Minimal cooperation in polarizationless P systems with active membranes. Complexity aspects

Mario J. Pérez Jiménez

Research Group on Natural Computing
Dpto. Computer Science and Artificial Intelligence
University of Seville, Spain
Academia Europaea (The Academy of Europe)

www.cs.us.es/~marper marper@us.es

15th Brainstorming Week on Membrane Computing
Sevilla, Spain, January 31, 2017
Some complexity classes beyond NP and co-NP

DP: class of "differences" of any two languages in NP (Papadimitriou and Yannakakis, 1984).

\[\text{DP} = \{ L \mid \exists L_1, L_2 (L_1 \in \text{NP} \wedge L_2 \in \text{co-NP} \wedge L = L_1 \cap L_2) \}. \]

\[\text{NP} \cup \text{co-NP} \subseteq \text{DP}. \]

SAT-UNSAT problem.

Remark: If \(X \) is an NP-complete problem such that \(X \in \text{PMC}_R \) (\(R \) is a class of recognizer membrane systems stable under product family), then \(\text{DP} \subseteq \text{PMC}_R \).

PP: the majority of possible solutions associated with each instance is yes (Gill, 1977).

\[\text{DP} \subseteq \text{PP} \text{ and } \text{PH} \subseteq \text{P}^{\text{PP}}. \]

MAJORITY-SAT problem.

\(\#P \): counting problems associated with polynomially balanced polynomial-time decidable relations (Valiant, 1979).

\[\text{PP} \preceq \#P \subseteq \text{PSPACE} \text{ and } \text{PH} \subseteq \text{P}^{\#P}. \]

\(\#\text{SAT} \) problem.
Some complexity classes beyond NP and co-NP

DP: class of “differences” of any two languages in NP (Papadimitriou and Yannakakis, 1984).

- \(\text{DP} = \{ L \mid \exists L_1, L_2 (L_1 \in \text{NP} \land L_2 \in \text{co-NP} \land L = L_1 \cap L_2) \} \).
- \(\text{NP} \cup \text{co-NP} \subseteq \text{DP} \).
- The SAT-UNSAT problem.

PP: the majority of possible solutions associated with each instance is yes (Gill, 1977).

- \(\text{DP} \subseteq \text{PP} \) and \(\text{PH} \subseteq \text{P}^{\text{PP}} \).
- The MAJORITY-SAT problem.

#P: counting problems associated with polynomially balanced polynomial-time decidable relations (Valiant, 1979).

- \(\text{PP} \preceq \#P \subseteq \text{PSPACE} \) and \(\text{PH} \subseteq \text{P}^{\#P} \).
- The \#SAT problem.
Some complexity classes beyond NP and co-NP

DP: class of “differences” of any two languages in NP (Papadimitriou and Yannakakis, 1984).

- \[\text{DP} = \{ L \mid \exists L_1, L_2 (L_1 \in \text{NP} \land L_2 \in \text{co-NP} \land L = L_1 \cap L_2) \}. \]
- \[\text{NP} \cup \text{co-NP} \subseteq \text{DP}. \]
- The SAT-UNSAT problem.

Remark: If \(X \) is an NP-complete problem such that \(X \in \text{PMC}_\mathcal{R} \) (\(\mathcal{R} \) is a class of recognizer membrane systems stable under product family), then \(\text{DP} \subseteq \text{PMC}_\mathcal{R} \).
Some complexity classes beyond NP and co-NP

DP: class of “differences” of any two languages in NP (Papadimitriou and Yannakakis, 1984).

* \(\text{DP} = \{ L \mid \exists L_1, L_2 (L_1 \in \text{NP} \land L_2 \in \text{co-NP} \land L = L_1 \cap L_2) \} \).

* \(\text{NP} \cup \text{co-NP} \subseteq \text{DP} \).

* The SAT–UNSAT problem.

PP: the majority of possible solutions associated with each instance is yes (Gill, 1977).

* \(\text{DP} \subseteq \text{PP} \) and \(\text{PH} \subseteq \text{P}^{\text{PP}} \).

* The MAJORITY–SAT problem.

Remark: If \(X \) is an NP-complete problem such that \(X \in \text{PMC}_\mathcal{R} \) (\(\mathcal{R} \) is a class of recognizer membrane systems stable under product family), then \(\text{DP} \subseteq \text{PMC}_\mathcal{R} \).
Some complexity classes beyond NP and co-NP

DP: class of “differences” of any two languages in NP (Papadimitriou and Yannakakis, 1984).

* \(\text{DP} = \{ L \mid \exists L_1, L_2 (L_1 \in \text{NP} \land L_2 \in \text{co-NP} \land L = L_1 \cap L_2) \} \).
* \(\text{NP} \cup \text{co-NP} \subseteq \text{DP} \).
* The SAT-UNSAT problem.

Remark: If \(X \) is an NP-complete problem such that \(X \in \text{PMC}_R \) (\(R \) is a class of recognizer membrane systems \textit{stable under product family}), then \(\text{DP} \subseteq \text{PMC}_R \).

PP: the majority of possible solutions associated with each instance is yes (Gill, 1977).

* \(\text{DP} \subseteq \text{PP} \) and \(\text{PH} \subseteq \text{P}^{\text{PP}} \).
* The MAJORITY-SAT problem.

#P: counting problems associated with polynomially balanced polynomial-time decidable relations (Valiant, 1979).

* \(\text{PP} < \#P \subseteq \text{PSPACE} \) and and \(\text{PH} \subseteq \text{P}^{\#\text{PP}} \).
* The \#SAT problem.
Basic polarizationless P systems with active membranes

\[\Pi = (\Gamma, H, \mu, M_1, \ldots, M_q, R, i_{\text{out}}) \] of degree \(q \geq 1 \):

\(\Gamma \) is a finite alphabet whose elements are called objects;

\(H \) is a finite alphabet such that \(H \cap \Gamma = \emptyset \) whose elements are called labels;

\(\mu \) is a labelled rooted tree consisting of \(q \) nodes injectively labeled by elements of \(H \);

\(M_1, \ldots, M_q \) are multisets over \(\Gamma \);

\(R \) is a finite set of rules, of the following forms:

- \((a_0)[a \rightarrow u]h\) (object evolution rules).
- \((b_0)a[b \rightarrow h]h\) (send–in communication rules).
- \((c_0)a[h \rightarrow b][h]h\) (send–out communication rules).
- \((d_0)a[h \rightarrow b][h]h\) (dissolution rules).

