let m ∈ N be number of internal membranes in the initial configuration of
Πx. By the semantics of the rules of P systems, the number of objects sent in to
internal membranes or sent out from them after t time steps cannot be greater
than m × 2t, where the second multiplicative factor is the maximum number of
membranes per label that can be obtained by membrane division in t time steps.
Since this value is exponential in t, it can be represented by a polynomial number
of bits with respect to t ≤ T . Thus, each entry of T requires at most a polynomial
amount of space with respect to n. We denote the maximum value attainable by
an entry of T by K.

Apart from keeping track of the communication rules applied between the
outermost and the internal membranes, we also need to assure that all rules are
applied in a maximally parallel way. To do so, we define another table U indexed
by pairs of the form (a, t) where a ∈ Γ is an object type and t ∈ {0, . . . , T − 1} is,
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as before, a time step. The entry U(a, t) represents the number of objects of type
a in the outermost membrane that had no rule applied to them at time t. Table
U can, too, be stored in a polynomial amount of space.

The simulation procedure of the outermost membrane is detailed as Algo-
rithm 1. There, label h always indicates the outermost membrane and the label
k an internal membrane label, while |w|a denotes the number of instances of the
object a inside the multiset w. The applicability of a rule refers, in the algorithm,
to the fact that the indicated membrane must have the correct charge α and, if the
rule is blocking, that the membrane has not already been used by another blocking
rule in the same time step. For example, the condition on line 14 of Algorithm 1 is
never verified once another send-out rule has been simulated in a previous iteration
of the loop for the current time step.

Lines 1–3 perform the initialization of the algorithm, setting the initial content
and charge of the outermost membrane and declaring the environment initially
empty. The main simulation loop is performed in lines 4–29. Since the maximum
number of time steps needed for Πx to produce a result is T , the simulation loop
is repeated at most T times. If the loop ends without having produced either yes
on no in the environment while simultaneously halting, the simulation performed
did not correspond to any actual computation of Πx, thus a negative answer must
be produced (line 30).

Lines 5–7 deal with the send-in rules from the outermost membrane to the
inner membranes. Since the number of internal membranes where the rule r can
be applied is not known, the number is nondeterministically chosen and is bounded
by the maximum number of inner membranes and the number of objects of type a
in the outermost membrane (line 6). The guessed number of internal membranes
saved in table T and the effect of the rules on the multiset w is scheduled for
application (line 7). Notice that, since the state of the internal membranes is not
stored, this amounts to the removal of T (r, t) instances of objects of type a from
w.

Lines 8–10 deal with send-out rules from the internal membranes to the out-
ermost membrane. As before, since the configuration and number of the internal
membranes is not known, the number of times this rule is applied is nondeterminis-
tically guessed (line 9), saved in table T , and the appearance of the corresponding
objects of type b in w is scheduled (line 10).

Lines 11–13 perform the simulation of the evolution rules inside the outermost
membrane. Since the simulated system is non-confluent, the actual number of
applications of each rule is guessed (line 12) before the actual effect of the rule
applications are scheduled (line 13).

Lines 14–19 deal with the application of send-out rules from the outermost
membrane to the environment. First of all, a nondeterministic guess is performed
to decide whether the rule is actually applied (line 15). If so, then the actual effects
of the rules are scheduled for application (lines 16–19).

The table U is then updated to memorize the number of objects that were not
subjected to any rule (lines 20–21). This will be used during the query process
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1 w ← initial multiset of the outermost membrane;
2 env← ∅;
3 charge← 0;
4 for t← 0 to T − 1 do

5 for all applicable r = a [ ]αk → [b]βk do
6 T (r, t)← guess (0, min(|w|a,K));
7 mark T (r, t) instances of a for removal from w;

8 for r = [a]αk → [ ]βk b do
9 T (r, t)← guess (0, K);

10 mark T (r, t) instances of b for insertion in w;

11 for all applicable r = [a→ u]αh do
12 m← guess (0, |w|a);
13 mark m copies of u for addition to w and m copies of a for removal;

14 for all applicable r = [a]αh → [ ]βh b do
15 m← guess (0, 1);
16 if m = 1 then
17 mark one copy of a for removal from w;
18 mark one copy of b for addition in env;
19 mark charge to be changed from α to β;

20 for a ∈ Γ do
21 U(a, t)← number of instances of a in w not marked;

22 Apply modifications to w, env, and charge according to the markings;
23 if rule application was not maximally parallel then
24 reject;

25 if yes or no has been sent out in the environment then
26 if query (T ,U , t) answer is positive and no further rules are applicable

in the next time step then
27 accept or reject accordingly;

28 else
29 reject;

30 reject;
Algorithm 1: The nondeterministic algorithm that performs the simulation
of the outermost membrane of Πx.

to ensure that the send-in rules from the outermost membrane to the internal
membranes were actually applied in a maximally parallel way.

All the scheduled modifications to the content and charge of the outermost
membrane and to the environment are now executed (line 22). If there are irrecon-
cilable problems in the maximally parallel application of the rules then a rejection
is performed (lines 23–24). This happens when there were objects in the outermost
membrane that were not selected to be sent-in into the internal membranes (this
can be checked by looking at table U), nor were they subject to applicable send-out
or evolution rules.

Finally, if either yes or no appears in the environment (lines 25–29) then it is
necessary to check whenever the guesses performed for the interaction with the
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internal membranes were accurate and no further rules are applicable in the next
time step in the outermost membrane (lines 26–29). If the answer to the query
is positive and no further rules were actually applicable, then the simulation can
either accept or reject accordingly (line 27). Otherwise, the simulation performed
did not correspond to any actual computation of Πx and we must reject (line 29).

Algorithm 1 can be executed in polynomial time by a nondeterministic TM
with access to an oracle to perform the query procedure. In fact, both the outer
loop and the inner loops are executed only a polynomial amount of times (either
bounded by the time needed for Πx to halt or by the number or rules in the
system). All other operations, including checking the applicability of rules, can be
performed in polynomial time given an efficient description of the configuration
of the outermost membrane (in which the number of objects is stored in binary).
Furthermore, all nondeterministic guesses are of a polynomial amount of bits.

3.2 Simulation of the Oracle

The query that is simulated by means of a nondeterministic machine working in
polynomial space is the following one:

Is there an halting computation of length t of the internal membranes
consistent with the rule applications guessed?

To be able to answer this query in nondeterministic polynomial space the main idea
is to simulate each membrane sequentially and keep track of the communication
rules that are applied while comparing them with the ones guessed by the simu-
lation of the outermost membrane. If division is applied then only the simulation
of one of the dividing membranes is immediately carried out (as performing them
all at the same time might require exponential – instead of polynomial – space)
while the other membrane is pushed into a stack, thus performing a depth-first
simulation of the membrane hierarchy. This ensures that a polynomial amount of
space suffices: it the space needed to simulate one membrane, plus a stack in which
the number of elements is at most T , one for each time step. This algorithm is
similar to the deterministic one presented in [10], although with an explicit stack
instead of a recursive definition, and the further difference that their algorithm
was able to work for unbounded-depth system. The actual algorithm implemented
to answer the query is presented in Algorithm 2.

Lines 1–3 perform the initial set-up, where a new stack S is filled with the
configuration of all internal membranes at the initial time step, i.e., t = 0. In
particular, for each membrane the multiset of objects contained, label, charge,
and time step of the simulation are all pushed as an single record into S.

In the main loop of lines 4–32 the simulation of all internal membranes is
performed one at a time. This loop is executed until the stack of membranes to be
simulated is not empty, which might require an exponential amount of time.

Once a new membrane to be simulated starting at time tpush has been extracted
(line 5) the simulation of the membrane proceeds up to time step t, which is given
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1 S ← ∅ ;
2 for all internal membrane [w]αk in the initial configuration do
3 pushS (w, k, α, 0) ;

4 while S is not empty do
5 (w, k, charge, tpush)← pop S ;
6 for t′ ← tpush to t do

7 for r = [a]αk → [b]βk [c]γk applicable do
8 m← guess (0, 1);
9 if m = 1 then

10 mark a copy of a for removal, a copy of b for addition to w;
11 mark charge to be changed to β;

12 for r = a [ ]αk → [b]βk applicable do
13 m← guess (0, 1);
14 if m = 1 then
15 T (r, t′)← T (r, t′)− 1;
16 mark a copy of b for addition to w;
17 mark charge to be changed to β;

18 for r = [a]αk → [ ]βk b applicable do
19 m← guess (0, 1);
20 if m = 1 then
21 T (r, t′)← T (r, t′)− 1;
22 mark a copy of a for removal from w;
23 mark charge to be changed to β;

24 for r = [a→ u]αk applicable do
25 m← guess (0, |w|a);
26 mark m copies of a for removal, m copies of u for addition to w;

27 apply marked modifications to w and charge;
28 if rule application was not maximally parallel then
29 reject;

30 if division was applied, pushS (w − {b}+ {c}, k, γ, t′);
31 if the current membrane has further applicable rules then
32 reject;

33 if each entry of T is 0 then
34 accept;

35 else
36 reject;
Algorithm 2: The nondeterministic polynomial space algorithm simulating
the inner membranes of Πx.
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in input as part the query (loop of lines 6–30) and represents the time at which
the simulation of the outermost membrane has suspended in order to perform the
query.

In lines 7–11, for each applicable division rule, i.e., the correct object and
charge are present and the membrane has not already been used by a blocking
rule in this time step, a nondeterministic choice is performed (line 8) to decide
if the rule is actually applied. If so (lines 7–11), then the modifications described
by the first half of the right-hand-side of the rule are performed, while the other
membrane resulting from the division will be pushed on the stack S at the end
of the simulation of the current time step (line 30). This cannot be performed
earlier since the rewriting rules are applied, by the semantics of rule application
in P systems, before the division actually takes place.

The simulation of both send-in and send-out rules (lines 12–17 and lines 18–
23, respectively) is performed similarly. Since we are working in a situation of
non-confluence, even if a rule is applicable, in order to actually decide whether to
apply it, a nondeterministic guess is performed (line 13 and line 19, respectively).
In both cases the modifications to be performed to the membrane configuration
are scheduled for later execution (lines 16–17 and lines 22–23, respectively). Since
send-in and send-out are communication rules between the outermost membrane
and the internal membranes, each time one of them is applied the value of T (r, t′) is
decremented. If, at the end of the simulation, the number of guessed applications
and the real number of applications of the communication rules coincides, all
entries T (r, t′) should be 0 (at line 15 and line 21, respectively).

The application of evolution rules (lines 24–26), their effect being limited to
the internal state of the membrane, is simpler. As usual, which rules are actually
applied is determined by a nondeterministic choice (line 25).

Once all rule applications have been decided, the actual modifications to the
state of the membrane are applied (line 27) and, if the rule application was not
maximally parallel then the computation rejects (lines 28–29). This can be verified
by checking if there still exist objects inside the membrane with applicable rules
but no rule was applied to them, or if U(a, t′) is positive for some a ∈ Γ with
an applicable send-in rule to the currently simulated membrane. Since U(a, t′)
indicates the number of objects that were available for the application of send-in
from the outermost membrane but no internal membrane was available, such an
inconsistency would denote that the simulation of the internal membranes had no
correspondence to the already performed simulation of the outermost membrane.

If a division rule was applied, then the configuration of the second membrane
resulting from division is pushed to the stack S (line 30). Here, an instance of the
object b has been replaced by an instance of object c and the charge has been
changed from β to γ to obtain from the current membrane a copy corresponding
to the other one obtained by division.

Before proceeding with the simulation of another membrane, we check that
after t steps the computation in this membrane has actually halted (lines 31–32).
Otherwise the current computation must reject (line 32).
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After the simulation of all internal membranes is finished, i.e., the stack was
emptied, a check on the entries of T is performed. If all and every communication
rule application guessed during the simulation of the outermost membrane was
actually executed then all entries of T should be 0. A positive (resp., negative)
value for T (r, t) denotes that less (resp., more) applications of rule r at time t were
performed than the number that was guessed.

If at least one accepting computation of the machine simulating the oracle
query exists then the answer to the query is positive. Furthermore, if there is
a way to “glue” the simulation of the outermost membrane and of the internal
membranes, then the result produced by Algorithm 1 was correct. Combining this
simulation with the inverse simulation presented in [4], we can then state the main
result of the paper.

Theorem 1. PSPACE = NPMC
[⋆]
AM(depth-1,−d,−ne). ⊓⊔

As long as no dissolution is allowed, the property of being elementary is a static
one and, if no non-elementary division is present, the simulation of the outermost
membrane can be extended to include all non-elementary membranes, allowing us
to state the following result.

Corollary 1. PSPACE = NPMC
[⋆]
AM(−d,−ne). ⊓⊔

4 Conclusions

We have shown that, differently from confluent P systems, monodirectionality and
a restriction on the depth of the system to 1 (or, equivalently, the absence of both
dissolution and non-elementary division) do not prevent non-confluent P systems
from reaching PSPACE in polynomial time. It remains open to establish if this
upper bound can be extended to membrane structures of higher (non-constant)
depth where non-elementary division is allowed. Since both monodirectionality
and nesting depth have a huge influence in the computational power of confluent
systems, it would be worthwhile to understand why they do not provide an anal-
ogous increase to non-confluent systems. These features are usually employed by
algorithms designed for confluent P systems to simulate the power of nondeter-
minism, so the question is: are they always useless when non-confluence is already
present?
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Summary. In the field of Membrane Computing, computational complexity theory has
been widely studied trying to find frontiers of efficiency by means of syntactic or seman-
tical ingredients. The objective of this is to find two kinds of systems, one non-efficient
and another one, at least, presumably efficient, that is, that can solve NP-complete prob-
lems in polynomial time, and adapt a solution of such a problem in the former. If it is
possible, then P = NP. Several borderlines have been defined, and new characterizations
of different types of membrane systems have been published.

In this work, a certain type of P system, where proteins act as a supporting element
for a rule to be fired, is studied. In particular, while division rules, the abstraction of
cellular mitosis is forbidden, only problems from class P can be solved, in contrast to the
result obtained allowing them.

