
Limits on P Systems with Proteins and Without
Division

David Orellana-Mart́ın, Luis Valencia-Cabrera, Agust́ın Riscos-Núñez,
Mario J. Pérez-Jiménez

Research Group on Natural Computing,
Department of Computer Science and Artificial Intelligence,
Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
E-mail: {dorellana, ariscosn, lvalencia, marper}@us.es

Summary. In the field of Membrane Computing, computational complexity theory has
been widely studied trying to find frontiers of efficiency by means of syntactic or seman-
tical ingredients. The objective of this is to find two kinds of systems, one non-efficient
and another one, at least, presumably efficient, that is, that can solve NP-complete prob-
lems in polynomial time, and adapt a solution of such a problem in the former. If it is
possible, then P = NP. Several borderlines have been defined, and new characterizations
of different types of membrane systems have been published.

In this work, a certain type of P system, where proteins act as a supporting element
for a rule to be fired, is studied. In particular, while division rules, the abstraction of
cellular mitosis is forbidden, only problems from class P can be solved, in contrast to the
result obtained allowing them.

Key Words: Membrane Computing, active membranes, proteins, computational
complexity theory

1 Introduction

In the beginning, Membrane Computing was developed mainly to study certain
fields of theoretical computer science, such as formal language theory and com-
putability theory, from a different perspective [12]. In this framework, several mod-
els of P systems, the main computational device within this framework, have been
demonstrated to be universal. For this purpose, the most used technique is to
simulate another computationally complete machine, like Turing machines [8] or
register machines [2].

Even if it started in this field, the Membrane Computing grew rapidly into an-
other fields, such as computational complexity theory [15], biology [16], ecology [5],
electrical networks [13] and a wide range of real-life applications [7, 10, 21]. For
each field, different variants of membrane systems have been developed.

124 D. Orellana-Mart́ın et al.

Computational complexity theory is devoted to classify classes of problems
depending on their intrinsic complexity, in contrast with algorithms theory, where
the complexity measured is that of the algorithm itself. This classification is based
on the resources needed to solve efficiently a problem. In an informal way, we say
that a problem is efficiently solved by a machine if the time that this machine takes
to solve an instance of length n of such problem is upper bounded by a polynomial
p(n).

One of the seven Millenium Prize Problems is the so-called P vs. NP problem,
whose response, whether positive or negative, would have a major impact in several
fields such as cryptography, economics, proof theory, even in biology [3]. That is
why it seems interesting to study it from a bio-inspired perspective. On the one
hand, to demonstrate that a class of P systems is presumably efficient it is enough to
give an efficient solution to a NP-complete problem. On the other hand, various
techniques have been developed to show that a class of such devices can only
efficiently solve problems from class P, such as the dependency graph technique,
where a directed graph based on the behavior of the system is created from its
definition and its resolution is characterized by the REACHABILITY problem 1; the
algorithmic technique, where an algorithm A working in polynomial time has as
input a recognizer P system Π and a multiset m and reproduces a computation
of Π + m 2; and the simulation technique, where a recognizer membrane system
is simulated by means of another kind. By this, if Π is a recognizer P system
that can solve efficiently problems from the complexity class C, and Π ′ is another
kind of recognizer P system, usually with less “ingredients” than the former, if Π ′

can simulate Π, then Π ′ can solve problems from class C. In this work, we use
the algorithmic technique to prove that a certain type of P systems cannot solve
NP-complete problems (unless, of course, P = NP).

The paper is organized as follows: first of all, in order to make this work self-
contained, we introduce some preliminary concepts. Section 3 is devoted to in-
troduce P systems with proteins on membranes. In Section 4, a solution to the
open problem from [18] is given, using the algorithmic technique for this purpose.
Finally, some conclusions and future research lines are given.

2 Preliminaries

Here, we introduce some concepts that are going to be used through the work.

2.1 Alphabets and multisets

An alphabet Γ is a non-empty set and its elements are called symbols. A string u
over Γ is an ordered finite sequence of symbols, that is, a mapping from a natural

1 It is a problem from class P, so its solution can be found in polynomial time.
2 Let us recall that a recognizer P system with a given input is confluent, that is, all its
computations return the same answer, so it is enough to reproduce one of them. For
a formal definition of recognizer membrane systems we refer to [15, 14]

Limits on P Systems with Proteins and Without Division 125

number n ∈ N onto Γ . The number n is called the length of the string u and it is
denoted by |u|. The empty string (with length 0) is denoted by λ. The set of all
strings over an alphabet Γ is denoted by Γ ∗. A language over Γ is a subset of Γ ∗.