\(i_{\text{out}} \in H \cup \{\text{env}\} \) (if \(i_{\text{out}} \in H \) then \(i_{\text{out}} \) is the label of a leaf of \(\mu \)).
Basic polarizationless P systems with active membranes

\[\Pi = (\Gamma, H, \mu, M_1, \ldots, M_q, R, i_{out}) \] of degree \(q \geq 1 \):

* \(\Gamma \) is a finite alphabet whose elements are called objects;
* \(H \) is a finite alphabet such that \(H \cap \Gamma = \emptyset \) whose elements are called labels;
* \(\mu \) is a labelled rooted tree consisting of \(q \) nodes injectively labeled by elements of \(H \);
* \(M_1, \ldots, M_q \) are multisets over \(\Gamma \);
* \(R \) is a finite set of rules, of the following forms:

 \((a_0) \ [a \rightarrow u]_h \) **(object evolution rules)**.

 \((b_0) \ a [\]_h \rightarrow [b]_h \) **(send–in communication rules)**.

 \((c_0) \ [a]_h \rightarrow b [\]_h \) **(send–out communication rules)**.

 \((d_0) \ [a]_h \rightarrow b \) **(dissolution rules)**.

* \(i_{out} \in H \cup \{\text{env}\} \) (if \(i_{out} \in H \) then \(i_{out} \) is the label of a leaf of \(\mu \)).
Basic polarizationless P systems with active membranes

\[\Pi = (\Gamma, H, \mu, M_1, \ldots, M_q, R, i_{out}) \] of degree \(q \geq 1 \):

* \(\Gamma \) is a finite alphabet whose elements are called objects;
* \(H \) is a finite alphabet such that \(H \cap \Gamma = \emptyset \) whose elements are called labels;
* \(\mu \) is a labelled rooted tree consisting of \(q \) nodes injectively labeled by elements of \(H \);
* \(M_1, \ldots, M_q \) are multisets over \(\Gamma \);
* \(R \) is a finite set of rules, of the following forms:

 \[(a_0) \; [a \rightarrow u]_h \text{ (object evolution rules)}. \]

 \[(b_0) \; a \; [\;]_h \rightarrow [b]_h \text{ (send–in communication rules)}. \]

 \[(c_0) \; [a]_h \rightarrow b \; [\;]_h \text{ (send–out communication rules)}. \]

 \[(d_0) \; [a]_h \rightarrow b \text{ (dissolution rules)}. \]

* \(i_{out} \in H \cup \{\text{env}\} \) (if \(i_{out} \in H \) then \(i_{out} \) is the label of a leaf of \(\mu \)).

The class \(\mathcal{NAM}^0 \).
Basic polarizationless P systems with active membranes

\(\Pi = (\Gamma, H, \mu, M_1, \ldots, M_q, R, i_{out}) \) of degree \(q \geq 1 \):

* \(\Gamma \) is a finite alphabet whose elements are called objects;
* \(H \) is a finite alphabet such that \(H \cap \Gamma = \emptyset \) whose elements are called labels;
* \(\mu \) is a labelled rooted tree consisting of \(q \) nodes injectively labeled by elements of \(H \);
* \(M_1, \ldots, M_q \) are multisets over \(\Gamma \);
* \(R \) is a finite set of rules, of the following forms:

\((a_0) \) \([a \rightarrow u]_h \) (object evolution rules).
\((b_0) \) \(a []_h \rightarrow [b]_h \) (send–in communication rules).
\((c_0) \) \([a]_h \rightarrow b []_h \) (send–out communication rules).
\((d_0) \) \([a]_h \rightarrow b \) (dissolution rules).

* \(i_{out} \in H \cup \{ \text{env} \} \) (if \(i_{out} \in H \) then \(i_{out} \) is the label of a leaf of \(\mu \)).

The class \(\mathcal{NAM}^0 \).

It is well known that \(\text{PMC}_{\mathcal{NAM}^0} = \mathbb{P} \).
Division rules and separation rules

Mechanisms to produce an exponential workspace in linear time:

• Cell division: basic process in the cell life cycle producing two or more cells from one cell (its contents is replicated between the new membranes).

⋆ Division rules for elementary membranes: $[a]h
ightarrow [b]h[c]h$

⋆ Division rules for non–elementary membranes: $[[a]h]h_0
ightarrow [[b]h]h_0[[c]h]h_0$

The class $DAM_0(±e, ±c, ±d, ±n)$.

• Membrane fission: process by which a biological membrane is split into two new ones (its contents is distributed between the new membranes).

⋆ Separation rules for elementary membranes: $[a]h
ightarrow [Γ_0]h[Γ_1]h (\{Γ_0, Γ_1\} is a prefixed partition of Γ)$

⋆ Separation rules for non–elementary membranes: $[[a]h]h_0[[b]h]h_1h_0
ightarrow [Γ_0][a]h_0[Γ_1][b]h_1h_0 (h_0 \in H_0 and h_1 \in H_1, being \{H_0, H_1\} a prefixed partition of H and \{Γ_0, Γ_1\} a prefixed partition of Γ)$

The class $SAM_0(±e, ±c, ±d, ±n)$.
Division rules and separation rules

Mechanisms to produce an exponential workspace in linear time:

- **Cell division**: basic process in the cell life cycle producing two or more cells from one cell (its contents is *replicated* between the new membranes).
Division rules and separation rules

Mechanisms to produce an exponential workspace in linear time:

- **Cell division**: basic process in the cell life cycle producing two or more cells from one cell (its contents is **replicated** between the new membranes).

 ★ Division rules for elementary membranes: \([a]_h \rightarrow [b]_h [c]_h\)

 ★ Division rules for non–elementary membranes: \([[]_{h_1} []_{h_2}]_{h_0} \rightarrow [[]_{h_1}]_{h_0} [[]_{h_2}]_{h_0}\)
Division rules and separation rules

Mechanisms to produce an exponential workspace in linear time:

- **Cell division**: basic process in the cell life cycle producing two or more cells from one cell (its contents is **replicated** between the new membranes).