Key Words: Membrane Computing, active membranes, proteins, computational
complexity theory

1 Introduction

In the beginning, Membrane Computing was developed mainly to study certain
fields of theoretical computer science, such as formal language theory and com-
putability theory, from a different perspective [12]. In this framework, several mod-
els of P systems, the main computational device within this framework, have been
demonstrated to be universal. For this purpose, the most used technique is to
simulate another computationally complete machine, like Turing machines [8] or
register machines [2].

Even if it started in this field, the Membrane Computing grew rapidly into an-
other fields, such as computational complexity theory [15], biology [16], ecology [5],
electrical networks [13] and a wide range of real-life applications [7, 10, 21]. For
each field, different variants of membrane systems have been developed.
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Computational complexity theory is devoted to classify classes of problems
depending on their intrinsic complexity, in contrast with algorithms theory, where
the complexity measured is that of the algorithm itself. This classification is based
on the resources needed to solve efficiently a problem. In an informal way, we say
that a problem is efficiently solved by a machine if the time that this machine takes
to solve an instance of length n of such problem is upper bounded by a polynomial
p(n).

One of the seven Millenium Prize Problems is the so-called P vs. NP problem,
whose response, whether positive or negative, would have a major impact in several
fields such as cryptography, economics, proof theory, even in biology [3]. That is
why it seems interesting to study it from a bio-inspired perspective. On the one
hand, to demonstrate that a class of P systems is presumably efficient it is enough to
give an efficient solution to a NP-complete problem. On the other hand, various
techniques have been developed to show that a class of such devices can only
efficiently solve problems from class P, such as the dependency graph technique,
where a directed graph based on the behavior of the system is created from its
definition and its resolution is characterized by the REACHABILITY problem 1; the
algorithmic technique, where an algorithm A working in polynomial time has as
input a recognizer P system Π and a multiset m and reproduces a computation
of Π + m 2; and the simulation technique, where a recognizer membrane system
is simulated by means of another kind. By this, if Π is a recognizer P system
that can solve efficiently problems from the complexity class C, and Π ′ is another
kind of recognizer P system, usually with less “ingredients” than the former, if Π ′

can simulate Π, then Π ′ can solve problems from class C. In this work, we use
the algorithmic technique to prove that a certain type of P systems cannot solve
NP-complete problems (unless, of course, P = NP).

The paper is organized as follows: first of all, in order to make this work self-
contained, we introduce some preliminary concepts. Section 3 is devoted to in-
troduce P systems with proteins on membranes. In Section 4, a solution to the
open problem from [18] is given, using the algorithmic technique for this purpose.
Finally, some conclusions and future research lines are given.

2 Preliminaries

Here, we introduce some concepts that are going to be used through the work.

2.1 Alphabets and multisets

An alphabet Γ is a non-empty set and its elements are called symbols. A string u
over Γ is an ordered finite sequence of symbols, that is, a mapping from a natural

1 It is a problem from class P, so its solution can be found in polynomial time.
2 Let us recall that a recognizer P system with a given input is confluent, that is, all its
computations return the same answer, so it is enough to reproduce one of them. For
a formal definition of recognizer membrane systems we refer to [15, 14]



Limits on P Systems with Proteins and Without Division 125

number n ∈ N onto Γ . The number n is called the length of the string u and it is
denoted by |u|. The empty string (with length 0) is denoted by λ. The set of all
strings over an alphabet Γ is denoted by Γ ∗. A language over Γ is a subset of Γ ∗.

A multiset over an alphabet Γ is an ordered pair (Γ, f) where f is a mapping
from Γ onto the set of natural numbers N. The support of a multiset m = (Γ, f) is
defined as supp(m) = {x ∈ Γ | f(x) > 0}. A multiset is finite (respectively, empty)
if its support is a finite (respectively, empty) set. We denote by ∅ the empty
multiset. Let m1 = (Γ, f1), m2 = (Γ, f2) be multisets over Γ , then the union of m1

and m2, denoted by m1 +m2, is the multiset (Γ, g), where g(x) = f1(x) + f2(x)
for each x ∈ Γ . We denote by Mf (Γ ) the set of all multisets over Γ .

2.2 Graphs and trees

Let us recall some notions related with graph theory (see [6] for details). An
undirected graph is an ordered pair (V,E) where V is a set whose elements are
called nodes or vertices and E = {{x, y} | x ∈ V, y ∈ V, x ̸= y} whose elements
are called edges. A path of length k ≥ 1 from a node u to a node v in a graph
(V,E) is a finite sequence (x0, x1, . . . , xk) of nodes such that x0 = u, xk = v and
{xi, xi+1} ∈ E. If k ≥ 2 and x0 = xk then we say that the path is a cycle of
the graph. A graph with no cycle is said to be acyclic. An undirected graph is
connected if there exist paths between every pair of nodes.

A rooted tree is a a connected, acyclic, undirected graph in which one of the
vertices (called the root of the tree) is distinguished from the others. Given a node
x (different from the root), if the last edge on the (unique) path from the root of
the tree to the node x is {x, y} (in this case, x ̸= y), then y is the parent of node
x and x is a child of node y. The root is the only node in the tree with no parent.
A node with no children is called a leaf.

3 P systems with Proteins on Membranes

The inspiration comes from the biochemistry of living cells, where proteins take
part regulating which reactions occur depending on whether certain proteins are
present or not [1]. P systems with proteins on membranes, first introduced in [11],
have been demonstrated to be universal devices [4], as well as able to solve com-
putationally hard problems. In fact, in [17], a uniform solution to QSAT is given
by means of a family of P systems with proteins on membranes and membrane
division. Here, we define the syntax and semantics of these systems by adding
the necessary elements to introduce cell separation as a method to create an ex-
ponential workspace in terms of cells, as it has been used in other variants of
P systems [9, 20].
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3.1 Syntax

Definition 1. A P system with proteins on membranes and membrane division of
degree q ≥ 1 is a tuple

Π = (Γ, Γ0, Γ1, P, P0, P1, E , µ,M1/Z1, . . . ,Mq/Zq,R1, . . . ,Rq, iout)

where:

• Γ and P are finite multisets with Γ ∩ P = ∅, and E ⊆ Γ \ P ;
• {Γ0, Γ1} is a partition of the set Γ , where Γ0 ∪Γ1 = Γ , Γ0 ∩Γ1 = ∅ and Γ0, Γ1

are non-empty sets if separation rules are used, Γ0 = Γ1 = ∅ otherwise;
• {P0, P1} is a partition of the set P , where P0∪P1 = P , P0∩P1 = ∅ and P0, P1

are non-empty sets if separation rules are used, P0 = P1 = ∅ otherwise;
• µ is a rooted tree;
• M1, . . . ,Mq are multisets over Γ ;
• Z1, . . . ,Zq are multisets over P ;
• R1, . . . ,Rq are finite sets of rules associated with the nodes of the graph of the

following forms:
(1) [ p | a ]i → [ p′ | b ]i, p, p′ ∈ P, a, b ∈ Γ, 1 ≤ i ≤ q (in-membrane object evolu-

tion rules);
(2) a [ p | ]i → b [ p′ | ]i, p, p′ ∈ P, a, b ∈ Γ, 1 ≤ i ≤ q (out-membrane object

evolution rules);
(3) [ p | a ]i → b [ p′ | ]i, p, p′ ∈ P, a, b ∈ Γ, 1 ≤ i ≤ q (send-out communication

rules);
(4) a [ p | ]i → [ p′ | b ]i, p, p′ ∈ P, a, b ∈ Γ, 1 ≤ i ≤ q (send-in communication

rules);
(5) a [ p | b ]i → c [ p′ | d ]i, p, p′ ∈ P, a, b, c, d ∈ Γ, 1 ≤ i ≤ q (antiport communica-

tion rules);
(6p) [ p | ]i → [ p′ | ]i[ p′′ | ]i, p, p′, p′′ ∈ P, 1 ≤ i ≤ q, i ̸= iout (protein-based divi-

sion rules)
(6o) [ | a ]i → [ | b ]i[ | c ]i, a, b, c ∈ Γ, 1 ≤ i ≤ q, i ̸= iout (object-based division

rules)
(6′p) [ p | ]i → [ p′ | ]i[ p′′ | ]i, p, p′, p′′ ∈ P, 1 ≤ i ≤ q, i ̸= iout (protein-based divi-

sion rules)
(6′o) [ | a ]i → [ | b ]i[ | c ]i, a, b, c ∈ Γ, 1 ≤ i ≤ q, i ̸= iout (object-based division

rules)
• iout = 0 is the output membrane.

A P system with proteins on membranes and membrane division (respectively,
membrane separation) of degree q ≥ 1,

Π = (Γ, Γ0, Γ1, P, P0, P1, E , µ,M1/Z1, . . . ,Mq/Zq,R1, . . . ,Rq, iout)
3,

3 Let us note that Γ0, Γ1, P0 and P1 are usually ommited when separation rules are not
used
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can be viewed as a set of q membranes, labelled by 1, . . . , q arranged in a hierar-
chical structure µ given by a rooted tree whose root is called the skin membrane,
such that: (a) M1, . . . ,Mq represent the multisets of objects initially placed in
the q membranes of the system; (b) Z1, . . . ,Zq represent the multisets of pro-
teins initially placed in the q membranes of the system; (c) E is the set of objects
initially located in the environment of the system, all of them available in an ar-
bitrary number of copies; and (d) iout represent a distinguished region which will
encode the output of the system. We use the term region i (0 ≤ i ≤ q) to refer
to membrane i in the case 1 ≤ i ≤ q and to refer to the environment in the case
i = 0.

A configuration at any instant of such kind of P system is described by
the membrane structure of the system, the multisets of objects in each mem-
brane, the multisets of proteins in each membrane and the multiset of ob-
jects over Γ \ E in the environment at the moment. The initial configura-
tion of Π = (Γ, Γ0, Γ1, P, P0, P1, E , µ,M1/Z1, . . . ,Mq/Zq,R1, . . . ,Rq, iout) is
(µ,M1/Z1, . . . ,Mq/Zq; ∅).

3.2 Semantics

An in-membrane object evolution rule [ p | a ]i → [ p′ | b ]i ∈ Ri is applicable at a
configuration Ct at an instant t if there is a region i from Ct which contains the
object a and the protein p. By applying such rule, object a and protein p in region
i from Ct are consumed and object b and protein p′ are generated in region i from
Ct+1.

An out-membrane object evolution rule a [ p | ]i → b [ p′ | ]i ∈ Ri is applicable at
a configuration Ct at an instant t if there is a region p(i) from Ct which contains
the object a and a region i from Ct which contains the protein p. By applying such
rule, object a in region p(i) and protein p in region i from Ct are consumed and
object b is generated in region p(i) and protein p′ is generated in region i from
Ct+1.

A send-out communication rule [ p | a ]i → b [ p′ | ]i ∈ Ri is applicable at a con-
figuration Ct at an instant t if there is a region i from Ct which contains the object
a and the protein p. By applying such rule, object a and protein p in region i
from Ct are consumed and object b is generated in region p(i) and protein p′ is
generated in region i from Ct+1.

A send-in communication rule a [ p | ]i → [ p′ | b ]i ∈ Ri is applicable at a con-
figuration Ct at an instant t if there is a region p(i) from Ct which contains the
object a and a region i from Ct which contains the protein p. By applying such
rule, object a in region p(i) and protein p in region i from Ct are consumed and
object b and protein p′ are generated in region i from Ct+1.

An antiport communication rule a [ p | b ]i → c [ p′ | d ]i ∈ Ri is applicable at a
configuration Ct at an instant t if there is a region p(i) from Ct which contains the
object a and a region i from Ct which contains the object b and the protein p. By
applying such rule, object a in region p(i) and object b and protein p in region i
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from Ct are consumed and object c is generated in region p(i) and object d and
protein p′ are generated in region i from Ct+1.

A protein-based division rule [ p | ]i → [ p′ | ]i[ p′′ | ]i ∈ Ri is applicable at a con-
figuration Ct at an instant t if there is a region i from Ct which contains the protein
p. By applying such rule, protein p in region i from Ct is consumed, two new mem-
branes with label i are generated at configuration Ct+1 and objects and proteins
from the original membrane are duplicated in both new membranes, except pro-
tein p that evolves in a protein p′ that goes to one of the new membranes, and a
protein p′′ that goes to the other one.

An object-based division rule [ | a ]i → [ | b ]i[ | c ]i ∈ Ri is applicable at a config-
uration Ct at an instant t if there is a region i from Ct which contains the object
a. By applying such rule, object a in region i from Ct is consumed, two new mem-
branes with label i are generated at configuration Ct+1 and objects and proteins
from the original membrane are duplicated in both new membranes, except object
a that evolves in an object b that goes to one of the new membranes, and an object
c that goes to the other one.

A protein-based separation rule [ p | ]i → [P0 |Γ0 ]i[P1 |Γ1 ]i ∈ Ri is applicable
at a configuration Ct at an instant t if there is a region i from Ct which contains
the protein p. By applying such rule, protein p in region i from Ct is consumed,
two new membranes with label i are generated at configuration Ct+1 and objects
and proteins from the original membrane are distributed in both new membranes,
proteins in P0 and objects in Γ0 go to one of the new membranes and proteins in
P1 and objects in Γ1 go to the other one.

An object-based separation rule [ | a ]i → [P0 |Γ0 ]i[P1 |Γ1 ]i ∈ Ri is applicable
at a configuration Ct at an instant t if there is a region i from Ct which contains
the object a. By applying such rule, object a in region i from Ct is consumed,
two new membranes with label i are generated at configuration Ct+1 and objects
and proteins from the original membrane are distributed in both new membranes,
proteins in P0 and objects in Γ0 go to one of the new membranes and proteins in
P1 and objects in Γ1 go to the other one.

It makes no sense in this kind of systems to define the concept length, because
all the rules have a fixed amount of objects involved in them.

