
Characterizing PSPACE with Shallow
Non-Confluent P Systems

Alberto Leporati, Luca Manzoni, Giancarlo Mauri, Antonio E. Porreca, and
Claudio Zandron

Dipartimento di informatica, Sistemistica e Comunicazione
Universit degli Studi di Milano-Bicocca,
Viale Sarca 336, 20126, Milan, Italy
{leporati, luca.manzoni, mauri, porreca, zandron}@disco.unimib.it

Summary. In P systems with active membranes, the question of understanding the
power of non-confluence within a polynomial time bound is still an open problem. It is
known that, for shallow P systems, that is, with only one level of nesting, non-confluence
allows them to solve conjecturally harder problems than confluent P systems, thus reach-
ing PSPACE. Here we show that PSPACE is not only a bound, but actually an exact
characterization. Therefore, the power endowed by non-confluence to shallow P systems
is equal to the power gained by confluent P systems when non-elementary membrane
division and polynomial depth are allowed, thus suggesting a connection between the
roles of non-confluence and nesting depth.

1 Introduction

While families of confluent recognizer P systems with active membranes with
charges are known to characterize the complexity class PSPACE when working in
polynomial time [9, 10], their computational power when the nesting level is con-
strained to one (i.e., only one level of membranes inside the outermost membrane,
usually called shallow P systems) is reduced to the class P#P, which is conjec-
turally smaller [1]. While confluent P systems can make use of nondeterminism,
they are constrained in returning the same result for all computations starting
from the same initial configuration. However, by accepting when at least one com-
putation accepts, like nondeterministic Turing Machines (TM) traditionally do,
P systems can make use of the entire power of nondeterminism: uniform families
of non-confluent recognizer P systems with active membranes with charges can
solve PSPACE-complete problems even in the shallow case and even when send-
in rules are disallowed (i.e., for monodirectional systems) [4]. Here we show that, in
fact, PSPACE is a characterization of this kind of shallow non-confluent P systems
when they work in polynomial time. This result shows that the complex relation
between computational power, nesting depth, and monodirectionality present for



110 A. Leporati et al.

confluent P systems is absent in the non-confluent case. In particular, in the con-
fluent case, systems with no nesting characterize P [11] whereas, additional nesting
gives additional power [2] until reaching PSPACE when unlimited nesting is al-
lowed [9, 10]. In the monodirectional case even unlimited nesting cannot escape
PNP, which is conjecturally smaller [3]. Non-confluent systems, on the other hand,
characterize NP when there are no internal membranes [8], and immediately gain
the full power of PSPACE with only one level of nesting. Furthermore, at least
for shallow systems, this provides an exact characterization. It is therefore natu-
ral to ask what is the relation between the mechanisms that empower confluent
P systems and the full power of non-confluence. Are the former ones only a way
to simulate the latter?

2 Basic Notions

For an introduction to membrane computing and the related notions of formal
language theory, we refer the reader to The Oxford Handbook of Membrane Com-
puting [6]. Here we recall the formal definition of P systems with active membranes
using only elementary division rules.

Definition 1. A P system with active membranes with elementary division rules
of initial degree d ≥ 1 is a tuple

Π = (Γ,Λ, µ,wh1
, . . . , whd

, R)

where:

• Γ is an alphabet, i.e., a finite non-empty set of symbols, usually called objects;
• Λ is a finite set of labels for the membranes;
• µ is a membrane structure (i.e., a rooted unordered tree, usually represented

by nested brackets) consisting of d membranes labelled by elements of Λ in a
one-to-one way;

• wh1 , . . . , whd
, with h1, . . . , hd ∈ Λ, are multisets (finite sets whose elements

have a multiplicity) of objects in Γ , describing the initial contents of the d
regions of µ;

• R is a finite set of rules.

Each membrane possesses, besides its label and position in µ, another attribute
called electrical charge, which can be either neutral (0), positive (+) or negative (−)
and is always neutral before the beginning of the computation.

The rules in R are of the following types:

(a) Object evolution rules, of the form [a → w]αh
They can be applied inside a membrane labelled by h, having charge α and
containing an occurrence of the object a; the object a is rewritten into the
multiset w (i.e., a is removed from the multiset in h and replaced by the
objects in w).



