
Membrane Computing Applications
in Computational Economics

Eduardo Sánchez Karhunen, Luis Valencia-Cabrera

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: esanchek@gmail.com, lvalencia@us.es

Summary. Major efforts have been made along the last decade on the modelling and
simulation of phenomena within areas such as Biochemistry, Ecology or Robotics, pro-
viding solutions for relevant problems (signalling pathways, population dynamics or logic
gene networks, or robot control and planning, among others). However, other areas ini-
tially explored have not received the same amount of attention. This is the case of compu-
tational economics, where an initial model of the so-called producer-retailer problem was
proposed by Gh. and R. Păun making use of membrane computing modelling and simu-
lation tools. In the present paper, we start designing a solution for that problem based on
PDP systems, obtaining results comparable with the foundational paper. Then, an en-
hanced and enriched model is proposed, including several economic issues not considered
in the initial model as: depreciation of production capacity, capacity increase decision
mechanism, dividends payment and costs associated to production factors. Additionally,
both models have been simulated making use of the framework provided by P-Lingua and
MeCoSim, and delivering a custom application based on them to reproduce the virtual
experiments. Finally, several scenarios have been analysed focusing on different elements
included in the model.

Key words: Membrane Computing, Economy, producer-retailer problem, Com-
putational Modelling, PDP Systems

1 Introduction

The main goal of this paper is to extend the success obtained by membrane com-
puting as a modelling tool in different fields to a less explored one, as computa-
tional economics. In the context of the so-called producer-retailer problem, mul-
tiset rewriting rules for modelling some economic processes were proposed [10],
mainly for production of goods from raw material, reception of orders from con-

190 E. Sánchez Karhunen, L. Valencia-Cabrera

sumers and purchase transactions. Also, basic numerical evolution of this system
was suggested.

The paper mentioned implied a great starting point to show the capabilities of
the paradigm in certain fields, but it was not focused on the reproducibility with
specific conceptual and software tools. Thus, there were no indications for the
reader about the specific framework within membrane computing used to obtain
the results presented, neither hints about the membrane structure underlying the
system nor the rest of the implementation details.

In order to reinforce the interest in Computational Economics as a promising
research path within the applications of Membrane computing, the present paper
details the implementation of a PDP system that replicates the results obtained by
Gh. and R. Păun. We call this model “Initial producer-retailer model”, explaining
in depth its design in Section 3, right after introducing the context of this work
in Section 2. Once obtained this first result, we propose an “Enhanced producer-
retailer model” in Section 4, including several economic issues not considered in
the initial model. In both cases, implementation details are provided, along with
the analyses of the results obtained under different scenarios. Finally, we outline
the main conclusions of this work in Section 5.

2 Preliminaries

This section starts introducing the topic of computational modelling, discussing
some widely spread approaches and the choice made with membrane computing.
More specifically, it will present the framework of PDP systems, used to model
the economic processes presented at the end of the section.

2.1 Modelling approaches

Traditionally, biological systems have been mainly modelled using ordinary differ-
ential equations. This approach has several drawbacks: model complexity usually
requires a numerical approach; model extension or improvements requires a re-
construction of the model from scratch and difficulties arise handling cases when
objects appear in a reduced number of copies or processes have a strong discrete
nature.

On the contrary, membrane computing [9] has many advantages for modelling
systems. It presents a high degree of generality as a modelling framework (objects,
multisets and evolution rewriting rules can be used to model many different situa-
tions). It is easy to add any number of membranes and/or evolution rules without
essentially changing the type of P system. This modularity allows to introduce
extensions or improvements to the model. Additionally, parallelism is introduced
in a natural way in the model, and there are no limits to the number of variables
interacting simultaneously.

Due to these previous properties, membrane computing has been applied with
great success for modelling biological systems, both at a micro level, for cellular

Membrane Computing Applications in Computational Economics 191

reactions [3], and at macro level, for population dynamics [2]. Although there
is a wide variety of ecosystems, they share many basic common features: there
are several species interacting and a huge number of members of each one; the
cyclic repetition of basic processes as feeding, growing, reproduction and death
and environment influences on the system evolution.

The following section will present th framework of PDP systems, used to model
the phenomena studied along this work.

2.2 Population Dynamic P systems

PDP Systems (Population Dynamic P system) were developed to consider the
computational impact of the previous issues [4]. Formally, a PDP system of degree
(q,m) and T ≥ 1 units of time is a tuple Π = (G,Γ,Σ, T, {Πk : 1 ≤ k ≤ m}, {Ej :
1 ≤ j ≤ m}, RE), where:

• G = (V, S) is a directed graph with m ≥ 1. V = {e1, , em}.
• Γ and Σ are alphabets such that Σ (Γ .
• T ≥ 1, n ≥ 1 are natural numbers.
• ∀k, 1 ≤ k ≤ m,Πk = (Γ, µ,M1, · · · ,Mq,R, iin), where:

– µ is a rooted tree with q ≥ 1 nodes labelled with elements of {1, · · · , q} ×
{0,+,−}.

– ∀i, 1 ≤ i ≤ q,Mi ∈Mf (Γ).

– R is a finite set of rules of the type: u[v]αi
p−−−→u′[v′]α

′

i , where u, v, u′, v′ ∈
Mf (Γ), 1 ≤ i ≤ q, α, α′ ∈ {0,+,−}, and p is a probability function with
domain {0, · · · , T}. Also, the sum of probabilities of rules whose left hand
side (LHS) is u[v]αi is 1 at each instant t(0 ≤ t ≤ T).

– iin is a node of µ.
• ∀j, 1 ≤ j ≤ m,Ej ∈Mf (Σ).
• RE is a finite set of environment rules of the type:

(x)ej
p1−−−→(y1)ej,1 , · · · , (yh)ej,h , where x, y1, · · · , yh ∈ Σ, {(ej , ej,i) ∈

S, 1 ≤ j ≤ m, 1 ≤ i ≤ h}, and p1 is a probability function with domain
{0, · · · , T}. Also, at each instant t, with 0 ≤ t ≤ T , the sum of all probability
function values associated to rules whose LHS is (x)ej must be 1.

• There are no rules of the type u[v]αi
p−−−→u′[v′]α

′

i in the skin membrane of

P Systems and environment rules of the type: (x)ej
p1−−−→(y1)ej,1 , · · · , (yh)ej,h

such that x ∈ u.
• Each environment ej contains exactly one system Πk.

Therefore, A PDP system Π of degree (q,m) presents m environments
e1, · · · , em interconnected by edges of a directed graph G. Each of these envi-
ronments ej can only contain symbols of alphabet Σ, and a unique ordinary P
System Πk = (Γ, µ,M1, · · · ,Mq,R, iin) with this same skeleton inside each envi-
ronment, but such that the initial multisets of Πk depend on ej and the probability
functions associated with rules of Πk depend on ej . Finally, the semantics of PDP
systems depends on the algorithm of simulation.