The rules of these systems are applied in a maximally parallel manner, and
we have the restriction that when a membrane i is divided or separated at one
transition step, then no other rules can be applied for that membrane i at that
step.

A transition from a configuration Ct to another configuration Ct+1 is obtained
by applying rules in a maximally parallel manner following the previous remarks.
A computation of the system is a (finite or infinite) sequence of transitions starting
from the initial configuration, where any term of the sequence other than the first,
is obtained from the previous configuration in one transition step, and it is denoted
by Ct ⇒Π Ct+1. If the sequence is finite (called halting computation) then the last
term of the sequence is a halting configuration, that is, a configuration where
no rule is applicable to it. A computation gives a result only when an halting
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configuration is reached, and that result is encoded by the multiset of objects
present in the output region iout. A natural framework to solve decision problems
is to use recognizer P systems.

Definition 2. A recognizer P system with proteins on membranes and membrane
division/separation of degree q ≥ 1 is a tuple

Π = (Γ, Γ0, Γ1, P, P0, P1, Σ, E , µ,M1/Z1, . . . ,Mq/Zq,R1, . . . ,Rq, iin, iout)

where:

• The tuple Π = (Γ, Γ0, Γ1, P, P0, P1, E , µ,M1/Z1, . . . ,Mq/Zq,R1, . . . ,Rq, iout)
is a P system with proteins on membranes and membrane division/separation
of degree q ≥ 1, where Γ strictly contains an (input) alphabet Σ and two
distinguished objects yes and no, andMi (1 ≤ i ≤ q) are multisets over Γ \Σ;

• iin ∈ {1, . . . , q} is the input membrane and iout is the label of the environment;
• for each multiset m over the input alphabet Σ, any computation of the system

Π with input m starts from the configuration (M1, . . . ,Miin +m, . . . ,Mq; ∅),
always halts and either object yes ir object no (but not both) must appear in
the environment at the last step.

Next, we define the concept of solving a problem in a uniform way and in
polynomial time by a family of recognizer P systems with proteins on membranes
and membrane division/separation.

Definition 3. A decision problem X = (IX , θX) is solvable in a uniform way
and in polynomial time by a family Π = {Π(n)|n ∈ N} of recognizer P systems
with proteins on membranes and membrane division/separation. if the following
conditions hold:

• the family Π is polynomially uniform by Turing machines;
• there exists a polynomial encoding (cod, s) of IX such that: (a) for each instance

u ∈ IX , s(u) is a natural number and cod(u) is an input multiset of the system
Π(s(u)); (b) for each n ∈ N, s−1(n) is a finite set; and (c) the family Π is
polynomially bounded, sound and complete with regard to (X, cod, s).

4 Limits of P systems with proteins on membranes when
division rules are not allowed

In [18], an open problem in this framework is given:
Open Problem 5: What is the computational power of families of these P sys-

tems without membrane division? Do they characterize the class P, and what hap-
pens under various restrictions on the form of the rules?

Here, we obtain a stronger result dealing with P systems with proteins on
membranes and membrane separation.
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4.1 Representation of P systems with proteins on membranes and
membrane separation

Let Π = (Γ, Γ0, Γ1, P, P0, P1, Σ, E , µ,M1/Z1, . . . ,Mq/Zq,R1, . . . ,Rq, iin, iout) be
a recognizer P system with proteins on membranes and membrane separation. We
denote by RE (resp., RS) the set of evolution and communication rules (resp.,
separation rules) of Π. We will fix a total order in RE and a total order in RS .
Because several membranes with the same label are generated by using separa-
tion rules, in order to identify the different membranes with the same label, the
following recursive definition is used to modify the labels of the new generated
membranes:

• We denote the label of a membrane as a pair (i, σ), where 1 ≤ i ≤ q and
σ ∈ {0, 1}∗ is a binary string.

• If a separation rule is applied to a membrane with label (i, σ), then the new
created membranes will be labelled by (i, σ0) and (i, σ1), respectively. We men-
tion that for the system during any computation, we consider a lexicographical
order over the set of labels of membranes.

Note that if evolution or communication rules occur between membranes, the
labels of these do not change.

A configuration at an instant t of such kind of P system is described by the
multisets of objects over Γ contained in each membrane and the multiset of objects
over Γ \ E in the environment. Hence, a configuration of Π can be described as
follows:

{(a, i, σ) | a ∈ Γ ∪ {λ}, 1 ≤ i ≤ q, σ ∈ {0, 1}∗} ∪ {(a, 0) | a ∈ Γ \ E}

We use LHS and RHS to refer to the left-hand side and the right-hand side
of a rule. They are defined in a natural way according to the definition of a rule:

• [ p | a ]i → [ p′ | b ]i ∈ Ri, with p, p′ ∈ P and a, b ∈ Γ . Then, we denote
by n · LHS(r, (i, σi)) = (p, i, σi)

n(a, i, σi)
n, and by n · RHS(r, (i, σi)) =

(p′, i, σi)
n(b, i, σi)

n.
• r ≡ a [ p | ]i → b [ p′ | ]i ∈ Ri, with p, p′ ∈ P and a, b ∈ Γ . Then, we de-

note by n · LHS(r, (i, σi)) = (p, i, σi)
n(a, j, σj)

n, and by n · RHS(r, (i, σi)) =
(p′, i, σi)

n(b, j, σj)
n, where (j, σj) is the parent membrane of the membrane

(i, σi).
• r ≡ [ p | a ]i → b [ p′ | ]i ∈ Ri, with p, p′ ∈ P and a, b ∈ Γ . Then, we de-

note by n · LHS(r, (i, σi)) = (p, i, σi)
n(a, i, σi)

n, and by n · RHS(r, (i, σi)) =
(p′, i, σi)

n(b, j, σj)
n, where (j, σj) is the parent membrane of the membrane

(i, σi).
• r ≡ a [ p | ]i → [ p′ | b ]i ∈ Ri, with p, p′ ∈ P and a, b ∈ Γ . Then, we de-

note by n · LHS(r, (i, σi)) = (p, i, σi)
n(a, j, σj)

n, and by n · RHS(r, (i, σi)) =
(p′, i, σi)

n(b, i, σi)
n, where (j, σj) is the parent membrane of the membrane

(i, σi).
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• r ≡ a [ p | b ]i → c [ p′ | d ]i ∈ Ri, with p, p′ ∈ P and a, b, c, d ∈ Γ . Then,
we denote by n · LHS(r, (i, σi)) = (p, i, σi)

n(a, j, σj)
n(b, i, σi)

n, and by n ·
RHS(r, (i, σi)) = (p′, i, σi)

n(c, j, σj)
n(d, i, σi)

n, where (j, σj) is the parent
membrane of the membrane (i, σi).

• r ≡ [ p | ]i → [P0 |Γ0 ]i[P1 |Γ1 ]i ∈ Ri, with p ∈ P . Then, we denote by
LHS(r, (i, σi)) = (p, i, σi).

• r ≡ [ | a ]i → [P0 |Γ0 ]i[P1 |Γ1 ]i ∈ Ri, with a ∈ Γ . Then, we denote by
LHS(r, (i, σi)) = (a, i, σi).

If Ct is a configuration of Π, then the multiset obtained by replacing in Ct every
occurrence of (x, i, σ) by (x, i, σ′) is denoted by Ct + {(x, i, σ)/σ′}. Moreover, we
denote by Ct+m (resp., Ct \m) a multiset m of labelled objects addition to (resp.,
removal from) the configuration Ct.

Next, we show that P systems with proteins on membranes and membrane
separation can only solve tractable problems.

If C = (C0, C1, . . . , Cn) is a halting computation, then we denote by |C| =
n + 1 the length of C. For each i (1 ≤ i ≤ q), the multiset of objects over Γ
contained in all membranes labelled by i at configuration Ct is denoted by Ct,o(i),
and the multiset of proteins over P contained in all membranes labelled by i at
configuration Ct by Ct,p(i). We denote by Ct(0) the multiset of objects over Γ \ E
contained in the environment at configuration Ct. We define in a natural way
C∗t,o = Ct(0) + Ct,o(1) + · · ·+ Ct,o(q) and C∗t,p = Ct,p(1) + · · ·+ Ct,p(q). Finally, the
finite multiset Ct(0)+Ct,o(1)+Ct,p(1)+ · · ·+Ct,o(q)+Ct,p(q) = C∗t,o+C∗t,p is denoted
by C∗t .

Lemma 1. Let Π be a recognizer P system with proteins on membranes and
membrane separation. Let M = |M1 + · · · +Mq|, Z = |Z1 + · · · + Zq| and let
C = (C0, . . . , Cn) be a computation of Π. Then, we have

1. |C∗0 | = M + Z = S, and for each t, 0 ≤ t ≤ n− 1, |C∗t+1| ≤ |C∗t |+ Z;
2. for each t, 0 ≤ t ≤ n, |C∗t | ≤ S + t · Z; and
3. the number of created membranes along the computation C by the application

of membrane separation rules is bounded by 2M + (2 + n)Z.

Proof. (1) Let us notice that |C∗0 | = |C0(0)+C0(1)+· · ·+C0(q)| = |M1+· · ·+Mq|+
|Z1 + · · · + Zq| = M + Z = S. Let Π be a recognizer P system with proteins on
membranes and membrane separation, R1, . . . ,Rq be the sets of rules associated
with Π, which contains the following types of communication rules:

• [ p | a ]i → [ p′ | b ]i ∈ Ri, p, p
′ ∈ P, a, b ∈ Γ, 1 ≤ i ≤ q.

• a [ p | ]i → b [ p′ | ]i ∈ Ri, p, p
′ ∈ P, a, b ∈ Γ, 1 ≤ i ≤ q.

• [ p | a ]i → b [ p′ | ]i ∈ Ri, p, p
′ ∈ P, a, b ∈ Γ, 1 ≤ i ≤ q.

• a [ p | ]i → [ p′ | b ]i ∈ Ri, p, p
′ ∈ P, a, b ∈ Γ, 1 ≤ i ≤ q.

• a [ p | b ]i → c [ p′ | d ]i ∈ Ri, p, p
′ ∈ P, a, b, c, d ∈ Γ, 1 ≤ i ≤ q.

For each t, 0 ≤ t ≤ n−1, in the transition from configuration Ct to configuration
Ct+1, by using any rule, at least one object and one protein from Ct is consumed
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and at most one object and one protein is produced in Ct+1. Let us note that by
the use of out-membrane object evolution rules, send-in communication rules and
antiport communication rules, p ̸= p′ if i = iskin. If a ∈ E , then a new object is
created in the system. So the number of objects created in a single computation
step is bounded by Z, that is, the number of proteins present in the system in
configuration Ct. By means of separation rules, neither new objects nor proteins
are going to appear. Hence, in any transition step the number of objects in the
system is increased at most by Z new objects.

(2) By induction on t. Let us start analyzing the basic case t = 0. The result
is trivial because of |C∗0 | = S. By induction hypothesis, let us suppose the result
holds for t, 0 ≤ t ≤ n − 1. Then |C∗t+1| ≥ |C∗t | + Z, that is true because of (1),
and by induction hypothesis we know that |C∗t | ≤ S + t ·Z, so |C∗t+1| ≤ |C∗t |+Z ≤
S + t · Z + Z = S + (t+ 1) · Z. Hence, the result is also true for t+ 1.

(3) According to the fact that the application of a separation rule consumes
an object and produces two new cells, result (3) can be obtained from (2) easily,
since the maximum number of separation rules that can be performed in this kind
of systems comes defined by the initial multisets of elements. If new objects are
created as explained in (2), then at most n · Z new objects can be created in
n computation steps, therefore at most n · Z separation rules can be applied by
means of these objects. □

Next, a deterministic algorithm A working in polynomial time is presented,
which receives as input a P system with proteins on membranes and membrane
separation Π and an input multiset m of Π, in such manner that algorithm A
reproduces the behavior of a computation of Π +m. If the system Π is confluent,
then the algorithm A will provide the same answer of Π. We give the following
pseudocode of the algorithm A to describe the simulation process:

Input: A P system with proteins on membranes and membrane

separation Π and an input multiset m

Initialization phase: C0 is the initial configuration of Π +m

t← 0

while Ct is a non-halting configuration do

Selection phase: Input Ct, Output (C′t, A)

Execution phase: Input (C′t, A), Output Ct+1

t← t+ 1

end while

Output: yes if Π +m has an accepting computation, no otherwise

The algorithm A receives a recognizer P system with proteins on membranes
and membrane separation

Π = (Γ, Γ0, Γ1, P, P0, P1, µ,M1/Z1, . . . ,Mq/Zq, E ,R1, . . . ,Rq, iout),
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where m is an input multiset for this system. Let M = |M1 + · · · +Mq|, Z =
|Z1 + . . .Zq| and S = M + Z. Let any computation of Π perform at most p
transition steps, p ∈ N+. Hence, from Lemma 1, the number of membranes in the
system along any computation is bounded by 2M + (2 + n)Z.

A transition of a recognizer P system Π + m is performed in two phases:
selection phase and execution phase.
Selection phase.

Input: A configuration Ct of Π +m at an instant t

C′t ← Ct; A← ∅; B ← ∅
for r ∈ Ri ∧ r ∈ RC, according to the chosen order do

for each membrane (i, σi) of C′t according

to the lexicographical order do

nr ← maximum number of times that r is applicable to (i, σi)

if nr > 0 then

C′t ← C′t − nr · LHS(r, (i, σi))

A← A ∪ {(r, nr, (i, σi))}
B ← B ∪ {(i, σi)}

end if

end for

end for

for r ∈ Ri ∧ r ∈ RS, according to the chosen order do

for each (a, i, σi) according to the lexicographical order,

and such that (i, σi) ̸∈ B do

C′t ← C′t \ {(a, i, σi)}
A← A ∪ {(r, 1, (i, σi))}
B ← B ∪ {(i, σi)}

end for

end for

It is easy to check that this algorithm is deterministic and its running time is
polynomial in the size of Π because the number of cycles of the first main loop
for is of the order O(|R| · (M2 +Z2) · q2); and the number of cycles of the second
main loop for is of the order O(|R| · (M + Z) · q · (|Γ |+ |P |)).
Execution phase.