A multiset over an alphabet Γ is an ordered pair (Γ, f) where f is a mapping
from Γ onto the set of natural numbers N. The support of a multiset m = (Γ, f) is
defined as supp(m) = {x ∈ Γ | f(x) > 0}. A multiset is finite (respectively, empty)
if its support is a finite (respectively, empty) set. We denote by ∅ the empty
multiset. Let m1 = (Γ, f1), m2 = (Γ, f2) be multisets over Γ , then the union of m1

and m2, denoted by m1 +m2, is the multiset (Γ, g), where g(x) = f1(x) + f2(x)
for each x ∈ Γ . We denote by Mf (Γ) the set of all multisets over Γ .

2.2 Graphs and trees

Let us recall some notions related with graph theory (see [6] for details). An
undirected graph is an ordered pair (V,E) where V is a set whose elements are
called nodes or vertices and E = {{x, y} | x ∈ V, y ∈ V, x ̸= y} whose elements
are called edges. A path of length k ≥ 1 from a node u to a node v in a graph
(V,E) is a finite sequence (x0, x1, . . . , xk) of nodes such that x0 = u, xk = v and
{xi, xi+1} ∈ E. If k ≥ 2 and x0 = xk then we say that the path is a cycle of
the graph. A graph with no cycle is said to be acyclic. An undirected graph is
connected if there exist paths between every pair of nodes.

A rooted tree is a a connected, acyclic, undirected graph in which one of the
vertices (called the root of the tree) is distinguished from the others. Given a node
x (different from the root), if the last edge on the (unique) path from the root of
the tree to the node x is {x, y} (in this case, x ̸= y), then y is the parent of node
x and x is a child of node y. The root is the only node in the tree with no parent.
A node with no children is called a leaf.

3 P systems with Proteins on Membranes

The inspiration comes from the biochemistry of living cells, where proteins take
part regulating which reactions occur depending on whether certain proteins are
present or not [1]. P systems with proteins on membranes, first introduced in [11],
have been demonstrated to be universal devices [4], as well as able to solve com-
putationally hard problems. In fact, in [17], a uniform solution to QSAT is given
by means of a family of P systems with proteins on membranes and membrane
division. Here, we define the syntax and semantics of these systems by adding
the necessary elements to introduce cell separation as a method to create an ex-
ponential workspace in terms of cells, as it has been used in other variants of
P systems [9, 20].

126 D. Orellana-Mart́ın et al.

3.1 Syntax

Definition 1. A P system with proteins on membranes and membrane division of
degree q ≥ 1 is a tuple

Π = (Γ, Γ0, Γ1, P, P0, P1, E , µ,M1/Z1, . . . ,Mq/Zq,R1, . . . ,Rq, iout)

where:

• Γ and P are finite multisets with Γ ∩ P = ∅, and E ⊆ Γ \ P ;
• {Γ0, Γ1} is a partition of the set Γ , where Γ0 ∪Γ1 = Γ , Γ0 ∩Γ1 = ∅ and Γ0, Γ1

are non-empty sets if separation rules are used, Γ0 = Γ1 = ∅ otherwise;
• {P0, P1} is a partition of the set P , where P0∪P1 = P , P0∩P1 = ∅ and P0, P1

are non-empty sets if separation rules are used, P0 = P1 = ∅ otherwise;
• µ is a rooted tree;
• M1, . . . ,Mq are multisets over Γ ;
• Z1, . . . ,Zq are multisets over P ;
• R1, . . . ,Rq are finite sets of rules associated with the nodes of the graph of the

following forms:
(1) [p | a]i → [p′ | b]i, p, p′ ∈ P, a, b ∈ Γ, 1 ≤ i ≤ q (in-membrane object evolu-

tion rules);
(2) a [p |]i → b [p′ |]i, p, p′ ∈ P, a, b ∈ Γ, 1 ≤ i ≤ q (out-membrane object

evolution rules);
(3) [p | a]i → b [p′ |]i, p, p′ ∈ P, a, b ∈ Γ, 1 ≤ i ≤ q (send-out communication

rules);
(4) a [p |]i → [p′ | b]i, p, p′ ∈ P, a, b ∈ Γ, 1 ≤ i ≤ q (send-in communication

rules);
(5) a [p | b]i → c [p′ | d]i, p, p′ ∈ P, a, b, c, d ∈ Γ, 1 ≤ i ≤ q (antiport communica-

tion rules);
(6p) [p |]i → [p′ |]i[p′′ |]i, p, p′, p′′ ∈ P, 1 ≤ i ≤ q, i ̸= iout (protein-based divi-

sion rules)
(6o) [| a]i → [| b]i[| c]i, a, b, c ∈ Γ, 1 ≤ i ≤ q, i ̸= iout (object-based division

rules)
(6′p) [p |]i → [p′ |]i[p′′ |]i, p, p′, p′′ ∈ P, 1 ≤ i ≤ q, i ̸= iout (protein-based divi-

sion rules)
(6′o) [| a]i → [| b]i[| c]i, a, b, c ∈ Γ, 1 ≤ i ≤ q, i ̸= iout (object-based division

rules)
• iout = 0 is the output membrane.