192 E. Sánchez Karhunen, L. Valencia-Cabrera

2.3 Economic process modeling

Traditionally, economics processes have been modelled using differential equation
systems. Although these modelling techniques are predominant, many efforts have
been made to investigate other techniques such as multi-agent techniques [5]. Due
to the good performance of PDP systems modeling dynamics of biological sys-
tems, many researchers have proposed the idea of using membrane computing in
modeling economic processes [7, 8, 1, 10, 11].

A parallelism between biological and economic processes can be identified, as
Păun analyses in [10]. Many elements of membrane computing can be interpreted
in economic terms. An object can represent any unit of a generic item involved
in different economic processes. Also, they can represent elements of diverse na-
ture: material good, monetary units, depreciation representation, authorization
for transactions, caps of production, etc. A membrane can be any entity as pro-
ducer, consumers, markets, whole economy or any other element interacting with
another one. As usual in P systems, any membrane has objects associated with
it. Objects can have multiplicities greater than one, so a natural way or handling
them is to use multisets. Finally, multiset rewriting rules can model different kind
of interactions between objects of different or the same membrane and they can
represent a huge variety of processes as purchase transactions, production of goods
or depreciation phenomena.

3 Initial Retailer Producer model

This section will explore in certain detail some usual economic phenomena, through
the reference problem well known as “Retailer-producer” problem. After its general
description, the formal model designed is presented, along with the interpretation
of the elements included, the parameters involved and the deep analysis of the
different modules of rules involved in the evolution of the system. Finally, the
simulation results are shown and analysed.

3.1 General description

Informally, the retailer-producer problem can be described as a one good market
with several players interacting with each other. A set of producers Pi that trans-
form raw material produced by a generic source S into units of good d and a set of
retailers Rj , that receive orders d̄ from a generic consumer C. Both try to match
units of d with d̄ by means of transactions. These players are represented in 1 as
circles. Each one is characterized by a parameter: Pi has a production capacity,
Rj has a storage capacity, S produces raw material a at a constant rate and C
generates a demand d̄ at a constant rate. Transactions between players are rep-
resented as double arrow lines. Each of these transactions imply the exchange of
monetary units characterized by its owner. uS in possession of S, obtained from

Membrane Computing Applications in Computational Economics 193

Pi who have paid a price for each unit of a; ui in possession of Pi, obtained from
Rj who have paid a price for each unit of d; vj in possession of C who have paid
a price for each unit of d̄ and uC in possession of C. These are injected externally
into the system allowing the consumer to throw orders.

Prices must be added to the different interactions: wholesale distributors price,
that is, price at which S sells a unit of a to Pi; the price of a unit of d when sold
by Rj to C and the price of a unit of d when sold by Pi to Rj . Simultaneously to
the existence of prices, there are budget restrictions associated to each player. No
more units of goods can be bought than the equivalent ones to the total number of
monetary units owned by each player. The existence of prices enriches the evolution
of the system, introducing the possibility of lack of money and making impossible
to apply certain rules.

Finally, the system evolves cyclically with five steps: 1) generation of the initial
conditions, 2) production of goods and reception of orders for those goods, 3)
generation of purchase authorizations, 4) purchase transactions and 5) technical
and cleaning rules.

Fig. 1. Schematic representation of retailer producer problem

Production side

In economic theory, Pi has a production function (number of goods or services
produced) with the following general form: Yi = fi (factors of production). These
factors are the different physical inputs used to produce goods. Typically, they are
classified into three main categories: raw material, labor of workers and capital

194 E. Sánchez Karhunen, L. Valencia-Cabrera

stock. While fi specifies how factors are transformed into goods. For simplicity,
we make some assumptions. All Pi have access to the same technology, thus they
all have the same production function ∀i(Yi = Y). Also, each Pi takes as factors:
raw material provided by S; production capacity (also known as capital stock)
and, for simplicity, labor is not considered. Thus, we can simplify the production
function obtaining: Yi = Y = f(rawmaterial, capital) = f(a, bi).

The multiplicity of a represents the total amount of raw material available for
production and the multiplicity bi represents the total production capacity of Pi.
Additionally, we consider the simplest form for f , where only one unit of a and bi
are consumed to produce one unit of d. This exchange rate can be easily changed
to consider more complex situations.

Demand side

In real markets, there is a bunch of individual consumers requiring units of good
d. In the context of the so-called, economic rational behavior model, the behav-
ior of each individual consumer is captured by a utility function of the form:
Ui = Ui(consumedinputs) = Ui(consumption, leisure). U quantifies in monetary
units the happiness of individuals, making explicit their preferences about the
simultaneous consumption of multiple disposable goods. Units of d obtained by
consumer is called consumption and leisure can be considered as the time not
dedicated to work (with a clear cost of opportunity). Classical economical models
consider that rational individuals try to maximize his utility function. For simplic-
ity, we make some assumptions. The only factor for utility is the consumption of d
and labor (as complementary to leisure) is not considered. All consumers have the
same utility function, same preferences and, thus, the same behavior ∀i(Ui = U).
This gives rise to the concept of representative consumer (more generally, represen-
tative agents). We can consider the sum of the utility functions of the population
of consumers, generating a, so called, aggregate demand of d (each unit is denoted
by d̄). This can be represented as a generic consumer C. Thus, we can simplify the
utility function obtaining: Ui = U = g(d̄).

3.2 Model formalization

A simple membrane structure for the PDP system is selected with a unique envi-
ronment containing one P system with two membranes. Membrane 1 is used for the
Rj and Pi operations of good and order generation. Membrane 2 is used for per-
forming the purchase transactions. The previous system will be modelled by a PDP
system of degree (2, 1) and T ≥ 1 units of time Π = (G,Γ,Σ, T,RE , µ,RΠ , {fr ∈
RΠ},M1,M2), where G = (V,E), with V = {e1} and E = (e1, e1) and working
alphabet: Γ = {bi, di, ui, cj , d̄j , vj , ēj , f(i, j) : 1 ≤ i ≤ k1, 1 ≤ j ≤ k2} ∪ {R1, R2} ∪
{C, S, d̄, a, uC , uS}, where:

• C: aggregate generic consumer.
• S: raw material supplier.