 - Division rules for elementary membranes: \([a]_h \rightarrow [b]_h [c]_h\)

 - Division rules for non–elementary membranes: \([[]_1 []_2]_0 \rightarrow [[]_1]_0 [[]_2]_0\)

The class \(\mathcal{DAM}^0(\pm e, \pm c, \pm d, \pm n)\).
Division rules and separation rules

Mechanisms to produce an exponential workspace in linear time:

- **Cell division**: basic process in the cell life cycle producing two or more cells from one cell (its contents is *replicated* between the new membranes).

 - Division rules for elementary membranes: \([a]_h \rightarrow [b]_h [c]_h\)
 - Division rules for non–elementary membranes: \([[]h_1 []h_2]h_0 \rightarrow [[]h_1]h_0 [[]h_2]h_0\)

 The class \(\mathcal{DAM}^0(\pm e, \pm c, \pm d, \pm n)\).

- **Membrane fission**: process by which a biological membrane is split into two new ones (its contents is *distributed* between the new membranes).
Division rules and separation rules

Mechanisms to produce an exponential workspace in linear time:

- **Cell division**: basic process in the cell life cycle producing two or more cells from one cell (its contents is replicated between the new membranes).

 - **Division rules for elementary membranes**: \([a]_h \rightarrow [b]_h [c]_h\)

 - **Division rules for non–elementary membranes**: \([[]_1 []_2]_0 \rightarrow [[]_1]_0 [[]_2]_0\)

 The class \(\mathcal{DAM}^0(\pm e, \pm c, \pm d, \pm n)\).

- **Membrane fission**: process by which a biological membrane is split into two new ones (its contents is distributed between the new membranes).

 - **Separation rules for elementary membranes**: \([a]_h \rightarrow [\Gamma_0]_h [\Gamma_1]_h\)

 \({\{\Gamma_0, \Gamma_1\}}\) is a prefixed partition of \(\Gamma\)

 - **Separation rules for non–elementary membranes**: \([[]_0 []_1]_h \rightarrow [[]_0]_h [[]_1 []_1]_h\)

 \({h_0 \in H_0\) and \(h_1 \in H_1, being \{H_0, H_1\} a prefixed partition of \(H\) and \(\{\Gamma_0, \Gamma_1\} a prefixed partition of \(\Gamma\)\)
Division rules and separation rules

Mechanisms to produce an exponential workspace in linear time:

- **Cell division**: basic process in the cell life cycle producing two or more cells from one cell (its contents is replicated between the new membranes).

 ★ Division rules for elementary membranes: $[\cdot]_h \rightarrow [\cdot]_h [\cdot]_h$

 ★ Division rules for non–elementary membranes: $[[\cdot]_h][\cdot]_h h_0 \rightarrow [[[\cdot]_h]_h]_h h_0 [[[\cdot]_h]_h]_h h_0$

 The class $\mathcal{DAM}^0(\pm e, \pm c, \pm d, \pm n)$.

- **Membrane fission**: process by which a biological membrane is split into two new ones (its contents is distributed between the new membranes).

 ★ Separation rules for elementary membranes: $[\cdot]_h \rightarrow [\cdot]_h [\cdot]_h$

 ($\{\Gamma_0, \Gamma_1\}$ is a prefixed partition of Γ)

 ★ Separation rules for non–elementary membranes: $[[\cdot]_h][\cdot]_h h_0 \rightarrow [[[\cdot]_h]_h]_h h_0 [[[\cdot]_h]_h]_h h_0$

 ($h_0 \in H_0$ and $h_1 \in H_1$, being $\{H_0, H_1\}$ a prefixed partition of H and $\{\Gamma_0, \Gamma_1\}$ a prefixed partition of Γ)

 The class $\mathcal{SAM}^0(\pm e, \pm c, \pm d, \pm n)$.

Efficiency of $DAM^0(+e, +c, +d, +n)$
Efficiency of $\mathcal{DAM}^0(+e, +c, +d, +n)$

Theorem: Subset-Sum $\in \text{PMC}_{\mathcal{DAM}^0(+e, +c, +d, +n)}$ (2005).

Corollary: DP $\subseteq \text{PMC}_{\mathcal{DAM}^0(+e, +c, +d, +n)}$.
Efficiency of $\mathcal{DAM}^0(+e, +c, +d, +n)$

Theorem: Subset-Sum $\in \text{PMC}_{\mathcal{DAM}^0(+e, +c, +d, +n)}$ (2005).

Corollary: DP $\subseteq \text{PMC}_{\mathcal{DAM}^0(+e, +c, +d, +n)}$.

Theorem: QSAT $\in \text{PMC}_{\mathcal{DAM}^0(+e, +c, +d, +n)}$ (2005).

Corollary: PSPACE $\subseteq \text{PMC}_{\mathcal{DAM}^0(+e, +c, +d, +n)}$.
Efficiency of $DAM^0(+e, +c, +d, +n)$

Theorem: Subset-Sum $\in PMC_{DAM^0(+e,+c,+d,+n)}$ (2005).

Corollary: DP $\subseteq PMC_{DAM^0(+e,+c,+d,+n)}$.

Theorem: QSAT $\in PMC_{DAM^0(+e,+c,+d,+n)}$ (2005).

Corollary: PSPACE $\subseteq PMC_{DAM^0(+e,+c,+d,+n)}$.

Are necessary division rules for non-elementary membranes?
Păun’s conjecture

Păun’s conjecture

At the beginning of 2005, Gh. Păun wrote (problem F from [1]):

My favorite question (related to complexity aspects in P systems with active membranes and with electrical charges) is that about the number of polarizations. Can the polarizations be completely avoided? The feeling is that this is not possible – and such a result would be rather sound: passing from no polarization to two polarizations amounts to passing from non–efficiency to efficiency.