Characterizing PSPACE with Shallow Non-Confluent P Systems 111

(b) Send-in communication rules, of the form a [ ]αh → [b]βh
They can be applied to a membrane labelled by h, having charge α and such
that the external region contains an occurrence of the object a; the object a is
sent into h becoming b and, simultaneously, the charge of h is changed to β.

(c) Send-out communication rules, of the form [a]αh → [ ]βh b
They can be applied to a membrane labelled by h, having charge α and con-
taining an occurrence of the object a; the object a is sent out from h to the
outside region becoming b and, simultaneously, the charge of h becomes β.

(e) Elementary division rules, of the form [a]αh → [b]βh [c]γh
They can be applied to a membrane labelled by h, having charge α, contain-
ing an occurrence of the object a but having no other membrane inside (an
elementary membrane); the membrane is divided into two membranes having
label h and charges β and γ; the object a is replaced, respectively, by b and c,
while the other objects of the multiset are replicated in both membranes.

The instantaneous configuration of a membrane of label h consists of its
charge α and the multiset w of objects it contains at a given time. It is denoted
by [w]αh . The (full) configuration C of a P system Π at a given time is a rooted,
unordered tree. The root is a node corresponding to the external environment
of Π, and has a single subtree corresponding to the current membrane structure
of Π. Furthermore, the root is labelled by the multiset located in the environ-
ment, and the remaining nodes by the configurations [w]αh of the corresponding
membranes. In the initial configuration of Π, the configurations of the membranes
are [wh1

]0h1
, . . . , [whd

]0hd
.

A P system is shallow if it contains at most one level of membranes inside
the outermost membrane. This means that all the membranes contained in the
outermost membrane are elementary, i.e., they contain no other nested membrane.

A computation step changes the current configuration according to the follow-
ing set of principles:

• Each object and membrane can be subject to at most one rule per step, except
for object evolution rules: inside each membrane, several evolution rules can
be applied simultaneously.

• The application of rules is maximally parallel : each object appearing on the
left-hand side of evolution, communication, or division rules must be subject
to exactly one of them (unless the current charge of the membrane prohibits
it). Analogously, each membrane can only be subject to one communication or
division rule (types (b)–(e)) per computation step; these rules will be called
blocking rules in the rest of the paper. In other words, the only objects and
membranes that do not evolve are those associated with no rule, or only to
rules that are not applicable due to the electrical charges.

• When several conflicting rules can be applied at the same time, a nondeter-
ministic choice is performed; this implies that, in general, multiple possible
configurations can be reached after a computation step.

• In each computation step, all the chosen rules are applied simultaneously (in an
atomic way). However, in order to clarify the operational semantics, each com-



112 A. Leporati et al.

putation step is conventionally described as a sequence of micro-steps whereby
each membrane evolves only after their internal configuration (including, re-
cursively, the configurations of the membrane substructures it contains) has
been updated. In particular, before a membrane division occurs, all chosen ob-
ject evolution rules must be applied inside it; this way, the objects that are
duplicated during the division are already the final ones.

• The outermost membrane cannot be divided, and any object sent out from it
cannot re-enter the system again.

A halting computation of the P system Π is a finite sequence C = (C0, . . . , Ck) of
configurations, where C0 is the initial configuration, every Ci+1 is reachable from Ci
via a single computation step, and no rules of Π are applicable in Ck. A non-
halting computation C = (Ci : i ∈ N) consists of infinitely many configurations,
again starting from the initial one and generated by successive computation steps,
where the applicable rules are never exhausted.

P systems can be used as language recognisers by employing two distinguished
objects yes and no: in this case we assume that all computations are halting, and
that either one copy of object yes or one of object no is sent out from the outermost
membrane, and only in the last computation step, in order to signal acceptance
or rejection, respectively. If all computations starting from the same initial con-
figuration are accepting, or all are rejecting, the P system is said to be confluent.
In this paper we deal, however, with non-confluent P systems, where multiple
computations can have different results and the overall result is established as for
nondeterministic TM: it is acceptance iff an accepting computation exists [7].

In order to solve decision problems (or, equivalently, decide languages) over
an alphabet Σ, we use families of recogniser P systems Π = {Πx : x ∈ Σ⋆}.
Each input x is associated with a P system Πx deciding the membership of x in
a language L ⊆ Σ⋆ by accepting or rejecting. The mapping x 7→ Πx must be
efficiently computable for inputs of any length, as discussed in detail in [5].