Membrane Computing Applications in Computational Economics 195

• d̄: unit of aggregate demand from C.
• a: unit of supplied raw material provided by S.
• uC : monetary unit owned by C.
• uS : monetary unit owned by S.
• bi: unit of production capacity of Pi, 1 ≤ i ≤ k1.
• di: unit of good supplied by Pi, 1 ≤ i ≤ k1.
• ui: monetary unit owned by Pi, 1 ≤ i ≤ k1.
• cj : unit of capacity of Rj , 1 ≤ j ≤ k2.
• d̄j : unit of good demanded by Rj , 1 ≤ j ≤ k2.
• vj : monetary unit owned by Rj , 1 ≤ j ≤ k2.
• ēj : unit of good demanded by Rj and authorized for transaction unit of d̄j , 1 ≤

j ≤ k2.
• f(i, j): authorization for d̄j to be exchanged with di, for 1 ≤ i ≤ k1, 1 ≤ j ≤ k2.
• R1, R2: for technical reasons.
• Σ = ∅.
• RE = ∅.
• Π = {Γ, µ,M1,M2,RΠ}, where µ = [[]2]1 and M1 = {C, S,R1, R2} ∪
{bki,1i , u

ki,2
i : 1 ≤ i ≤ k1} ∪ {c

kj,3
j : 1 ≤ j ≤ k2}

Model parameters

• k1: total number of producers.
• k2: total number of retailers.
• k3: units of a inserted into the system by S.
• k4: allowed deviation from k3.
• k5: units of d̄ inserted into the system by C.
• k6: allowed deviation from k5.
• k7: price fixed by S for each unit of a.
• k8: price fixed by C as an estimation of each order of good.
• ki,1: initial production capacity of Pi, 1 ≤ i ≤ k1.
• ki,2: initial monetary units of Pi, 1 ≤ i ≤ k1.
• kj,3: initial capacity of Rj , 1 ≤ j ≤ k2.
• km,4: discrete prob distribution of units of a inserted into the system by S,

1 ≤ m ≤ 3.
• km,5: discrete prob distribution of units of d̄ inserted into the system by C,

1 ≤ m ≤ 3.
• ki,6: price fixed by Pi for each unit of di, 1 ≤ i ≤ k1.
• kj,7: price fixed by Rj for each order of good, 1 ≤ j ≤ k2.

3.3 Modules of rules

Module 1: Initialization

The initial conditions for the cycle are generated, including the disposability of d̄
and a. We assume that S can supply a nearly fixed amount of a at the beginning

196 E. Sánchez Karhunen, L. Valencia-Cabrera

of each cycle. To introduce some variability (not associated to any concrete real
economic behavior), we will decompose the basic rule in a bunch of rules differ-
ing slightly around k3 in the number of generated units of a. This variability is
controlled by parameter k4 and the associated probability of each rule km,4.

r1 ≡ R1 s[]2
p=k1,4−−−→ ak3+k4s[R1]+2

r3 ≡ R1 s[]2
p=k3,4−−−→ ak3−k4s[R1]+2

r2 ≡ R1 s[]2
p=k2,4−−−→ ak3s[R1]+2

r4 ≡ R1 s[]2
p=1−k1,4−k2,4−k3,4−−−→ ak3−2∗k4s[R1]+2

We also assume that C generates a nearly fixed amount of d̄ at the beginning
of each cycle. Again, we decompose the basic rule in a bunch of rules differing
slightly around k5 in the number of generated units of d̄. This variability is con-
trolled by parameter k6 and the associated probability of each rule k(m, 5). C
also“generates” the amount of money estimated to throw orders to Rj to be able
to satisfy completely the demand d̄, controlled by k8.

r5 ≡ R2 c[]2
p=k1,5−−−→ d̄k5+k6u

(k5+k6)k8
C c[R2]+2

r6 ≡ R2 c[]2
p=k2,5−−−→ d̄k5uk5k8C c[R2]+2

r7 ≡ R2 c[]2
p=k3,5−−−→ d̄k5−k6u

(k5−k6)k8
C c[R2]+2

r8 ≡ R2 c[]2
p=(1−k1,5−k2,5−k3,5)−−−−−−−−−−−−−−→ d̄k5−2k6u

(k5−2k6)k8
C c[R2]+2

Despite being considered in theoretical models, this idea of generating money
from “nothing” at the beginning of each cycle is completely counterintuitive and do
not reflects the real behavior of actual systems. This is one of the ideas that leads
to an enhancement and reformulation of this initial model in following chapters.

Module 2: Producer & Retailer operation

Objects Pi have at their disposal the amount of a generated in Step 1. They
compete to obtain units of a, so that they can generate units of d according to
their production function. For each unit of a used by Pi it must pay a price k7,
reducing the number of ui owned by Pi and increasing the ones uS owned by S.
Finally, each unit of d produced by Pi is denoted by di, with 1 ≤ i ≤ k.

r9 ≡ abiu
k7
i c[]+2 → uk7S [di]

0
2, 1 ≤ i ≤ k1

Rj must provide service to d̄ generated in Step 1. They compete to get units
of d̄ to serve the demand of C. It may also be interpreted as Rj receives orders
from C. For each unit ordered by C to Rj it must pay a price kj,7, reducing the
number of uC owned by C and increasing the ones vj owned by Rj . We will allow
different prices for order to each Rj (parameter kj,7). Each unit of good necessity
d̄ served by Rj is denoted by d̄j , with 1 ≤ j ≤ k2.

r10 ≡ d̄cju
kj,7
C c[]+2 → [d̄jvj

kj,7
S]02, 1 ≤ i ≤ k2

Membrane Computing Applications in Computational Economics 197

Module 3: Performing transactions

Once orders d̄j have been received by Rj and units di are generated by Pi, the
commercial transactions can take place. One item of d is purchased by Rj from
Pi to satisfy the order d̄ carried by Rj . For each unit bought by Rj it must pay a
price, reducing the number of vj owned by Rj and increasing the ones ui owned
by Pi. Capacities cj and bi consumed in the production of di and d̄j are set free.

[did̄jv
price
j]2

probability−−−−−−−→ [bicju
price
i]2

Additionally, we can associate a probability to each possible transaction com-
prising many effects: the confidence of Rj on Pi; the price of the product offered by
Pi; the willing of Rj to buy a good or the necessity of Pi to sell a good. Depending
on the effects considered and their variability during the process, these probabili-
ties must be computed once at the beginning of the process or recalculated after
each cycle. An intuitive way of thinking about these probabilities is that the unit
probability is distributed among a bunch of rules of this type:

[d1d̄1v
price
1]2

p11−−−→ [b1c1u
price
1]2

[d3d̄1v
price
1]2

p13−−−→ [b3c1u
price
3]2

[d2d̄1v
price
1]2

p12−−−→ [b2c1u
price
2]2

so that p11 + p12 + p13 = 1. On the other hand, PDP systems do not allow a
direct translation of rules of this type because the evolution of any possible LHS
is determined by a set of rules summing probability one. This drawback is solved
creating for each exchange transaction between Pi and Rj , a symbol fj,i that acts
as an authorization card for the transaction. This fj,i follows the originally desired
probability distribution and can be used to simulate geographical barriers between
players or preference for one of the producers. Now, probabilities associated to rules
with the same LHS sum up to one and the purchase transactions can take place
but now with probability one.