A P system with proteins on membranes and membrane division (respectively,
membrane separation) of degree q ≥ 1,

Π = (Γ, Γ0, Γ1, P, P0, P1, E , µ,M1/Z1, . . . ,Mq/Zq,R1, . . . ,Rq, iout)
3,

3 Let us note that Γ0, Γ1, P0 and P1 are usually ommited when separation rules are not
used

Limits on P Systems with Proteins and Without Division 127

can be viewed as a set of q membranes, labelled by 1, . . . , q arranged in a hierar-
chical structure µ given by a rooted tree whose root is called the skin membrane,
such that: (a) M1, . . . ,Mq represent the multisets of objects initially placed in
the q membranes of the system; (b) Z1, . . . ,Zq represent the multisets of pro-
teins initially placed in the q membranes of the system; (c) E is the set of objects
initially located in the environment of the system, all of them available in an ar-
bitrary number of copies; and (d) iout represent a distinguished region which will
encode the output of the system. We use the term region i (0 ≤ i ≤ q) to refer
to membrane i in the case 1 ≤ i ≤ q and to refer to the environment in the case
i = 0.

A configuration at any instant of such kind of P system is described by
the membrane structure of the system, the multisets of objects in each mem-
brane, the multisets of proteins in each membrane and the multiset of ob-
jects over Γ \ E in the environment at the moment. The initial configura-
tion of Π = (Γ, Γ0, Γ1, P, P0, P1, E , µ,M1/Z1, . . . ,Mq/Zq,R1, . . . ,Rq, iout) is
(µ,M1/Z1, . . . ,Mq/Zq; ∅).

3.2 Semantics

An in-membrane object evolution rule [p | a]i → [p′ | b]i ∈ Ri is applicable at a
configuration Ct at an instant t if there is a region i from Ct which contains the
object a and the protein p. By applying such rule, object a and protein p in region
i from Ct are consumed and object b and protein p′ are generated in region i from
Ct+1.

An out-membrane object evolution rule a [p |]i → b [p′ |]i ∈ Ri is applicable at
a configuration Ct at an instant t if there is a region p(i) from Ct which contains
the object a and a region i from Ct which contains the protein p. By applying such
rule, object a in region p(i) and protein p in region i from Ct are consumed and
object b is generated in region p(i) and protein p′ is generated in region i from
Ct+1.

A send-out communication rule [p | a]i → b [p′ |]i ∈ Ri is applicable at a con-
figuration Ct at an instant t if there is a region i from Ct which contains the object
a and the protein p. By applying such rule, object a and protein p in region i
from Ct are consumed and object b is generated in region p(i) and protein p′ is
generated in region i from Ct+1.

A send-in communication rule a [p |]i → [p′ | b]i ∈ Ri is applicable at a con-
figuration Ct at an instant t if there is a region p(i) from Ct which contains the
object a and a region i from Ct which contains the protein p. By applying such
rule, object a in region p(i) and protein p in region i from Ct are consumed and
object b and protein p′ are generated in region i from Ct+1.

An antiport communication rule a [p | b]i → c [p′ | d]i ∈ Ri is applicable at a
configuration Ct at an instant t if there is a region p(i) from Ct which contains the
object a and a region i from Ct which contains the object b and the protein p. By
applying such rule, object a in region p(i) and object b and protein p in region i

128 D. Orellana-Mart́ın et al.

from Ct are consumed and object c is generated in region p(i) and object d and
protein p′ are generated in region i from Ct+1.

A protein-based division rule [p |]i → [p′ |]i[p′′ |]i ∈ Ri is applicable at a con-
figuration Ct at an instant t if there is a region i from Ct which contains the protein
p. By applying such rule, protein p in region i from Ct is consumed, two new mem-
branes with label i are generated at configuration Ct+1 and objects and proteins
from the original membrane are duplicated in both new membranes, except pro-
tein p that evolves in a protein p′ that goes to one of the new membranes, and a
protein p′′ that goes to the other one.

An object-based division rule [| a]i → [| b]i[| c]i ∈ Ri is applicable at a config-
uration Ct at an instant t if there is a region i from Ct which contains the object
a. By applying such rule, object a in region i from Ct is consumed, two new mem-
branes with label i are generated at configuration Ct+1 and objects and proteins
from the original membrane are duplicated in both new membranes, except object
a that evolves in an object b that goes to one of the new membranes, and an object
c that goes to the other one.

A protein-based separation rule [p |]i → [P0 |Γ0]i[P1 |Γ1]i ∈ Ri is applicable
at a configuration Ct at an instant t if there is a region i from Ct which contains
the protein p. By applying such rule, protein p in region i from Ct is consumed,
two new membranes with label i are generated at configuration Ct+1 and objects
and proteins from the original membrane are distributed in both new membranes,
proteins in P0 and objects in Γ0 go to one of the new membranes and proteins in
P1 and objects in Γ1 go to the other one.