Definition 2. A family of P systems Π = {Πx : x ∈ Σ⋆} is (polynomial-time)
uniform if the mapping x 7→ Πx can be computed by two polynomial-time deter-
ministic Turing machines E and F as follows:

• F (1n) = Πn, where n is the length of the input x and Πn is a common P system
for all inputs of length n, with a distinguished input membrane.

• E(x) = wx, where wx is a multiset encoding the specific input x.
• Finally, Πx is simply Πn with wx added to its input membrane.

The family Π is said to be (polynomial-time) semi-uniform if there exists a sin-
gle deterministic polynomial-time Turing machine H such that H(x) = Πx for
each x ∈ Σ⋆.

Any explicit encoding of Πx is allowed as output of the construction, as long
as the number of membranes and objects represented by it does not exceed the
length of the whole description, and the rules are listed one by one. This restric-
tion is enforced in order to mimic a (hypothetical) realistic process of construction



Characterizing PSPACE with Shallow Non-Confluent P Systems 113

of the P systems, where membranes and objects are presumably placed in a con-
stant amount during each construction step, and require actual physical space
proportional to their number; see also [5] for further details on the encoding of
P systems.

In the following, we denote the class of problems solvable by polynomial-
time uniform or semi-uniform families of non-confluent shallow P systems with

active membranes with charges by NPMC
[⋆]
AM(depth-1,−d,−ne), where [⋆] denotes

optional semi-uniformity. If no restriction on the depth of the membrane structure
is present, but both non-elementary division and dissolution rules are forbidden,

then the corresponding class of problems is denoted by NPMC
[⋆]
AM(−d,−ne).

3 Nondeterministic Simulation with Oracles

Let Π be a semi-uniform family of non-confluent shallow recognizer P systems
with active membranes with charges, and let H be the TM of the semi-uniformity
condition of Π. We are going to define a machine M working in polynomial space
such that on inputH and x Turing machineM accepts iff the P systemH(x) = Πx

of Π accepts in polynomial time. Notice that a single machine M suffices for all
families of P systems. The machine associated with a specific familyΠ of P systems
can be obtained by “hard-coding” the input H to M .

First of all, on input H and x, machine M simulates machine H with x as
input to obtain a polynomial-size description of Πx. To simplify the description of
the procedure used by machine M to simulate Πx, we will assume M to work as
a nondeterministic polynomial-time TM with access to an oracle for a problem in
NPSPACE = PSPACE. As the following result shows, both this nondeterministic
behaviour and the oracle queries can still all be simulated using a polynomial-space
deterministic TM.

Proposition 1. NPNPSPACE = PSPACE.

Proof. Clearly NPNPSPACE ⊇ PSPACE, hence only the opposite inclusion needs
to be proved. Let N be a polynomial-time nondeterministic TM with access to an
oracle for a language L ∈ NPSPACE. Let D be a deterministic polynomial space
TM built in the following way:

• D simulates N until a query is performed. This simulation, including the non-
deterministic choices of N , can be performed in polynomial space by D, since
NP ⊆ PSPACE.

• Since L ∈ NPSPACE andNPSPACE = PSPACE, there exists a deterministic
polynomial space TM deciding L that can be simulated by D to answer any
query performed by N while still using only a polynomial amount of space.
Once a query has been answered, D can resume the simulation of N .

Since D can faithfully simulate N and its oracle queries, D can recognize the same
language as N , thus showing that NPNPSPACE ⊆ PSPACE, as desired. ⊓⊔



114 A. Leporati et al.

We can now describe how the simulation of Πx is carried on by M . In the
following, we assume that the size of the input x is n, and that each computation
of Πx requires at most T time steps before halting and producing a result. By
hypothesis T is polynomial with respect to n.

3.1 Simulation of the Outermost Membrane

The main idea of this construction is to simulate the evolution of the outermost
membrane directly by means of a nondeterministic polynomial-time TM. All inter-
actions with the internal membranes are performed via nondeterministic guesses.
That is, for each communication rule and for each time step, the number of rules
that are applied between the outermost and the inner membranes is guessed in
a nondeterministic way. If yes has been sent out by the simulation of the out-
ermost membrane, an oracle query is performed to check whether all performed
interactions with the inner membranes were consistent with this information, that
is, if a computation of the inner membranes able to perform the guessed interac-
tions actually exists. If the query returns a positive answer, then a computation of
the entire system actually producing yes exists. In any other case, the simulating
machine rejects (since either an invalid simulation of the outermost membrane –
and of the P system – was produced, or the simulation itself was correct but the
simulated computation was a rejecting one).