r14 ≡ [d̄1]2
p=1−−−→[d̄1f1,1]2

r16 ≡ [d̄2]2
p=0.5−−−→[d̄2f2,1]2

r18 ≡ [d̄3]2
p=0.15−−−→[d̄3f3,1]2

r15 ≡ [d̄1]2
p=0−−−→[d̄1f1,2]2

r17 ≡ [d̄2]2
p=0.5−−−→[d̄2f2,2]2

r20 ≡ [d̄3]2
p=0.85−−−→[d̄3f3,2]2

r20 ≡ [did̄jfj,iv
k2,6
j]02 → [bicju

k2,6
i]−2 , 1 ≤ i ≤ k1, 1 ≤ j ≤ k2

Further developments of the model could explore the possibility of considering
dynamic probabilities for these transactions.

Technical & cleaning rules

Finally, some rules are necessary for technical reasons. fi,j not exhausted in pur-
chase transactions have no utility and symbols r1 and r2 are restored to their
original location.

198 E. Sánchez Karhunen, L. Valencia-Cabrera

r26 ≡ [fi,j]
−
2 → []02, 1 ≤ i ≤ k1, 1 ≤ j ≤ k2

r30 ≡ [r1r2]−2 → r1r2[]02

di, d̄j and vj not exchanged represent real things and cannot be cleaned.

r27 ≡ [d̄j]
−
2 → d̄j []02, 1 ≤ j ≤ k2

r29 ≡ [di]
−
2 → di []02, 1 ≤ i ≤ k1

r28 ≡ [vj]
−
2 → vj []02, 1 ≤ j ≤ k2

Similarly, we have the symmetric operations at the beginning of the cycle,
pushing these elements into the operational membrane 2.

r12 ≡ [d̄j]
+
2 → d̄j []02, 1 ≤ j ≤ k2

r11 ≡ [di]
+
2 → di []02, 1 ≤ i ≤ k1

r13 ≡ [vj]
+
2 → vj []02, 1 ≤ j ≤ k2

3.4 Simulation results

To compare the results of our implementation to the ones described by Paun, we
will try to use the same set of values and number of cycles. In our model, 200
cycles with 5 steps in each cycle using DNDP-4 algorithm as inference engine.

For this purpose we consider the chart provided in Pauns article and compare
it to the plot of the same output variables in our model (u1, u2, v1, v2). Both charts
are represented with the same axis scale and number of T cycles.

(a) Pauns Model (b) Initial Model

Fig. 2. Evolution of monetary units owned by retailers - Paun Model vs Initial Model

4 Enhanced model

After the initial model presented, it started a process to go deeper into economic
phenomena, leading to an enhanced model, enriched with a number of features of

Membrane Computing Applications in Computational Economics 199

Parameter Value/s Description

k1 2 Total number of producers

k2 3 Total number of retailers

k3 60 Units of a inserted into the system by S

k4 1 Deviation from k3

k5 60 Units of d̄ inserted into the system by C

k6 1 Deviation from k5

k7 11 Price fixed by S for each unit of a

k8 14 Price fixed by C as an estimation of each order of good

ki,1 (65, 35) Initial production capacity of Pi, 1 ≤ i ≤ k1

ki,2 (750, 400) Initial monetary units of Pi, 1 ≤ i ≤ k1

kj,3 (50, 30, 20) Initial capacity of Rj , 1 ≤ j ≤ k2

km,4 (0.01, 0.95, 0.03) Prob distrib. of a inserted into the system by S

km,5 (0.03, 0.90, 0.04) Prob distrib. of units of d̄ inserted into the system by C

ki,6 (12, 13) Price fixed by Pi for each unit of di

kj,7 (13, 14, 15) Price fixed by Rj for each order of good j, 1 ≤ j ≤ k2

Table 1. MeCoSim simulation parameter values

interest. This section focuses in the description of the new ingredients involved,
the new processes studied and the details of the new model designed, following
the section a structure similar to the previous one, from the foundations about the
processing to the exploration of the model and analysis of the simulations.

4.1 General description

The behavior of the previous initial model can be condensed as follows: a steady
increase of monetary units owned by Pi, Rj and C; nearly stable Pis and Rj ’s
capacities and monetary units obtained by S get out of circulation in the system.
These facts can be explained by the absence of variations in the rest of param-
eter of the model. First, prices associated to goods, raw material and aggregate
demand are initially settled and remain unchanged during the system evolution
(absence of a natural process trying to find a price of equilibrium). Secondly, Pi’s
and Rj ’s capacities are fixed and no changes are allowed (lack of a capital mar-
ket). Additionally, there is an artificial exogenous injection of monetary units at
the beginning of each cycle. To get our initial model nearer to real situations,
new issues must be modelled. In the next chapters, some of the latter restrictions

200 E. Sánchez Karhunen, L. Valencia-Cabrera

will be relaxed or modified. First, variations of Pi’s and Rj ’s capacities will be
allowed (associated to capital stock depreciation and investment decisions). Sec-
ondly, the external injection of monetary units will be substituted by new cyclic
monetary flows in the systems. Finally, randomness arise in a much more elegant
way, characteristic of PDP models. This enhanced model is represented in Fig. 3.

Fig. 3. Schematic representation of retailer producer problem - Enhanced Model

Randomness in a PDP-way

In our first model, the randomness of a and d̄ was introduced in a very naive
way. Making use of a bunch of rules to generate that random behavior where
each rule represented a small variations around a central value. However, a more
elegant “PDP-way” of generating randomness in rewriting rules has been proposed.
Consider a set of generic rules with the following structure:

[s]→ [saN−Lw2L] [w]
0.5−−→ [#] [w]

0.5−−→ [a]
Its willing is to generate approximately N units of a (aN). First, we generate

aN−Lw2L, where, N−L represents the lower limit of a hypothetic range for multi-
plicity of a and N +L, its upper limit. Secondly, two possible rules are applied to
this new symbol w, each one with probability 0.5. Transforming w in one unit of

Membrane Computing Applications in Computational Economics 201

a or clearing it. The range of possible values for multiplicity of a is [aN−L, aN+L].
In our enhanced model, this strategy will be used at the beginning of each cycle in
the amount of a generated by S, of d̄ produced by C and in the investment deci-
sion mechanism. Further developments of the model could consider more sources
of variability: in prices, in the probabilities of performing transactions between Pi
and Rj .

