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Introduction

Membrane systems have been used to solve a large number of
problems.

Depending on their own essence, we can talk about “easier” or
“harder” problems.

We can switch syntactic (and semantic) ingredients...

... in order to solve different sets of problems.
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Introduction

Several kinds of membrane systems have been created to solve
problems of different natures.

Recognizer P systems
Computing P systems
Generating P systems
Function P systems
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Complexity classes

Classic computational complexity classes have been characterized in
the framework of Membrane Computing.

P, NP, PP, PSPACE...

In 1979, L. G. Valiant introduced a new complexity class 1.

Here, we have decision problems, but the answer of the system must
not be yes or no...

... but the number of positive computations we obtain!

1L. G. Valiant, The Complexity of Computing the Permanent, Theoretical Computer
Science 8 (1979), 189–201
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Counting Turing machines

Standard non-deterministic Turing Machine with an auxiliary output
device that prints in binary notation on a special tape the number of
accepting computations induced by the input.

A counting Turing machine can solve a special kind of problems:
counting problems.

The complexity class of these problems is called #P.

An example of this kind of problems is #SAT.
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Counting membrane systems

A new type of membrane systems is created in order to solve this kind
of problems.

A counting membrane system of degree q is a membrane system

Π = (Γ,Σ,C ,M1, · · · ,M1,R, iin, iout)

where C is a special alphabet called output alphabet, that will
represent the answer to the problem in binary representation.

We will denote PMCC the class of counting membrane systems.
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First results

Theorem

#SAT ⊆ PMCDAM0
C(mcmp,+c,−d ,−n)

Based on the solution given in 2...

2L. Valencia-Cabrera, D. Orellana-Mart́ın, A. Riscos-Núñez, M. J. Pérez Jiménez.
Reaching efficiency through complicity in membrane systems: dissolution, polarization
and cooperation, Theoretical Computer Science, submitted 2016
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First results

Generation stage

[ ]1

[ ]2
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First results

Generation stage

[ ]1

[T1 · · ·Tn]2 [T1 · · ·Fn]2 · · · [F1 · · ·Tn]2 [F1 · · ·Fn]2

2n membranes
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First results

First checking stage

[ ]1

[c1 · · · cp]2 [c2c4]2 · · · [c1c2c4]2 [c1 · · · cp]2

2n membranes
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First results

Second checking stage

[ ]1

[dp]2 [c2c4]2 · · · [d2c4]2 [dp]2
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First results

Second checking stage

[dk
p ]1

[ ]2 [c2c4]2 · · · [d2c4]2 [ ]2

2n membranes
k ≡ the number of truth assignments that make true the input formula
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First results

At this point, we would send out:

yes if at least an object dp is in membrane 1.
no if there are no objects dp in membrane 1.

We change dp by α0.
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First results

Second checking stage

[γk0 ]1

[ ]2 [c2c4]2 · · · [d2c4]2 [ ]2

2n membranes
k ≡ the number of truth assignments that make true the input formula
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First results

And we proceed with the next rules:

[ γiγi → γi+1 ]1

In n steps we will have in membrane 1:

γk · · · γ0 → αk · · ·α0, αi ∈ C

We send them out in polynomial time with respect of the input.

Corollary

#P ⊆ PMCDAM0
C(mcmp,+c,−d ,−n)
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Future work

If we can solve problems from NP in R then we can solve their
counting counterparts from #P in RC ...

... but what happens with non-efficient membrane systems?

PerfectMatching ∈ P...

... #PerfectMatching ∈ #P (Permanent)

P = PMCSAM0(mcmp,+c,−d ,−n)...

... #P ⊆ PMCSAM0
C(mcmp,+c,−d ,−n)?
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