
Rediscovering Spiking Neural P Systems

Simulating hierarchically-structured neurons

Luis Valencia Cabrera, Tingfang Wu, Zhiqiang Zhang,

Linqiang Pan, Mario J. Pérez-Jiménez

Research Group on Natural Computing

Department of Computer Science and Artificial Intelligence

University of Seville

Key Laboratory of Image Information Processing and Intelligent Control

Education Ministry of China, School of Automation

Huazhong University of Science and Technology

02-02-2017, BWMC 2017 - Sevilla

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 1 / 46

Contents

1 Cell-like Spiking Neural P Systems

2 A Unified Software Framework for P Systems

3 A language for Cell-like SN P systems

4 Case Studies

5 Conclusions and Future Work

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 2 / 46

Contents

1 Cell-like Spiking Neural P Systems

P systems with multisets rewriting rules

Spiking Neural P systems

Cell-like SN P Systems

2 A Unified Software Framework for P Systems

3 A language for Cell-like SN P systems

4 Case Studies

5 Conclusions and Future Work

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 3 / 46

Contents

1 Cell-like Spiking Neural P Systems

P systems with multisets rewriting rules

Spiking Neural P systems

Cell-like SN P Systems

2 A Unified Software Framework for P Systems

3 A language for Cell-like SN P systems

4 Case Studies

5 Conclusions and Future Work

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 4 / 46

“Classical” P systems with multisets rewriting rules
Syntax definition

A (cell-like) P system (with multiset rewriting rules) of degree q ≥ 1 is a tuple of the form

Π = (O,µ,M1, . . . ,Mq,R1, . . . ,Rq, io)

O is a finite alphabet whose elements are called objects;

µ is a rooted tree (the membrane structure) whose q nodes (called membranes) are

injectively labelled by 1, . . . ,q, respectively;

Mi , 1≤ i ≤ q, is a multiset over O associated with membrane i at the beginning of a

computation;

Ri , 1≤ i ≤ q, is a finite set of evolution rules associated with membrane i , and

io ∈ {0,1, . . . ,q} indicates the output region (a membrane in µ , or the environment

labelled by 0).

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 5 / 46

“Classical” P systems with multisets rewriting rules
Types of rules of the system

The rules of the system are of the form:

u→ v

where:

u is a multiset over O

v is a multiset over O×{here, in,out}.

Note: each element of v is of the form (a, tar),

where a ∈ O and tar ∈ {here, in,out}.

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 6 / 46

“Classical” P systems with multisets rewriting rules
Semantic remarks

An extensive description of the semantics associated with this kind of systems can be found in

Handbook1, but we will briefly recall some relevant aspects.

Let us take a careful look at the target indication in.

When a rule r associated with a membrane i is applied and pair (a, in) belongs to its

right hand side, then object a will be sent to a child of i , non-deterministically chosen.

The non-deterministic choice is done for each object individually, even if many of

them present that same target indicator.

For instance: if (a, in)(a, in) belongs to the right-hand side of a rule r , then two

non-deterministic choices of children of membrane i should be considered in order to

send “the first” object a and “the second” object a, respectively.

1Păun, Gh., Rozenberg, G., Salomaa, A.(eds.): The Oxford Handbook of Membrane Computing. Oxford

University Press, New York (2010)
Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 7 / 46

P systems with multisets rewriting rules
Rules definition extension

In what follows, the semantics of these P systems is extended to consider multisets of

objects as units associated with the target indicators specified.

A rule is of the form u→ v , where:

u ∈ M(O)
v is a multiset over M(O)×{here, in,out}
M(O) being the set of all multisets over O

If such a rule is applied and pair (w, in), where w is a multiset over O, belongs to the

right-hand side of the rule, then multiset w will be sent (as a unit) to one of their

children, non-deterministically chosen.

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 8 / 46

P systems with multisets rewriting rules
Semantics

Semantics

Both in the original and the extended version described previously, the rules of the whole

systems are applied in the maximally parallel manner: a maximal multiset of applicable rules

is non-deterministically chosen and applied.

Results

Results are associated only with halting computations,

encoded by the contents of the output region in the halting configuration.

