
Metabolic P System Flux Regulation by Artificial
Neural Networks

Alberto Castellini1, Vincenzo Manca1, Yasuhiro Suzuki2

1 Verona University, Dept. of Computer Science
Strada Le Grazie 15, 37134 Verona, Italy
{alberto.castellini, vincenzo.manca}@univr.it

2 Nagoya University, Dept. of Complex Systems Science
Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
ysuzuki@is.nagoya-u.ac.jp

Summary. Metabolic P systems are an extension of P systems employed for modeling
biochemical systems in a discrete and deterministic perspective. The generation of MP
models from observed data of biochemical system dynamics is a hard problem which
requires to solve several subproblems to be overcome. Among them, the flux tuners dis-
covery aims to identify substances and parameters involved in tuning reaction fluxes.
In this paper we propose a new technique for discovering flux tuners by using neural
networks. This methodology, based on backpropagation with weight elimination for neu-
ral network training and on an heuristic algorithm for computing tuning indexes, has
achieved encouraging results in a synthetic case study.

1 Introduction

Many kinds of models have been developed in order to provide new insight on chem-
ically reacting systems, among them, ordinary differential equations (ODE) [16, 35]
represent a milestone for continuous and deterministic modeling, while models
based on the Gillespie’s algorithm [13, 14] are widely used for discrete and stochas-
tic modeling. A key point in the development of new modeling frameworks seems to
be represented by the choice of the right abstraction level, since complex systems
usually show different characteristics when viewed from different “distances”. The
majority of models now available seem to be either very low level (too detailed), or
very high level (too coarse grain), while many biological systems seem to require
an intermediate level of abstraction. The executable biology approach [10] suggests
to employ computational models, namely, a new class of models that mimic natural
phenomena by executing algorithm instructions, rather than using computer power
to analyze mathematical relationships among the elements of biological systems.

Rewriting systems, in their basic form, consist of a set of terms and a set of
rewriting rules stating how terms can be transformed. Many extensions of these

170 A. Castellini, V. Manca, Y. Suzuki

systems have been applied to biological modeling, such as the well known L sys-
tems [19], developed in 1968 by the Hungarian theoretical biologist and botanist
Lindenmayer to provide a formal description of the growth patterns of various
types of algae. P systems [28, 29, 30], from the name of G. Păun who devised
them in 1998, represent a novel computational model originated from the combi-
nation of multisets rewriting systems and membrane compartmentalization. This
approach lends itself to be used as a computational model for biological systems,
wherein multisets of objects represent chemical elements, while rewriting rules
and rewriting application strategies represent a kind of algorithm to be executed
in order to mimic the phenomenon under investigation.

Several extensions of P systems have been developed so far [9, 32], some of
them also coping with biological systems modeling [25, 27, 33, 34]. In particular,
metabolic P systems, or MP systems, suggest a deterministic strategy, based on
the generalization of chemical laws, for computing the amount of objects moved
by rules at each computational step [20, 21, 23, 24, 25]. Equivalences between
MP systems and, respectively, autonomous ODE [11] and Hybrid Functional Petri
nets [5, 6] have been recently proved, and several biological processes have been
modeled by means of MP systems, such as the Lotka-Volterra dynamics [25], the
mitotic cycles in early amphibian embryos [24] and the lac operon gene regulatory
mechanism in glycolytic pathway [5]. These case studies show that, being intrinsi-
cally time-discrete and based on multiset rewriting, MP models are able to give a
different viewpoint on biological processes respect to traditional ODE models. A
software called MetaPlab has been also proposed [8, 26] which enables the user to
generate MP models by means of some useful graphical tools, and then to simu-
late their dynamics, to automatically estimate regulation functions and to perform
many other tasks.

An MP system involves i) a set of substances, ii) a set of parameters (e.g.,
temperature, pH, etc.) and iii) a set of reactions each equipped with a corre-
sponding flux regulation function. Such functions compute reaction fluxes, namely
the amount of substances transformed by each reaction given a specific state of
the system.