An object-based separation rule [| a]i → [P0 |Γ0]i[P1 |Γ1]i ∈ Ri is applicable
at a configuration Ct at an instant t if there is a region i from Ct which contains
the object a. By applying such rule, object a in region i from Ct is consumed,
two new membranes with label i are generated at configuration Ct+1 and objects
and proteins from the original membrane are distributed in both new membranes,
proteins in P0 and objects in Γ0 go to one of the new membranes and proteins in
P1 and objects in Γ1 go to the other one.

It makes no sense in this kind of systems to define the concept length, because
all the rules have a fixed amount of objects involved in them.

The rules of these systems are applied in a maximally parallel manner, and
we have the restriction that when a membrane i is divided or separated at one
transition step, then no other rules can be applied for that membrane i at that
step.

A transition from a configuration Ct to another configuration Ct+1 is obtained
by applying rules in a maximally parallel manner following the previous remarks.
A computation of the system is a (finite or infinite) sequence of transitions starting
from the initial configuration, where any term of the sequence other than the first,
is obtained from the previous configuration in one transition step, and it is denoted
by Ct ⇒Π Ct+1. If the sequence is finite (called halting computation) then the last
term of the sequence is a halting configuration, that is, a configuration where
no rule is applicable to it. A computation gives a result only when an halting

Limits on P Systems with Proteins and Without Division 129

configuration is reached, and that result is encoded by the multiset of objects
present in the output region iout. A natural framework to solve decision problems
is to use recognizer P systems.

Definition 2. A recognizer P system with proteins on membranes and membrane
division/separation of degree q ≥ 1 is a tuple

Π = (Γ, Γ0, Γ1, P, P0, P1, Σ, E , µ,M1/Z1, . . . ,Mq/Zq,R1, . . . ,Rq, iin, iout)

where:

• The tuple Π = (Γ, Γ0, Γ1, P, P0, P1, E , µ,M1/Z1, . . . ,Mq/Zq,R1, . . . ,Rq, iout)
is a P system with proteins on membranes and membrane division/separation
of degree q ≥ 1, where Γ strictly contains an (input) alphabet Σ and two
distinguished objects yes and no, andMi (1 ≤ i ≤ q) are multisets over Γ \Σ;

• iin ∈ {1, . . . , q} is the input membrane and iout is the label of the environment;
• for each multiset m over the input alphabet Σ, any computation of the system

Π with input m starts from the configuration (M1, . . . ,Miin +m, . . . ,Mq; ∅),
always halts and either object yes ir object no (but not both) must appear in
the environment at the last step.

Next, we define the concept of solving a problem in a uniform way and in
polynomial time by a family of recognizer P systems with proteins on membranes
and membrane division/separation.

Definition 3. A decision problem X = (IX , θX) is solvable in a uniform way
and in polynomial time by a family Π = {Π(n)|n ∈ N} of recognizer P systems
with proteins on membranes and membrane division/separation. if the following
conditions hold:

• the family Π is polynomially uniform by Turing machines;
• there exists a polynomial encoding (cod, s) of IX such that: (a) for each instance

u ∈ IX , s(u) is a natural number and cod(u) is an input multiset of the system
Π(s(u)); (b) for each n ∈ N, s−1(n) is a finite set; and (c) the family Π is
polynomially bounded, sound and complete with regard to (X, cod, s).

4 Limits of P systems with proteins on membranes when
division rules are not allowed

In [18], an open problem in this framework is given:
Open Problem 5: What is the computational power of families of these P sys-

tems without membrane division? Do they characterize the class P, and what hap-
pens under various restrictions on the form of the rules?

Here, we obtain a stronger result dealing with P systems with proteins on
membranes and membrane separation.

130 D. Orellana-Mart́ın et al.

4.1 Representation of P systems with proteins on membranes and
membrane separation

Let Π = (Γ, Γ0, Γ1, P, P0, P1, Σ, E , µ,M1/Z1, . . . ,Mq/Zq,R1, . . . ,Rq, iin, iout) be
a recognizer P system with proteins on membranes and membrane separation. We
denote by RE (resp., RS) the set of evolution and communication rules (resp.,
separation rules) of Π. We will fix a total order in RE and a total order in RS .
Because several membranes with the same label are generated by using separa-
tion rules, in order to identify the different membranes with the same label, the
following recursive definition is used to modify the labels of the new generated
membranes:

• We denote the label of a membrane as a pair (i, σ), where 1 ≤ i ≤ q and
σ ∈ {0, 1}∗ is a binary string.

• If a separation rule is applied to a membrane with label (i, σ), then the new
created membranes will be labelled by (i, σ0) and (i, σ1), respectively. We men-
tion that for the system during any computation, we consider a lexicographical
order over the set of labels of membranes.

Note that if evolution or communication rules occur between membranes, the
labels of these do not change.