Input: The output (C′t, A) of the selection phase

for each (r, nr, (i, σi)) ∈ A, r ∈ RC do

C′t ← C′t + nr ·RHS(r, (r, σi))

end for
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for each (r, 1, (i, σi)) ∈ A, r ∈ RS do

C′t ← C′t + {(λ, i, σi)/σi0}
C′t ← C′t + {(λ, i, σi1)}

for each (x, i, σi) ∈ C′t according to the lexicographical order

do

if x ∈ Γ0 then

C′t ← C′t + {(x, i, σi)/σi0}
else

C′t ← C′t + {(x, i, σi)/σi1}
end if

end for

end for

Ct+1 ← C′t

This algorithm is deterministic and its running time is polynomial in the size
of Π because the number of cycles of the first main loop for is of the order
O(|R| · (M2 + Z2) · q2); and the number of cycles of the second main loop for is
of the order O(|R| · (M + Z) · q · (|Γ |+ |P |)).

Theorem 1. Only problems from class P can be solved efficiently by P systems
with proteins on membranes and membrane separation.

Proof. Because the complexity class of recognizer P systems with proteins on
membranes and membrane separation is closed under polynomial time reduc-
tion and non-empty, P is a subset of this class. In what follows, we show the
reverse inclusion. Let X a decision problem that can be solved efficiently by rec-
ognizer P systems with proteins on membranes and membrane separation and let
Π = {Π(n) | n ∈ N} be a family of these kinds of P systems solving X according
to Definition 3. Let (cod, s) be a polynomial encoding associated with that solu-
tion. If u ∈ IX is an instance of the problem X, then u will be processed by the
system Π(s(u)) + cod(u). We consider the following deterministic algorithm A′:

Input: An instance u of the problem X

Construct the system Π(s(u)) + cod(u)

Run algorithm A with input Π(s(u)) + cod(u)

Output: yes if Π(s(u)) + cod(u) has an accepting computation,

no otherwise

The algorithm A′ receives an instance u of the decision problem X = (IX , θX),
and working in a polynomial time. The following three assertions are equivalent:

• θX = 1, that is, the answer of problem X to instance u is affirmative.
• Every computation of Π(s(u)) + cod(u) is an accepting computation.
• The output of the algorithm A′ with input u is yes.



Limits on P Systems with Proteins and Without Division 135

Hence, X ∈ P. □

5 Conclusions and future work

In this work, P systems with proteins on membranes and separation rules have
been studied. While in [19] it has been shown that these systems can solve compu-
tationally hard problems using division rules, forbidding them takes from efficiency
to non-efficiency. Moreover, even if we add the power of creating an exponential
workspace in linear time by means of separation rules, it is shown by the algo-
rithmic technique that only problems of the class P can be solved efficiently with
this kind of systems. This result shows that an exponential workspace in terms of
membranes is not enough, but some kind of creation of an exponential workspace
of objects 4 is needed, thus a new borderline between efficiency and non-efficiency
has been defined.

There are some open problems noted in [18] regarding P systems with pro-
teins on membranes that have not been solved yet, so it seems an interesting
research line to work on in order to obtain new frontiers of efficiency. In fact,
in the Open Problem 4, the restriction of changing proteins while firing rules is
allowed. If not, another frontier of efficiency could be found there.
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Summary. In the framework ofMembrane Computing, several efficient solutions to com-
putationally hard problems have been given. To find new borderlines between families of
P systems that can solve them and the ones that cannot is an important way to tackle the
P versus NP problem. Adding syntactic and/or semantic ingredients can mean passing
from non-efficiency to presumably efficiency. Here, we try to get narrow frontiers, setting
the stage to adapt efficient solutions from a family of P systems to another one. In order
to do that, a solution to the SAT problem is given by means of a family of tissue P systems
with evolutional symport/antiport rules and cell separation with the restriction that both
the left-hand side and the right-hand side of the rules have at most two objects.
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1 Introduction

Membrane Computing is a bio-inspired computing paradigm based on the structure
and behavior of living cells. There are several classes of P systems, the compu-
tational models of this paradigm. It was first introduced in [7], defining one of
the main models, cell-like P systems that abstract the hierarchical arrangement
of membranes within a single cell. In [4], the idea of the interactions of networks
of cells (placed in the nodes of a directed graph) between cells and between cells
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and their environment is used to develop tissue-like P systems, named by the en-
semble of cells in living beings. Another approach with the same structure are the
so-called spiking neural P systems [2], SN P systems for short, inspired by the way
that neurons communicate with each other by means of short electrical impulses
(spikes).

Within these models, several variants can be defined only by changing syntactic
and/or semantic ingredients, such as kinds of rules possible, length of rules, paral-
lelism permitted, number of objects and so on. Computational complexity theory
in the framework of Membrane Computing uses special variants of P systems called
recognizer membrane systems, devices that, given an initial configuration depend-
ing on an instance of a decision problem, return yes or no depending of the answer
to such instance. A deep vision of complexity can be seen in [8, 9].

Tissue P systems have been widely investigated from this point of view, giv-
ing characterizations for most of their variants. For instance, in [1] and [11], the
borderline of efficiency for tissue P systems with symport/antiport rules and cell
division by means of the length of communication rules is given, that is, pass-
ing from 1 to 2 means passing from non-efficiency to presumably efficiency. In [5]
and [10], a similar result is given for tissue P systems with symport/antiport rules
and cell separation, but in this case, rules with length at most 3 are needed in
order to solve efficiently computationally hard problems. Thus, three frontiers of
efficiency can be found here: two described before by means of the length of the
rules, and the third one when using rules with length at most 2, between separation
and division rules.

In [12], a new variant of these systems is defined. Based on the chemical re-
actions within cells and how reactives evolve into new components, evolutional
communication rules are described as a movement of components between differ-
ent cells or a cell and the environment but within the reaction objects can change
into something new. It is interesting to study these systems from the computa-
tional complexity theory point of view, and in [6], an efficient solution to the SAT
problem is given by these systems with some restrictions about the length of their
rules, but the narrowest borderline is not defined. The purpose of this paper is to
tight it.

The paper is organized as follows: first, we recall some concepts that are going
to be used through the work. In Section 3 the framework of tissue P systems with
evolutional symport/antiport rules is introduced. After that, Sections 4 and 5 are
devoted to give a solution to SAT by means of a family of P systems with evolutional
symport/antiport rules with cell separation and rules with length at most (2, 2)
and a formal verification of a design. Finally, some conclusions and open research
lines are exposed.

2 Preliminaries

In order to make this work self-contained, we introduce some notions that are
going to be used through the paper.
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2.1 Alphabets and sets

An alphabet Γ is a non-empty set and their elements are called symbols. A string u
over Γ is an ordered finite sequence of symbols, that is, a mapping from a natural
number n ∈ N onto Γ . The number n is called the length of the string u and it is
denoted by | u |. The empty string (with length 0) is denoted by λ. The set of all
strings over an alphabet Γ is denoted by Γ ∗. A language over Γ is a subset of Γ ∗.

A multiset over an alphabet Γ is an ordered pair (Γ, f) where f is a mapping
from Γ onto the set of natural numbers N. The support of a multiset m = (Γ, f)
is defined as supp(m) = {x ∈ Γ | f(x) > 0}. A multiset is finite (resp., empty) if
its support is a finite (resp., empty) set. We denote by ∅ the empty multiset and
we denote by M(Γ ) the set of all multisets over Γ .

Let m1 = (Γ, f1), m2 = (Γ, f2) be multisets over Γ , then the union of m1 and
m2, denoted by m1+m2, is the multiset (Γ, g), when g(x) = f1(x)+f2(x) for each
x ∈ Γ .

2.2 Decision problems

A decision problem X can be informally defined as one whose solution is either
yes or no. This can be formally defined by an ordered pair (IX , θX), where IX is
a language over a finite alphabet ΣX and θX is a total Boolean function over IX .
The elements of IX are called instances of the problem X . Each decision problem
X has associated a language LX over the alphabet ΣX as follows: LX = {u ∈
EX | θX(u) = 1}. Conversely, every language L over an alphabet Σ has associated
a decision problem XL = (IXL , θXL) as follows: IXL = Σ∗ and θXL(u) = 1 if and
only if u ∈ L. Then, given a decision problem X we have XLX = X , and given a
language L over an alphabet Σ we have LXL = L.

It is worth pointing out that any Turing machine M (with input alphabet ΣM )
has associated a decision problem XM = (IM , θM ) defined as follows: IM = Σ∗

M ,
and for every u ∈ Σ∗

M , θM (u) = 1 if and only if M accepts u. Obviously, the
decision problem XM is solvable by the Turing machine.

3 Tissue P systems with evolutional communication rules

Definition 1. A recognizer tissue P system with evolutional symport/antiport
rules and cell separation of degree q ≥ 1 is a tuple

Π = (Γ, Γ0, Γ1, Σ,M1, . . . ,Mq,R, iout)

where:

• Γ and E are finite alphabets whose elements are called objects;
• Γ0 and Γ1 is a partition of Γ ;
• E ⊆ Γ ;
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• Mq, . . . ,Mq are multisets over Γ ;
• R is a finite set of rules, of the following forms:

1. Evolutional communication rules:
a) [u ]i[ ]j → [ ]i[u

′ ]j, where 1 ≤ i, j ≤ q, i �= j, u ∈ M+
f (Γ ) and

u′ ∈ Mf(Γ ) (evolutional symport rules);
b) [u ]i[ v ]j → [ v′ ]i[u′ ]j, where 1 ≤ i, j ≤ q, i �= j, u, v ∈ M+

f (Γ ) and
u′, v′ ∈ Mf (Γ ) (evolutional antiport rules);

2. [ a ]i → [Γ0]i[Γ1]i, where i ∈ {1, . . . , q}, i �= iout and a ∈ Γ ; (separation
rules);

• iout ∈ {0, 1, . . . , q}.
A recognizer tissue P system with evolutional symport/antiport rules and cell

separation of degree q ≥ 1

Π = (Γ, Γ0, Γ1, E ,M1, . . . ,Mq,R, iout)

can be viewed as a set of q cells, labelled by 1, . . . , q such that (a) M1, . . . ,Mq

represent the multisets of objects initially placed in the q cells of the system; (b) E
is the set of objects initially located in the environment of the system, all of them
available in an arbitrary number of copies; (c) iout represents a distinguished region
which will encode the output of the system. We use the term region i (0 ≤ i ≤ q)
to refer to cell i in the case 1 ≤ i ≤ q and to refer to the environment in the case
i = 0.

A configuration at any instant of a tissue P system with evolutional sym-
port/antiport rules and cell separation is described by the multisets of objects
in each cell and the multiset of objects over Γ \ E in the environment at that
moment. The initial configuration of Π = (Γ, Γ0, Γ1, E ,M1, . . . ,Mq,R, iout) is
M1, . . . ,Mq; ∅).

An evolutional symport rule [u ]i[ ]j → [ ]i[u
′ ]j is applicable at a configu-

ration Ct at an instant t if there is a region i from Ct which contains multiset u.
By applying an eovlutional symport rule, the multiset of objects in region i from
Ct is consumed and the multiset of objects u′ is generated in region j from Ct+1.

An evolutional symport rule [u ]i[ v ]j → [ v′ ]i[u′ ]j is applicable at a configura-
tion Ct at an instant t if there is a region i from Ct which contains multiset u and
there is a region j which contains multiset v. By applying an eovlutional symport
rule, the multiset of objects u in region i and multiset of objects v in region j from
Ct are consumed and the multiset of objects u′ is generated in region j and the
multiset of objects v′ in region i from Ct+1.

A separation rule [ a ]i → [Γ0 ]i[Γ1 ]i is applicable at a configuration Ct at an
instant t if there is a cell i from Ct which contains object a and i �= iout. By
applying a separation rule to such a cell i, (a) object a is consumed from such cell;
(b) two new cells with label i are generated at configuration Ct+1; and (c) objects
from Γ0 from the original cell are placed in one of the new cells, while objects from
Γ1 from the original cell are placed in the other one.

The rules of a tissue P system with evolutional symport/antiport rules and
cell separation are applied in a maximally parallel manner, following the previous
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remarks, and taking into account that when a cell i is being separated at one
transition step, no other rules can be applied to that cell i at that step.

A transition from a configuration Ct to another configuration Ct+1 is obtained
by applying rules in a maximally parallel manner following the previous remarks. A
computation of the system is a (finite or infinite) sequence of transitions starting
from the initial configuration, where any term of the sequence other than the
first one is obtained from the previous configuration in one transition step. If the
sequence is finite (called halting computation) then the last term of the sequence
is a halting configuration, that is, a configuration where no rule is applicable to
it. A computation gives a result only when a halting configuration is reached, and
that result is encoded by the multiset of objects present in the output region iout.

A natural framework to solve decision problems is to use recognizer P systems.

Definition 2. A recognizer tissue P system with evolutional symport/antiport
rules and cell separation of degree q ≥ 1 is a tuple

Π = (Γ, Γ0, Γ1, E , Σ,M1, . . . ,Mq,R, iin, iout),

where

– the tuple (Γ, Γ0, Γ1, E ,M1, . . . ,Mq,R, iout) is a tissue P system with evolu-
tional symport/antiport rules of degree q ≥ 1, where Γ strictly contains an (in-
put) alphabet Σ and two distinguished objects yes and no, and Mi (1 ≤ i ≤ q)
are multisets over Γ \Σ;

– iin ∈ {1, . . . , 1} is the input cell and iout is the label of the environment;
– for each multiset m over the input alphabet Σ, any computation of the system

Π with input m starts from the configuration of the form (M1, . . . ,Miin +
m, . . . ,Mq; ∅), it always halts and either object yes or object no (but not both)
must appear in the environment at the last step.