A crucial problem of MP model designing concerns the synthesis of flux regu-
lation functions from observed time evolutions. In particular, the question is the
following: “Given the time-series of substance concentrations and parameter val-
ues of a process observed every time interval τ , and given the stoichiometry of the
system under investigation, which are the flux regulation functions that make an
MP model evolve with the observed dynamics?” The log-gain theory [20, 21, 22]
supports the first step of the regulation function synthesis by enabling to deduce
the time-series of flux values from the time-series of substances and parameters
of an observed dynamics. Once flux time-series have been generated, the discov-
ery of functions that compute these fluxes can be accomplished by techniques of
mathematical regression.

In [7] a new approach is proposed to the synthesis of MP regulation functions re-
lying on artificial neural networks (ANNs) as universal function approximators [3],

Metabolic P System Flux Regulation by Artificial Neural Networks 171

and employing both traditional and evolutionary algorithms [4] for learning these
networks. Moreover, a plug-in tool for MetaPlab has been implemented to auto-
mate the learning stage. Here we extend this approach with a technique for weight
elimination in ANNs [3, 36] and an algorithm for identifying flux “tuners”, namely,
the set of substances and parameters actually involved in the regulation of each
flux. In the next section we formally introduce MP systems and the problem of
flux discovery, while Section 3 presents the usage of ANNs for flux regulation func-
tion synthesis. In Section 4 and 5 we report, respectively, the new technique for
discovering flux tuners and an application of this technique to a simple case study.

2 MP systems and MP graphs

In MP systems reactions transform substances, flux regulation maps establish the
amount of matter transformed by each reaction at each step, and parameters, which
are not directly involved in reactions, affect the flux regulation maps together with
substance quantities. We refer to [22] for a formal definition of these systems, where
also a detailed motivation of the principles underlying them is given.

The main intuition of MP dynamics is the mass partition principle, which
expresses a discrete deterministic and molar reading of metabolic transformations,
as opposite to the infinitesimal deterministic and local perspective of the mass
action principle of classical differential models. For our further discussion it is
useful to focus on the following simple example. Let r1, r2, r3, r4 be the following
set of reactions:

r1 : 2a+ b→ c

r2 : b→ c (1)
r3 : b+ c→ a

r4 : a→ 2b

We consider the substances a, b, c along the time instants i = 0, 1, 2, . . . (for the
sake of simplicity here we avoid to consider parameters) and ∆a[i], ∆b[i], ∆c[i] are
the variations of a, b, c, respectively, at time i. The quantities u1[i], u2[i], u3[i], u4[i],
are the number of molar units transformed by reactions r1, r2, r3, r4, respectively,
in the step from time i to time i+1. According to reactions (1) we get the following
linear system at time i:

∆a[i] = −2u1[i] + u3[i]− u4[i]
∆b[i] = −u1[i]− u2[i]− u3[i] + 2u4[i] (2)
∆c[i] = u1[i] + u2[i]− u3[i]

which becomes, in vector notation:

172 A. Castellini, V. Manca, Y. Suzuki

∆X[i] = A× U [i], (3)

