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Summary. P systems with active membranes is a widely studied framework within the
field of Membrane Computing since the creation of the discipline. The abstraction of the
structure and behavior of living cells is reflected in the tree-like hierarchy and the kinds
of rules that can be used in these kinds of systems.

Resembling the organization and communication between cells within tissues
that form organs, tissue-like P systems were defined as their abstractions, using
symport/antiport rules, that is, moving and exchanging elements from one cell to an-
other one. All the cells are located in an environment where there exist an arbitrary
number of some elements.

Lately, symport/antiport rules have been used in the framework of cell-like mem-
brane systems in order to study their computational power. Interesting results have been
reached, since they act similarly to their counterparts in the framework of tissue P sys-
tems.

Here, the use of the former defined rules (that is, evolution, communication, dis-
solution and division/separation rules) is considered, but not working with a tree-like
structure. Some remarks about choosing good semantics are given.

Key words: Membrane Computing, Active cells, Computational Complexity, P
versus NP problem.

1 Introduction

Membrane Computing is a distributed parallel computing paradigm inspired by the
way the living cells process chemical substances, energy and information. The pro-
cessor units in the basic model are abstractions of biological membranes, selectively
permeable barriers which give cells their outer boundaries (plasma membranes)
and their inner compartments (organelles). They control the flow of information
between cells and the movement of substances into and out of cells and they are
also involved in the capture and release of energy. Biological membranes play an
active part in the life of the cell. In fact, the passing of a chemical substance
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through a biological membrane is often implemented by an interaction between
the membrane itself and the protein channels present in it. During this interac-
tion, the chemical substance and the membrane itself can be modified at least
locally.

P systems with active membranes [7] include rules inspired on the behavior of
the proteins inside the cells. Recalling, evolution rules are the abstraction of the
mutation of the chemical compounds within singular organelles, communication
rules give us the idea of the transport of the proteins through the membranes of
the cells, dissolution rules remember the process of apoptosis, which makes the cell
to “kill itself” (in this case, we take the inspiration and apply it to membranes).
At last, division and separation rules are the rules that can create an exponential
workspace in polynomial time. These are inspired by the asexual and sexual cell
processes, that give birth to new cells.

All of those rules can be successfully applied in the framework of tissue-like P
systems. Moreover, it would be a more natural way to describe the functioning of
these rules at the cells that in the membranes. As an analogy to P systems with
active membranes, we are going to call them P systems with active cells

The paper is organized as follows. Next section briefly introduces some prelimi-
naries needed to make the work self-contained. Section 3 will be devoted to present
both syntax and semantics of tissue-like P systems with active cells, letting Sec-
tion 4 dedicated to present some results concerning the computational complexity
classes reached by this kind of membrane systems. The paper ends with some open
problems and concluding remarks.

2 Preliminaries

An alphabet I' is a non-empty set and their elements are called symbols. A string u
over I is an ordered finite sequence of symbols, that is, a mapping from a natural
number of n € N onto I'. The number 7 is called the length of the string w and it
is denoted by |u|. The empty string (with length 0) is denoted by A. The set of all
strings over an alphabet I" is denoted by I'*. A language over I is a subset of ™.

A multiset over an alphabet I" is an ordered pair (I, f) where f is a mapping
from I' onto the set of natural numbers N. The support of a multiset m = (I, f)
is defined as supp(m) = {z € I'|f(z) > 0}. A multiset is finite (respectively,
empty) if its support is a finite (respectively, empty) set. We denote by ( the
empty multiset. We denote by My (I") the set of all finite multisets over I'. The
cardinal of a finite multiset m is defined as > m(z).

xzel’

Let my = (I, f1), ma = (I, f2) be multisets over I', then the union of m; and
mg, denoted by my + ma, is the multiset (I, g), where g(z) = fi1(z) + fa(z) for
each x € I'. We say that m; is contained in mo and we denote it by mq C meo, if
fi(x) < fo(x) for each x € I'. The relative complement of my in mq, denoted by
mq \ ma, is the multiset (I, g), where g(x) = fi(x) — fa(z) if f1(z) > fa(z), and
g(z) = 0 otherwise.
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A rooted tree is a connected, acyclic, undirected graph in which one of the
vertices (called the root of the tree) is distinguished from the others. Given a node
z (different from the root) in a rooted tree, if the last edge on the (unique) path
from the root to the node x is {x,y} (so z # y), then y is the parent of node x
and z is a child of node y. We denote it by y = p(z) and = € ch(y). The root is
the only node in the tree with no parent. A node with no children is called a leaf
(see [2] for details).