Ownership of production factors and stakeholders

In real situations, there are no external injections of monetary units into the sys-
tem to maintain it evolving. On the contrary, real economy dynamically adjust its
parameters internally to maintain its activity cycle after cycle. Hence, we must
consider in our model some alternatives to replace this artificially injected money.
In a typical macroeconomic model, factors are property of the aggregate consumer
C. Thus, Pi (and Rj as intermediate producers) must hire these factors out from
its owners paying an amount of money for them (producers costs). In our model,
there are only costs associated to production capacities. Secondly, in a typical
economy, C is a stakeholder of Pi and Rj . Thus, the initial number of monetary
units in possession of Pi and Rj can be interpreted as the initial investment of C.
At the end of each cycle, stakeholders expect receiving a certain amount of divi-
dend depending on the benefits obtained by the company. Benefits not distributed
remain in the company allowing to pay costs of factors. These two mechanisms
generate a flow of monetary units from ui and vj to uC . Finally, to make our
system closed with no external factors or agents acting on it, C must also be
stakeholder of S. For simplicity, in our model, S does not need any production
capacity to generate units of a (no production costs). Therefore, there will be a
flow of monetary units from uS to uC . Provided these three sources of monetary
units for uC , there is no more need of an external injection of monetary units. In
this enhanced model, the total number of monetary units flowing in the system is
constant, and transactions between Pi, Rj , S and C creates monetary unit flows
preventing them from accumulation.

Investment decision capacity increase

Once purchase transactions have been performed, Pi have probably obtained a
surplus. Although in our initial model they simply accumulated these monetary
units, in real situations they must decide what to do with their earnings. This
is known as the investment saving decision. There are two choices: to dedicate
part of it to accumulate more production capacity. In other words, take decisions
about capital stock increase. Or instead of it, remain capacity unchanged, leaving
earnings accumulated as savings. This decision, should be based on concrete facts.

For this purpose, we will extend the utility of the “authorization” system (fj,i)
created in the initial model. Basically, not exhausted authorizations will be in-
terpreted as the existence of demand from Rj not satisfied. In an ideal situation,

202 E. Sánchez Karhunen, L. Valencia-Cabrera

these fj,i are consumed while purchase transactions are performed. However, in
some cases transactions cannot be performed but symbol fj,i is present (aborted
transaction). If it is due to the lack of capacity, it should be increased. Otherwise,
it remains unchanged.

Capital stock depreciation

Production capacity suffers a phenomenon called depreciation. There exist several
economic interpretations for this depreciation: obsolescence; a reduction in the
remaining value of future goods this capital stock can produce or a reduction of
the market price of capital. In macroeconomic theory, the behavior of capital stock
is:Kt = Kt−1−Dt−1+It, where:Kt is the capital stock value (production capacity)
at time t; Kt−1 is the capacity at time t− 1; Dt−1 is the depreciation of Kt−1 and
It is the inversion at time t. Thus, a mechanism for increasing capacity is needed
to ensure recovery from depreciation if needed to satisfy orders not exhausted.
For simplicity, we assume a constant depreciation rate: Dt−1 = δKt−1. Thus, the
previous equation can be written as: Kt = (1− δ)Kt−1 + It. This depreciation can
be modelled as a fixed reduction of the multiplicity of bi.

4.2 Model formalization

The initial model must be modified to consider the new phenomena considered.
New symbols are added to the working alphabet, mainly associated to the new way
of random generation (p, q,mi) and the capacity increase mechanism (gi, yi, zi);
meanwhile, other ones are eliminated due to the creation of monetary flows in the
system (uS , R2): Γextended = Γ/{uS , R2} ∪ {gi, yi, ,mi, zi, hi : 1 ≤ i ≤ k1} ∪ {p, q}.

Additionally, the set of rules suffer changes: a) the generation of a and d̄ is
adapted to PDP mechanism of randomness, b) Pi and Rj operation are slightly
modified to consider Cs property of raw material source, c) new rules to consider
payments for capacity and clearing of non-paid capacity units and, also, for ca-
pacity increase mechanism and dividend distribution and d) purchase transaction
rules are adapted for the following steps of capacity depreciation. Also, new nec-
essary parameters are considered in the model meanwhile other ones are given a
new interpretation and other are no longer needed.

It is no necessary to modify the original membrane structure in our new model.
Finally, this modified system will be modelled by a PDP system of degree (2, 1)
and T ≥ 1 units of time Π = (G,Γ,Σ, T,RE , µ,RΠ , {fr ∈ RΠ},M1,M2), where
G = (V,E), with V = {e1} and E = {(e1, e1)}, and working alphabet: Γ =
{bi, di, ui, cj , d̄j , vj , ēj , fj,i, gi, yi, zi,mi, hi : 1 ≤ i ≤ k1, 1 ≤ j ≤ k2} ∪ {R1} ∪
{C, S, d̄, a, uC , p, q}, where:

• C: aggregate generic consumer.
• S: raw material supplier.
• a: unit of supplied raw material provided by S.

Membrane Computing Applications in Computational Economics 203

• p: randomness generator for a provision by S.
• d̄: unit of aggregate demand from C.
• q: randomness generator for d̄ generation by C.
• uC : monetary unit owned by C.
• bi: unit of production capacity of Pi, 1 ≤ i ≤ k1.
• hi: unit of production capacity of Pi before depreciation, 1 ≤ i ≤ k1.
• di: unit of good supplied by Pi, 1 ≤ i ≤ k1.
• ui: monetary unit owned by Pi, 1 ≤ i ≤ k1.
• cj : unit of capacity of Rj , 1 ≤ j ≤ k2.
• d̄j : unit of good demanded by Rj , 1 ≤ j ≤ k2.
• vj : monetary unit owned by Rj , 1 ≤ j ≤ k2.
• ēj : unit of good demanded by Rj and authorized for transaction, 1 ≤ j ≤ k2.
• f(i, j): authorization for d̄j to be exchanged with di, 1 ≤ i ≤ k1, 1 ≤ j ≤ k2.
• yi: unit (in idle state) of aborted purchase transactions considered for capacity

increase, 1 ≤ i ≤ k1.
• mi: randomness generator for yi, 1 ≤ i ≤ k1.
• zi: activated unit of aborted purchase transactions considered for capacity in-

crease, 1 ≤ i ≤ k1.
• R1: for technical reasons.
• gi: for technical reasons, 1 ≤ i ≤ k1.
• Σ = ∅.
• RE = ∅.
• Π = (Γ, µ,M1,M2,RΠ , {fr ∈ RΠ}), where µ = [[]2]1, M1 = {C, S,R1} ∪
{gi, u

7ki,1k10
i : 1 ≤ i ≤ k1} ∪ {v

7kj,3k10
j : 1 ≤ j ≤ k2} and M2 = {ckj,3j : 1 ≤ j ≤

k2} ∪ {b
ki,1
i : 1 ≤ i ≤ k1}

Model parameters

In comparison with the previous initial model, we have introduced modifications
in the set of parameters. Some of them have been modified in terms of their
meaning, while others have been simply relabeled. Finally, the set of parameters
for our model is:

• k1: total number of producers.
• k2: total number of retailers.
• k3: raw material inserted into the system by S min value of range.
• k4: raw material inserted into the system by S max value of range.
• k5: aggregate demand inserted into the system by C min value of range.
• k6: aggregate demand inserted into the system by C max value of range.
• k7: price fixed by S for each unit of a.
• k8: number of failed purchases considered for increasing capital stock min

value.
• k9: number of failed purchases considered for increasing capital stock max

value.