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 9 / 46

Contents

1 Cell-like Spiking Neural P Systems

P systems with multisets rewriting rules

Spiking Neural P systems

Cell-like SN P Systems

2 A Unified Software Framework for P Systems

3 A language for Cell-like SN P systems

4 Case Studies

5 Conclusions and Future Work

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 10 / 46

Spiking neural P systems
Syntax of SN P systems with extended rules and no delay2

An SN P system of degree q ≥ 1 is a tuple

Π = (O,σ1, . . . ,σq,syn,out)

O = {a} is a singleton alphabet (a is called spike)

σ1, . . . ,σq are neurons, of the form σi = (ni ,Ri),1≤ i ≤ q, such that:

ni ≥ 0 is the initial number of spikes contained in the neuron
Ri is a finite set of rules of the following two forms:

1 E/ac → ap , where E is a regular expression over a and c ≥ p ≥ 1
2 as → λ , for some s ≥ 1, with the restriction that as /∈ L(E) for any rule E/ac → ap of

type (1) from Ri

syn ⊆ {1,2, . . . ,q}×{1,2, . . . ,q} with (i, i) /∈ syn, for 1≤ i ≤ q (synapses)

out ∈ {1,2, . . . ,q} indicates the output neuron.

2Chen, H., Ishdorj, T.O., Păun, Gh., Pérez-Jiménez, M.J.: Spiking Neural P Systems with Extended Rules. In:

Proceedings of the Fourth Brainstorming Week on Membrane Computing, 241–265. Fénix Editora, Sevilla (2006)
Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 11 / 46

Spiking neural P systems
Types of rules

Spiking rule

The spiking rule r ≡ E/ac → ap ∈ Ri is enabled at a moment of time t if neuron σi contains

k spikes at that moment, ak ∈ L(E) and k ≥ c.

If rule r is applied then c spikes are consumed from neuron σi , and p spikes are sent to its

outgoing neurons (each neuron σj such that (i, j) ∈ syn).

Forgetting rule

The forgetting rule r ≡ as→ λ ∈ Ri is enabled at a moment of time t if neuron σi contains

exactly s spikes at that moment.

By applying rule r , all s spikes are removed from the neuron σi .

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 12 / 46

Spiking neural P systems
Configurations and computations

A configuration Ct at an instant t is a tuple (p1, . . . ,pq) (pi ≥ 0 is the number of spikes

in neuron σi at instant t).

Initial configuration (n1,n2, . . . ,nq)

Configuration Ct yields configuration Ct+1 in one transition step if we can pass from Ct

to Ct+1 by applying the rules from R1∪·· ·∪Rq in such manner that inside each

neuron at most one rule must be applied (in each neuron, if some rule is enabled then

exactly one rule should be applied).

A global clock is assumed, marking the time for the whole system

From the initial config., a seq. of transition takes place, which is called a computation.

A computation halts if it reaches a configuration where no rule is enabled.

With any computation (halting or not), a spike train can be associated (a sequence of

digits -0 and 1- indicating for each instant, if the output neuron sends a spike out of the

system -1- or not -0-).

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 13 / 46

Spiking neural P systems
Interpreting the output

The result of a computation can belong to one of the following types:

The spike train itself, that is, a string over the alphabet {0,1}.
A natural number, representing the amount of steps between the first two spikes emitted

to the output neuron by the system.

The set of such numbers is denoted by N2(Π). By convention: (a) number 0 is

generated by a computation of Π which sends spikes out only once; and (b) if no

computation of Π sends out any spikes then N2(Π) = /0.

The number of spikes present in the output neuron in the halting configuration. The set

of numbers generated in this way by Π is denoted by Nin(Π).

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 14 / 46

Contents

1 Cell-like Spiking Neural P Systems

P systems with multisets rewriting rules

Spiking Neural P systems

Cell-like SN P Systems

2 A Unified Software Framework for P Systems

3 A language for Cell-like SN P systems

4 Case Studies

5 Conclusions and Future Work

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 15 / 46

A new approach: Cell-like SN P Systems
cSN P systems - Syntax

A cSN P system of degree q ≥ 1, is a tuple Π = (O,µ,n1, . . . ,nq,R1, . . . ,Rq, io), where:

– O = {a} is a singleton alphabet (a is called spike).