To perform this construction we build a table T indexed by pairs of the form
(r, t), where r ∈ R is either a send-in rule from the outermost membrane to one
of the internal membranes or a send-out rule from one of the internal membranes
to the outermost membrane, and t ∈ {0, . . . , T − 1} is a time step. The entry
T (r, t) represent the number of times rule r has been applied at the time step t.
It is important to notice that table T can be stored using a polynomial amount
of space. In fact, the number of entries is limited by the size of R (which, by
uniformity condition, is polynomial in the input size n), and by the number T of
time steps needed for the P system to halt. We only need to prove that each entry
T (r, t) can be stored in a polynomial amount of space.

Let m ∈ N be number of internal membranes in the initial configuration of
Πx. By the semantics of the rules of P systems, the number of objects sent in to
internal membranes or sent out from them after t time steps cannot be greater
than m × 2t, where the second multiplicative factor is the maximum number of
membranes per label that can be obtained by membrane division in t time steps.
Since this value is exponential in t, it can be represented by a polynomial number
of bits with respect to t ≤ T . Thus, each entry of T requires at most a polynomial
amount of space with respect to n. We denote the maximum value attainable by
an entry of T by K.

Apart from keeping track of the communication rules applied between the
outermost and the internal membranes, we also need to assure that all rules are
applied in a maximally parallel way. To do so, we define another table U indexed
by pairs of the form (a, t) where a ∈ Γ is an object type and t ∈ {0, . . . , T − 1} is,



Characterizing PSPACE with Shallow Non-Confluent P Systems 115

as before, a time step. The entry U(a, t) represents the number of objects of type
a in the outermost membrane that had no rule applied to them at time t. Table
U can, too, be stored in a polynomial amount of space.

The simulation procedure of the outermost membrane is detailed as Algo-
rithm 1. There, label h always indicates the outermost membrane and the label
k an internal membrane label, while |w|a denotes the number of instances of the
object a inside the multiset w. The applicability of a rule refers, in the algorithm,
to the fact that the indicated membrane must have the correct charge α and, if the
rule is blocking, that the membrane has not already been used by another blocking
rule in the same time step. For example, the condition on line 14 of Algorithm 1 is
never verified once another send-out rule has been simulated in a previous iteration
of the loop for the current time step.

Lines 1–3 perform the initialization of the algorithm, setting the initial content
and charge of the outermost membrane and declaring the environment initially
empty. The main simulation loop is performed in lines 4–29. Since the maximum
number of time steps needed for Πx to produce a result is T , the simulation loop
is repeated at most T times. If the loop ends without having produced either yes
on no in the environment while simultaneously halting, the simulation performed
did not correspond to any actual computation of Πx, thus a negative answer must
be produced (line 30).

Lines 5–7 deal with the send-in rules from the outermost membrane to the
inner membranes. Since the number of internal membranes where the rule r can
be applied is not known, the number is nondeterministically chosen and is bounded
by the maximum number of inner membranes and the number of objects of type a
in the outermost membrane (line 6). The guessed number of internal membranes
saved in table T and the effect of the rules on the multiset w is scheduled for
application (line 7). Notice that, since the state of the internal membranes is not
stored, this amounts to the removal of T (r, t) instances of objects of type a from
w.

Lines 8–10 deal with send-out rules from the internal membranes to the out-
ermost membrane. As before, since the configuration and number of the internal
membranes is not known, the number of times this rule is applied is nondeterminis-
tically guessed (line 9), saved in table T , and the appearance of the corresponding
objects of type b in w is scheduled (line 10).

Lines 11–13 perform the simulation of the evolution rules inside the outermost
membrane. Since the simulated system is non-confluent, the actual number of
applications of each rule is guessed (line 12) before the actual effect of the rule
applications are scheduled (line 13).