where

∆X[i] = (∆a[i], ∆b[i], ∆c[i])′,
U [i] = (u1[i], u2[i], u3[i], u4[i])′,

A = (A(x, r)|x ∈ X, r ∈ R) =

−2 −1 1
0 −1 1
1 −1 −1
−1 2 0

The log-gain theory for MP systems [22] provides algebraic methods which,

from a time-series of vectors ∆X[i], generates the time-series of U [i]. When U [i]
are known, we face the problem of discovering some functions ϕ1, . . . , ϕm, as many
as the dimension of U [i], such that ϕ(X[i]) = U [i]. This problem of regulation
maps discovery can be split into two subproblems: i) discovering the arguments
on which each ϕj depends, ii) defining the right mathematical form of ϕj . In the
following sections we propose some new methodologies, based on ANNs, for solving
both these subproblems, while now, a graphical representation of MP systems
as bipartite graphs called MP graphs [24] is introduced. Substances, parameters,
reactions and fluxes (e.g., respectively, A, Pressure, R3 and Flux1 in Figure 1) are
depicted by different kind of nodes; stoichiometric (plain) arches connect reactant
to reactions (e.g., A → R3) or reactions to products (e.g., R3 → C) and they
possibly have labels denoting reaction stoichiometry if it is different from 1 (e.g.,
label 2 on arch R3 → C); regulatory (dashed) arches having a black arrow link
fluxes to the reaction they regulate (e.g., Flux1 → R1); finally, regulatory (dashed)
arches having a white arrow connect substances or parameters to the fluxes which
they regulate (e.g., C → Flux1). Notice that environment compartmentalization
is not considered in the current version of the model but this feature will be topic
of future work.

3 Artificial neural networks for flux regulation functions
synthesis

The choice a regression technique for synthesizing flux regulation functions from
substance, parameter and flux time-series deeply depends on the knowledge one has
about the form of the expected functions. In particular, if the function is known to
be a linear combination of its numerical parameters then linear regression analysis
is used [1], such as the least squares method, while if the function is a nonlinear
combination of its parameters then nonlinear regression analysis is employed [31].

Here we consider the very general case in which the form of regulation func-
tions is completely unknown. Artificial neural networks (ANNs) [3] turn out to
be a convenient approach in this situation, since they approximate very general

Metabolic P System Flux Regulation by Artificial Neural Networks 173

Fig. 1. An MP graph visualized by a graphical user interface of MetaPlab. Frame labels
point out MP system elements in the MP graph representation. Substances, reactions and
parameters describe the stoichiometry of the system, while fluxes regulate the dynamics.

maps just nonlinearly combining simple seed functions. An ANN is a mathemat-
ical model that takes its inspiration from the networks of interconnected neurons
constituting the central nervous system. It has two key elements: a set of neu-
rons, representing processing units, and a set of synapses, namely, weighted inter-
connections conveying information among neurons. A meaningful representation
for ANNs employs graphs, where nodes symbolize neurons and edges stand for
synapses, as displayed in Figure 2. Every neuron uj computes its output yj by
the equation yj = f(

∑
i wjiyi), where function f(·) is the activation function of

neuron uj , yi is the output value of neuron ui and wji is a real number repre-
senting the weight of the synapse connecting ui to uj . Activation functions are
usually nonlinear functions, such as the logistic sigmoid, f(x) = 1

1+e−x , or tanh,

f(x) = ex−e−x

ex+e−x , but also other kind of function can be considered. A particular
type of ANNs we consider here are feed-forward neural networks, which have no
feedback loops. In these networks, neurons are usually arranged in layers, where
the input-layer receives input from the environment, the output-layer returns its
output to the environment, and hidden layers process the information and pass it
on through the network.

174 A. Castellini, V. Manca, Y. Suzuki

Fig. 2. A feed-forward neural network having four layers of neurons, namely, an input
layer with four input neurons and one bias neuron; two hidden layers with, respectively,
four and two normal neurons, and one bias neuron; an output layer with four output
neurons. Every neuron of layer i is connected to every (non-bias) neuron of layer i + 1.
Normal neurons (gray nodes) compute an activation function (usually sigmoid) of a
weighted sum of their input. Bias neurons (white nodes) provide a constant unitary
input.

We employ ANNs for discovering flux regulation functions since they have a
natural ability to represent both linear and nonlinear relationships between a set
of input variables (in our case substance and parameters) and a set of output
variables (fluxes), and to learn these relationships from data sets. Moreover, it has
been proved [12] that ANNs having at least one hidden layer and sigmoid neurons
are able to approximate any continuous functional mapping, if no limit is imposed
on the number of hidden neurons.

Given an MP system with n substances, k parameters and m reactions we
connect to it m neural networks, each having n + k input neurons connected to
substance and parameter nodes, and one output neuron linked to a specific flux
node, as displayed in Figure 3. The number of hidden layers and hidden neurons
should be tuned according to the complexity of the functions under investigation.
As a rule of thumb, the more “complex” the regulation function, the higher the
number of hidden layers and hidden neurons. If the complexity of the searched

Metabolic P System Flux Regulation by Artificial Neural Networks 175

function is unknown, then different topologies should be tested, until a good ap-
proximation is found.