– µ is a hierarchical membrane structure with q membranes.

– ni ,1≤ i ≤ q, number of spikes in region i of µ at the beginning of the computation.

– Ri ,1≤ i ≤ q, is a finite set of rules from membrane i of the following form:

(1) E/ac → u, where E is a regular expression over O, c ≥ 1, and u is a multiset of pairs

(ap, tar), where p ≥ 1 and tar ∈ {here,out, in, inj , inall} (spiking rules).

(2) as→ λ , where s ≥ 1 (forgetting rules).

– io ∈ {1, . . . ,q}∪{env} indicates the output region (this is the environment if

io = env).

As stated in CSNP3, “one may also use the stronger indication inj ” (the object is sent to the

specific child membrane with label j).

3Wu, T., Zhang, Z., Păun, Gh., Pan, L.: Cell-like Spiking Neural P Systems. Theoretical Computer Science. 623,

180–189 (2016)
Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 16 / 46

A new approach: Cell-like SN P Systems
Semantics

In spiking rules, tar is a target indication specifying the destination of the associated spikes.

The meaning of targets in, inj and inall is the following: by applying a rule associated with

membrane i whose right-hand side contains the pair (ap, in), (ap, inj) or (ap, inall),

respectively, p spikes are sent to:

(a) a children of membrane i , selected in a non-deterministic way;

(b) the children j of membrane i ;

(c) all children of membrane i .

Computations in cSN P systems are defined as usual in SN P systems: in each membrane, at

most one rule is applied, but the membranes work in parallel, synchronously.

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 17 / 46

A new approach: Cell-like SN P Systems
Interpreting the output

The result of a computation can be of the following types:

The number of spikes present in the output region in the halting configuration. If io is a

membrane then we denote the set of numbers computed (generated) by the system Π
as Nin(Π) (the set computed in the internal mode).

The time distance between the first two steps when the system sends spikes out. This

can be done by rules associated with the skin membrane whose right-hand side

contains pairs (ap,out). The set of numbers computed by Π is denoted by N2(Π), with

the same convention previously described.

As mentioned in 4, no restriction is imposed on the number of spikes produced, so that it can

be greater than the number of consumed spikes. More details about this kind of systems and

their universality are provided in 4.

4Wu, T., Zhang, Z., Păun, Gh., Pan, L.: Cell-like Spiking Neural P Systems. Theoretical Computer Science. 623,

180–189 (2016)
Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 18 / 46

Contents

1 Cell-like Spiking Neural P Systems

2 A Unified Software Framework for P Systems

3 A language for Cell-like SN P systems

4 Case Studies

5 Conclusions and Future Work

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 19 / 46

A Unified Software Framework for P Systems

P systems brought the emergence of new ideas, along with solid theoretical foundations

Software tools started exploring the simulation of these systems, as ad-hoc solutions to

specific problems

Many types of P systems were defined→ availability of general tools to work with

these novel solutions became advisable.

P-Lingua meant a significant milestone: uniform framework to specify, debug and

simulate these computing devices

Use in real applications led to:

the need of additional tools for P systems designers

the delivery of end-user applications based on this framework would widen the scope and

visibility of the underlying systems, abstracting internal details to the end-users of the

applications designed, as ecologists, economists, etc

These goals were achieved by MeCoSim.

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 20 / 46

P-Lingua framework

P–Lingua framework includes:

a general language to define P systems, P–Lingua

a software library, pLinguaCore, supporting the specification and simulation of a variety

of computing models within Membrane Computing

P-Lingua language text files can be easily processed by pLinguaCore, directly or through

some client, both in console format or with the visual interface provided by MeCoSim.

Not only specific P systems can be specified, but also families of them, with parameters

accepting different values depending on the instances to generate.

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 21 / 46

MeCoSim (Membrane Computing Simulator)

MeCoSim:

offers P systems designers and end users visual tools to handle their solutions, either as

white boxes to deepen in the study of P systems or as black boxes to focus on the

problems, abstracting from internal details

supplies model designers a graphic tool to design, simulate, analyse and verify their

models

In addition, end users are provided with applications, with interfaces adapted for each problem,

to enter the input data and check the results. MeCoSim is built on top of P-Lingua as

specification language and simulation engine.