This so–called Păun’s conjecture can be formally formulated as follows:

\[
\text{PMC}_{\mathcal{DAM}^0(+e,+c,+d,−n)} = P
\]

Păun’s conjecture

At the beginning of 2005, Gh. Păun wrote (problem F from [1]):

My favorite question (related to complexity aspects in P systems with active membranes and with electrical charges) is that about the number of polarizations. Can the polarizations be completely avoided? The feeling is that this is not possible – and such a result would be rather sound: passing from no polarization to two polarizations amounts to passing from non–efficiency to efficiency.

This so–called Păun’s conjecture can be formally formulated as follows:

\[\text{PMC}_{\text{DAM}^0(+e,+c,+d,-n)} = \text{P} \]

An affirmative answer: the ability to create an exponential amount of workspace in polynomial time, is not enough in order to solve computationally hard problems efficiently.

At the beginning of 2005, Gh. Păun wrote (problem F from \[1\]):

My favorite question (related to complexity aspects in P systems with active membranes and with electrical charges) is that about the number of polarizations. Can the polarizations be completely avoided? The feeling is that this is not possible – and such a result would be rather sound: passing from no polarization to two polarizations amounts to passing from non–efficiency to efficiency.

This so–called Păun’s conjecture can be formally formulated as follows:

\[
\text{PMC}_{\mathcal{DAM}^0(+e,+c,+d,-n)} = \mathcal{P}
\]

An **affirmative answer**: the ability to create an exponential amount of workspace in polynomial time, is not enough in order to solve computationally hard problems efficiently.

A **negative answer**: provide a borderline between tractability and intractability (assuming that \(\mathcal{P} \neq \mathcal{NP}\)).

Partial solutions to Păun’s conjecture
Partial solutions to Păun’s conjecture

A partial affirmative answer.

Theorem: $\text{PMC}_{\mathcal{DAM}^0(+e,+c,-d,+n)} = \text{P} \ (2005)$.
Partial solutions to Păun’s conjecture

A partial affirmative answer.

Theorem: \(\text{PMC}_{DAM^0(\text{+e,+c,}\text{-d,+n})} = \text{P} \) (2005).

A partial negative answer.

Theorem: \(\text{Subset-Sum} \in \text{PMC}_{DAM^0(\text{+e,+c,+d,+n})} \) (2005).
Partial solutions to Păun’s conjecture

A partial affirmative answer.

Theorem: $\text{PMC}_{\mathcal{DAM}^0(+e,+c,-d,+n)} = \text{P}$ (2005).

A partial negative answer.

Theorem: Subset-Sum $\in \text{PMC}_{\mathcal{DAM}^0(+e,+c,+d,+n)}$ (2005).

What syntactical ingredients are enough to solve \textbf{NP}-complete problems in an efficient way, by using the frameworks $\mathcal{DAM}^0(-d,-n)$ or $\mathcal{SAM}^0(-d,-n)$?
Partial solutions to Păun’s conjecture

A partial affirmative answer.

Theorem: \(\text{PMC}_{\text{DAM}^0(+e,+c,-d,+n)} = \text{P} \) (2005).

A partial negative answer.

Theorem: Subset-Sum \(\in \text{PMC}_{\text{DAM}^0(+e,+c,+d,+n)} \) (2005).

What syntactical ingredients are enough to solve \(\text{NP} \)-complete problems in an efficient way, by using the frameworks \(\text{DAM}^0(-d,-n) \) or \(\text{SAM}^0(-d,-n) \)?

Dissolution: An apparently innocent rule.
Minimal cooperation in object evolution rules

\[u \rightarrow v \] for \(h \in H \) and \(u, v \in M_f(\Gamma) \) such that \(1 \leq |u| \leq 2 \)

Bounded minimal cooperation (bmc):

\[u \rightarrow v \] for \(h \in H \) and \(u, v \in M_f(\Gamma) \) such that \(1 \leq |v| \leq |u| \leq 2 \)

Primary minimal cooperation (pmc):

\[u \rightarrow v \] for \(h \in H \) and \(u, v \in M_f(\Gamma) \) such that \(1 \leq |u|, |v| \leq 2 \)

Minimal cooperation and minimal production (mcmp):

\[u \rightarrow v \] for \(h \in H \) and \(u, v \in M_f(\Gamma) \) such that \(1 \leq |u| \leq 2 \) and \(|v| = 1 \)

\[mc = \Rightarrow pmc = \Rightarrow bmc = \Rightarrow mcmp \]

The class \(DAM_0(\alpha, +\epsilon, -\delta, \pm n) \), where \(\alpha \in \{mc, pmc, bmc, mcmp\} \).
Minimal cooperation in object evolution rules

★ Minimal cooperation (mc):

\[[u \rightarrow v]_h, \text{ for } h \in H \text{ and } u, v \in M_f(\Gamma) \text{ such that } 1 \leq |u| \leq 2 \]
Minimal cooperation in object evolution rules

★ Minimal cooperation (mc):

\[[u \rightarrow v]_h, \text{ for } h \in H \text{ and } u, v \in M_f(\Gamma) \text{ such that } 1 \leq |u| \leq 2 \]

★ Bounded minimal cooperation (bmc):

\[[u \rightarrow v]_h, \text{ for } h \in H \text{ and } u, v \in M_f(\Gamma) \text{ such that } 1 \leq |v| \leq |u| \leq 2 \]
Minimal cooperation in object evolution rules

★ Minimal cooperation (mc):
\[
[u \rightarrow v]_h, \text{ for } h \in H \text{ and } u, v \in M_f(\Gamma) \text{ such that } 1 \leq |u| \leq 2
\]

★ Bounded minimal cooperation (bmc):
\[
[u \rightarrow v]_h, \text{ for } h \in H \text{ and } u, v \in M_f(\Gamma) \text{ such that } 1 \leq |v| \leq |u| \leq 2
\]

★ Primary minimal cooperation (pmc):
\[
[u \rightarrow v]_h, \text{ for } h \in H \text{ and } u, v \in M_f(\Gamma) \text{ such that } 1 \leq |u|, |v| \leq 2
\]
Minimal cooperation in object evolution rules

- **Minimal cooperation (mc):**
 \[
 [u \rightarrow v]_h, \text{ for } h \in H \text{ and } u, v \in M_f(\Gamma) \text{ such that } 1 \leq |u| \leq 2
 \]