For each ordered pair of natural numbers (k1, k2) greater or equal to 1, the
class of recognizer P systems with evolutional symport/antiport rules and cell
separation with evolutional communication rules of length at most (k1, k2) is de-
noted by TSEC(k1, k2). This means that, given an evolutional communication
rule [u ]i[ v ]j → [ v′ ]i[u′ ]j the LHS (resp., RHS) of any evolutional communica-
tion rule in a system from TSEC(k1, k2) involves at most k1 = |u| + |v| objects
(resp., k2 = |u′|+ |v′| objects).

Next, we define the concept of solving a problem in a uniform way and in
polynomial time by a family of recognizer tissue P systems with evolutional sym-
port/antiport rules and cell separation.

Definition 3. A decision problem X = (IX , θX) is solvable in a uniform way
and in polynomial time by a family Π = {Π(n) | n ∈ N)} of recognizer tissue P
systems with evolutional symport/antiport rules and cell separation if the following
conditions hold:

1. the family Π is polynomially uniform by Turing machines; and
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2. there exists a polynomial encoding (cod, s) of IX in Π such that (a) for each
instance u ∈ IX , s(u) is a natural number and cod(u) is an input multiset of the
system Π(s(u)); (b) for each n ∈ N, s−1(n) is a finite set; and (c) the family
Π is polynomially bounded, sound and complete with regard to (X, cod, s).

The set of all decision problems that can be solved by recognizer tissue P sys-
tems with evolutional symport/antiport rules and cell separation with evolutional
communication rules of length at most (k1, k2) in a uniform way and polynomial
time is denoted by PMCTSEC(k1,k2).

4 Solution to SAT with evolutional communication rules and
separation rules

In [6] an efficient solution to the SAT problem is given by means of a family of P
systems from TSEC(3, 2). A frontier of efficiency is given, but some open problems
remain, as indicate Figure 1 of such work. It shows that the class of problems that
can be solved by P systems from TSEC(2, k) with k ≥ 2 is unknown. In this work
we improve this borderline closing the previous open questions, giving an efficient
solution of the SAT problems by means of a family of P systems from TSEC(2, 2).

Let us briefly recall the description of the SAT problem: given a boolean formula
in conjunctive normal form (CNF), to determine whether or not there exists an
assignment to its variables, called truth assignment, on which it evaluates true.

Theorem 1. SAT ∈ PMCTSEC(2,2)

For each n, p ∈ N, we consider the recognizer P system

Π(〈n, p〉) = (Γ, Γ0, Γ1, Σ, E ,M1, . . . ,Mq,R, iin, iout)

from TSEC(2, 2) defined as follows:

1. Working alphabet Γ :
{yes, no, y1, y2, n1, n2,#} ∪
{ai,j | 1 ≤ i ≤ n, 0 ≤ j ≤ i} ∪
{a′i,j | 2 ≤ i ≤ n, 0 ≤ j ≤ i− 1} ∪
{aLi,j , aRi,j | 2 ≤ i ≤ n, 1 ≤ j ≤ i− 1} ∪
{αj , α

′
j , α

L
j , α

R
j | 1 ≤ j ≤ p+ 1} ∪

{ti, fi, t′i, t′′i f ′′
i , t

L
i , t

R
i , f

L
i , f

R
i | 1 ≤ i ≤ n} ∪

{βl,k, β
′
l,k, β

L
l,k, β

R
l,k | 0 ≤ k ≤ n, 1 ≤ l ≤ n} ∪

{xi,j,k, xi,j,k, x
∗
i,j,k | 1 ≤ i ≤ n, 1 ≤ j ≤ p, 1 ≤ k ≤ n+ j − 1} ∪

{x′
i,j,k, x

′
i,j,k, x

∗′
i,j,k, x

′′
i,j,k, x

′′
i,j,k, x

∗′′
i,j,k, x

′′′
i,j,k, x

′′′
i,j,k, x

∗′′′
i,j,k, |

0 ≤ i ≤ n, 1 ≤ j ≤ p, 1 ≤ k ≤ n} ∪
{cj,k | 1 ≤ j ≤ p, j ≤ k ≤ p} ∪ {δi | 0 ≤ i ≤ 4n+ p+ 2} ∪
{δ′i | 0 ≤ i ≤ 4n+ p}.
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2. Γ1 = Γ \ Γ0, Γ0 = {aLi,j | 2 ≤ i ≤ n, 1 ≤ j ≤ i− 1} ∪
{αL

j | 1 ≤ j ≤ p+ 1} ∪ {tLi , fL
i | 1 ≤ i ≤ n} ∪

{βL
l,k | 0 ≤ k ≤ n, k + 1 ≤ l ≤ n}

3. Input alphabet Σ: {xi,j,0, xi,j,0, x
∗
i,k,0 | 1 ≤ i ≤ n, 1 ≤ j ≤ p}.

4. Environment alphabet E : {γ}.
5. M1 = {δ0, δ′0} ∪ {βn+p+1

l,0 | 1 ≤ l ≤ n},
M2 = {ai,0 | 1 ≤ i ≤ n} ∪ {αj | 1 ≤ j ≤ p+ 1}.

6. The set of rules R consists of the following rules:

1.1 Rules for (4k + 1)-th steps.
[ ai,i−1 ]2[ γ ]0 → [ a′i,i−1 t

′
i ]2[ ]0 , for 1 ≤ i ≤ n

[ ti ]2[ γ ]0 → [ t′′i ]2[ ]0
[ fi ]2[ γ ]0 → [ f ′′

i ]2[ ]0

}
for 1 ≤ i ≤ n

[ ai,j ]2[ γ ]0 → [ a′i,j ]2[ ]0 , for 2 ≤ i ≤ n, 0 ≤ j ≤ i− 2

[αj ]2[ γ ]0 → [α′
j ]2[ ]0 , for 1 ≤ j ≤ p+ 1

[βl,k ]1[ γ ]0 → [β′
l,k ]1[ ]0

}
for

0 ≤ k ≤ n,
k + 1 ≤ l ≤ n

[xi,j,k ]1[ γ ]0 → [x′
i,j,k ]1[ ]0

[xi,j,k ]1[ γ ]0 → [x′
i,j,k ]1[ ]0

[x∗
i,j,k ]1[ γ ]0 → [x∗′

i,j,k ]1[ ]0

⎫⎬
⎭ for

1 ≤ i ≤ n,
1 ≤ j ≤ p,
0 ≤ k ≤ n− 1

1.2 Rules for (4k + 2)-th steps.
[ a′i,i−1 ]2[ γ ]0 → [ ai,i f

R
i ]2[ ]0

[ t′i ]2[ γ ]0 → [ tLi ]2[ ]0

}
for 1 ≤ i ≤ n

[ t′′i ]2[ γ ]0 → [ tLi tRi ]2[ ]0
[ f ′′

i ]2[ γ ]0 → [ fL
i fR

i ]2[ ]0

}
for 1 ≤ i ≤ n

[ a′i,j ]2[ γ ]0 → [ aLi,j+1 a
R
i,j+1 ]2[ ]0 , for

2 ≤ i ≤ n,
0 ≤ j ≤ i− 1

[α′
j ]2[ γ ]0 → [αL

j αR
j ]2[ ]0 , for 1 ≤ j ≤ p+ 1

[β′
l,k ]1[ γ ]0 → [βL

l,k+1 β
R
l,k+1 ]1[ ]0 , for

0 ≤ k ≤ n,
k + 1 ≤ l ≤ n

[x′
i,j,k ]1[ γ ]0 → [x′′2

i,j,k+1 ]1[ ]0
[x′

i,j,k ]1[ γ ]0 → [x′′2
i,j,k+1 ]1[ ]0

[x∗′
i,j,k ]1[ γ ]0 → [x∗′′2

i,j,k+1 ]1[ ]0

⎫⎬
⎭

1 ≤ i ≤ n,
1 ≤ j ≤ p,
0 ≤ k ≤ n− 1

1.3 Rules for (4k + 3)-th steps.
[ ai,i ]2 → [Γ0 ]2[Γ1 ]2 , for 1 ≤ i ≤ n

[βO
k,k ]1[ ]0 → [ ]1[β

O
k,k ]0

[βO
l,k ]1[ ]0 → [ ]1[βl,k ]0

}
for

O ∈ {L,R},
1 ≤ k ≤ n,
k + 1 ≤ l ≤ n

[x′′
i,j,k ]1[ γ ]0 → [x′′′

i,j,k ]1[ ]0
[x′′

i,j,k ]1[ γ ]0 → [x′′′
i,j,k ]1[ ]0

[x∗′′
i,j,k ]1[ γ ]0 → [x∗′′′

i,j,k ]1[ ]0

⎫⎬
⎭ for

1 ≤ i ≤ n,
1 ≤ j ≤ p,
1 ≤ k ≤ n

1.4 Rules for (4k)-th steps.
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[ aOi,j ]2[β
O
k,k ]0 → [ ai,j ]2[ ]0

[ rOi ]2[β
O
k,k ]0 → [ ri ]2[ ]0

}
for

O ∈ {L,R},
r ∈ {t, f},
1 ≤ i ≤ n,
1 ≤ j ≤ n,
1 ≤ k ≤ n

[αO
j ]2[β

O
k,k ]0 → [αj ]2[ ]0 , for

O ∈ {L,R},
1 ≤ j ≤ p+ 1,
0 ≤ k ≤ n

[x′′′
i,j,k ]1[ γ ]0 → [xi,j,k ]1[ ]0

[x′′′
i,j,k ]1[ γ ]0 → [xi,j,k ]1[ ]0

[x∗′′′
i,j,k ]1[ γ ]0 → [x∗

i,j,k ]1[ ]0

⎫⎬
⎭ for

1 ≤ i ≤ n,
1 ≤ j ≤ p,
0 ≤ k ≤ n

[ ]1[βl,k ]0 → [βl,k ]1[ ]0 , for 0 ≤ k ≤ n, k + 1 ≤ l ≤ n
2.1 Rules to check satisfied clauses.

[ ti ]2[xi,j,n+j−1 ]1 → [ cj,j ti ]2[ ]1
[ ti ]2[xi,j,n+j−1 ]1 → [ ti ]2[ ]1
[ ti ]2[x

∗
i,j,n+j−1 ]1 → [ ti ]2[ ]1

[ fi ]2[xi,j,n+j−1 ]1 → [ fi ]2[ ]1
[ fi ]2[xi,j,n+j−1 ]1 → [ cj,j fi ]2[ ]1
[ fi ]2[x

∗
i,j,n+j−1 ]1 → [ fi ]2[ ]1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[xi,j,n+k ]1[ γ ]0 → [xi,j,n+k+1 ]1[ ]0
[xi,j,n+k ]1[ γ ]0 → [xi,j,n+k+1 ]1[ ]0
[x∗

i,j,n+k ]1[ γ ]0 → [x∗
i,j,n+k+1 ]1[ ]0

⎫⎬
⎭ for

1 ≤ i ≤ n,
1 ≤ j ≤ p,
0 ≤ k ≤ j − 2

[ cj,k ]2[ γ ]0 → [ cj,k+1 ]2[ ]0 , for 1 ≤ j ≤ p, j ≤ k ≤ p− 1
3.1 Rules to check if all clauses are satisfied by a truth assignment.

[αp+1 ]2[ δ
′
4n+p ]1 → [α′

p+1 ]2[ ]0
[αj cj,p ]2[ ]0 → [ ]2[ # ]0 , for 1 ≤ j ≤ p

4.1 General counters.
[ δi ]1[ γ ]0 → [ δi+1 ]1[ ]0 , for 0 ≤ i ≤ 4n+ p+ 1

[ δ′4i+1 ]1[ γ ]0 → [ δ′24i+2 ]1[ ]0 , for 0 ≤ i ≤ n− 1

[ δ′4i+k ]1[ γ ]0 → [ δ′4i+k+1 ]1[ ]0 , for 0 ≤ i ≤ n− 1, k ∈ {0, 2, 3}
[ δ′4n+i ]1[ γ ]0 → [ δ′4n+i+1 ]1[ ]0 , for 0 ≤ i ≤ p− 1

4.2 Rules to give a negative answer.
[αj α

′
p+1 ]2[ ]0 → [ ]2[n1 ]0 , for 1 ≤ j ≤ p

[ ]2[n1 ]0 → [n1 ]2[ ]0
[n1 ]2[ δ4n+p+2 ]1 → [n2 ]2[ ]1
[n2 ]2[ ]0 → [ ]2[ no ]0

4.3 Rules to give an affirmative answer.
[α′

p+1 ]2[ δ4n+p+2 ]1 → [ y1 ]2[ ]1
[ y1 ]2[ γ ]0 → [ y2 ]2[ ]0
[ y2 ]2[ ]0 → [ ]2[ yes ]0

7. The input cell is the cell labelled by 1 (iin = 1) and the output region is the
environment (iout = env).
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Let ϕ = C1 ∧ · · · ∧ Cp an instance of SAT problem consisting of p clauses
Cj = lj,1∨· · ·∨ lj,rj , 1 ≤ j ≤ p, where V ar(ϕ) = {x1, . . . , xn}, and lj,k ∈ {xi,¬xi |
1 ≤ i ≤ n}, 1 ≤ j ≤ p, 1 ≤ k ≤ rj . Let us assume that the number of variables, n,
and the number of clauses, p, of ϕ, are greater than or equal to 2.