Let us recall that the pair function (n,m) = (n +m)(n + m+1)/2) + n is
a polynomial-time computable function which is also a primitive recursive and
bijective function from N x N to N.

A decision problem X is one whose solution is either “yes” or “no”. This can
be formally defined by an ordered pair (Ix,0x), where Ix is a language over a
finite alphabet and 6x is a total boolean function over Ix. The elements of Ix are
called instances of the problem X.

2.1 Recognizer membrane systems

In this section, a membrane system designates any variant of P system. Recognizer
membrane systems were introduced in [4] and they provide a natural framework
to solve decision problems by means of devices in Membrane Computing.

Definition 1. A membrane system II is a recognizer membrane system if the fol-
lowing holds:

. The working alphabet I' of II has two distinguished objects yes and no.

. There exists an (input) alphabet X strictly contained in I.

. The initial multisets My, ..., My of IT are multisets over I' \ X.

. There exists a distinguished membrane called the input membrane.

. The output region i,y s the environment.

. All computations halt.

. If C is a computation of II, then either object yes or object no (but not both)
must have been released into the environment, and only at the last step of the
computation.

QLD G Lo

In recognizer membrane systems any computation is either an accepting com-
putation (when object yes is released into the environment at the last step).

For each finite multiset m over the input alphabet Y| the computation of the
system II with input m starts from the configuration obtained by adding the input
multiset m to the contents of the input membrane, in the initial configuration of
II. Therefore, in this kind of systems we have an initial configuration associated
with each input miltiset m (over the input alphabet X). We denote IT + m the
membrane system I1 with input multiset m.
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2.2 Polynomial complexity classes of recognizer membrane systems

Next, let us recall the concept of efficient solvability by means of a family of
recognizer membrane systems (see [4] for more details).

Definition 2. A decision problem X = (Ix,0x) is solvable in polynomial time by
a family II = {II(n)|n € N} of recognizer membrane systems from a class R, in a
uniform way, denoted by X € PMCy, if the following statements hold:

e the family II is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system II(n) from n € N;

e there exists a pair (cod,s) of polynomial-time computable functions over the
set Ix such that:

— for each instance u € Ix, s(u) is a natural number and cod(u) is the input
multiset of the system I1(s(u));

— for each n € N, s7Y(n) is a finite set;

— the family II is polynomially bounded with regard to (X, cod,s), that is,
there exists a polynomial function p, such that for each uw € Ix every
computation of IT(s(u)) + cod(u) is halting and it performs at most p(|u|);

— the family I1 is sound with regard to (X, cod, s), that is, for eachu € Ix, if
there exists an accepting computation of II(s(u))+cod(u), then Ox (u) = 1;

— the family II is complete with regard to (X, cod, s), that is, for each u € Ix,
if 0x(u) =1, then every computation of II(s(u)) + cod(u) is an accepting
one.

The polynomial complexity class PMCg is closed under polynomial-time reduc-
tion and under complement [5].

3 Tissue-like P Systems with Active Cells

This new kind of P systems keeps the inspiration keeps the foundations of classical
tissue P systems, that is, the exchange of elements between the cells. Here, instead
of the use of symport/antiport rules, we are going to introduce the application of
the rules typically used in cell-like P systems with active membranes.

3.1 Syntax

Definition 3. A tissue-like P system with active membranes and separation rules
of degree ¢ > 1 is a tuple (I', Io, I, H, Ho, H1, pt, M1, ..., Mg, R, iout), where:

e I" is a finite alphabet and H = {1,...,q};

o {Io, I} is a partition of I' and {Hy, H1} is a partition of H;
o My,..., M, are finite multisets over I';

e R is a finite set of rules over I' of the following forms:
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(a) [a = w]} for h € Ha € {+,—,0},a € Iu € My(I') (object evolution
rules).