- **Bounded minimal cooperation (bmc):**
 \[
 [u \rightarrow v]_h, \text{ for } h \in H \text{ and } u, v \in M_f(\Gamma) \text{ such that } 1 \leq |v| \leq |u| \leq 2
 \]

- **Primary minimal cooperation (pmc):**
 \[
 [u \rightarrow v]_h, \text{ for } h \in H \text{ and } u, v \in M_f(\Gamma) \text{ such that } 1 \leq |u|, |v| \leq 2
 \]

- **Minimal cooperation and minimal production (mcmp):**
 \[
 [u \rightarrow v]_h, \text{ for } h \in H \text{ and } u, v \in M_f(\Gamma) \text{ such that } 1 \leq |u| \leq 2 \text{ and } |v| = 1
 \]
Minimal cooperation in object evolution rules

★ Minimal cooperation (mc):

\[[u \rightarrow v]_h, \text{ for } h \in H \text{ and } u, v \in M_f(\Gamma) \text{ such that } 1 \leq |u| \leq 2 \]

★ Bounded minimal cooperation (bmc):

\[[u \rightarrow v]_h, \text{ for } h \in H \text{ and } u, v \in M_f(\Gamma) \text{ such that } 1 \leq |v| \leq |u| \leq 2 \]

★ Primary minimal cooperation (pmc):

\[[u \rightarrow v]_h, \text{ for } h \in H \text{ and } u, v \in M_f(\Gamma) \text{ such that } 1 \leq |u|, |v| \leq 2 \]

★ Minimal cooperation and minimal production (mcmp):

\[[u \rightarrow v]_h, \text{ for } h \in H \text{ and } u, v \in M_f(\Gamma) \text{ such that } 1 \leq |u| \leq 2 \text{ and } |v| = 1 \]

\[\text{mc} \Rightarrow \text{pmc} \Rightarrow \text{bmc} \Rightarrow \text{mcmp} \]
Minimal cooperation in object evolution rules

★ Minimal cooperation (mc):

\[[u \rightarrow v]_h, \text{ for } h \in H \text{ and } u, v \in M_f(\Gamma) \text{ such that } 1 \leq |u| \leq 2 \]

★ Bounded minimal cooperation (bmc):

\[[u \rightarrow v]_h, \text{ for } h \in H \text{ and } u, v \in M_f(\Gamma) \text{ such that } 1 \leq |v| \leq |u| \leq 2 \]

★ Primary minimal cooperation (pmc):

\[[u \rightarrow v]_h, \text{ for } h \in H \text{ and } u, v \in M_f(\Gamma) \text{ such that } 1 \leq |u|, |v| \leq 2 \]

★ Minimal cooperation and minimal production (mcmp):

\[[u \rightarrow v]_h, \text{ for } h \in H \text{ and } u, v \in M_f(\Gamma) \text{ such that } 1 \leq |u| \leq 2 \text{ and } |v| = 1 \]

\[
\begin{align*}
mc & \implies pmc \implies bmc \implies mcmp
\end{align*}
\]

The class \(\mathcal{DAM}^0(\alpha, +c, -d, \pm n) \), where \(\alpha \in \{mc, pmc, bmc, mcmp\} \).
Bounded minimal cooperation

Object evolution rules: \([a \rightarrow b]_h ; [a b \rightarrow c]_h ; [a b \rightarrow c d]_h\)
Bounded minimal cooperation

Object evolution rules: \([a \rightarrow b]_h ; [a b \rightarrow c]_h ; [a b \rightarrow c d]_h \)

Theorem: \(\text{SAT} \in \text{PMC}_{\mathcal{DAM}}^0(\mathcal{bmc},+c,-d,-n) \cdot \)

Corollary: \(\text{DP} \subseteq \text{PMC}_{\mathcal{DAM}}^0(\mathcal{bmc},+c,-d,-n) \cdot \)
Bounded minimal cooperation

Object evolution rules: $\left[a \rightarrow b \right]_h; \left[a b \rightarrow c \right]_h; \left[a b \rightarrow c d \right]_h$

Theorem: $\text{SAT} \in \text{PMC}_{\text{DAM}^0}(\text{bmc}, +c, -d, -n)$.

Corollary: $\text{DP} \subseteq \text{PMC}_{\text{DAM}^0}(\text{bmc}, +c, -d, -n)$.

Theorem: $\text{PMC}_{\text{SAM}^0}(\text{bmc}, +c, -d, +n) = \text{P}$.

Bounded minimal cooperation

Object evolution rules: \([a \rightarrow b]_h ; [a b \rightarrow c]_h ; [a b \rightarrow c d]_h\)

Theorem: \(\text{SAT} \in \text{PMC}_{DAM^0(bmc,+c,−d,−n)}\).

Corollary: \(\text{DP} \subseteq \text{PMC}_{DAM^0(bmc,+c,−d,−n)}\).

Theorem: \(\text{PMC}_{SAM^0(bmc,+c,−d,+n)} = P\).

* New frontier of the efficiency in the framework \(AM^0(bmc,+c,−d,−n)\): separation versus division.

* New frontier of the efficiency in the framework \(DAM^0(∗,+c,−d,−n)\): non-cooperation in object evolution rules versus \(bmc\) in object evolution rules.
Primary minimal cooperation

Object evolution rules:
- $[a \rightarrow b]_h$
- $[a \rightarrow b c]_h$
- $[a b \rightarrow c]_h$
- $[a b \rightarrow c d]_h$

Theorem: SAT \in PMC DAM 0 (pmc, +c, −d, −n) ∩ PMC SAM 0 (pmc, +c, −d, −n).

Corollary: DP \subseteq PMC DAM 0 (pmc, +c, −d, −n) ∩ PMC SAM 0 (pmc, +c, −d, −n).

⋆ New frontier of the efficiency in the framework SAM 0 (∗, +c, −d, −n):
- bmc versus pmc
- non-cooperation in object evolution rules versus pmc in object evolution rules.
Primary minimal cooperation

Object evolution rules: \[a \rightarrow b \] \(h \); \[a \rightarrow bc \] \(h \); \[ab \rightarrow c \] \(h \); \[ab \rightarrow cd \] \(h \)

Theorem: \(SAT \in PMC_{DAM^0(pm, +c, \d, \n)} \cap PMC_{SAM^0(pm, +c, \d, \n)} \).