We consider the polynomial encoding (cod, s) from SAT in Π defined as follows:
for each ϕ ∈ ISAT with n variables and p clauses, s(ϕ) = 〈n, p〉 and

cod(ϕ) = {xi,j,0 | xi ∈ Cj} ∪ {xi,j,0 | ¬xi ∈ Cj} ∪ {x∗
i,j,0 | xi �∈ Cj ,¬xi �∈ Cj}

For instance, the formula ϕ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ x4) ∧ (¬x2 ∨ x3 ∨ ¬x4)
is encoded as follows:

cod(ϕ) =

⎛
⎝x1,1,0 x2,1,0 x3,1,0 x∗

4,1,0

x∗
1,2,0 x2,2,0 x∗

3,2,0 x4,2,0

x∗
1,3,0 x2,3,0 x3,3,0 x4,3,0

⎞
⎠

We define codk(ϕ) as the set of elements of cod(ϕ) when the third subscript
equals k. In the same way, we define cod′k(ϕ), cod

′′
k(ϕ) and cod′′′k (ϕ) as the sets

of elements of cod(ϕ) when the third subscript equals k and elements are primed,
double primed and triple primed, respectively. For notation convenience, we define
codjk(ϕ) the subset of elements of codk(ϕ) with elements ofCj , . . . , Cp. For instance,
cod24(ϕ) would be the following set:

cod24(ϕ) =

(
x∗
1,2,4 x2,2,4 x∗

3,2,4 x4,2,4

x∗
1,3,4 x2,3,4 x3,3,4 x4,3,4

)

The Boolean formula ϕ will be processed by the system Π(s(ϕ)) + cod(ϕ).
Next, we informally describe how that system works.

The solution proposed follows a brute force algorithm in the framework of
recognizer tissue P systems with separation and evolutional communication rules,
and it consists of the following stages:

• Generation stage: Using separation rules each 4 steps, we produce 2n mem-
branes labelled by 2 containing each possible truths assignment. At the same
time, we generate 2n copies of codn(ϕ). This stage spends n computation steps
exactly, being n the numer of variables of ϕ.

• First checking stage: With rules from 2.1, we can check which clauses from the
input formula ϕ have been satisfied by a specific truth assignment. This stage
takes exactly p steps.

• Second checking stage: With rules from 3.1, we remove objects αj such that
they are removed from a membrane if and only if the truth assignment asso-
ciated to that membrane makes true clause Cj . This stage takes exactly one
step.

• Output stage: With rules from 4.2 and 4.3, we can give an affirmative or a
negative answer depending on if the input formula is satisfiable or not. This
stage spends exactly 4 steps, regardless of whether the formula is satisfiable or
not.
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5 A formal verification

In this section, an exhaustive verification of the system is given.

Generation stage

At this stage, all truth assignments for the variables associated with the Boolean
formula ϕ(x1, . . . , xn) are going to be generated, by applying separation rules
from 1.2 in membranes labelled by 2. In such manner that in the 4i + 2-th step
(1 ≤ i ≤ n − 1) of this stage, separation rule associated with an object ai,i is
triggered, two new cells distributing ti and fi between them. In the last step of
this stage, each membrane labelled by 2 will contain a truth assignment of the
formula.

Proposition 1. Let C = (C0, C1, . . . , Cq) be a computation of the system Π(s(ϕ))
with input multset cod(ϕ).

(a0) For each 4k (0 ≤ k ≤ n− 1) at configuration C4k we have the following:

• C4k(1) = {δ4k, δ′2
k

4k, codk(ϕ)
2k} ∪ {β2k

l,k | k + 1 ≤ l ≤ n}
• There are 2k membranes labelled by 2 such that each of them contains

– objects ak+1,k, . . . , an,k;
– objects r1, . . . , rk, being r ∈ {t, f}; and
– objects α1, . . . , αp+1.

(a1) For each 4k+ 1 (0 ≤ k ≤ n− 1) at configuration C4k+1 we have the following:

• C4k+1(1) = {δ4k+1, δ
′2k
4k+1, cod

′
k(ϕ)

2k} ∪ {β′2k
l,k | k + 1 ≤ l ≤ n}

• There are 2k membranes labelled by 2 such that each of them contains
– objects a′k+1,k, . . . , a

′
n,k;

– objects r′′1 , . . . , r
′′
k , being r ∈ {t, f}

– an object t′k+1; and
– objects α′

1, . . . , α
′
p+1.

(a2) For each 4k+ 2 (0 ≤ k ≤ n− 1) at configuration C4k+2 we have the following:

• C4k+2(1) = {δ4k+2, δ
′2k+1

4k+3, cod
′′
k+1(ϕ)

2k+1} ∪
{βO2k

l,k | O ∈ {L,R}, k+ 1 ≤ l ≤ n}
• There are 2k membranes labelled by 2 such that each of them contains

– objects ak+1,k, . . . , an,k;
– objects r1, . . . , rk, being r ∈ {t, f}; and
– objects α1, . . . , αp+1.

(a3) For each 4k+ 3 (0 ≤ k ≤ n− 1) at configuration C4k+3 we have the following:

• C4k+3(0) = {βO2k

k+1,k+1} ∪ {β2k+1

l,k+1 | k + 2 ≤ l ≤ n}
• C4k+3(1) = {δ4k+3, δ

′2k+1

4k+3, cod
′′′
k+1(ϕ)

2k+1} ∪ {β2k

l,k | k + 1 ≤ l ≤ n}
• There are 2k+1 membranes labelled by 2 such that each of them contains

– objects ak+1,k, . . . , an,k;
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– objects r1, . . . , rk, being r ∈ {t, f}; and
– objects α1, . . . , αp+1.

(b) C4n(1) = {δ4n, δ′2
n

4n, cod4n(ϕ)
2n}, and there are 2n membranes labelled by 2

such that each of them contains objects α1, . . . , αp+1, as well as a different
subset {r1, . . . , rn}, being r ∈ {t, f}.

Proof. (a) is going to be demonstrated by induction on k.

(a0)The base case k = 0 is trivial because at the initial configuration we have:
C0(1) = {δ0, δ′0, cod0(ϕ)}∪{βl,0 | 1 ≤ l ≤ n} and there exists a single membrane
labelled by 2 containing objects α1, . . . , αp+1 and objects a1,0, . . . , an,0. Then,
configuration C0 yields configuration C1 by applying the rules:

[ a1,0 ]2[ γ ]0 → [ a′1,0 t
′
1 ]2[ ]0

[ ai,0 ]2[ γ ]0 → [ a′i,0 , for 2 ≤ i ≤ n

[αj ]2[ γ ]0 → [α′
j ]2[ ]0 , for 1 ≤ j ≤ p+ 1

[βl,0 ]1[ γ ]0 → [β′
l,0 ]1[ ]0 , for 1 ≤ l ≤ n

[xi,j,0 ]1[ γ ]0 → [x′
i,j,1 ]1[ ]0

[xi,j,0 ]1[ γ ]0 → [x′
i,j,1 ]1[ ]0

[x∗
i,j,0 ]1[ γ ]0 → [x∗′

i,j,1 ]1[ ]0

⎫⎬
⎭ for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[ δ0 ]1[ γ ]0 → [ δ1 ]1[ ]0
[ δ′0 ]1[ γ ]0 → [ δ′1 ]1[ ]0

(a1) Thus, C1(1) = {δ1, δ′1, cod′1(ϕ)} ∪ {β′
l,0 | 1 ≤ l ≤ n} and in C1 there ex-

ists one membrane labelled by 2 such that its contents is the set of objects
{a′1,0, . . . , a′n,0}, the object t′1 and objects α′

1, . . . , α
′
p+1. Then, configuration C1

yields configuration C2 by applying the rules:
[ a′1,0 ]2[ γ ]0 → [ a1,1 f

R
1 ]2[ ]0

[ t′1 ]2[ γ ]0 → [ tL1 ]2[ ]0
[ a′i,0 ]2[ γ ]0 → [ aLi,1 a

R
i,1 ]2[ ]0 , for2 ≤ i ≤ n

[α′
j ]2[ γ ]0 → [αL

j αR
j ]2[ ]0 , for 1 ≤ j ≤ p+ 1

[β′
l,k ]1[ γ ]0 → [βL

l,k+1 β
R
l,k+1 ]1[ ]0 , for k + 1 ≤ l ≤ n

[x′
i,j,0 ]1[ γ ]0 → [x′′2

i,j,1 ]1[ ]0
[x′

i,j,0 ]1[ γ ]0 → [x′′2
i,j,0+1 ]1[ ]0

[x∗′
i,j,0 ]1[ γ ]0 → [x∗′′2

i,j,0+1 ]1[ ]0

⎫⎬
⎭ for

1 ≤ i ≤ n,
1 ≤ j ≤ p

[ δ1 ]1[ γ ]0 → [ δ2 ]1[ ]0

[ δ′1 ]1[ γ ]0 → [ δ′22 ]1[ ]0

(a2)Thus, C2(1) = {δ2, δ′22, cod′′1 (ϕ)}∪{βO
l,1 | O ∈ {L,R}, 1 ≤ l ≤ n} and in C2 there

exists one membrane labelled by 2 such that its contents is the set of objects
{a1,1, . . . , an,1}, objects tL1 and fR

1 and objects αO
1 , . . . , α

O
p+1, for O ∈ {L,R}.

Then, configuration C2 yields configuration C3 by applying the rules:
[ a1,1 ]2 → [Γ0 ]2[Γ1 ]2 , for 1 ≤ i ≤ n

[βO
1,1 ]1[ ]0 → [ ]1[β

O
1,1 ]0

[βO
l,1 ]1[ ]0 → [ ]1[βl,1 ]0

}
for

O ∈ {L,R},
k + 1 ≤ l ≤ n
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[x′′
i,j,0 ]1[ γ ]0 → [x′′′

i,j,0 ]1[ ]0
[x′′

i,j,0 ]1[ γ ]0 → [x′′′
i,j,0 ]1[ ]0

[x∗′′
i,j,0 ]1[ γ ]0 → [x∗′′′

i,j,0 ]1[ ]0

⎫⎬
⎭ for

1 ≤ i ≤ n,
1 ≤ j ≤ p,

[ δ2 ]1[ γ ]0 → [ δ3 ]1[ ]0
[ δ′2 ]1[ γ ]0 → [ δ′3 ]1[ ]0

(a3) Thus, C3(1) = {δ3, δ′23, cod′′′1 (ϕ)}, at the environment there is the multiset
{βO

1,1 | O ∈ {L,R}} ∪ {β2
l,1 | 2 ≤ l ≤ n} and in C2 there exists two membranes

labelled by 2 such that its contents is the set of objects {aO2,1, . . . , aOn,1} with

O = L (resp., O = R), object tL1 (resp., fR
1 ) and objects αO

1 , . . . , α
O
p+1, for

O = L (resp., O = R). Hence, the result holds for k = 0

• Supposing that, by induction, result is true for k (1 ≤ k ≤ n− 1); that is,

(a0) For each 4k (0 ≤ k ≤ n− 1) at configuration C4k we have the following:

– C4k(1) = {δ4k, δ′2
k

4k, codk(ϕ)
2k} ∪ {β2k

l,k | k + 1 ≤ l ≤ n}
– There are 2k membranes labelled by 2 such that each of them contains

· objects ak+1,k, . . . , an,k;
· objects r1, . . . , rk, being r ∈ {t, f}; and
· objects α1, . . . , αp+1.

(a1) For each 4k+1 (0 ≤ k ≤ n−1) at configuration C4k+1 we have the following:

– C4k+1(1) = {δ4k+1, δ
′2k
4k+1, cod

′
k(ϕ)

2k} ∪ {β′2k
l,k | k + 1 ≤ l ≤ n}

– There are 2k membranes labelled by 2 such that each of them contains
· objects a′k+1,k, . . . , a

′
n,k;

· objects r′′1 , . . . , r
′′
k , being r ∈ {t, f}

· an object t′k+1; and
· objects α′

1, . . . , α
′
p+1.

(a2) For each 4k+2 (0 ≤ k ≤ n−1) at configuration C4k+2 we have the following:

– C4k+2(1) = {δ4k+2, , δ
′2k+1

4k+2cod
′′
k+1(ϕ)

2k+1}∪{βO2k

l,k | O ∈ {L,R}, k+1 ≤
l ≤ n}

– There are 2k membranes labelled by 2 such that each of them contains
· objects ak+1,k, . . . , an,k;
· objects r1, . . . , rk, being r ∈ {t, f}; and
· objects α1, . . . , αp+1.

(a3) For each 4k+3 (0 ≤ k ≤ n−1) at configuration C4k+3 we have the following:

– C4k+3(0) = {βO2k

k+1,k+1} ∪ {β2k+1

l,k+1 | k + 2 ≤ l ≤ n}
– C4k+3(1) = {δ4k+3, δ

′2k+1

4k+3, cod
′′′
k+1(ϕ)

2k+1} ∪ {β2k

l,k | k + 1 ≤ l ≤ n}
– There are 2k+1 membranes labelled by 2 such that each of them contains

· objects ak+1,k, . . . , an,k;
· objects r1, . . . , rk, being r ∈ {t, f}; and
· objects α1, . . . , αp+1.

• Then, by the induction hypothesis, we want to prove the result for k + 1.
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(a0) Then, configuration C4k+3 yields configuration C4(k+1) by applying the rules:

[ aOi,j ]2[β
O
k+1,k+1 ]0 → [ ai,j ]2[ ]0

[ rOi ]2[β
O
k+1,k+1 ]0 → [ ri ]2[ ]0

}
for

O ∈ {L,R},
r ∈ {t, f},
1 ≤ i ≤ n,
1 ≤ j ≤ n

[αO
j ]2[β

O
k+1,k+1 ]0 → [αj ]2[ ]0 , for O ∈ {L,R}, 1 ≤ j ≤ p+ 1

[x′′′
i,j,k+1 ]1[ γ ]0 → [xi,j,k+1 ]1[ ]0

[x′′′
i,j,k+1 ]1[ γ ]0 → [xi,j,k+1 ]1[ ]0

[x∗′′′
i,j,k+1 ]1[ γ ]0 → [x∗

i,j,k+1 ]1[ ]0

⎫⎬
⎭ for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[ ]1[βl,k+1 ]0 → [βl,k+1 ]1[ ]0 , for k + 2 ≤ l ≤ n
[ δ4k+3 ]1[ γ ]0 → [ δ4(k+1) ]1[ ]0
[ δ′4k+3 ]1[ γ ]0 → [ δ′4(k+1) ]1[ ]0

Therefore, the following holds:

– C4(k+1)(1) = {δ4(k+1), δ
′2k+1

4(k+1), codk+1(ϕ)
2k+1}∪ {β2k+1

l,k+1 | k+2 ≤ l ≤ n}
– There are 2k+1 membranes labelled by 2 such that each of them contains

· objects ak+2,k+1, . . . , an,k+1;
· objects r1, . . . , rk+1, being r ∈ {t, f}; and
· objects α1, . . . , αp+1.