204 E. Sánchez Karhunen, L. Valencia-Cabrera

• k10: cost of capital stock per cycle.
• k11: depreciation rate of capital stock.
• k12: step of capacity increase.
• k13: dividend percentage.
• ki,1: initial production capacity of Pi, 1 ≤ i ≤ k1.
• ki,2: price fixed by Pi for each unit of di, 1 ≤ i ≤ k1.
• kj,3: initial capacity of Rj , 1 ≤ j ≤ k2.
• kj,6: price fixed by Rj for each order of good j, 1 ≤ j ≤ k2.

4.3 Modules of rules

Based on the cyclic evolution of the initial model we have expanded it including
the new operations (Fig. 4): 1) generation of aggregate demand and raw mate-
rial disposability and rents payment for Pi’s and Rj ’s capacity, 2) production of
goods and reception of orders, 3) generation of the authorizations for purchase
transactions, 4) purchase transactions and 5) capacity increase decision, capacity
depreciation and dividend payment.

Fig. 4. Modules of rules Enhanced Model

Membrane Computing Applications in Computational Economics 205

Module 1: Production factor and demand generation

Our first step consists in generating the initial conditions of the cycle: restoring ag-
gregate demand and ensuring raw material disposability. Unlike the initial model,
we will use the PDP-way of generating randomness in the amount of generated
a and d̄. Using new symbols p (respectively, q) to control the range [k3, k4] (re-
spectively, [k5, k6]) of possible values of a (respectively, d̄). This operation can be
performed with a simple set of rules:

r1 ≡ R1sc []−2 → ak3pk4−k3 d̄k5qk6−k5sc []+2

r2 ≡ p []−2
p=0.5−−−−→ a []+2

r3 ≡ p []−2
p=0.5−−−−→ []+2

r4 ≡ q []−2
p=0.5−−−−→ []+2

r5 ≡ q []−2
p=0.5−−−−→ d̄ []+2

Additionally, The generation of a and d̄ is unified in a single rule but rules on
p and q remain separated allowing their independent random behaviour. Also, any
reference to the spontaneous appearance of monetary units is removed from the
rules taking place at this step.

Module 2: Producers costs

The idea of Cs property of factors means that Rj and Pi must pay, at the beginning
of each cycle, for their capacities cj and bi. For simplicity, a unique common
parameter k10 has been selected for both capacities cost. For each unit of bi used
by Pi it must pay a price, reducing the number of ui owned by Pi and increasing
the uC owned by C. Similarly, for each unit of ci used by Rj it must pay a price,
reducing the number of vj owned by Rj and increasing the ones uC owned by C.
If Rj and Pi do not have enough monetary units to pay for their capacities, they
must give up using them and restore the value of each of these capacity units to
their proprietaries via uC units.

r9 ≡ uk10i [bi]2 → biu
k10
C []+2 , 1 ≤ i ≤ k1

r11 ≡ [bi]
+
2 → uk10C []2, 1 ≤ i ≤ k1

r9 ≡ vk10j [cj]2 → cju
k10
C []+2 , 1 ≤ j ≤ k2

r11 ≡ [cj]
+
2 → uk10C []2, 1 ≤ j ≤ k2

Module 3: Producers & retailers operations

Pis rules are slightly modified to include another big conceptual change of our
new model: C is the owner of S. This idea means a revolution in the system: in
the initial model, S simply accumulated the monetary units uS . Now, these units
travel from Pi to S and, again, return to C. For each unit of a used by Pi it
must pay a price (k7 monetary units), reducing the number of ui owned by Pi and
increasing the ones uC owned by C.

206 E. Sánchez Karhunen, L. Valencia-Cabrera

r14 ≡ abiuk7i []+2 → uk7C [di]
0
2, 1 ≤ i ≤ k1

Rj must face to an amount of aggregate demand generated previously com-
peting to catch units of d̄ to serve necessities of C. It also can be interpreted as
Rj receives orders from C. We will allow each retailer to fix a different price. For
each unit of d̄ ordered by C to Rj it must pay a price kj,6, reducing the number
of uC owned by C and increasing the ones vj owned by Rj . Finally, capacity units
not consumed are transferred out of membrane 1, waiting for later depreciation
operations.

r15 ≡ d̄cju
kj,6
C []+2 → [d̄jv

kj,6
j]02, 1 ≤ j ≤ k2

r16 ≡ bi[]2 → [bi]2, 1 ≤ i ≤ k1
r17 ≡ cj []2 → [cj]2, 1 ≤ j ≤ k2

Module 4: Purchase transactions

This module remains almost unchanged with respect to the initial model. A first
step of generation of transaction authorizations. Once generated, we can perform
the purchase transactions but now with probability one. Again, the discrete proba-
bility distributions are embedded in the authorizations generation rules. One item
of di is purchased by Rj from Pi to satisfy the order ēj carried by Rj . For each unit
of di, Rj must pay a price, reducing the number of vj and increasing the ones ui
owned by Pi. Capacities cj and bi consumed producing di and ē are freed. Finally,
free bi are transformed into new symbols hi waiting for depreciation operations.

r18 ≡ [d̄1]2
p1,1=1−−−−→ [ē1f1,1]2

r20 ≡ [d̄2]2
p2,1=0.5−−−−−→ [ē2f2,1]2

r22 ≡ [d̄3]2
p3,1=0.15−−−−−−→ [ē3f3,1]2

r19 ≡ [d̄1]2
p1,2=1−−−−→ [ē1f1,2]2

r21 ≡ [d̄2]2
p2,2=0.5−−−−−→ [ē2f2,2]2

r23 ≡ [d̄3]2
p3,2=0.85−−−−−−→ [ē3f3,2]2

r24 ≡ [diējfj,iv
ki,2
j]2 → u

ki,2
i [hicj]

−
2 , 1 ≤ i ≤ k1, 1 ≤ j ≤ k2

Further developments of the model could explore how to consider dynamic
probabilities for these transactions.