Corollary: \(DP \subseteq PMC_{DAM^0(pm, +c, \d, \n)} \cap PMC_{SAM^0(pm, +c, \d, \n)} \).
Primary minimal cooperation

Object evolution rules: \([a \rightarrow b]_h \); \([a \rightarrow b c]_h \); \([a b \rightarrow c]_h \); \([a b \rightarrow c d]_h \)

Theorem: \(\text{SAT} \in \text{PMC}_{\mathcal{D}A\mathcal{M}^0(\text{pmc},+c,-d,-n)} \cap \text{PMC}_{\mathcal{S}A\mathcal{M}^0(\text{pmc},+c,-d,-n)} \).

Corollary: \(\text{DP} \subseteq \text{PMC}_{\mathcal{D}A\mathcal{M}^0(\text{pmc},+c,-d,-n)} \cap \text{PMC}_{\mathcal{S}A\mathcal{M}^0(\text{pmc},+c,-d,-n)} \).

★ New frontier of the efficiency in the framework \(\mathcal{S}A\mathcal{M}^0(\text{mc},+c,-d,-n) \): \textit{bmc} versus \textit{pmc}.

★ New frontier of the efficiency in the framework \(\mathcal{S}A\mathcal{M}^0(\star,+c,-d,-n) \): \textit{non-cooperation} in object evolution rules versus \textit{pmc} in object evolution rules.
Minimal cooperation and minimal production

Object evolution rules: $[a \rightarrow b]_h ; [a \ b \rightarrow \ c]_h$

Theorem: $\text{SAT} \in \text{PMC}_0(\text{mcmp}, +c, -d, -n)$

Corollary: $\text{DP} \subseteq \text{PMC}_0(\text{mcmp}, +c, -d, -n)$

⋆ New frontier of the efficiency in the framework $\text{DAM}_0(\ast, +c, -d, -n)$: non-cooperation in object evolution rules versus mcmp in object evolution rules.

Theorem: $\text{MAJORITY-SAT} \in \text{PMC}_0(\text{mcmp}, +c, -d, -n)$

Corollary: $\text{PP} \subseteq \text{PMC}_0(\text{mcmp}, +c, -d, -n)$

What about separation rules instead of division rules?

Theorem: $\text{PMC}_0(\text{SAM}_0(\text{mcmp}, +c, -d, +n)) = \text{P}$
Minimal cooperation and minimal production

Object evolution rules: \([a \rightarrow b]_h ; [a b \rightarrow c]_h\)

Theorem: \(\text{SAT} \in \text{PMC}^{DAM_0(\text{mcmp}, +c, -d, -n)}\).
Corollary: \(\text{DP} \subseteq \text{PMC}^{DAM_0(\text{mcmp}, +c, -d, -n)}\).

What about separation rules instead of division rules?

Theorem: \(\text{PMC}^{SAM_0(\text{mcmp}, +c, -d, +n)} = \mathbb{P}\).
Minimal cooperation and minimal production

Object evolution rules: $[a \rightarrow b]_h \land [a \ b \rightarrow c]_h$

Theorem: $\text{SAT} \in \text{PMC}_{\mathcal{DAM}^0(mcmp, +c, -d, -n)}$.

Corollary: $\text{DP} \subseteq \text{PMC}_{\mathcal{DAM}^0(mcmp, +c, -d, -n)}$.

* New frontier of the efficiency in the framework $\mathcal{DAM}^0(\ast, +c, -d, -n)$: **non-cooperation** in object evolution rules versus **mcmp** in object evolution rules.
Minimal cooperation and minimal production

Object evolution rules: \([a \rightarrow b]_h ; [a b \rightarrow c]_h\)

Theorem: \(\text{SAT} \in \text{PMC}^{\mathcal{DAM}^0(mcmp,+c,-d,-n)}\).

Corollary: \(\text{DP} \subseteq \text{PMC}^{\mathcal{DAM}^0(mcmp,+c,-d,-n)}\).

★ New frontier of the efficiency in the framework \(\mathcal{DAM}^0(\ast,+c,-d,-n)\): non-cooperation in object evolution rules versus \(\text{mcmp}\) in object evolution rules.

Theorem: \(\text{MAJORITY-SAT} \in \text{PMC}^{\mathcal{DAM}^0(mcmp,+c,-d,-n)}\).

Corollary: \(\text{PP} \subseteq \text{PMC}^{\mathcal{DAM}^0(mcmp,+c,-d,-n)}\).
Minimal cooperation and minimal production

Object evolution rules: $[a \rightarrow b]_h ; [a b \rightarrow c]_h$

Theorem: SAT \in PMC\(\mathcal{D}\mathcal{A}\mathcal{M}^0(mcmp,+c,-d,-n)\).
Corollary: DP \subseteq PMC\(\mathcal{D}\mathcal{A}\mathcal{M}^0(mcmp,+c,-d,-n)\).

★ New frontier of the efficiency in the framework \(\mathcal{D}\mathcal{A}\mathcal{M}^0(\ast,+c,-d,-n)\): non-cooperation in object evolution rules versus mcmp in object evolution rules.

Theorem: MAJORITY-SAT \in PMC\(\mathcal{D}\mathcal{A}\mathcal{M}^0(mcmp,+c,-d,-n)\).
Corollary: PP \subseteq PMC\(\mathcal{D}\mathcal{A}\mathcal{M}^0(mcmp,+c,-d,-n)\).

What about separation rules instead of division rules?
Minimal cooperation and minimal production

Object evolution rules: \[[a \rightarrow b]_h ; [a b \rightarrow c]_h \]

Theorem: SAT \in PMC$_{DAM^0(mcmp, +c, -d, -n)}$.

Corollary: DP \subseteq PMC$_{DAM^0(mcmp, +c, -d, -n)}$.

★ New frontier of the efficiency in the framework $DAM^0(\ast, +c, -d, -n)$:
non-cooperation in object evolution rules versus **mcmp** in object evolution rules.

Theorem: MAJORITY-SAT \in PMC$_{DAM^0(mcmp, +c, -d, -n)}$.

Corollary: PP \subseteq PMC$_{DAM^0(mcmp, +c, -d, -n)}$.