A configuration at an instant t of such kind of P system is described by the
multisets of objects over Γ contained in each membrane and the multiset of objects
over Γ \ E in the environment. Hence, a configuration of Π can be described as
follows:

{(a, i, σ) | a ∈ Γ ∪ {λ}, 1 ≤ i ≤ q, σ ∈ {0, 1}∗} ∪ {(a, 0) | a ∈ Γ \ E}

We use LHS and RHS to refer to the left-hand side and the right-hand side
of a rule. They are defined in a natural way according to the definition of a rule:

• [p | a]i → [p′ | b]i ∈ Ri, with p, p′ ∈ P and a, b ∈ Γ . Then, we denote
by n · LHS(r, (i, σi)) = (p, i, σi)

n(a, i, σi)
n, and by n · RHS(r, (i, σi)) =

(p′, i, σi)
n(b, i, σi)

n.
• r ≡ a [p |]i → b [p′ |]i ∈ Ri, with p, p′ ∈ P and a, b ∈ Γ . Then, we de-

note by n · LHS(r, (i, σi)) = (p, i, σi)
n(a, j, σj)

n, and by n · RHS(r, (i, σi)) =
(p′, i, σi)

n(b, j, σj)
n, where (j, σj) is the parent membrane of the membrane

(i, σi).
• r ≡ [p | a]i → b [p′ |]i ∈ Ri, with p, p′ ∈ P and a, b ∈ Γ . Then, we de-

note by n · LHS(r, (i, σi)) = (p, i, σi)
n(a, i, σi)

n, and by n · RHS(r, (i, σi)) =
(p′, i, σi)

n(b, j, σj)
n, where (j, σj) is the parent membrane of the membrane

(i, σi).
• r ≡ a [p |]i → [p′ | b]i ∈ Ri, with p, p′ ∈ P and a, b ∈ Γ . Then, we de-

note by n · LHS(r, (i, σi)) = (p, i, σi)
n(a, j, σj)

n, and by n · RHS(r, (i, σi)) =
(p′, i, σi)

n(b, i, σi)
n, where (j, σj) is the parent membrane of the membrane

(i, σi).

Limits on P Systems with Proteins and Without Division 131

• r ≡ a [p | b]i → c [p′ | d]i ∈ Ri, with p, p′ ∈ P and a, b, c, d ∈ Γ . Then,
we denote by n · LHS(r, (i, σi)) = (p, i, σi)

n(a, j, σj)
n(b, i, σi)

n, and by n ·
RHS(r, (i, σi)) = (p′, i, σi)

n(c, j, σj)
n(d, i, σi)

n, where (j, σj) is the parent
membrane of the membrane (i, σi).

• r ≡ [p |]i → [P0 |Γ0]i[P1 |Γ1]i ∈ Ri, with p ∈ P . Then, we denote by
LHS(r, (i, σi)) = (p, i, σi).

• r ≡ [| a]i → [P0 |Γ0]i[P1 |Γ1]i ∈ Ri, with a ∈ Γ . Then, we denote by
LHS(r, (i, σi)) = (a, i, σi).

If Ct is a configuration of Π, then the multiset obtained by replacing in Ct every
occurrence of (x, i, σ) by (x, i, σ′) is denoted by Ct + {(x, i, σ)/σ′}. Moreover, we
denote by Ct+m (resp., Ct \m) a multiset m of labelled objects addition to (resp.,
removal from) the configuration Ct.

Next, we show that P systems with proteins on membranes and membrane
separation can only solve tractable problems.

If C = (C0, C1, . . . , Cn) is a halting computation, then we denote by |C| =
n + 1 the length of C. For each i (1 ≤ i ≤ q), the multiset of objects over Γ
contained in all membranes labelled by i at configuration Ct is denoted by Ct,o(i),
and the multiset of proteins over P contained in all membranes labelled by i at
configuration Ct by Ct,p(i). We denote by Ct(0) the multiset of objects over Γ \ E
contained in the environment at configuration Ct. We define in a natural way
C∗t,o = Ct(0) + Ct,o(1) + · · ·+ Ct,o(q) and C∗t,p = Ct,p(1) + · · ·+ Ct,p(q). Finally, the
finite multiset Ct(0)+Ct,o(1)+Ct,p(1)+ · · ·+Ct,o(q)+Ct,p(q) = C∗t,o+C∗t,p is denoted
by C∗t .

Lemma 1. Let Π be a recognizer P system with proteins on membranes and
membrane separation. Let M = |M1 + · · · +Mq|, Z = |Z1 + · · · + Zq| and let
C = (C0, . . . , Cn) be a computation of Π. Then, we have

1. |C∗0 | = M + Z = S, and for each t, 0 ≤ t ≤ n− 1, |C∗t+1| ≤ |C∗t |+ Z;
2. for each t, 0 ≤ t ≤ n, |C∗t | ≤ S + t · Z; and
3. the number of created membranes along the computation C by the application

of membrane separation rules is bounded by 2M + (2 + n)Z.