A number of features are available for debugging, visualization and customization.

Besides, it provides a plugins architecture to extend its functionalities, and options related with

invariants detection and connection with model checking software for the formal verification of

the models.

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 22 / 46

Contents

1 Cell-like Spiking Neural P Systems

2 A Unified Software Framework for P Systems

3 A language for Cell-like SN P systems

4 Case Studies

5 Conclusions and Future Work

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 23 / 46

A Language to Define Cell-like SN P Systems
Reserved Words and Special Elements

A new type of P systems has been defined, with genuine features, so the specific language for

them must be set.

Despite the variety of systems available in P-Lingua, some well-known ingredients of P

systems had not been incorporated so far.

In particular, rewriting rules including target indicators (here, in, out , inall , inj) were not covered.

However, cSN P systems use these indicators. Consequently, new elements were needed.

In fact, before defining the language for cSN P systems, a more general model has been

included in P–Lingua, for cell-like P systems including target indicators. They are a

generalized version of the systems in Handbook. This model is now available within the

framework, so that any P–Lingua file using these systems starts with the sentence:

@model<rewriting_systems>

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 24 / 46

A Language to Define Cell-like SN P Systems I
Model Specification

New target indicators are written as here, out, in, inall and in{j}.

Any P-Lingua file defining a cSN P system must set cell_like_snp as its model, thus

beginning the file with the sentence:

@model<cell_like_snp>

The rest of the file will then define the main elements describing the cSN P system, typically

consisting of Π = (O,µ,n1, . . . ,nq,R1, . . . ,Rq, io). The singleton alphabet O = {a} is

fixed, so it does not need to be made explicit.

The rest of the elements depend on the specific P system, so µ , n1, . . . ,nq , R1, . . . ,Rq and

io will be set as will be explained.

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 25 / 46

A Language to Define Cell-like SN P Systems I
Membrane Structure and initial multisets

cSN P systems are a variant of spiking neural P systems based on a tree-structure. Therefore,

to specify the initial membrane structure

@mu is used:

@mu = [...]’1;

where ... stands for the definition of the membrane structure as usual.

When defining cSN P systems, we need to specify the multisets of objects initially placed in

every membrane. Given a membrane i containing ni spikes, the initial number of spikes it

contains can be specified as follows:

@ms(i) = a*ni;

For example, @ms(2) = a*2 (if only one spike is present, *1 is omitted). Alternatively,

the initial objects can be included directly with @mu:

@mu = [a*2 [a]’2 []’3 [a*5]’4]’1;

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 26 / 46

A Language to Define Cell-like SN P Systems
Definition of Rules

Two types of rules can be defined: forgetting rules and firing rules. The former ones can be

defined in P-Lingua in the traditional way:

[a*c]’h --> [#]’h "e";
[a*c --> #]’h "e";

with h a label, c an integer expression and e a regular expression over {a}.

Spiking rules, must support the extended form E/ac → u, with E a regular expression over

O, c ≥ 1. They can be defined in the following ways:

[a*c]’h --> LIST_OF_PAIRS "e";
[a*c --> LIST_OF_PAIRS]’h "e";

For any rule, e is optional. When e is not present in the rule, it defaults to the left hand side of

the rule. The LIST_OF_PAIRS can present pairs of the form (ap, tar). In P-Lingua, its

syntax would be:

(a*p ; TAR)

with TAR expressed as described before.
Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 27 / 46

A Language to Define Cell-like SN P Systems I
Interpreting the rules

It is important to take into account the extension of P systems with rewriting rules presented.

Let us consider a rule in a region 1 such as: a2bc3→ ba2c(da,out)(ca, in).
This rule could be expressed in P-Lingua in the following ways:

[a*2,b,c*3]’1 --> (b,a*2,c;here) (d,a;out) (c,a;in);
[a*2,b,c*3]’1 --> b,a*2,c (d,a;out) (c,a;in);
[a*2,b,c*3 --> b,a*2,c (d,a;out) (c,a;in)]’1;

Thus, ca will be sent to the same region, non-deterministically chosen.

Regarding the syntax for regular expressions in P–Lingua, for backwards compatibility with

other classical SN P systems, we adopted the same policies implemented yet. The

mechanism to define and evaluate regular expressions is based on regex Java package.