Fig. 3. MP system fluxes computed by one neural network for each reaction. Substances
and parameters are connected to input neurons while the only output neuron of each
network is connected to a specific flux [7].

Once the neural network topologies have been defined the information con-
tained into a training set of observed data, has to be stored within synaptic weights.
The process of weight tuning is called training and it is performed by the so called
learning algorithms, namely, optimization techniques able to search for a set of
weights which gives to the network a behavior defined by a set of examples, the
training set. In our case, a training set is represented by time-series of substances
and parameters, generally collected by observations, and flux time-series computed
by the log-gain method [20, 21, 22]. During the training stage, training data are
cyclically “observed” by neural networks which update their weight values at each
training epoch (according to some learning rules) in order to minimize the mean
square error between their outputs and the target outputs stored in the training
set.

In [7] a Java software called NeuralSynth has been presented which trains feed-
forward neural networks, within the MetaPlab suite, by means of four optimization
algorithms, namely, backpropagation [3], genetic algorithms (GA) [15, 37], particle
swarm optimization (PSO) [17] and a memetic algorithm [18]. In that work the
memetic algorithm has been proved to achieved the best performance in discovering
the regulation functions of an MP model of the mitotic cycle in early amphibian
embryos.

176 A. Castellini, V. Manca, Y. Suzuki

4 Flux tuners discovery by artificial neural networks

The problem we tackle in this section concerns the automatic discovery of flux
tuners from observed data. In the following we will call tuners of flux ϕ, the sub-
stances and the parameters which are involved in tuning ϕ during the time evolu-
tion of the system. In fact, it is known that every reaction of a biochemical system
transforms reactants into products with a rate depending on the instantaneous
value of some substances and parameters of the system itself. Discovering these
substances and parameters provides important understanding about the system
and can suggest new experiments. Moreover, this information is very important
also for generating sound MP systems, since regulation functions employed in these
models should have as few independent variables as possible in order to yield re-
liable predictions [1]. This statement could sound a bit counterintuitive since it
seems logical that, if our regulation functions incorporates as many variables as
possible, then the flux prediction should be more accurate. Actually, this is true
only if the number of data points to be fitted has no limitations (which is not real-
istic), indeed, as the dimensionality of the fitting surface increases also the degrees
of freedom of this surface increase, and the number of points needed to achieve a
good fitting surface increases as well. Therefore, functions generated by regression
methods have to be parsimonious in the number of independent variables in order
to capture the systematic trend of data while avoiding uncertainty and overfitting
typical of high-dimensional functions [1].

The methodology we present in the following for discovering flux tuners by
means of neural networks, consists of two steps: i) application of the weight elim-
ination technique [3, 36], during the network training, for removing unnecessary
synapse weights, ii) assignment, to each substance (parameter) of the MP sys-
tem, of a tuning index for each flux, rating the “propensity” of the substance
(parameter) to tune the flux itself.

4.1 Weight elimination

Weight elimination [3, 36] is a technique aiming to find a neural network which fits
a specific training set by using the smallest number of weights. The hypothesis on
which this method is based states that “if several networks fit the data equally well,
then the network having the smallest number of weights will on average provide
the best generalization”, that is, it will get the best predictions for new data.

The idea is to add to the backpropagation cost function (usually a square error),
a term which “counts” the number of weights, obtaining the new cost function [3]:

E =
∑
k∈T

(targetk − outputk)2 + λ
∑
i∈C

w2
i

ŵ2 + w2
i

. (4)

and then to minimize this function by means of backpropagation. The first term
of Equation (4), called performance term, represents the square error between
network output and target output over the entire training set T . The second term,

Metabolic P System Flux Regulation by Artificial Neural Networks 177

named complexity term, deals with the network size. Its sum, which extends over
all the synapses C, adds a penalty value close to unity (times λ) to each weight
wi ∈ R such that |wi| >> ŵ, while it adds a penalty term approaching to zero to
each weight wi such that |wi| << ŵ. The parameter λ ∈ R+ represents the relative
importance of the network simplicity with respect to the network performance.