(b)a | |3t = [b]y? for h € Hyai,as € {+,—,0},a,b € I' (send-in commu-
nication rules).

(¢c)lalpt = b |3? forh€ Hyar,ap € {+,—,0},a,b € I' (send-out com-
munication rules).

(d)[aly —bforhe Hac{+,—,0},a,be ' (dissolution rules).

(e)[alyt = [b]2[cly? forh e Hyar,a2,a3 € {+,—,0},a,b,c € I' (division
rules for elementary membranes).

(e)[alpyt = [ Io 3?2 I ]3° for h € Hyon,a0,a3 € {+,—,0},a € I' (separa-
tion rules for elementary membranes).

M Tl il = 0 el R for hoho,hy € H,
a, 1, g, 03,04, 05,06 € {+,—,0} (division rules for non-elementary
membranes).

A Tl 1R51n = Lol Lglh® il IRi]R° for b € Hoho € Ho,hy € Hy,
o, aq, 0, 03, g, 5, O € {+,—,0}  (separation  rules  for

non-elementary membranes).
® ioyt € HU{env}, whereenv ¢ I' UH.

A tissue-like P system with active cells of degre ¢ > 1 can be viewed as a set
of ¢ cells, labelled by elements of H, arranged in a directed structure p given by a
directed graph (the cell structure) whose nodes h that have outdegree(h) = 0 are
called elementary cells, such that: (a) My,..., M, represent the finite multisets
of objects (symbols of the working alphabet I') initially placed in the g cells of the
system; (b) R is a finite set of rules over I' associated with the system; and (c)
tout € H U {env} indicates the output region. We use the term region i to refer
to cell 7 in the case ¢« € H and to refer to the “environment” of the system in the
case i = env. If the membrane system makes no use of separation rules for non-
elementary cells, then sets Hy and H; will be omited. If separation rules either for
elementary and non-elementary cells are not used, then we can omit either the sets
Hy and Hy and Iy and I5. The length of a rule is the number of objects involved
in it (for instance, the length of the object evolution rule [ @ — w | is 1 + |u]. Let
us notice that in this framework we can change (classical) object evolution rules
by cooperative evolution rules (see [11] for more details).

For each cell h different for cells h with indegree(h) # 0, we denote p(h)
the label of the parent of h in u. By convention, the “parent” of cells h with
indegree(h) = 0 is the environment of the system

3.2 Semantics

An instantaneous description or a configuration Cy; at an instant t of a P system
with active cells is described by the cell structure at instant ¢ and all multisets
of objects over I' associated with all the membranes present in the system at the
moment.
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An object evolution rule [a — u] is applicable to a configuration C, at an
instant ¢, if there exists a cell labelled by h with polarization « in C; which contains
object a. When applying such a rule, object a is consumed and all objects from
multiset u are produced in that membrane.

A send-in communication rule a [ |3 — [b];? is applicable to a configuration
C; at an instant ¢, if there exists a cell labelled by h with polarization «; in C; such
that indegree(h) > 0 and its parent one of its parent cells contain object a. When
applying such a rule, object a is consumed from the selected parent cell and object
b is produced in the corresponding cell h, and the polarization of cell A changes to
9.

A send-out communication rule [a |t — b [ ]5? is applicable to a configuration
C: at an instant ¢, if there exists a cell labelled by h with polarization a; in C;
such that it contains object a. When applying such a rule, object a is consumed
from such cell and object b is produced in the one of its parent cells chosen in a
non-deterministic way, and the polarization of cell A changes to as.

A dissolution rule [ a |§ — b is applicable to a configuration C, at an instant
t, if there exists a cell labelled by h with polarization « in C;, different from the
output region, such that it contains object a. When applying such a rule, object a
is consumed, cell h is dissolved and its objects are sent to one of the parents cells,
chosen non-deterministically (or ancestors that have not been dissolved). For all
B’ such that f(h’) = h and h” such that f(h) = h”, when h is dissolved, then new
edges from all h” to all i/ are created, and edges from h” to h and from h to A’
are removed.