(a1) Then, configuration C4(k+1) yields configuration C4(k+1)+1 by applying the
rules:

[ ak+1,k ]2[ γ ]0 → [ a′k+1,k t
′
k+1 ]2[ ]0

[ ti ]2[ γ ]0 → [ t′′i ]2[ ]0
[ fi ]2[ γ ]0 → [ f ′′

i ]2[ ]0

}
for 1 ≤ i ≤ k

[ ai,k+1 ]2[ γ ]0 → [ a′i,k+1 ]2[ ]0 , for 2 ≤ i ≤ n

[αj ]2[ γ ]0 → [α′
j ]2[ ]0 , for 1 ≤ j ≤ p+ 1

[βl,k+1 ]1[ γ ]0 → [β′
l,k+1 ]1[ ]0

}
for k + 2 ≤ l ≤ n

[xi,j,k+1 ]1[ γ ]0 → [x′
i,j,k+1 ]1[ ]0

[xi,j,k+1 ]1[ γ ]0 → [x′
i,j,k+1 ]1[ ]0

[x∗
i,j,k+1 ]1[ γ ]0 → [x∗′

i,j,k+1 ]1[ ]0

⎫⎬
⎭ for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[ δ4(k+1) ]1[ γ ]0 → [ δ4(k+1)+1 ]1[ ]0
[ δ′4(k+1) ]1[ γ ]0 → [ δ′4(k+1)+1 ]1[ ]0

Therefore, the folowing holds:

– C4(k+1)+1(1) = {δ4(k+1)+1, δ
′2k
4(k+1)+1, cod

′
k+1(ϕ)

2k+1} ∪ {β′2k
l,k | k + 1 ≤

l ≤ n}
– There are 2k+1 membranes labelled by 2 such that each of them contains

· objects a′k+2,k+1, . . . , a
′
n,k+1;

· objects r′′1 , . . . , r
′′
k+1, being r ∈ {t, f}

· an object t′k+2; and
· objects α′

1, . . . , α
′
p+1.

(a2) Then, configuration C4(k+1)+1 yields configuration C4(k+1)+2 by applying
the rules:
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[ a′k+1,k ]2[ γ ]0 → [ ak+1,k+1 f
R
k+1 ]2[ ]0

[ t′k+1 ]2[ γ ]0 → [ tLk+1 ]2[ ]0
[ t′′i ]2[ γ ]0 → [ tLi tRi ]2[ ]0
[ f ′′

i ]2[ γ ]0 → [ fL
i fR

i ]2[ ]0

}
for 1 ≤ i ≤ k

[ a′i,k+1 ]2[ γ ]0 → [ aLi,k+2 a
R
i,k+2 ]2[ ]0 , for 2 ≤ i ≤ n

[α′
j ]2[ γ ]0 → [αL

j αR
j ]2[ ]0 , for 1 ≤ j ≤ p+ 1

[β′
l,k+1 ]1[ γ ]0 → [βL

l,k+2 β
R
l,k+2 ]1[ ]0 , for k + 2 ≤ l ≤ n

[x′
i,j,k+1 ]1[ γ ]0 → [x′′2

i,j,k+2 ]1[ ]0
[x′

i,j,k+1 ]1[ γ ]0 → [x′′2
i,j,k+2 ]1[ ]0

[x∗′
i,j,k+1 ]1[ γ ]0 → [x∗′′2

i,j,k+2 ]1[ ]0

⎫⎬
⎭

1 ≤ i ≤ n,
1 ≤ j ≤ p

[ δ4(k+1)+1 ]1[ γ ]0 → [ δ4(k+1)+2 ]1[ ]0

[ δ′4(k+1)+1 ]1[ γ ]0 → [ δ′24(k+1)+2 ]1[ ]0
Therefore, the following holds:

– C4(k+1)+2(1) = {δ4(k+1)+2, δ
′2k+2

4(k+1)+2, cod
′′
k+2(ϕ)

2k+2} ∪ {β2k+1

l,k | k + 1 ≤
l ≤ n}

– There are 2k+1 membranes labelled by 2 such that each of them contains
· objects ak+2,k+1, . . . , an,k+1;
· objects r1, . . . , rk+1, being r ∈ {t, f}; and
· objects α1, . . . , αp+1.

(a3) Then, configuration C4(k+1)+2 yields configuration C4(k+1)+3 by applying
the rules:

[ ak+1,k+1 ]2 → [Γ0 ]2[Γ1 ]2 , for 1 ≤ i ≤ n

[βO
k+1,k+1 ]1[ ]0 → [ ]1[β

O
k+1,k+1 ]0

[βO
l,k+1 ]1[ ]0 → [ ]1[βl,k+1 ]0

}
for O ∈ {L,R}, k+ 2 ≤ l ≤ n

[x′′
i,j,k+2 ]1[ γ ]0 → [x′′′

i,j,k+2 ]1[ ]0
[x′′

i,j,k+2 ]1[ γ ]0 → [x′′′
i,j,k+2 ]1[ ]0

[x∗′′
i,j,k+2 ]1[ γ ]0 → [x∗′′′

i,j,k+2 ]1[ ]0

⎫⎬
⎭ for

1 ≤ i ≤ n,
1 ≤ j ≤ p

[ δ4(k+1)+2 ]1[ γ ]0 → [ δ4(k+1)+3 ]1[ ]0
[ δ′4(k+1)+2 ]1[ γ ]0 → [ δ′4(k+1)+3 ]1[ ]0

Therefore, the following holds:

– C4(k+1)+3(0) = {βO2k+1

k+2,k+2} ∪ {β2k+2

l,k+2 | k + 3 ≤ l ≤ n}
– C4(k+1)+3(1) = {δ4(k+1)+3, δ

′2k+2

4(k+1)+3, cod
′′′
k+2(ϕ)

2k+2}∪{β2k+1

l,k+1 | k+2 ≤
l ≤ n}

– There are 2k+2 membranes labelled by 2 such that each of them contains
· objects ak+2,k+1, . . . , an,k+1;
· objects r1, . . . , rk+1, being r ∈ {t, f}; and
· objects α1, . . . , αp+1.

• In order to prove (b) it is enough to notice that, on the one hand, from (a3)
configuration C4n−1

1 holds:

1 Here, 4n− 1 = 4k + 3 for k = n− 1.
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– C4n−1(1) = {δ4n−1, δ
′2n
4n−1, cod

′′′
n (ϕ)}.

– There are 2n membranes labelled by 2 such that each of them contains
· a different subset {rO1 , . . . , rOn }, being r ∈ {t, f} and O ∈ {L,R}; and
· objects αO, . . . , αO

p+1, for O ∈ {L,R}.
• On the other hand, configuration C4n−1 yields configuration C4n by applying

the rules:

[ rOi ]2[β
O
n,n ]0 → [ ri ]2[ ]0 , for

O ∈ {L,R},
r ∈ {t, f},
1 ≤ i ≤ n

[αO
j ]2[β

O
n,n ]0 → [αj ]2[ ]0 , for O ∈ {L,R}, 1 ≤ j ≤ p+ 1

[x′′′
i,j,n ]1[ γ ]0 → [xi,j,n ]1[ ]0

[x′′′
i,j,n ]1[ γ ]0 → [xi,j,n ]1[ ]0

[x∗′′′
i,j,n ]1[ γ ]0 → [x∗

i,j,n ]1[ ]0

⎫⎬
⎭ for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[ δ4n−1 ]1[ γ ]0 → [ δ4n ]1[ ]0
[ δ′4n−1 ]1[ γ ]0 → [ δ′4n ]1[ ]0

• Then, we have C4n(1) = {δ4n, δ′2
n

4n, cod4n(ϕ)
2n}, and there are 2n membranes

labelled by 2 such that each of them contains objects α1, . . . , αp+1, as well as
a different subset {r1, . . . , rn}, being r ∈ {t, f}. �

First checking stage

Following the generation stage comes the first checking stage, where objects cj,k
are created in order to know if clause Cj has been satisfied by the truth assignment
encoded in membranes labelled by 2. In each step, we fire rules for a single clause,
therefore in p steps we can obtain objects cj,k if this clause is satisfied. This can
be because of two reasons:

• Literal xi appears in clause Cj , and the the valoration of variable xi in a truth
assignment is True. Then, we can say that such truth assignment satisfies this
clause; or

• Literal ¬xi appears in clause Cj , and the the valoration of variable xi in a truth
assignment is False. Then, we can say that such truth assignment satisfies this
clause.

In any other way, variable xi has nothing to do with clause Cj . At the final
step of this stage, membranes labelled by 2 will have objects cj,p where Cj are
clauses satisfied by such truth assignment. We obtain an object α′

p+1 to use it in
the next stage.

Proposition 2. Let C = (C0, C1, . . . , Cq) be a compuation of th system Π(s(ϕ))
with input multiset cod(ϕ).

(a) For each k (0 ≤ k ≤ p− 1) at configuration C4n+k we have the following:

• C4n+k(1) = {δ4n+k, δ
′2n
4n+k, cod

k
n(ϕ)

2n}
• There are 2n membranes labelled by 2 such that each of them contains
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– objects r1, . . . , rn, being r ∈ {t, f};
– objects α1, . . . , αp+1; and
– objects c1,k, . . . , ck,k, where cj,k represents that clause Cj has been sat-

isfied by the truth formula encoded in such membrane.

(b) C4n+p(1) = {δ4n+p, δ
′2n
4n+p}, and there are 2n membranes labelled by 2 such

that each of them contains objects α1, . . . , αp+1, a different subset {r1, . . . , rn}
and objects cj when clause Cj is satisfied in that membrane.

Proof. (a) is going to be demonstrated by induction on k.

(a) The base case k = 0 is trivial because at the initial configuration we have:

C4n(1) = {δ4n, δ′2
n

4n, cod4n(ϕ)} and there exist 2n membranes labelled by
2 containing objects α1, . . . , αp+1 and a different subset {r1, . . . , rn}, being
r ∈ {t, f}. Then, configuration C4n yields configuration C4n+1 by applying the
rules:

[ ti ]2[xi,1,n ]1 → [ c1,1 ti ]2[ ]1
[ ti ]2[xi,1,n ]1 → [ ti ]2[ ]1
[ ti ]2[x

∗
i,1,n ]1 → [ ti ]2[ ]1

[ fi ]2[xi,1,n ]1 → [ fi ]2[ ]1
[ fi ]2[xi,1,n ]1 → [ c1,1 fi ]2[ ]1
[ fi ]2[x

∗
i,1,n ]1 → [ fi ]2[ ]1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[xi,j,n+k ]1[ γ ]0 → [xi,j,n+k+1 ]1[ ]0
[xi,j,n+k ]1[ γ ]0 → [xi,j,n+k+1 ]1[ ]0
[x∗

i,j,n+k ]1[ γ ]0 → [x∗
i,j,n+k+1 ]1[ ]0

⎫⎬
⎭ for 1 ≤ i ≤ n, 2 ≤ j ≤ p

[ δ4n ]1[ γ ]0 → [ δ4n+1 ]1[ ]0
[ δ′4n ]1[ γ ]0 → [ δ′4n+1 ]1[ ]0

Thus, C4n+1(1) = {δ4n+1, δ
′2n
4n+1, cod

2
4n+1(ϕ)

2n} and in C4n+1 there exist 2n

membranes labelled by 2 such that their contents are objects α1, . . . , αp+1, a
different subset {r1, . . . , rn}, being r ∈ {t, f} and objects c1,1 if some literal
present in Cj satisfies it2. Hence, the result holds for k = 1.
Supposing that, by induction, result is true for k (0 ≤ k ≤ p− 1); that is,

• C4n+k(1) = {δ4n+k, δ
′2n
4n+k, cod

k+1
n (ϕ)2

k}
• There are 2n membranes labelled by 2 such that each of them contains

– objects r1, . . . , rn, being r ∈ {t, f};
– objects α1, . . . , αp+1; and
– objects c1,k, . . . , ck,k, where cj,k represents that clause Cj has been sat-

isfied by the truth formula encoded in such membrane.

Then, configuration C4n+k yields configuration C4n+k+1 by applying the rules:

2 Here, objects # are created, but they are not used anymore, so they are not going to
be noted here.
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[ ti ]2[xi,k+1,n+k ]1 → [ ck+1,k+1 ti ]2[ ]1
[ ti ]2[xi,k+1,n+k ]1 → [ ti ]2[ ]1
[ ti ]2[x

∗
i,k+1,n+k ]1 → [ ti ]2[ ]1

[ fi ]2[xi,k+1,n+k ]1 → [ fi ]2[ ]1
[ fi ]2[xi,k+1,n+k ]1 → [ ck+1,k+1 fi ]2[ ]1
[ fi ]2[x

∗
i,k+1,n+k ]1 → [ fi ]2[ ]1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[xi,j,n+k ]1[ γ ]0 → [xi,j,n+k+1 ]1[ ]0
[xi,j,n+k ]1[ γ ]0 → [xi,j,n+k+1 ]1[ ]0
[x∗

i,j,n+k ]1[ γ ]0 → [x∗
i,j,n+k+1 ]1[ ]0

⎫⎬
⎭ for 1 ≤ i ≤ n, k + 2 ≤ j ≤ p

[ cj,k ]2[ γ ]0 → [ cj,k+1 ]2[ ]0 , for 1 ≤ j ≤ p, k ≤ k ≤ p− 1
[ δ4n+k ]1[ γ ]0 → [ δ4n+k+1 ]1[ ]0
[ δ′4n+k ]1[ γ ]0 → [ δ′4n+k+1 ]1[ ]0

Thus, C4n+k+1(1) = {δ4n+k+1, δ
′2n
4n+k+1, cod

k+2
4n+k+1(ϕ)

2n} and in C4n+k+1

there exist 2n membranes labelled by 2 such that their contents are objects
α1, . . . , αp+1, a different subset {r1, . . . , rn}, being r ∈ {t, f} and objects
c1,k, . . . , ck,k if some literal present in Cj satisfies them.