Proof. (1) Let us notice that |C∗0 | = |C0(0)+C0(1)+· · ·+C0(q)| = |M1+· · ·+Mq|+
|Z1 + · · · + Zq| = M + Z = S. Let Π be a recognizer P system with proteins on
membranes and membrane separation, R1, . . . ,Rq be the sets of rules associated
with Π, which contains the following types of communication rules:

• [p | a]i → [p′ | b]i ∈ Ri, p, p
′ ∈ P, a, b ∈ Γ, 1 ≤ i ≤ q.

• a [p |]i → b [p′ |]i ∈ Ri, p, p
′ ∈ P, a, b ∈ Γ, 1 ≤ i ≤ q.

• [p | a]i → b [p′ |]i ∈ Ri, p, p
′ ∈ P, a, b ∈ Γ, 1 ≤ i ≤ q.

• a [p |]i → [p′ | b]i ∈ Ri, p, p
′ ∈ P, a, b ∈ Γ, 1 ≤ i ≤ q.

• a [p | b]i → c [p′ | d]i ∈ Ri, p, p
′ ∈ P, a, b, c, d ∈ Γ, 1 ≤ i ≤ q.

For each t, 0 ≤ t ≤ n−1, in the transition from configuration Ct to configuration
Ct+1, by using any rule, at least one object and one protein from Ct is consumed

132 D. Orellana-Mart́ın et al.

and at most one object and one protein is produced in Ct+1. Let us note that by
the use of out-membrane object evolution rules, send-in communication rules and
antiport communication rules, p ̸= p′ if i = iskin. If a ∈ E , then a new object is
created in the system. So the number of objects created in a single computation
step is bounded by Z, that is, the number of proteins present in the system in
configuration Ct. By means of separation rules, neither new objects nor proteins
are going to appear. Hence, in any transition step the number of objects in the
system is increased at most by Z new objects.

(2) By induction on t. Let us start analyzing the basic case t = 0. The result
is trivial because of |C∗0 | = S. By induction hypothesis, let us suppose the result
holds for t, 0 ≤ t ≤ n − 1. Then |C∗t+1| ≥ |C∗t | + Z, that is true because of (1),
and by induction hypothesis we know that |C∗t | ≤ S + t ·Z, so |C∗t+1| ≤ |C∗t |+Z ≤
S + t · Z + Z = S + (t+ 1) · Z. Hence, the result is also true for t+ 1.

(3) According to the fact that the application of a separation rule consumes
an object and produces two new cells, result (3) can be obtained from (2) easily,
since the maximum number of separation rules that can be performed in this kind
of systems comes defined by the initial multisets of elements. If new objects are
created as explained in (2), then at most n · Z new objects can be created in
n computation steps, therefore at most n · Z separation rules can be applied by
means of these objects. □

Next, a deterministic algorithm A working in polynomial time is presented,
which receives as input a P system with proteins on membranes and membrane
separation Π and an input multiset m of Π, in such manner that algorithm A
reproduces the behavior of a computation of Π +m. If the system Π is confluent,
then the algorithm A will provide the same answer of Π. We give the following
pseudocode of the algorithm A to describe the simulation process:

Input: A P system with proteins on membranes and membrane

separation Π and an input multiset m

Initialization phase: C0 is the initial configuration of Π +m

t← 0

while Ct is a non-halting configuration do

Selection phase: Input Ct, Output (C′t, A)

Execution phase: Input (C′t, A), Output Ct+1

t← t+ 1

end while

Output: yes if Π +m has an accepting computation, no otherwise

The algorithm A receives a recognizer P system with proteins on membranes
and membrane separation

Π = (Γ, Γ0, Γ1, P, P0, P1, µ,M1/Z1, . . . ,Mq/Zq, E ,R1, . . . ,Rq, iout),

Limits on P Systems with Proteins and Without Division 133

where m is an input multiset for this system. Let M = |M1 + · · · +Mq|, Z =
|Z1 + . . .Zq| and S = M + Z. Let any computation of Π perform at most p
transition steps, p ∈ N+. Hence, from Lemma 1, the number of membranes in the
system along any computation is bounded by 2M + (2 + n)Z.

A transition of a recognizer P system Π + m is performed in two phases:
selection phase and execution phase.
Selection phase.

Input: A configuration Ct of Π +m at an instant t

C′t ← Ct; A← ∅; B ← ∅
for r ∈ Ri ∧ r ∈ RC, according to the chosen order do

for each membrane (i, σi) of C′t according

to the lexicographical order do

nr ← maximum number of times that r is applicable to (i, σi)

if nr > 0 then

C′t ← C′t − nr · LHS(r, (i, σi))

A← A ∪ {(r, nr, (i, σi))}
B ← B ∪ {(i, σi)}

end if

end for

end for

for r ∈ Ri ∧ r ∈ RS, according to the chosen order do

for each (a, i, σi) according to the lexicographical order,

and such that (i, σi) ̸∈ B do

C′t ← C′t \ {(a, i, σi)}
A← A ∪ {(r, 1, (i, σi))}
B ← B ∪ {(i, σi)}

end for

end for

It is easy to check that this algorithm is deterministic and its running time is
polynomial in the size of Π because the number of cycles of the first main loop
for is of the order O(|R| · (M2 +Z2) · q2); and the number of cycles of the second
main loop for is of the order O(|R| · (M + Z) · q · (|Γ |+ |P |)).
Execution phase.

