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Basic tissue P systems with symport/antiport rules

Π = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout)

? Γ,Σ are finite alphabets.

? E ⊆ Γ.

? M1, . . . ,Mq are finite multisets over Γ \ Σ.

? R is a finite set of rules of types

– (i,u/λ, j) (symport rule)
– (i,u/v, j) (antiport rule)

where 0 ≤ i , j ≤ q, i 6= j , u, v ∈ M+
f (Γ).

? iin ∈ {1, 2, . . . , q}.
? iout ∈ {0, 1, . . . , q}.

Basic tissue P system without environment: E = ∅.

Length of the symport/antiport rule (i, u/v, j): |u|+ |v|
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Tissue P systems with symport/antiport rules and cell division or cell separation

• With cell division:

? Symport-antiport rules.

? [ a ]i → [ b ]i [ c ]i , where i ∈ {1, 2, . . . , q} and a, b, c ∈ Γ (division rules).

• With cell separation:

? Symport-antiport rules.

? [ a ]i → [ Γ1 ]i [ Γ2 ]i , where i ∈ {1, 2, . . . , q}, a ∈ Γ, i 6= iout and {Γ1, Γ2} is a fixed partition of Γ

(separation rules).

• The sets

TC, TDC, TSC, T̂DC, T̂SC
TDC(k), TSC(k), for each k ≥ 1

T̂DC(k), T̂SC(k), for each k ≥ 1
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Frontiers of the efficiency

Non − Efficiency Efficiency

TC TDC (adding rules)

TC TSC (adding rules)

TDC(1) TDC(2) (length)

TSC(2) TSC(3) (length)

T̂SC TSC (environment)

T̂SC(3) TSC(3) (environment)

TSC(2) TDC(2) (kind of rules)

T̂SC T̂DC (kind of rules)

T̂SC(k), k ≥ 2 T̂DC(k), k ≥ 2 (kind of rules)

The environment is IRRELEVANT in the framework TDC.

The environment is RELEVANT in the framework TSC.
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Basic tissue P systems with evolutional communication rules

Π = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout)

? Γ,Σ are finite alphabets.

? E ⊆ Γ.

? M1, . . . ,Mq are finite multisets over Γ \ Σ.

? R is a finite set of rules of type:

– [ u ]i [ ]j −→ [ ]i [ u′ ]j (evolutional symport rules);
– [ u ]i [ v ]j −→ [ v′ ]i [ u′ ]j (evolutional antiport rules);

where 0 ≤ i , j ≤ q, i 6= j , u, v ∈ M+
f (Γ), u′, v ′ ∈ Mf (Γ)

? iin ∈ {1, 2, . . . , q}.
? iout ∈ {0, 1, . . . , q}.

Basic tissue P system without environment: E = ∅.

Length of an evolutional communication rule . . . . . .
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Let X ∈ {S,D}.

TXC ⊆ TXEC

? Any symport rule (i, u/λ, j) can be viewed as [ u ]i [ ]j −→ [ ]i [ u ]j

? Any antiport rule (i, u/v, j) can be viewed as [ u ]i [ v ]j −→ [ v ]i [ u ]j

TXC(k) ⊆ TXEC(k, k) ⊆ TXEC(2k)

TXEC(k1, k2) ⊆ TXEC(k1 + k2)

If k1 ≥ 2 then TXEC(k1) ⊆ TXEC(k1, k1 − 1)
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New results related to TDEC

Theorem: PMCTDEC(1) = PMCTDEC(2) = P.

Theorem: SAT ∈ PMCTDEC(3).

? Corollary: For each k ≥ 3, we have DP ⊆ PMCTDEC(k).

Theorem: For each k ≥ 1 we have PMC
T̂DEC(k)

= PMCTDEC(k).

The environment is IRRELEVANT in the framework TDEC(k).

8 / 18



New results related to TDEC

Theorem: PMCTDEC(1) = PMCTDEC(2) = P.

Theorem: SAT ∈ PMCTDEC(3).

? Corollary: For each k ≥ 3, we have DP ⊆ PMCTDEC(k).

Theorem: For each k ≥ 1 we have PMC
T̂DEC(k)

= PMCTDEC(k).

The environment is IRRELEVANT in the framework TDEC(k).

8 / 18



New results related to TDEC

Theorem: PMCTDEC(1) = PMCTDEC(2) = P.

Theorem: SAT ∈ PMCTDEC(3).

? Corollary: For each k ≥ 3, we have DP ⊆ PMCTDEC(k).

Theorem: For each k ≥ 1 we have PMC
T̂DEC(k)

= PMCTDEC(k).

The environment is IRRELEVANT in the framework TDEC(k).

8 / 18



New results related to TDEC

Theorem: PMCTDEC(1) = PMCTDEC(2) = P.

Theorem: SAT ∈ PMCTDEC(3).

? Corollary: For each k ≥ 3, we have DP ⊆ PMCTDEC(k).

Theorem: For each k ≥ 1 we have PMC
T̂DEC(k)

= PMCTDEC(k).

The environment is IRRELEVANT in the framework TDEC(k).

8 / 18



New results related to TDEC

Theorem: PMCTDEC(1) = PMCTDEC(2) = P.

Theorem: SAT ∈ PMCTDEC(3).

? Corollary: For each k ≥ 3, we have DP ⊆ PMCTDEC(k).

Theorem: For each k ≥ 1 we have PMC
T̂DEC(k)

= PMCTDEC(k).

The environment is IRRELEVANT in the framework TDEC(k).

8 / 18



New results related to TDEC

Theorem: PMCTDEC(1) = PMCTDEC(2) = P.

Theorem: SAT ∈ PMCTDEC(3).

? Corollary: For each k ≥ 3, we have DP ⊆ PMCTDEC(k).

Theorem: For each k ≥ 1 we have PMC
T̂DEC(k)

= PMCTDEC(k).

The environment is IRRELEVANT in the framework TDEC(k).

8 / 18



New results related to TDEC
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PMCTDEC(k)

k
1 2 3 4 5 6 7 . . .

P = PMCR DP ⊆ PMCR
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PMCTDEC(k1,k2)

LHS

RHS

1 2 3 4 5 6 7

1

2
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New results related to TSEC

Theorem: PMCTSEC(1) = PMCTSEC(2) = P.

Theorem: SAT ∈ PMCTSEC(4).

? Corollary: For each k ≥ 4, we have DP ⊆ PMCTSEC(k).

What about PMCTSEC(3)?

Theorem: For each k ≥ 1 we have PMC
T̂SEC(k)

= PMCTSEC(k).

The environment is IRRELEVANT in the framework TSEC(k).
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