Lines 14–19 deal with the application of send-out rules from the outermost
membrane to the environment. First of all, a nondeterministic guess is performed
to decide whether the rule is actually applied (line 15). If so, then the actual effects
of the rules are scheduled for application (lines 16–19).

The table U is then updated to memorize the number of objects that were not
subjected to any rule (lines 20–21). This will be used during the query process



116 A. Leporati et al.

1 w ← initial multiset of the outermost membrane;
2 env← ∅;
3 charge← 0;
4 for t← 0 to T − 1 do

5 for all applicable r = a [ ]αk → [b]βk do
6 T (r, t)← guess (0, min(|w|a,K));
7 mark T (r, t) instances of a for removal from w;

8 for r = [a]αk → [ ]βk b do
9 T (r, t)← guess (0, K);

10 mark T (r, t) instances of b for insertion in w;

11 for all applicable r = [a→ u]αh do
12 m← guess (0, |w|a);
13 mark m copies of u for addition to w and m copies of a for removal;

14 for all applicable r = [a]αh → [ ]βh b do
15 m← guess (0, 1);
16 if m = 1 then
17 mark one copy of a for removal from w;
18 mark one copy of b for addition in env;
19 mark charge to be changed from α to β;

20 for a ∈ Γ do
21 U(a, t)← number of instances of a in w not marked;

22 Apply modifications to w, env, and charge according to the markings;
23 if rule application was not maximally parallel then
24 reject;

25 if yes or no has been sent out in the environment then
26 if query (T ,U , t) answer is positive and no further rules are applicable

in the next time step then
27 accept or reject accordingly;

28 else
29 reject;

30 reject;
Algorithm 1: The nondeterministic algorithm that performs the simulation
of the outermost membrane of Πx.

to ensure that the send-in rules from the outermost membrane to the internal
membranes were actually applied in a maximally parallel way.

All the scheduled modifications to the content and charge of the outermost
membrane and to the environment are now executed (line 22). If there are irrecon-
cilable problems in the maximally parallel application of the rules then a rejection
is performed (lines 23–24). This happens when there were objects in the outermost
membrane that were not selected to be sent-in into the internal membranes (this
can be checked by looking at table U), nor were they subject to applicable send-out
or evolution rules.

Finally, if either yes or no appears in the environment (lines 25–29) then it is
necessary to check whenever the guesses performed for the interaction with the



Characterizing PSPACE with Shallow Non-Confluent P Systems 117

internal membranes were accurate and no further rules are applicable in the next
time step in the outermost membrane (lines 26–29). If the answer to the query
is positive and no further rules were actually applicable, then the simulation can
either accept or reject accordingly (line 27). Otherwise, the simulation performed
did not correspond to any actual computation of Πx and we must reject (line 29).

Algorithm 1 can be executed in polynomial time by a nondeterministic TM
with access to an oracle to perform the query procedure. In fact, both the outer
loop and the inner loops are executed only a polynomial amount of times (either
bounded by the time needed for Πx to halt or by the number or rules in the
system). All other operations, including checking the applicability of rules, can be
performed in polynomial time given an efficient description of the configuration
of the outermost membrane (in which the number of objects is stored in binary).
Furthermore, all nondeterministic guesses are of a polynomial amount of bits.

3.2 Simulation of the Oracle

The query that is simulated by means of a nondeterministic machine working in
polynomial space is the following one:

Is there an halting computation of length t of the internal membranes
consistent with the rule applications guessed?

To be able to answer this query in nondeterministic polynomial space the main idea
is to simulate each membrane sequentially and keep track of the communication
rules that are applied while comparing them with the ones guessed by the simu-
lation of the outermost membrane. If division is applied then only the simulation
of one of the dividing membranes is immediately carried out (as performing them
all at the same time might require exponential – instead of polynomial – space)
while the other membrane is pushed into a stack, thus performing a depth-first
simulation of the membrane hierarchy. This ensures that a polynomial amount of
space suffices: it the space needed to simulate one membrane, plus a stack in which
the number of elements is at most T , one for each time step. This algorithm is
similar to the deterministic one presented in [10], although with an explicit stack
instead of a recursive definition, and the further difference that their algorithm
was able to work for unbounded-depth system. The actual algorithm implemented
to answer the query is presented in Algorithm 2.