Input: The output (C′t, A) of the selection phase

for each (r, nr, (i, σi)) ∈ A, r ∈ RC do

C′t ← C′t + nr ·RHS(r, (r, σi))

end for

134 D. Orellana-Mart́ın et al.

for each (r, 1, (i, σi)) ∈ A, r ∈ RS do

C′t ← C′t + {(λ, i, σi)/σi0}
C′t ← C′t + {(λ, i, σi1)}

for each (x, i, σi) ∈ C′t according to the lexicographical order

do

if x ∈ Γ0 then

C′t ← C′t + {(x, i, σi)/σi0}
else

C′t ← C′t + {(x, i, σi)/σi1}
end if

end for

end for

Ct+1 ← C′t

This algorithm is deterministic and its running time is polynomial in the size
of Π because the number of cycles of the first main loop for is of the order
O(|R| · (M2 + Z2) · q2); and the number of cycles of the second main loop for is
of the order O(|R| · (M + Z) · q · (|Γ |+ |P |)).

Theorem 1. Only problems from class P can be solved efficiently by P systems
with proteins on membranes and membrane separation.

Proof. Because the complexity class of recognizer P systems with proteins on
membranes and membrane separation is closed under polynomial time reduc-
tion and non-empty, P is a subset of this class. In what follows, we show the
reverse inclusion. Let X a decision problem that can be solved efficiently by rec-
ognizer P systems with proteins on membranes and membrane separation and let
Π = {Π(n) | n ∈ N} be a family of these kinds of P systems solving X according
to Definition 3. Let (cod, s) be a polynomial encoding associated with that solu-
tion. If u ∈ IX is an instance of the problem X, then u will be processed by the
system Π(s(u)) + cod(u). We consider the following deterministic algorithm A′:

Input: An instance u of the problem X

Construct the system Π(s(u)) + cod(u)

Run algorithm A with input Π(s(u)) + cod(u)

Output: yes if Π(s(u)) + cod(u) has an accepting computation,

no otherwise

The algorithm A′ receives an instance u of the decision problem X = (IX , θX),
and working in a polynomial time. The following three assertions are equivalent:

• θX = 1, that is, the answer of problem X to instance u is affirmative.
• Every computation of Π(s(u)) + cod(u) is an accepting computation.
• The output of the algorithm A′ with input u is yes.

Limits on P Systems with Proteins and Without Division 135

Hence, X ∈ P. □

5 Conclusions and future work

In this work, P systems with proteins on membranes and separation rules have
been studied. While in [19] it has been shown that these systems can solve compu-
tationally hard problems using division rules, forbidding them takes from efficiency
to non-efficiency. Moreover, even if we add the power of creating an exponential
workspace in linear time by means of separation rules, it is shown by the algo-
rithmic technique that only problems of the class P can be solved efficiently with
this kind of systems. This result shows that an exponential workspace in terms of
membranes is not enough, but some kind of creation of an exponential workspace
of objects 4 is needed, thus a new borderline between efficiency and non-efficiency
has been defined.

There are some open problems noted in [18] regarding P systems with pro-
teins on membranes that have not been solved yet, so it seems an interesting
research line to work on in order to obtain new frontiers of efficiency. In fact,
in the Open Problem 4, the restriction of changing proteins while firing rules is
allowed. If not, another frontier of efficiency could be found there.

Acknowledgements

This work was supported by Project TIN2017-89842-P of the Ministerio de
Economı́a y Competitividad of Spain and by Grants No 61320106005 of the Na-
tional Natural Science Foundation of China.

References

1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter. Molecular Biology
of the Cell. (4th ed.), Garland Science, New York (2002).

2. A. Alhazov, R. Freund, and S. Ivanov. Extended spiking neural P systems with states.
Proceedings of the Fourteenth Brainstorming Week on Membrane Computing, Seville,
Spain, February 1 - 5, 2016. Report RGNC 01/2016, Fénix Editora, 2016, pp. 43–58.

3. J.M. Bahi, W. Bienia, N. Côté, C. Guyeux. Is protein folding problem really a NP-
complete one ? First investigations, 2013, arXiv:1306.1372.

4. R. Brijder, M. Cavaliere, A. Riscos-Núñez, G. Rozenberg, D. Sburlan, Membrane
systems with proteins embedded in membranes. Theoretical Computer Science, 404
(2008), Issues 12, 26–39

4 When division rules are permitted, new objects are created along with the membranes.

136 D. Orellana-Mart́ın et al.

5. M. Cardona, M.A. Colomer, M.J. Pérez-Jiménez, D. Sanuy, A. Margalida. Mod-
eling ecosystems using P systems: The bearded vulture, a case study. Membrane
Computing, 9th International Workshop, WMC 2008, Edinburgh, UK, July 28-31,
2008, Revised Selected and Invited Papers. Lecture Notes in Computer Science, 5391
(2009), 137-156.