The following subset of symbols can be used:

’a’, ’(’, ’)’, ’[’, ’]’, ’{’, ’}’, ’,’, ’^’, ’*’, ’+’,’?’, ’|’

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 28 / 46

A Language to Define Cell-like SN P Systems
Output Region

The last syntactic element present in the definition of a cSN P system is the output region. It

can be specified in P-Lingua in a natural way as:

@mout = REGION;

This REGION should match the label of a region in µ , or refer to the environment (by setting

the region to environment, or simply env or e).

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 29 / 46

A Language to Define Cell-like SN P Systems
General Features Derived from the Integration

The tools created for cSN P systems have been integrated in P–Lingua framework.

Concerning the specification language, it will imply a clear advantage: the traditional

mechanisms present in the general description of the language will be available.

This includes features as modules/functions definition as in structured programming,

use of variables, parameters, blocks or iterators, among others.

In addition, through its integration in MeCoSim, these files may also make use of

parameters generated from the input given by the user.

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 30 / 46

A New Simulator for Cell-like SN P Systems

A new simulator within P-Lingua framework captures the dynamics of cSN P systems.

The general idea is clear: once a P system is generated from a P–Lingua file, the simulator

performs a possible computation from the initial configuration, producing the corresponding

“non-deterministic” transitions until a halting configuration is reached. The simulation algorithm

follows the general schema found in most of the simulators in the platform:

1 Initialization

2 For each computation step, while some rules are applicable:

1 Selection of rules
2 Execution of rules

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 31 / 46

A New Simulator for Cell-like SN P Systems
Stages description

The initialization stage will set the initial structures needed by the algorithm. Then, the main

loop will run until a halting configuration is reached (no rule is applicable).

The selection phase will check applicable rules. At most one rule can be executed at a given

region in a computation step, so the selection stage will choose at most 1 rule,

“non-deterministically” chosen, per region. The applicability of a rule is determined by the

presence in the region of at least the number of spikes in the its hand side. In addition, its

content must match the regular expression. If some target indicators in, inall or inj appear in

the right hand side of a spiking rule, then the membrane must have child membranes (in the

latter case, a child membrane labelled by j must exist).

The execution phase passes from configuration Ct to Ct+1, removing the objects consumed

by the selected rules, and adding the objects produced by the rules to the corresponding

target indicators, choosing non-deterministically the child membrane receiving the objects in

the case of in, and with the corresponding deterministic result for the other target indicators.

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 32 / 46

Availability of the Software Tools Developed

The tools described in the previous sections, concerning the language, parsing and simulation

have made publicly available in the current version of MeCoSim, that can be downloaded from

MeCoSim site.

Once downloaded, whenever the software runs, if an Internet connection is active, it checks

the presence of new versions of any of the files involved, thus guaranteeing it always provides

the user with the last version of MeCoSim (that includes in its installation pLinguaCore).

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 33 / 46

Contents

1 Cell-like Spiking Neural P Systems

2 A Unified Software Framework for P Systems

3 A language for Cell-like SN P systems

4 Case Studies

5 Conclusions and Future Work

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 34 / 46

Case Studies
Example 1

cSN P systems were defined, and the software tools developed for the design and simulation

of cSN P systems were described. Let us see some examples illustrating their behaviour,

showing the corresponding P-Lingua files specifying the solutions for the computer tools.

The first system considered is given formally as:

Π = ({a}, [] 1,2,R1,1), where

R1 = {(a2)+/a2→ (a4,here), (a2)+/a2→ (a,here)}.

The initial multiset in membrane 1, as specified in Π, is a2. The behaviour of the system is as

follows: the first rule adds two more spikes, repeatedly, but when the second rule is used (this

may happen also in the first step) the number of spikes becomes odd and no further rule can

be used. Therefore, Nin(Π) = {2n + 1 | n ≥ 0}.