Lines 1–3 perform the initial set-up, where a new stack S is filled with the
configuration of all internal membranes at the initial time step, i.e., t = 0. In
particular, for each membrane the multiset of objects contained, label, charge,
and time step of the simulation are all pushed as an single record into S.

In the main loop of lines 4–32 the simulation of all internal membranes is
performed one at a time. This loop is executed until the stack of membranes to be
simulated is not empty, which might require an exponential amount of time.

Once a new membrane to be simulated starting at time tpush has been extracted
(line 5) the simulation of the membrane proceeds up to time step t, which is given



118 A. Leporati et al.

1 S ← ∅ ;
2 for all internal membrane [w]αk in the initial configuration do
3 pushS (w, k, α, 0) ;

4 while S is not empty do
5 (w, k, charge, tpush)← pop S ;
6 for t′ ← tpush to t do

7 for r = [a]αk → [b]βk [c]γk applicable do
8 m← guess (0, 1);
9 if m = 1 then

10 mark a copy of a for removal, a copy of b for addition to w;
11 mark charge to be changed to β;

12 for r = a [ ]αk → [b]βk applicable do
13 m← guess (0, 1);
14 if m = 1 then
15 T (r, t′)← T (r, t′)− 1;
16 mark a copy of b for addition to w;
17 mark charge to be changed to β;

18 for r = [a]αk → [ ]βk b applicable do
19 m← guess (0, 1);
20 if m = 1 then
21 T (r, t′)← T (r, t′)− 1;
22 mark a copy of a for removal from w;
23 mark charge to be changed to β;

24 for r = [a→ u]αk applicable do
25 m← guess (0, |w|a);
26 mark m copies of a for removal, m copies of u for addition to w;

27 apply marked modifications to w and charge;
28 if rule application was not maximally parallel then
29 reject;

30 if division was applied, pushS (w − {b}+ {c}, k, γ, t′);
31 if the current membrane has further applicable rules then
32 reject;

33 if each entry of T is 0 then
34 accept;

35 else
36 reject;
Algorithm 2: The nondeterministic polynomial space algorithm simulating
the inner membranes of Πx.



Characterizing PSPACE with Shallow Non-Confluent P Systems 119

in input as part the query (loop of lines 6–30) and represents the time at which
the simulation of the outermost membrane has suspended in order to perform the
query.

In lines 7–11, for each applicable division rule, i.e., the correct object and
charge are present and the membrane has not already been used by a blocking
rule in this time step, a nondeterministic choice is performed (line 8) to decide
if the rule is actually applied. If so (lines 7–11), then the modifications described
by the first half of the right-hand-side of the rule are performed, while the other
membrane resulting from the division will be pushed on the stack S at the end
of the simulation of the current time step (line 30). This cannot be performed
earlier since the rewriting rules are applied, by the semantics of rule application
in P systems, before the division actually takes place.

The simulation of both send-in and send-out rules (lines 12–17 and lines 18–
23, respectively) is performed similarly. Since we are working in a situation of
non-confluence, even if a rule is applicable, in order to actually decide whether to
apply it, a nondeterministic guess is performed (line 13 and line 19, respectively).
In both cases the modifications to be performed to the membrane configuration
are scheduled for later execution (lines 16–17 and lines 22–23, respectively). Since
send-in and send-out are communication rules between the outermost membrane
and the internal membranes, each time one of them is applied the value of T (r, t′) is
decremented. If, at the end of the simulation, the number of guessed applications
and the real number of applications of the communication rules coincides, all
entries T (r, t′) should be 0 (at line 15 and line 21, respectively).

The application of evolution rules (lines 24–26), their effect being limited to
the internal state of the membrane, is simpler. As usual, which rules are actually
applied is determined by a nondeterministic choice (line 25).

Once all rule applications have been decided, the actual modifications to the
state of the membrane are applied (line 27) and, if the rule application was not
maximally parallel then the computation rejects (lines 28–29). This can be verified
by checking if there still exist objects inside the membrane with applicable rules
but no rule was applied to them, or if U(a, t′) is positive for some a ∈ Γ with
an applicable send-in rule to the currently simulated membrane. Since U(a, t′)
indicates the number of objects that were available for the application of send-in
from the outermost membrane but no internal membrane was available, such an
inconsistency would denote that the simulation of the internal membranes had no
correspondence to the already performed simulation of the outermost membrane.