When the classical backpropagation learning algorithm is employed with the
modified cost function of Equation (4), weights are updated at each step according
to the gradient of both the performance and the complexity terms, thus a trade-
off between a small fitting error and a small number of weights is found. In other
words, the complexity term tends to “push” every weight to zero with a strength
proportional to weight magnitudes and λ, while the performance term keeps far
from zero the weights actually needed to fit training data. Notice that, parameter
λ is a sensitive factor in this procedure, since if it is too small, then the complexity
term has no effect, while if it is too large then all the weights are driven to zero.
Moreover, the value of λ usually changes depending on the problem, thus, in [36]
some heuristic rules are presented for dynamically tuning the value of λ during
the training process in order to find a minimal network while achieving a desired
level of performance on training data.

The weight-elimination technique has been implemented in the NeuralSynth
plug-in [7], a Java software which can be employed within the MetaPlab virtual
laboratory to automatically learn neural networks from experimental data. The
first step of our tuner discovery strategy can be performed by this software, which
can be downloaded from [2], that is, neural networks are trained on time-series
data and, at the same time, their unnecessary weights are removed.

4.2 Tuning indexes assignment

The second step of the tuners discovery strategy proposed in this work involves the
analysis of the neural networks achieved at the first step, with the aim to evaluate
the sensibility of each flux to the variation of each substance and parameter. Given
a trained (and minimized) neural network encoding a regulation function ϕ(q), we
assign to each input neuron x (which is connected to a substance or a parameter
node according to the schema of Figure 3) a tuning index :

ξ(x) =
∑

p∈path(x,o)

∏
w∈p

|w| (5)

where path(x, o) is the set of all paths from the input neuron x to the (only) output
neuron o (which is connected to the flux node ϕ(q) according to the schema of
Figure 3), and each path p ∈ path(x, o) is, in turn, the set of weights of synapses
on the path from x to o. In other words, the tuning index ξ(x) rates the propensity
of the substance (parameter) connected to the input neuron x to tune the flux
connected to the output neuron o. This index is computed by summing, for every
path from the input neuron x to the output neuron o, the product of weights in
the path.

178 A. Castellini, V. Manca, Y. Suzuki

The idea behind this heuristic for computing tuning indexes is informally ex-
plained by means of Figure 4. In that picture, red thin arrows represent synapses
having weights with small absolute values, green thick arrows stand for synapses
having weights with large absolute values, and orange medium-thickness arrows
represent synapses having weights with medium size absolute values. From Fig-
ure 4 it is evident that the contribution of a single path from the input neuron
u1 (related to substance A) to the output neuron u9 (connected to flux F1), is
proportional to the product of the absolute values of weights on the path between
u1 and u9. Moreover, the overall contribution of input A in tuning output F1 is
related to the sum of the contributions of every path. This is because each neuron
computes a sigmoid function of the weighted sum of its inputs, as already described
in Section 3.

Fig. 4. Weight analysis of paths from the input neurons u1 (on the left) and u2 (on
the right), to the output neuron u9 for computing the tuning indexes of, respectively,
substance A and B in respect of flux F1.

Let us consider a simple example. On the left side of Figure 4, the contribution
of path u1 → u5 → u9, that is |w5,1| · |w9,5|, is lesser than the contribution of path
u1 → u6 → u9, that is, |w6,1| · |w9,6|, since |w5,1| and |w9,5| are lesser than |w6,1|
and |w9,6|. The tuning index of substance A with respect to flux F1 is the sum
|w5,1| · |w9,5|+ |w6,1| · |w9,6|+ |w7,1| · |w9,7|. On the right side of the same picture
it is showed that the contribution of substance B in tuning flux F1 is almost
insignificant, since the absolute values of all the weights on the paths between the
input neuron u2 (connected to B) and the output neuron u9 have small or medium
sizes. Accordingly, the tuning index of substance A will be greater than the tuning
index of substance B.