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 35 / 46

Case Studies
Example 1

This system is introduced in the simulator developed as follows:

@model<cell_like_snp>

def main()
{

@mu = []’1;

@ms(1) = a*2;

[a*2]’1 --> (a*4;here) "(a{2})+";
[a*2]’1 --> (a;here) "(a{2})+";

@mout = 1;
}

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 36 / 46

Case Studies
Example 1

It could have been expressed, omitting the explicit indicators here:

@model<cell_like_snp>

def main()
{

@mu = [a*2]’1;

[a*2]’1 --> a*4 "(a{2})+";
[a*2]’1 --> a "(a{2})+";

@mout = 1;
}

As it can be seen, the initial spikes can be introduced in a more compact way in @mu.

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 37 / 46

Case Studies
Example 2

The next example replaces the target indication here by some rules with target indicators in

and out , albeit at the cost of using one further membrane, as shown in the figure:

'

&

$

%
#
"

!

1

2

a2

(a2)+/a2→ (a4, in)

(a2)+/a2→ (a, in)

a4→ (a4,out)

a→ (a,out)

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 38 / 46

Case Studies
Example 2

The corresponding P-Lingua file would be the following:

@model<cell_like_snp>

def main()
{

@mu = [a*2 []’2]’1;

[a*2]’1 --> (a*4;in) "(a{2})+";
[a*2]’1 --> (a;in) "(a{2})+";

[a*4]’2 --> (a*4;out);
[a]’2 --> (a;out);

@mout = 1;
}

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 39 / 46

Case Studies
Example 3

A third example is proposed, replacing the previous rules, producing 4 spikes and consuming

2 at each step, by the use of the target indication inall , as indicated in the figure:'

&

$

%
�
�

�
�
�
�

�
�

1

2 3

a2

(a2)+/a2→ (a2, inall)
(a2)+/a→ (a,out)

a2→ (a2,out) a2→ (a2,out)

The same set (odd natural numbers) is obtained, but this time one spike is sent out to the

environment. However, the output membrane is still membrane 1, as in the previous examples.

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 40 / 46

Case Studies
Example 3

It is specified in the corresponding P-Lingua file:

@model<cell_like_snp>

def main()
{

@mu = [a*2 []’2 []’3]’1;

[a*2]’1 --> (a*2;inall) "(a{2})+";
[a]’1 --> (a;out) "(a{2})+";

[a*2]’2 --> (a*2;out);
[a*2]’3 --> (a*2;out);

@mout = 1;
}

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 41 / 46

Case Studies

This last example loaded in MeCoSim, including step by step information, P-Lingua file editor

and the multisets viewer:

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 42 / 46

Contents

1 Cell-like Spiking Neural P Systems

2 A Unified Software Framework for P Systems

3 A language for Cell-like SN P systems

4 Case Studies

5 Conclusions and Future Work

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 43 / 46

Conclusions

Cell-like spiking neural P systems set a bridge between cell-like P systems and spiking

neural P systems. They are computationally universal when no constraints are set over the

generation of more spikes than those consumed in spiking rules.

It is worth adding efforts in this research. Software tools can play a relevant role as

assistants for new computing models and solutions. P-Lingua and MeCoSim provide a

common infrastructure with facilities for design, analysis, simulation...

A set of tools was developed to incorporate cSN P systems within this framework, including a

language based on P–Lingua, parsing and debugging facilities. A simulation algorithm has

been designed and developed to perform the corresponding computations. Besides, the

integration in the framework allows the use of the existing visualization, analysis,

customization and validation features.

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 44 / 46

Conclusions

The tools developed have proved their ability to validate the solutions for cSN P systems,

allowing the parsing, debugging and “non-deterministic” simulation of the different

examples, and helping detecting some subtle details not considered in previous works.

It would be worth deepening into the study of the computational properties of cSN P

systems, and complementary tools to aid in the design and validation tasks can definitely

provide a value, specially when studying solutions to complex problems by P systems with a

significant amount of elements interacting, whose evolution is not easy to analyse without the

help of these software assistants.

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 45 / 46

My sincere thanks

Thank you very much for your attention!

Luis Valencia Cabrera et al. (CCIA) Simulating Cell-like Spiking Neural P Systems 02-02-2017, BWMC 2017 - Sevilla 46 / 46

	Cell-like Spiking Neural P Systems
	P systems with multisets rewriting rules
	Spiking Neural P systems
	Cell-like SN P Systems

	A Unified Software Framework for P Systems
	A language for Cell-like SN P systems
	Case Studies
	Conclusions and Future Work