A division rule [ a |5* — [ b ]p?[ ¢ ]? is applicable to a configuration C; at an
instant ¢, if there exists a cell labelled by h with polarization a; in Cy, different
from the output region, such that it is an elementary cell and contains object a.
When applying such a rule, the cell is divided into two cells with the same label,
one with polarization oy and the other one with polarization as; at the same time,
object a is consumed and object b appears in the first cell, and ¢ in the second
one, and the remaining objects get duplicated in the two created cells. For all b’
such that f(h') = h and h” such that f(h) = h”, when h is dissolved, then edges
from all A" to h and from h to h' are duplicated.

A separation rule [ a ];* — [ Io |p*[ I |3 is applicable to a configuration C; at
an instant ¢, if there exists a cell labelled by h with polarization a; in Cy, different
from the output region, such that it is an elementary cell and contains object
a. When applying such a rule, the cell is separated into two cells with the same
label, one with polarization «; and the other one with polarization as; at the same
time, object a is consumed and the multiset of objects contained in membrane h
get distributed: the objects from I are placed in one cell, those from I} are placed
in the second one. For all A’ such that f(h') = h and h” such that f(h) = h”,
when h is dissolved, then edges from all A" to h and from h to A’ are duplicated.

A division rule [ J51[ 15200 — ([ 1R2R°[0 15i15° is applicable to a configu-
ration C; at an instant ¢, if there exists a cell labelled by h with polarization « in
C;, different from the output region, such that it is the parent of a cell labelled by
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ho with polarization «; and of another cell labelled by h; with polarization «s.
When applying such a division rule to a cell labelled by h in a configuration C;,
that cell is divided into two cells with the same label with polarizations a5 and
ag, in such a way that the contents (multiset of objects) and relations (children
and parent cells) are duplicated into the two new cells, except from cells labelled
by hg, that becomes a child cell of the first one, with polarization ag, and A1, that
becomes a child cell of the second one, with polarization cy. For all A’ such that
f(R') = h and h” such that f(h) = h”, when h is dissolved, then edges from all h”
to h and from h to h’ are duplicated (except for edges from h to hy and hy, which
ones remains one for each new created cell).

A separation rule [ [31[ 13215 — [To[ 132157l 15t]5° is applicable to a
configuration C; at an instant ¢, if there exists a cell labelled by h with polarization
a in Cy, different from the output region, such that it is the parent of a cell labelled
by ho with polarization «; and of another cell labelled by h; with polarization as.
When applying such a separation rule to a cell labelled by h in a configuration Cy,
that cell is separated into two cells with the same label with polarizations as and
ag, in such a way that the contents (multisets of objects) and relations (children
cells) are distributed as follows: The first cell receives the multiset of objects from
Iy, and all child cells whose label belongs to Hp; and the second cell receives the
multiset of objects from I, and all child cells whose label belongs to H;. For all h’
such that f(h') = h and h” such that f(h) = k", when h is dissolved, then edges
from all h”” to h are duplicated, and edges from h to h’ are distributed depending
on whether they belong to Hy or Hj.

In tissue-like P systems with active cells, the rules are applied according to the
following principles:

e The rules associated with membranes labelled with A are used for all copies of
this membrane.

e At one transition step, one object can be used by only one rule (chosen in a
non-deterministic way).

e At one transition step, a cell can be subject of only one rule of types (b)—(f),
and then it is applied at most once.

e Object evolution rules can be simultaneously applied to a cell with one rule
of types (b)—(f). Object evolution rules are applied in a maximally parallel
manner.

o If at the same time a membrane labelled with h is divided/separated by a rule
of type (e) or (f) and there are objects in this cells which evolve by means of
rules of type (a), then we suppose that first the evolution rules of type (a) are
used, changing the objects, and then the separation is produced. Of course,
this process takes only one transition step.

e Output cell can never get divided, separated, nor dissolved.

Let us consider a tissue-like P systems with active cells IT We say that configu-
ration C; yields configuration C;11 in one transition step, denoted by C; =1 Cit1,
if we can pass from C; to Cyy1 by applying the rules from the system following the
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previous remarks. A computation of IT is a (finite or infinite) sequence of configura-
tions such that: (a) the first term is the initial configuration of the system; (b) for
each n > 1, the n-th configuration of the sequence is obtained from the previous
configuration in one transition step; and (c) if the sequence is finite (called halting
computation) then the last term is a halting configuration (a configuration where
no rule of the system is applicable to it).