If a division rule was applied, then the configuration of the second membrane
resulting from division is pushed to the stack S (line 30). Here, an instance of the
object b has been replaced by an instance of object c and the charge has been
changed from β to γ to obtain from the current membrane a copy corresponding
to the other one obtained by division.

Before proceeding with the simulation of another membrane, we check that
after t steps the computation in this membrane has actually halted (lines 31–32).
Otherwise the current computation must reject (line 32).



120 A. Leporati et al.

After the simulation of all internal membranes is finished, i.e., the stack was
emptied, a check on the entries of T is performed. If all and every communication
rule application guessed during the simulation of the outermost membrane was
actually executed then all entries of T should be 0. A positive (resp., negative)
value for T (r, t) denotes that less (resp., more) applications of rule r at time t were
performed than the number that was guessed.

If at least one accepting computation of the machine simulating the oracle
query exists then the answer to the query is positive. Furthermore, if there is
a way to “glue” the simulation of the outermost membrane and of the internal
membranes, then the result produced by Algorithm 1 was correct. Combining this
simulation with the inverse simulation presented in [4], we can then state the main
result of the paper.

Theorem 1. PSPACE = NPMC
[⋆]
AM(depth-1,−d,−ne). ⊓⊔

As long as no dissolution is allowed, the property of being elementary is a static
one and, if no non-elementary division is present, the simulation of the outermost
membrane can be extended to include all non-elementary membranes, allowing us
to state the following result.

Corollary 1. PSPACE = NPMC
[⋆]
AM(−d,−ne). ⊓⊔

4 Conclusions

We have shown that, differently from confluent P systems, monodirectionality and
a restriction on the depth of the system to 1 (or, equivalently, the absence of both
dissolution and non-elementary division) do not prevent non-confluent P systems
from reaching PSPACE in polynomial time. It remains open to establish if this
upper bound can be extended to membrane structures of higher (non-constant)
depth where non-elementary division is allowed. Since both monodirectionality
and nesting depth have a huge influence in the computational power of confluent
systems, it would be worthwhile to understand why they do not provide an anal-
ogous increase to non-confluent systems. These features are usually employed by
algorithms designed for confluent P systems to simulate the power of nondeter-
minism, so the question is: are they always useless when non-confluence is already
present?

References

1. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Simulating ele-
mentary active membranes, with an application to the P conjecture. In: Gheorghe,
M., Rozenberg, G., Sośık, P., Zandron, C. (eds.) Membrane Computing, 15th Inter-
national Conference, CMC 2014, Lecture Notes in Computer Science, vol. 8961, pp.
284–299. Springer (2014)



Characterizing PSPACE with Shallow Non-Confluent P Systems 121

2. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Membrane divi-
sion, oracles, and the counting hierarchy. Fundamenta Informaticae 138(1–2), 97–111
(2015)

3. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Monodirectional
P systems. Natural Computing 15(4), 551–564 (2016)

4. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Shallow non-
confluent P systems. In: Leporati, A., Rozenberg, G., Salomaa, A., Zandron, C. (eds.)
Membrane Computing, 17th International Conference, CMC 2016. Lecture Notes in
Computer Science, vol. 10105, pp. 307–316 (2017)

5. Murphy, N., Woods, D.: The computational power of membrane systems under tight
uniformity conditions. Natural Computing 10(1), 613–632 (2011)

6. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press (2010)

7. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity classes
in models of cellular computing with membranes. Natural Computing 2(3), 265–284
(2003)

8. Porreca, A.E., Mauri, G., Zandron, C.: Non-confluence in divisionless P systems with
active membranes. Theoretical Computer Science 411(6), 878–887 (2010)

9. Sośık, P.: The computational power of cell division in P systems: Beating down
parallel computers? Natural Computing 2(3), 287–298 (2003)

10. Sośık, P., Rodŕıguez-Patón, A.: Membrane computing and complexity theory: A char-
acterization of PSPACE. Journal of Computer and System Sciences 73(1), 137–152
(2007)

11. Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems using P systems
with active membranes. In: Antoniou, I., Calude, C.S., Dinneen, M.J. (eds.) Uncon-
ventional Models of Computation, UMC’2K, Proceedings of the Second International
Conference, pp. 289–301. Springer (2001)