Module 5: Dividends distribution

Once purchase transactions have been performed, the remaining monetary units
owned by Rj and Pi can be interpreted as their benefits. On the other hand, C
can be interpreted as stakeholder of Rj and Pi, and their initial monetary units
can be considered the amount of money already invested by them. In this context,
a dividend payment can be considered. This dividend percentage is controlled by
parameter k13. For simplicity, this will be considered only in Pi:

Membrane Computing Applications in Computational Economics 207

r25 ≡ [vj]
−
2 → vj []02, 1 ≤ j ≤ k2

r26 ≡ [ui]
−
2

p=k13−−−−→ uC []02, 1 ≤ i ≤ k1
r27 ≡ [ui]

−
2

p=1−k13−−−−−−→ ui []02, 1 ≤ i ≤ k1

Module 6: Capacity depreciation

As explained in previous chapter, depreciation will be considered as a reduction
of production capacity. For simplicity, it will only be considered a Pi’s capacity
depreciation. This can be easily modelled as a reduction of bi’s multiplicity with a
probability controlled by parameter k11, representing capacity disappearance rate.

r31 ≡ [hi]
−
2

p=1−k11−−−−−−→ [bi]
0
2, 1 ≤ i ≤ k1 r32 ≡ [hi]

−
2

p=k11−−−−→ []02, 1 ≤ i ≤ k1

The global evolution suffered by bi can be outlined in the following flow:

[bi]
0
2
payrents−−−−−−→ bi[]+2

productionofgoods−−−−−−−−−−−−→ [hi]
−
2

depreciationrules−−−−−−−−−−−→ [bi]
0
2

Further developments of the model could extend the depreciation rules to all
actors’ capacities of the system. Indeed, the application of this depreciation rules
to any capacity is paired to the necessity of a production capacity increase deci-
sion mechanism. If only depreciation acts, it will be reached a point of capacity
exhaustion that stops system evolution.

Module 7: Capacity increase decision

The number of aborted transactions considered to increase capacity is controlled
by the multiplicity of a new symbol mi. This will be arbitrarily low to generate a
reasonably rate of capacity increasing. Additionally, randomness will be included
in the generation of symbol mi.

In the previous sections, we analysed the circumstances accompanying a non-
performed authorized purchase transaction and determined that this could be a
good signal to trigger a capacity increase mechanism. If it is not due to a lack of
producer capacity, it is not necessary to increase it.

r28 ≡ [fj,idi]
−
2 → [di]

0
2, 1 ≤ i ≤ k1, 1 ≤ j ≤ k2

r29 ≡ [fj,ihi]
−
2

1−k11−−−−→ [bi]
0
2, 1 ≤ i ≤ k1, 1 ≤ j ≤ k2

r30 ≡ [fj,ihi]
−
2

k11−−→ []02, 1 ≤ i ≤ k1, 1 ≤ j ≤ k2
Otherwise, it is necessary to increase it (controlled by parameter k12). To en-

sure a gradual adaptation of capacity it will be introduced a limit to the number of
considered aborted transactions (represented by multiplicity of symbol yi). Addi-
tionally, to incorporate randomness into the process, rules in the PDP-way will be
included for the generation of symbol yi, using symbol mi. The range of values for

208 E. Sánchez Karhunen, L. Valencia-Cabrera

yi varies in range [k8, k9]. Symbol zi is simply an evolved form of yi to determine
the exact moment of activating this operation. Finally, non-exhausted units of fj,i
and zi are removed.

r6 ≡ gi[]02 → [giy
k8
i m

k9−k8
i]+2 , 1 ≤ i ≤ k1

r7 ≡ [mi]
+
2

0.5−−→ []02, 1 ≤ i ≤ k1 r8 ≡ [mi]
+
2

0.5−−→ [yi]
0
2, 1 ≤ i ≤ k1

r33 ≡ [yi]
−
2 → [zi]

0
2, 1 ≤ i ≤ k1

r34 ≡ [fj,izi]
0
2 → bk12i []+2 , 1 ≤ i ≤ k1, 1 ≤ j ≤ k2

r35 ≡ [fj,i]
+
2 → []02, 1 ≤ i ≤ k1, 1 ≤ j ≤ k2 r36 ≡ [zi]

+
2 → []02, 1 ≤ i ≤ k1

Technical & cleaning rules

Finally, some rules are necessary for technical reasons. ēj and vj not exchanged
represent real received orders and monetary units so cannot be eliminated.

r13 ≡ vj []+2 → [vj]
0
2, 1 ≤ j ≤ k2 r37 ≡ [ēj]

+
2 → [d̄j]

0
2, 1 ≤ j ≤ k2

Symbols r1 and gi are restored to their initial location. r1 controls the genera-
tion of a and d̄, while gi controls the generation of symbols yi.

r38 ≡ [r1]−2 → r1[]02 r39 ≡ [g1]−2 → g1[]02, 1 ≤ j ≤ k2

4.4 Simulation results

To make these results comparable with the ones obtained from the previous model,
we will use a similar set of values. The complete relation of parameters is:

Simulations will be performed (again 200 cycles with 5 steps in each cycle
using DNDP-4 algorithm as inference engine) for different situations to show the
effect of each phenomenon included in the model, along with its contribution to
the global behavior and stability of the system. In the following section, several
situations are discussed. Case A: (capacity depreciation standalone) we will show
producers capacity evolution when depreciation rate = 0.1 and capacity increase
mechanism is deactivated. Initial capacity of producers has been set to k1,1 = 65
and k2,1 = 35. As expected, along the cycles capacities are reduced until they are
completely exhausted. The slope of these curves is controlled by k11. As seen in
the previous chapters, a mechanism of capacity increase is necessary to maintain
the evolution of the system.

Case B (capacity depreciation + capacity increase mechanism): we will show
how the previous evolution changes when capacity increase mechanism and div-
idend payment mechanisms are activated. These mechanisms parameters are
k12 = 1 (step of capacity increase), k8 = 3 and k9 = 5 (range of aborted purchase
transaction considered), and k13 = 0.01 (dividend percentage). As expected, in a
cycle each producers producer capacities suffer depreciation. This diminishing of
production generates the abortion of multiple purchase transactions that activate

Membrane Computing Applications in Computational Economics 209

Parameter Value/s Description

k1 2 Total number of producers

k2 3 Total number of retailers

k3 59 Units of a inserted into the system by S min value of range

k4 62 Units of a inserted into the system by S max value of range

k5 59 Units of d̄ inserted into the system by C min value of range

k6 62 Units of d̄ inserted into the system by C max value of range

k7 11 Price fixed by S for each unit of a

k8 3 # failed purchases considered for increasing capital min value

k9 5 # failed purchases considered for increasing capital max value

k10 2 cost of capital stock per cycle

k11 0.1 depreciation rate of capital stock

k12 1 step of capacity increase

k13 0.01 Dividend percentage

ki,1 (65, 35) Initial production capacity of Pi, 1 ≤ i ≤ k1

ki,2 (13, 13) Price fixed by Pi for each unit of di

kj,3 (50, 30, 20) Initial capacity of Rj , 1 ≤ j ≤ k2

kj,6 (15, 15, 15) Price fixed by Rj for each order of good j, 1 ≤ j ≤ k2

Table 2. Parameters utilized for simulation of enhanced model

the capacity increase mechanism. As we have seen in the previous chapters, during
the evolution of the system, depreciation mechanism pushes capacity down and
capacity increase mechanism competes with the previous one to maintain system
evolution alive.