6. T.H. Cormen, C.E. Leiserson, R.L. Rivest. An Introduction to Algorithms. The MIT
Press, Cambridge, Massachusetts, 1994.

7. P. Frisco, M. Gheorghe, M. J. Pérez-Jiménez. Applications of Membrane Computing
in Systems and Synthetic Biology. Emergence, Complexity and Computation (Series
ISSN 2194-7287), Volume 7. Springer International Publishing, eBook ISBN 978-
3-319-03191-0, Hardcover ISBN 978-3-319-03190-3, 2014, XVII + 266 pages (doi:
10.1007/978-3-319-03191-0).

8. M.Á. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, F.J. Romero-
Campero. Characterizing tractability by cell-like membrane systems. Formal models,
languages and applications, World Scientific, Series in Machine Perception and Arti-
ficial Intelligence 66 (2006), chapter 9, pp. 137-154.

9. L. Pan, T.-O. Ishdorj. P systems with active membranes and separation rules. Journal
of Universal Computer Science, 10, 5, (2004), 630649.

10. L. Pan, Gh. Păun, M. J. Pérez-Jiménez, T. Song. Bio-inspired Computing: Theo-
ries and Applications. Communications in Computer and Information Science (Se-
ries ISSN 1865-0929), Volume 472, Springer-Verlag Berlin Heidelberg, Print ISBN
978-3-662-45048-2, Online ISBN 978-3-662-45049-9, 2014, XX + 672 pages (doi:
10.1007/978-3-662-45049-9).

11. A. Păun, B. Popa. P Systems with Proteins on Membranes and Membrane Division.
Developments in Language Theory, DLT 2006. Lecture Notes in Computer Science,
vol 4036. Springer, Berlin, Heidelberg, 292-303.

12. Gh. Păun. Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143, and Turku Center for CS-TUCS Report No. 208, 1998

13. H. Peng, J. Wang, J. Ming, P. Shi, M.J. Pérez-Jiménez, W. Yu, Ch. Tao. Fault
diagnosis of power systems using intuitionistic fuzzy spiking neural P systems. IEEE
Transactions on Smart Grid, in press (2017) (doi: 10.1109/TSG.2017.2670602).

14. M.J. Pérez-Jiménez, A. Riscos, A. Romero, D. Woods. Complexity: Membrane divi-
sion, membrane creation. In Gh. Păun, G. Rozenberg, A. Salomaa (eds.) The Oxford
Handbook of Membrane Computing, Oxford University Press, Oxford (U.K.), 2009,
Chapter 12, pp. 302-336.

15. M.J. Pérez-Jiménez, Á. Romero-Jiménez, F. Sancho-Caparrini. Complexity classes
in models of cellular computing with membranes. Natural Computing, 2, 3 (2003),
265–285 (doi: 10.1023/A:1025449224520).

16. F.J. Romero-Campero, M.J. Pérez-Jiménez. A model of the Quorum Sensing Sys-
tem in Vibrio Fischeri using P systems. Artificial Life, 14, 1 (2008), 95-109 (doi:
10.1162/artl.2008.14.1.95).

17. B. Song, M.J. Pérez-Jiménez, L. Pan. An efficient time-free solution to QSAT problem
using P systems with proteins on membranes. Information and Computation, 256
(2017), 287–299.

18. P. Sośık. Attacking Hard Problems beyond NP: A Survey. Bulletin of the Interna-
tional Membrane Computing Society, 4, 89–106.

19. P. Sośık, A. Păun, A. Rodŕıguez-Patón. P systems with proteins on membranes
characterize PSPACE. Theoretical Computer Science, 488 (2013), 78–95.

Limits on P Systems with Proteins and Without Division 137

20. L. Valencia-Cabrera, B. Song, L.F. Maćıas-Ramos, L. Pan, A. Riscos-Núñez, M.J.
Pérez-Jiménez. Computational Efficiency of P Systems with Symport/Antiport Rules
and Membrane Separation. Proceedings of the Thirteenth Brainstorming Week on
Membrane Computing, Seville, Spain, February 2 - 6, 2015. Report RGNC 01/2015,
Fénix Editora, 2015, pp. 325–370.

21. G. Zhang, M. J. Pérez-Jiménez, M. Gheorghe. Real-life applications with Membrane
Computing. Emergence, Complexity and Computation (Series ISSN 2194-7287), Vol-
ume 25. Springer International Publishing, Online ISBN 978-3-319-55989-6, Print
ISBN 978-3-319-55987-2, 2017, X + 367 pages (doi: 10.1007/978-3-319-55989-6).