What about separation rules instead of division rules?

Theorem: PMC$_{SAM^0(mcmp, +c, -d, +n)} = P$.
Counting membrane systems

Decision problems: abstract problem that has a *yes* or *no* answer.

- Recognizer membrane systems: The classes DAM^0 and SAM^0.

Counting problems: how many possible solutions exist associated with each instance.

- Counting membrane systems: inspired from recognizer membrane systems but the boolean answer of these systems is replaced by an *answer* encoded by a *natural number expressed in a binary notation*.
- The classes DAM^0_c and SAM^0_c.

\[\text{Theorem:} \quad \#\text{SAT} \in \text{PMC}_{\text{DAM}^0_c}(\text{mcmp}, +c, -d, -n) \]

\[\text{Corollary:} \quad \#\text{P} \subseteq \text{PMC}_{\text{DAM}^0_c}(\text{mcmp}, +c, -d, -n) \]
Counting membrane systems

Decision problems: abstract problem that has a yes or no answer.

- Recognizer membrane systems: The classes DAM^0 and SAM^0.

Counting problems: how many possible solutions exist associated with each instance.

- Counting membrane systems: inspired from recognizer membrane systems but the boolean answer of these systems is replaced by an answer encoded by a natural number expressed in a binary notation.
- The classes DAM_C^0 and SAM_C^0.

Theorem: $\#SAT \in PMC_{DAM_C^0}(mcmp,+c,−d,−n)$.

Corollary: $\#P \subseteq PMC_{DAM_C^0}(mcmp,+c,−d,−n)$.
Counting membrane systems

Decision problems: abstract problem that has a *yes* or *no* answer.
- Recognizer membrane systems: The classes DAM^0 and SAM^0.

Counting problems: how many possible solutions exist associated with each instance.
- Counting membrane systems: inspired from recognizer membrane systems but the boolean answer of these systems is replaced by an *answer* encoded by a natural number expressed in a binary notation.
- The classes DAM_C^0 and SAM_C^0.

Theorem: $\#\text{SAT} \in \text{PMC}_{\text{DAM}_C^0}(\text{mcmp}, +c, -d, -n)$.

Corollary: $\#\text{P} \subseteq \text{PMC}_{\text{DAM}_C^0}(\text{mcmp}, +c, -d, -n)$.

What about the complexity class $\text{PMC}_{\text{SAM}_C^0}(\text{mcmp}, +c, -d, -n)$?
New results (IV)
New results (IV)

Theorem: \(\text{PMC}_{SAM^0}(mcmp,+c,-d,+n) = P \).
New results (IV)

Theorem: $\text{PMC}_{SAM^0}(mcmp, +c, -d, +n) = P$.

- New frontier of the efficiency in the framework $\mathcal{AM}^0(mcmp, +c, -d, -n)$: separation versus division.
New results (IV)

Theorem: $\text{PMC}_{S\mathcal{AM}^0(mcmp, +c, -d, +n)} = \text{P}$.

- New frontier of the efficiency in the framework $\mathcal{AM}^0(mcmp, +c, -d, -n)$: separation versus division.

- New frontier of the efficiency in the framework $S\mathcal{AM}^0(mc, +c, -d, -n)$: mcmp versus pmc.
Minimal cooperation and minimal production in communication rules

\[
\begin{align*}
\text{mcmp in send-in communication rules} & : a[h] \rightarrow [b] h \rightarrow [c] h \rightarrow [a b] h \rightarrow [c] h \rightarrow [a b] h \\
\text{mcmp in send-out communication rules} & : [a] h \rightarrow [b] h \rightarrow [c] h \rightarrow [a b] h \rightarrow [c] h \rightarrow [a b] h
\end{align*}
\]

for \(h \in H \) and \(a, b, c \in \Gamma \)

The class \(\text{DAM}^{0} (+e, \beta, \pm d, \pm n) \), \(\beta \in \{ \text{mcmp in } - \text{out}, \text{mcmp in }, \text{mcmp out} \} \).
Minimal cooperation and minimal production in communication rules

- mcmp in send-in and send-out communication rules ($\text{mcmp}_{\text{in-out}}$):

 \[
 \begin{align*}
 a \, [\,]_h & \rightarrow [\, b \,]_h \\
 a \, b \, [\,]_h & \rightarrow [\, c \,]_h \\
 [\, a \,]_h & \rightarrow b \, [\,]_h \\
 [\, a \, b \,]_h & \rightarrow c \, [\,]_h
 \end{align*}
 \]

 for $h \in H$ and $a, b, c \in \Gamma$

- mcmp in send-in communication rules (mcmp_{in}):

 \[
 \begin{align*}
 a \, [\,]_h & \rightarrow [\, b \,]_h \\
 a \, b \, [\,]_h & \rightarrow [\, c \,]_h
 \end{align*}
 \]

 for $h \in H$ and $a, b, c \in \Gamma$

- mcmp in send-out communication rules (mcmp_{out}):

 \[
 \begin{align*}
 [\, a \,]_h & \rightarrow b \, [\,]_h \\
 [\, a \, b \,]_h & \rightarrow c \, [\,]_h
 \end{align*}
 \]

 for $h \in H$ and $a, b, c \in \Gamma$

The class $\mathcal{DAM}^0(\{+e, \beta, \pm d, \pm n\})$, $\beta \in \{\text{mcmp}_{\text{in-out}}, \text{mcmp}_{\text{in}}, \text{mcmp}_{\text{out}}\}$.
New results

Theorem: SAT ∈ PMC_{\text{DAM}}(e, mcmp_{\text{in}} - mcmp_{\text{out}}, d, n).

Corollary: DP ⊆ PMC_{\text{DAM}}(e, mcmp_{\text{in}} - mcmp_{\text{out}}, d, n).

Direction in communication rules doesn't matter!!!

Theorem: SAT ∈ PMC_{\text{DAM}}(e, mcmp_{\text{in}}, d, n) ∩ PMC_{\text{DAM}}(e, mcmp_{\text{out}}, d, n).

Corollary: DP ⊆ PMC_{\text{DAM}}(e, mcmp_{\text{in}}, d, n) ∩ PMC_{\text{DAM}}(e, mcmp_{\text{out}}, d, n).