5 A case study: the Sirius model

In this section we report some preliminary results of the application of the tuners
discovery strategy explained above to a simple case study. The MP system we
investigate, called Sirius, does not have any biological counterpart but its analysis

Metabolic P System Flux Regulation by Artificial Neural Networks 179

is however interesting because of the oscillations it generates when specific regula-
tion functions are employed. As displayed in Figure 5, Sirius has three substances,
A, B and C, and five reactions R1, . . . , R5. In [20] the following flux regulation
functions have been manually generated:

F1 =
k1a

k1 + k2c+ k4b+ ka

F2 =
k2ac

k1 + k2c+ k4b+ ka

F3 =
k3b

k3 + kb
(6)

F4 =
k4ab

k1 + k2c+ k4b+ ka

F5 =
k5c

k5 + kc

where k1 = k3 = k5 = 4, k2 = k4 = 0.02, and ka = kb = kc = 100. Notice
that, functions F1, F2 and F4 have the same denominator but the numerator of
F1 is characterized by the tuner A, numerator of F2 by the tuners A and C,
and numerator of F4 is characterized by the tuners A and B. On the other side,
functions F3 and F5 are characterized, respectively, by the tuners B and C. The
oscillatory dynamics generated by these functions, displayed in Figure 5, is featured
by a very similar trend for substances B and C, which differ only in the first fifty
steps.

Fig. 5. On top: Sirius model. At the bottom: Sirius dynamics

180 A. Castellini, V. Manca, Y. Suzuki

We have sampled the dynamics of Figure 5 in order to obtain three substance
time-series (one for each substance), each having 1000 values, and we have com-
puted the related five flux time-series (one for each flux) by the log-gain theory.
Subsequently, these time-series have been employed to train five neural networks
(one for each regulation function) by means of backpropagation with weight elim-
ination. Specifically, substance values have been used as inputs and flux values as
target outputs during the training process performed by the software NeuralSynth.
We run the computation of the tuning indexes of each flux for five times and, subse-
quently, we have calculated the mean and the standard deviations of these indexes
for each flux regulation function. The best results, reported in Table 1, have been
achieved by employing λ = 0.0001 and w0 = 1.0 for weight elimination and neural
networks having one hidden layer with three neurons. This value of parameter w0

tends to eliminate weights between (about) −5.0 and 5.0, which is consistent with
the random initialization of neural network weights between −1.0 and 1.0. The
parameter λ has been manually tuned for this case study but some heuristics [36]
will be considered to dynamically tune its value during the training process. The
network topology has been adapted to the complexity of the searched regulation
function.

A B C
F1 0.918 (0.044) 0.043 (0.026) 0.038 (0.017)
F2 0.336 (0.001) 0.301 (0.209) 0.362 (0.209)
F3 0.018 (0.017) 0.971 (0.020) 0.010 (0.009)
F4 0.337 (0.006) 0.525 (0.292) 0.136 (0.292)
F5 0.020 (0.027) 0.084 (0.112) 0.895 (0.111)

Table 1. Mean tuning indexes and related standard deviations (in brackets) of substances
A, B and C with respect to fluxes F1, F2, F3, F4, F5. These results have been computed
by performing five tests for each flux.

Let us analyze the results of Table 1. The first row reports the mean relative
tuning indexes of flux F1 and, in brackets, the standard deviation of the relative
tuning indexes over the five tests performed. Value 0.918 in the first column, states
that substance A have obtained a mean tuning index of 91.8% for flux F1 over
the five tests. Substances B and C, respectively in the second and third columns,
have achieved mean tuning indexes of 4.3% and 3.8%. This result completely agrees
with the form of function F1, by which dynamics data have been generated, indeed
function F1 is deeply related with substance A, which appears in the numerator
of this function. By analyzing the third row of Table 1, related to flux F3, we
observe that substance B, which appears in the numerator of function F3, has
achieved a mean tuning index of 97.1%, while substances A and C, which are not
arguments of function F3, have scored only 1.8% and 1.0%. Quite good results have
been achieved for flux F4 (in the forth row), indeed the variables appearing in its
numerator, namely A and B, have scored mean tuning indexes of, respectively,