Case C: (capacity depreciation + capacity increase mechanism + dividend pay-
ment deactivated). In this case, we will show how the previous evolution changes
when dividend payment mechanism is deactivated. Depreciation mechanism pushes
capacity down, capacity increase mechanism competes with the previous one to
maintain system evolution alive but all these processes are not possible is not pos-
sible if there are no enough movement of monetary units between all the actors in
the system.

Once situation is restored to case B, the following stable behavior of uC is
obtained:

Clearly these three mechanisms cooperation (capacity depreciation, capacity
increase decision and monetary unit flow mechanisms) is crucial to the stable

210 E. Sánchez Karhunen, L. Valencia-Cabrera

Fig. 5. Evolution of bi in presence of depreciation standalone

Fig. 6. Evolution of bi in presence of depreciation and capacity increase mechanism

Fig. 7. Evolution of C monetary units with dividend payment mechanism deactivated

Fig. 8. Evolution of C monetary units with dividend payment mechanism activated

Membrane Computing Applications in Computational Economics 211

evolution of the system. Next figures show the evolution of the rest of variables of
the system.

Fig. 9. Evolution of retailers capacities in line chart and accumulated columns

Fig. 10. Evolution of producers capacities in line chart and accumulated columns

5 Conclusions

In our work, we have implemented the ideas sketched by Gh. and R. Păun [10]
into a specific P system framework (more specifically, PDP systems). The results

212 E. Sánchez Karhunen, L. Valencia-Cabrera

Fig. 11. Evolution of retailers monetary units in line chart and accumulated columns

Fig. 12. Evolution of producers monetary units in line chart and accumulated columns

obtained look very promising. Firstly, we have been able to replicate Păuns’ numer-
ical results, designing a model for the producer-retailer problem and simulating it
using MeCoSim [12]. In this initial model, some basic interactions between produc-
ers and retailers are considered, such as, production of goods from raw material,
reception of orders from consumers and purchase transaction to match this goods
and orders. It includes several simplifications and an exogenous artificial injection
of monetary units that prevents system from reaching a halting configuration.

Membrane Computing Applications in Computational Economics 213

Aimed by these results we have proposed an enhanced model for the producer-
retailer problem. The initial model has been enriched considering a plethora of
phenomena to move it closer to the complexities of real world. We have taken
advantage from modularity, one of the main membrane computing advantages
for systems modelling. Hence, it has not been necessary to build again the model
from scratch, we have added complexity to the model over the initial layer. Many
real economic world interactions have been included in the model as a new layer:
capital stock depreciation, capacity increase decision mechanism, costs of capital
(rents for its owners), dividend payments, and a general idea of making monetary
units flow across the system. Additionally, randomness has been introduced, in
several steps of the model, by means of mechanisms frequently used in PDP world.

This enhanced model has also been simulated using MeCoSim and system evo-
lution was analysed in depth. Some remarkable facts are that system can evolve
autonomously without any exogenous influence. Although initial values of variables
are settled, they change their values reaching an equilibrium point. Once reached
this stability point, system varies slightly around it. From the previous results,
we can derive that multiple economic issues can be modelled using membrane
computing. Therefore, more efforts must be done in this direction.

Acknowledgements

This work was partially supported by Grant numbers 61472328 and 61320106005
of the National Natural Science Foundation of China.

References

1. J. Bartosik: Paun’s systems in modeling of human resource management. Second
Conference on Tools and Methods of Data Transformation, WSU Kielce, 2004.

2. M. Cardona, M.A. Colomer, M.J. Prez-Jimnez, Sanuy, D., Margalida, A., 2009. Mod-
eling ecosystems using P Systems: The Bearded vulture, a case study. Lecture Notes
in Computer Science, 5391 (2009), 137156.

3. S. Cheruku, A. Păun, F.J. Romero, M.J. Pérez-Jiménez, O.H. Ibarra. Simulating
FAS-induced apoptosis by using P systems. Progress in Natural Science, 17, 4 (2007),
424-431.

4. M.A. Colomer, S. Lavin, I. Marco, A. Margalida, I. Prez-Hurtado, M.J. Prez-Jimnez,
D. Sanuy, E. Serrano, and L. Valencia-Cabrera. Modeling population growth of pyre-
nean chamois (rupicapra p. pyrenaica) by using p-systems. Lecture Notes in Com-
puter Science, 6501 (2011), 144-159.

5. J.M. Epstein, R. Axtell. Growing Artificial SocietiesSocial Science from the Bottom
Up. Brookings Institution Press and The MIT Press, 1996.

6. Garćıa-Quismondo, M., Gutiérrez-Escudero, R., Pérez-Hurtado, I., Pérez-Jiménez,
M.J., Riscos-Núñez, A. An overview of P-Lingua 2.0. Lecture Notes in Computer
Science, 5957 (2010), 264-288.

214 E. Sánchez Karhunen, L. Valencia-Cabrera

7. W. Korczynski. On a model of economic systems. Second Conference on Tools and
Methods of Data Transformation, WSU Kielce, 2004.

8. W. Korczynski. Paun’s systems and accounting. In Pre-Proceedings of Sixth Work-
shop on Membrane Computing, WMC6, Vienna, July 2005, 461-464.

9. Gh. Păun. Membrane Computing: An introduction. Springer, 2002.
10. Gh. Păun, R. Păun. Membrane computing as a framework for modeling economic

processes. Proceedings of SYNASC 05, Timisoara, Romania, IEEE Press, 2005, 1118.
11. Gh. Păun, R. Păun. Membrane Computing and Economics. In Gh. Păun, G. Rozen-

berg, A. Salomaa, (eds.) The Oxford Handbook of Membrane Computing. Oxford
University Press, New York, 2010, 632-644.

12. I. Pérez-Hurtado, L. Valencia-Cabrera, M.J. Pérez-Jiménez, M.A. Colomer, A.
Riscos-Núñez. Mecosim: A general purpose software tool for simulating biological
phenomena by means of p systems. IEEE Fifth International Conference on Bio-
inpired Computing: Theories and Applications (BIC-TA 2010), I (2010), 637–643.