In order to demonstrate (b) it is enough to notice that, on the one hand, from
(a) configuration C4n+p−1 holds:

• C4n+p−1(1) = {δ4n+p−1, δ
′2n
4n+p−1, cod

p
n(ϕ)

2n}
• There are 2n membranes labelled by 2 such that each of them contains

– objects r1, . . . , rn, being r ∈ {t, f};
– objects α1, . . . , αp+1; and
– objects c1,p−1, . . . , cp−1,p−1, where cj,p−1 represents that clause Cj has been

satisfied by the truth formula encoded in such membrane.

On the other hand, configuration C4n+p−1 yields configuration C4n+p by applying
the rules:

[ ti ]2[xi,p,n+p−1 ]1 → [ cp,p ti ]2[ ]1
[ ti ]2[xi,p,n+p−1 ]1 → [ ti ]2[ ]1
[ ti ]2[x

∗
i,p,n+p−1 ]1 → [ ti ]2[ ]1

[ fi ]2[xi,p,n+p−1 ]1 → [ fi ]2[ ]1
[ fi ]2[xi,p,n+p−1 ]1 → [ cp,p fi ]2[ ]1
[ fi ]2[x

∗
i,p,n+p−1 ]1 → [ fi ]2[ ]1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[ cj,p−1 ]2[ γ ]0 → [ cj,p ]2[ ]0 , for 1 ≤ j ≤ p− 1
[ δ4n+p−1 ]1[ γ ]0 → [ δ4n+p ]1[ ]0
[ δ′4n+p−1 ]1[ γ ]0 → [ δ′4n+p ]1[ ]0

Then, we have C4n+p(1) = {δ4n+p, δ
′2n
4n+p}, and in C4n+p there are 2n mem-

branes labelled by 2 such that each of them contains a different subset {r1, . . . , rn},
being r ∈ {t, f}3, objects α1, . . . , αp+1 and objects cj,p when clause Cj has been
satisfied by the truth assignment encoded in such membrane. �
3 This subset is not used anymore, so it will not be noted from now on.
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Second checking stage

Here, when rules from 3.1 are fired at the (4n+p+1)-th step, objects αj within a
membrane labelled by 2 are removed if and only if the truth assignment associated
to that membrane makes true clause Cj , that is, if there is at least one object cj in

such membrane. At configuration C4n+p we have C4n+p(1) = {δ4n+p, δ
′2n
4n+p} and

each membrane labelled by 2 contains objects α1, . . . , αp and objects cj such that
the corresponding truth assignment satisfies the clause Cj . By applying rules from
3.1 and rule [ δ4n+p ]1[ γ ]0 → [ δ4n+p+1 ]1[ ]0, object δ4n+p evolves into δ4n+p+1

within the membrane labelled by 1, and in each membrane labelled by 2, objects
αj such that their corresponding object cj,p are “removed” from the system, and
let the next stage to check whether or not they are present, besides the object
αp+1, that is prepared, evolving to α′

p+1, to react with the remaining objects αj .
This stage takes exactly one step.

Output stage

The output phase starts at the (4n+ p+ 2)-th step, and takes exactly four steps,
regardless of whether the input formula ϕ is satisfied or not by some truth assign-
ment.

• Affirmative answer: If the input formula ϕ of SAT problem is satisfiable then at
least one of the truth assignments from a membrane with label 2 has satisfied
all clauses. Then, there will be a membrane labelled by 2 such that all objects
αj , with 1 ≤ j ≤ p have dissapeared in the previous step. At configuration
C4n+p+1, we have C4n+p+1(1) = {δ4n+p+1} and in each membrane labelled by 2
there remain objects αj if the corresponding truth assignment does not make
true clause Cj and one object α′

p+1. In this step, only rule [ δ4n+p+1 ]1[ γ ]0 →
[ δ4n+p+2 ]1[ ]0 will be fired and rules [αj α

′
p+1 ]2[ ]0 → [ ]2[n1 ]0 will be

fired in membranes labelled by 2 such that at least one clause is not satisfied
by the corresponding truth assignment. Then, at configuration C4n+p+2, we
have C4n+p+2(1) = {δ4n+p+2, n

t
1}, being t the number of truth assignments

that have at least one clause not satisfied by the corresponding truth assign-
ment, and membranes labelled by 2 contains an object α′

p+1 if and only if the
corresponding truth assignment makes true all clauses from ϕ, and can contain
objects αj , 1 ≤ j ≤ p, if clause Cj is not satisfied by the corresponding truth
assignment.
In the next step, applying rules [ ]2[n1 ]0 → [n1 ]2[ ]0 and [α′

p+1 ]2[ δ4n+p+2 ]1 →
[ y1 ]2[ ]1, we obtain an object y1 in a membrane labelled by 2 if and only if the
corresponding truth assignment makes true the input formula. Let us remark
that more than one membrane labelled by 2 can contain a truth assignment
that makes true ϕ, but in this case, we as we want to know if at least one truth
assignment makes true the input formula ϕ, we only want one object y1. Then,
at configuration C4n+p+3 we have that C4n+p+3(1) = ∅ and in membranes la-



Narrowing Frontiers of Efficiency 157

belled by 2, we can have objects n1
4, adding up to t in all membranes labelled

by 2, being t the number of truth assignments that do not make true the in-
put formula, an object α′

p+1 if the corresponding truth assignment makes true
all clauses, excepting one membrane labelled by 2 which corresponding truth
assignment makes true the input formula that will contain an object y1, and
can contain objects αj , 1 ≤ j ≤ p, if clause Cj is not satisfied by the corre-
sponding truth assignment. In the next step the only rule that can be fired is
[ y1 ]2[ γ ]0 → [ y2 ]2[ ]0, that will be useful to synchronize the affirmative and
the negative answer. Let us note that rule [n1 ]2[ δ4n+p+2 ]1 → [n2 ]2[ ]1 can-
not be fired because object δ4n+3 has been consumed in the previous step by
an object α′

p+1. Then, at configuration C4n+p+4, we have that C4n+p+4(1) = ∅
and in membranes labelled by 2, we can have objects n1, adding up to t in
all membranes labelled by 2, being t the number of truth assignments that do
not make true the input formula, an object α′

p+1 if the corresponding truth as-
signment makes true all clauses, excepting one membrane labelled by 2 which
corresponding truth assignment makes true the input formula that will con-
tain an object y2, and can contain objects αj , 1 ≤ j ≤ p, if clause Cj is not
satisfied by the corresponding truth assignment. At the last step of the com-
putation, rule [ y2 ]2[ ]0 → [ ]2[ yes ]0 is fired, sending an object yes to the
environment. Then, at configuration C4n+p+5, we have that C4n+p+5(1) = ∅
and in membranes labelled by 2, we can have objects n1, adding up to t in
all membranes labelled by 2, being t the number of truth assignments that do
not make true the input formula, an object α′

p+1 if the corresponding truth as-
signment makes true all clauses, excepting one membrane labelled by 2 which
corresponding truth assignment makes true the input formula, and can con-
tain objects αj , 1 ≤ j ≤ p, if clause Cj is not satisfied by the corresponding
truth assignment, and there will be an object yes in the environment. Here,
the computation halts and returns an affirmative answer.

• Negative answer: If the input formula ϕ of SAT problem is not satisfiable then
none of the truth assignments encoded by a membrane labelled by 2 makes
the formula ϕ true. Thus, some object αj (1 ≤ j ≤ p) will be within all
membranes labelled by 2 will not remain in such membranes. At configuration
C4n+p+1, we have C4n+p+1(1) = {δ4n+p+1} and in each membrane labelled
by 2 there remain objects αj if the corresponding truth assignment does not
make true clause Cj . In this step, only rules [αj α

′
p+1 ]2[ ]0 → [ ]2[n1 ]0, for

1 ≤ j ≤ p and rule [ δ4n+p+1 ]1[ γ ]0 → [ δ4n+p+2 ]1[ ]0 will be fired. Then,
at configuration C4n+p+2 we have in the environmet 2n copies of object n1,
C4n+p+2(1) = {δ4n+p+2} and membranes labelled by 2 will contain objects αj

(1 ≤ j ≤ p) when clauses Cj are not satisfied by the corresponding truth
assignment. In the (4n + p + 3)-th step, rule [ ]2[n1 ]0 → [n1 ]2[ ]0 will
be fired. Here, objects n1 will be sent to a membrane labelled by 2. Then,

4 Let us note that a membrane containing an object n1 does not say that the corre-
sponding truth assignment does not makes true the input formula. In fact, we can
have more than one object n1 within a single membrane labelled by 2.
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at configuration C4n+p+3 we have C4n+p+3(1) = {δ4n+p+2} and membranes
labelled by 2 contain objects αj (1 ≤ j ≤ p) if clause Cj is not satisfied by the
corresponding truth assignment, and can contain t objects n1 (0 ≤ t ≤ 2n). At
the (4n+p+4)-th step rule [n1 ]2[ δ4n+p+2 ]1 → [n2 ]2[ ]1 is fired, since object
δ4n+3 has not been consumed by any rule from 4.3, creating an object n2 in a
membrane labelled by 2. Then, at configuration C4n+p+4 we have C4n+p+4(1) =
∅ and membranes labelled by 2 contain objects αj (1 ≤ j ≤ p) if clause Cj is
not satisfied by the corresponding truth assignment, and can contain t objects
n1 (0 ≤ t ≤ 2n), and one of them contains an object n2. At the last step of
the computation, rule [n2 ]2[ ]0 → [ ]2[ no ]0 is fired, sending an object no to
the environment. Then, at configuration C4n+p+5 we have that C4n+p+5(1) = ∅
and membranes labelled by 2 contain objects αj (1 ≤ j ≤ p) if clause Cj is
not satisfied by the corresponding truth assignment, and can contain t objects
n1 (0 ≤ t ≤ 2n), and there will be an object no in the environment. Here, the
computation halts and returns a negative answer.

Result

Proof. The family of P systems previously constructed verifies the following:

• Every system of the family Π is a recognizer P systems from TSEC(2, 2).
• The family Π is polynomially uniform by Turing machines because for each

n, p ∈ N, the rules of Π(〈n, p〉) of the family are recursively defined from
n, p ∈ N, and the amount of resources needed to build an element of the family
is of a polynomial order in n and p, as shown below:

– Size of the alphabet: 9n2p + 6n2 + 3np2

2 − 3np + 22n + p2

2 + 13p
2 + 14 ∈

Θ(max{n2p, np2}).
– Initial number of cells: 2 ∈ Θ(1).
– Initial number of objects in cells: n2 + n(p+ 1) + p+ 3 ∈ Θ(n2).

– Number of rules: 8n3 + 27n2p
2 + 4n1 + 19np

2 + 23n+ p2

2 + 17p
2 + 11 ∈ Θ(n3).

– Maximal number of objects involved in any rule: 4 ∈ Θ(1).
• The pair (cod, s) of polynomial-time computable functions defined fulfill the

following: for each input formula ϕ of SAT problem, s(ϕ) is a natural number,
cod(ϕ) is an input multiset of the system Π(s(ϕ)), and for each n ∈ N, s−1(n)
is a finite set.

• The family Π is polynomially bounded: indeed for each input formula ϕ of SAT
problem, the deterministic P system Π(s(ϕ))+ cod(ϕ) takes exactly 4n+p+5
steps, being n the number of variables of ϕ and p the number of clauses.

• The family Π is sound with regard to (X, cod, s): indeed, for each formula ϕ,
if the computation of Π(s(ϕ))+ cod(ϕ) is an accepting computation, then ϕ is
satisfiable.

• The family Π is complete with regard to (X, cod, s): indeed, for each input
formula ϕ such that it is satisfiable, the computation of Π(s(ϕ)) + cod(ϕ) is
an accepting computation. �
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Corollary 1. NP ∪ co−NP ⊆ PMCTSEC(2,2).

Proof. It suffices to notice that SAT problem is a NP-complete problem, SAT ∈
PMCTSEC(2,2), and the complexity classPMCTSEC(2,2) is closed under polynomial-
time reduction and under complement. �

6 Conclusions and future work

In [6] a tight frontier of efficiency in the framework of tissue P systems with
evolutional symport/antiport rules and cell separation is defined by the length
of the RHS, that is, passing from 1 to 2 is enough to pass from non-efficiency
to presumably efficiency while the length of the LHS is at least 3. This result
is demonstrated giving a solution of the SAT problem by means of a family of P
system from TSEC(3, 2). But an open problem remains open here: what happens
with P systems from TSEC(k, 2) (k ≥ 2)? Can we solve computationally hard
problems restricting the length of the LHS to 2?

In this paper, an efficient solution to the SAT problem is given by means of
a family of P systems from TSEC(2, 2), so the previous problem is solved. Then,
we can conclude here with a similar figure to the presented in [6] but with the new
results included.

Of course, after this work we can define several clear research lines to continue
investigating these kinds of P systems.

– What happens when the environment “dissapear”?
– Do the structure matter? By this we mean using cell-like structure with this

kind of rules.
– In [12] another definition of length is given. Let k be the length of the rule

defined as follows: if r ≡ [u ]i[ v ]j → [ v′ ]i[u′ ]j , k = |u|+ |v|+ |u′|+ |v′|. Then
the complexity class of tissue P systems with evolutional communication rules
with at most length k and cell separation is denoted by PMCTSEC(k). What
are the borderline here?

– What is the upper bound of these systems? In [3] a characterization of tissue
P systems with symport/antiport rules and both cell division and separation
is given matching their efficiency to the class P#P, and it seems that this class
of P system can reach the same complexity class.

Acknoledgements

This work was supported by Project TIN2017-89842-P of the Ministerio de
Economı́a y Competitividad of Spain and by Grants No 61320106005 of the Na-
tional Natural Science Foundation of China.



160 D. Orellana-Mart́ın et al.
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Kántor, Kristóf, 69
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