Metabolic P System Flux Regulation by Artificial Neural Networks 181

33.7% and 52.5% in contrast to the 13.6% scored by substance C. Flux F5, in
the last row of the table, has mean tuning indexes of 2.0% for A, 8.4% for B and
89.5% for C, according to the form of function F5 which includes only substance
C among its arguments. Instead, the result related to flux F2 (in the second row)
deserves further investigations, since the mean tuning indexes turned out to be
not informative enough. Indeed, they are 33.6 for A, 30.1 for B and 36.2 for C,
and the values are so close to each other that we cannot deduce A and C to be
the only tuners for F2 (as it clearly appears in the numerator of function F2). We
believe that this problem can be due to the high similarity between the dynamics
of substance B and C, which makes it difficult to distinguish between the two
inputs. This seems to be confirmed also by the high standard deviation values
achieved for substances B and C for both fluxes F2 and F4, which points out a
large variance in the relative tuning indexes computed over the five tests. The
dynamics trend of the model obtained by this approach, which is displayed in [7],
is very similar to the original one, showed in Figure 5.

6 Conclusions and future work

In this paper we have presented a new technique, based on artificial neural net-
works, for discovering flux tuners within the framework of MP systems. This strat-
egy involves a first training stage wherein each neural network learns a flux regula-
tion function from observed time-series by means of backpropagation with weight
elimination. Subsequently, for each flux a tuning index is associated to each sub-
stance and parameter of the MP system in order to evaluate its propensity to tune
the flux. The technique has achieved encouraging results in a synthetic case study
wherein data have been generated by known functions. Further work has to be
done in order to get a stronger validation for case studies involving real biological
systems. Moreover, some heuristic techniques employed in this paper to learn neu-
ral networks, i.e., evolutionary and swarm optimization, could be directly applied
for discovering flux tuners, without incorporating neural networks.

References

1. A. D. Aczel and J. Sounderpandian. Complete Business Statistics. McGraw-
Hill/Irwin, 2006.

2. WMC10 additional material.
Url: http://mplab.sci.univr.it/external/wmc10/page.html.

3. C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
1995.

4. E.K. Burke and G. Kendall. Search Methodologies: Introductory Tutorials in Opti-
mization and Decision Support Techniques. Springer, 2005.

5. A. Castellini, G. Franco, and V. Manca. Hybrid functional Petri nets as MP systems.
Natural Computing, 9121, 2009. DOI: 10.1007/s11047-009-9121-4.

182 A. Castellini, V. Manca, Y. Suzuki

6. A. Castellini, G. Franco, and V. Manca. Toward a representation of hybrid functional
Petri nets by MP systems. In Y. Suzuki et al., editor, Natural computing, volume 1
of PICT, pages 28–37. Springer Japan, 2009.

7. A. Castellini and V. Manca. Learning regulation functions of metabolic systems by
artificial neural networks. In Proceedings of the Genetic and Evolutionary Computa-
tion Conference, GECCO-2009. ACM Publisher, 2009. Accepted.

8. A. Castellini and V. Manca. MetaPlab: A computational framework for metabolic P
systems. In D. W. Corne et al., editor, LNCS 5391, pages 157–168. Springer-Verlag,
2009.

9. G. Ciobanu, G. Păun, and M. J. Pérez-Jiménez, editors. Applications of Membrane
Computing. Natural Computing Series. Springer-Verlag Berlin, 2006.

10. J. Fisher and T. A. Henzinger. Executable cell biology. Nature Biotechnology,
25(11):1239–1249, 2007.

11. F. Fontana and V. Manca. Discrete solutions to differential equations by metabolic
P systems. Theoretical Computer Science, 372(2-3):165–182, 2007.