Are necessary division rules for non-elementary membranes?
New results

mcmp in communication rules (both directions):

Theorem: \(\text{SAT} \in \text{PMC}_{\text{DAM}}^{0}(+e, \text{mcmp}_{\text{in-out}}, -d, +n) \).

Corollary: \(\text{DP} \subseteq \text{PMC}(+e, \text{mcmp}_{\text{in}} - d, +n) \).

Direction in communication rules doesn’t matter!!!
New results

mcmp in communication rules (both directions):

Theorem: $\text{SAT} \in \text{PMC}_{\text{DAM}}(e, \text{mcmp}_{\text{in}} - \text{out}, -d, +n)$.

Corollary: $\text{DP} \subseteq \text{PMC}(e, \text{mcmp}_{\text{in}} - \text{out}, -d, +n)$.

Simple object evolution rules: $[a \rightarrow b]_h$, for $h \in H$ and $a, b \in \Gamma$.
New results

 mcmp in communication rules (both directions):

Theorem: $\text{SAT} \in \text{PMC}^{DAM}_0(+e, mcmp_{in-out}, -d, +n)$.

Corollary: $\text{DP} \subseteq \text{PMC}(+e, mcmp_{in-out}, -d, +n)$.

Simple object evolution rules: $[a \rightarrow b]_h$, for $h \in H$ and $a, b \in \Gamma$

Theorem: $\text{SAT} \in \text{PMC}^{DAM}_0(+e_s, mcmp_{in-out}, -d, +n)$.

Corollary: $\text{DP} \subseteq \text{PMC}(+e_s, mcmp_{in-out}, -d, +n)$.
New results

mcmp in communication rules (both directions):

Theorem: \(\text{SAT} \in \text{PMC}_{DAM}^0(+e,\text{mcmp}_{\text{in}}-\text{out},-d,+n) \).

Corollary: \(\text{DP} \subseteq \text{PMC}(+e,\text{mcmp}_{\text{in}}-\text{out},-d,+n) \).

Simple object evolution rules: \([a \rightarrow b]_h\), for \(h \in H \) and \(a, b \in \Gamma \)

Theorem: \(\text{SAT} \in \text{PMC}_{DAM}^0(+e_{s},\text{mcmp}_{\text{in}}-\text{out},-d,+n) \).

Corollary: \(\text{DP} \subseteq \text{PMC}(+e_{s},\text{mcmp}_{\text{in}}-\text{out},-d,+n) \).

Direction in communication rules ...
New results

mcmp in communication rules (both directions):

Theorem: $\text{SAT} \in \text{PMC}_{DAM^0}(+e,\text{mcmp}_{\text{in-out}},-d,+n)$.

Corollary: $\text{DP} \subseteq \text{PMC}(+e,\text{mcmp}_{\text{in-out}},-d,+n)$.

Simple object evolution rules: $[a \rightarrow b]_h$, for $h \in H$ and $a, b \in \Gamma$

Theorem: $\text{SAT} \in \text{PMC}_{DAM^0}(+e_s,\text{mcmp}_{\text{in-out}},-d,+n)$.

Corollary: $\text{DP} \subseteq \text{PMC}(+e_s,\text{mcmp}_{\text{in-out}},-d,+n)$.

Direction in communication rules ... doesn’t matter!!!
New results

mcmp in communication rules (both directions):

Theorem: \(SAT \in \text{PMC}(e, \text{mcmp}_{\text{in}} - \text{out}, -d, +n) \).

Corollary: \(\text{DP} \subseteq \text{PMC}(e, \text{mcmp}_{\text{in}} - \text{out}, -d, +n) \).

Simple object evolution rules: \([a \rightarrow b]_h \), for \(h \in H \) and \(a, b \in \Gamma \).

Theorem: \(SAT \in \text{PMC}(e, \text{mcmp}_{\text{in}} - \text{out}, -d, +n) \).

Corollary: \(\text{DP} \subseteq \text{PMC}(e, \text{mcmp}_{\text{in}} - \text{out}, -d, +n) \).

Direction in communication rules ... doesn’t matter!!!

Theorem: \(SAT \in \text{PMC}(e, \text{mcmp}_{\text{in}} - \text{out}, -d, +n) \cap \text{PMC}(e, \text{mcmp}_{\text{out}} - \text{in}, -d, +n) \).

Corollary: \(\text{DP} \subseteq \text{PMC}(e, \text{mcmp}_{\text{in}} - \text{out}, -d, +n) \cap \text{PMC}(e, \text{mcmp}_{\text{out}} - \text{in}, -d, +n) \).
New results

mcmp in communication rules (both directions):

Theorem: \(\text{SAT} \in \text{PMC}_{\text{DAM}^0}(+e,\text{mcmp}_{\text{in-out}},-d,+n) \cdot \)

Corollary: \(\text{DP} \subseteq \text{PMC}(+e,\text{mcmp}_{\text{in-out}},-d,+n) \cdot \)

Simple object evolution rules: \([a \rightarrow b]_h\), for \(h \in H\) and \(a, b \in \Gamma\)

Theorem: \(\text{SAT} \in \text{PMC}_{\text{DAM}^0}(+e_s,\text{mcmp}_{\text{in-out}},-d,+n) \cdot \)

Corollary: \(\text{DP} \subseteq \text{PMC}(+e_s,\text{mcmp}_{\text{in-out}},-d,+n) \cdot \)

Direction in communication rules ... doesn’t matter!!!

Theorem: \(\text{SAT} \in \text{PMC}_{\text{DAM}^0}(+e_s,\text{mcmp}_{\text{in}},-d,+n) \cap \text{PMC}_{\text{DAM}^0}(+e_s,\text{mcmp}_{\text{out}},-d,+n) \cdot \)

Corollary: \(\text{DP} \subseteq \text{PMC}(+e_s,\text{mcmp}_{\text{in}},-d,+n) \cap \text{PMC}_{\text{DAM}^0}(+e_s,\text{mcmp}_{\text{out}},-d,+n) \cdot \)

Are necessary **division rules for non-elementary membranes?**
References

THANK YOU
FOR YOUR ATTENTION!