12. K. Funahashi. On the approximate realization of continuous mappings by neural
networks. Neural Networks, 2(3):183–192, 1989.

13. D. T. Gillespie. A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. Journal of Computational Physics, 22:403–
434, 1976.

14. D. T. Gillespie. Stochastic simulation of chemical kinetics. Annual Review of Physical
Chemistry, 58:35–55, 2007.

15. J. H. Holland. Adaptation in natural and artificial systems. University of Michigan
Press, Ann Arbor, MI, 1975.

16. D. S. Jones and B. D. Sleeman. Differential Equations and Mathematical Biology.
Chapman & Hall/CRC Mathematical Biology and Medicine, 2003.

17. J. Kennedy and R. Eberhart. Particle swarm optimization. In Proc. IEEE Int. Conf.
on Neural Networks, volume 4, pages 1942–1948, 1995.

18. N. Krasnogor and J.E. Smith. A tutorial for competent memetic algorithms: model,
taxonomy, and design issues. IEEE Trans. Evolutionary Computation, 9(5):474–488,
2005.

19. A. Lindenmayer. Mathematical models for cellular interactions in development I. Fil-
aments with one-sided inputs. Journal of Theoretical Biology, 18(3):280–299, 1968.

20. V. Manca. The Metabolic Algorithm: Principles and applications. Theoretical Com-
puter Science, 404:142–157, 2008.

21. V. Manca. Fundamentals of metabolic P systems. In G. Păun et al., editor, Handbook
of Membrane Computing, chapter 16. Oxford University Press, 2009.

22. V. Manca. Log-gain principles for metabolic P systems. In A. Condon et al., editor,
Algorithmic Bioprocesses, Natural Computing Series, chapter 28. Springer, 2009.

23. V. Manca. Metabolic P dynamics. In G. Păun et al., editor, Handbook of Membrane
Computing, chapter 17. Oxford University Press, 2009.

24. V. Manca and L. Bianco. Biological networks in metabolic P systems. BioSystems,
91(3):489–498, 2008.

25. V. Manca, L. Bianco, and F. Fontana. Evolutions and oscillations of P systems:
Applications to biochemical phenomena. In LNCS 3365, pages 63–84. Springer,
2005.

26. V. Manca, A. Castellini, G. Franco, L. Marchetti, and R. Pagliarini. Metaplab 1.1
user guide. Url: http://mplab.sci.univr.it. 2009.

Metabolic P System Flux Regulation by Artificial Neural Networks 183

27. M. J. Pérez-Jiménez and F. J. Romero-Campero. P systems: a new computational
modelling tool for systems biology. Transactions on Computational Systems Biology
VI, Lecture Notes in Bioinformatics, 4220, pages 176–197, 2006.

28. G. Păun. Computing with membranes. Technical Report 208, Turku Centre for
Computer Science, 1998.

29. G. Păun. Computing with membranes. Journal of Computer and System Sciences,
61(1):108–143, 2000.

30. G. Păun. Membrane Computing. An Introduction. Springer, Berlin, 2002.
31. G. A. F. Seber and C. J. Wild. Nonlinear Regression. Wiley, 2003.
32. The P Systems Web Site. Url: http://ppage.psystems.eu/.
33. Y. Suzuki, Y. Fujiwara, J. Takabayashi, and H. Tanaka. Artificial life applications of

a class of P systems: Abstract rewriting systems on multisets. In LNCS 2235, pages
299–346. Springer, 2000.

34. Y. Suzuki and H. Tanaka. Modeling p53 signaling pathways by using multiset pro-
cessing. In Ciobanu et al. [9], pages 203–214.

35. E. O. Voit. Computational Analysis of Biochemical Systems : A Practical Guide for
Biochemists and Molecular Biologists. Cambridge University Press, 2000.

36. A. S. Weigend, D. E. Rumelhart, and B. A. Huberman. Generalization by weight-
elimination with application to forecasting. In R. Lippmann et al., editor, NIPS,
pages 875–882. Morgan Kaufmann, 1990.

37. X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423–
1447, September 1999.