All computations start from an initial configuration and proceed as stated
above; only halting computations give a result, which is encoded by the objects
present in the output region i,,; associated with the halting configuration. If
C = {Ct}t<ry1 of IT (r € N) is a halting computation, then the length of C, denoted
by |C|, is r, that is, |C]| is the number of non-initial configurations which appear in
the finite sequence C. For each ¢ (1 < ¢ < ¢) we denote by C;(¢) the finite multiset
of objects over I" contained in all cells labelled by i (by applying division or sep-
aration rules different cells with the same label can be created) at configuration C;.

3.3 Families of tissue-like P systems with active cells

We use the following notations:

o NAC(a,3,6), where a € {+e,—e}, B € {+c,—c} and § € {+d,—d}, is the
class of all recognizer P systems with active cells without using division nor
separation rules.

e DAC(w, 8,9,7), where a € {+e,—e}, 8 € {+¢,—c}, § € {+d,—d} and «a €
{+n, —n},is the class of all recognizer P systems with active cells and division
rules.

o SAC(a,3,0,7), where @ € {+e,—e}, 8 € {+c¢,—c}, 6 € {+d,—d} and
a € {+n,—n},is the class of all recognizer P systems with active cells and
separation rules.

The meaning of parameters is the following:

o if & = +e (resp., —e) then evolution rules are permitted (resp., forbidden).

e if a = +c¢ (resp., —c) then communication rules are permitted (resp., forbid-
den).

e if & = +d (resp., —d) then dissolution rules are permitted (resp., forbidden).

e if « = +n (resp., —n) then division/separation rules for elementary and non-
elementary cells are permitted (resp., only division/separation rules for ele-
mentary cells are permitted).

3.4 Another (not so relevant) approach

One question discussed when this framework was being created was:

In tissue-like membrane systems, the natural definition would be the one where
when we do a communication rule, the cell interacts the environment (objects go
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to the environment in send-out communication rules and comes from it in
send-in communication rules. The same goes to dissolution rules, that is, when a
cell dissolves, its contents go to the environment.

This definition seems the best in order to capture the behavior of tissue P
systems. But because of the simple structure created, it has little interest regarding
the computational complexity of these systems.

If this kind of systems is defined, we can suppose that there are ¢ cells disposed
in the environment, and they can interact with it through communication and
dissolution rules. But we can simulate this behavior with P systems with active
membranes with g+ 1 membranes, where ¢ membranes are situated within one that
acts as the environment in the previous system. So complexity classes where these
families of P systems were involved in would be weaker than classical P systems
with active membranes, therefore it will not be considered.

4 Some Results About Computational Complexity

First of all, it is easy to see that every P system with active cells is at least as pow-
erful as its active membranes counterpart. It can be proved because every P system
with active membranes structure is defined by a rooted tree u. A tree is a particular
case of a graph, where cycles are not allowed. For every P system with active mem-
branes, we can define a P system with active cells that simulates its behavior. Let
II = (I,Iy, In,H, Ho, Hi, pp, M1, ..., Mg, R,i0u) a P system with active mem-
branes. We can create (in polynomial time) a P system with active membrane that
simulates its behavior. Let II' = (I', Iy, I't, H, Ho, Hy, p/, M1, ..., My, R, iout) be
the P system with active cells that simulates its behavior. u' is constructed as
follows:

e Let p/ be a single node h, where h is the label of the skin membrane of IT.
e For every membrane h' situated within another membrane h in IT, we create
anode i’ in ¢’ and add an edge from h to h'.

The directed graph obtained has the shape of a directed rooted tree, and as it has
the same set of rules, semantics of the system makes II’ simulate the behavior of
IT'. We can conclude with:

Theorem 1. PMCAM(%B,&’Y) g PMCAC(&,B,5,7)7

no matter which kinds of rules we are using.

4.1 Some complexity classes

As it happened with P systems with active membranes, we can use the Milano
Theorem [14] to state that no computationally hard problems can be solved in
polynomial time without using rules allowing the generation of an exponential
number of membranes/cells in polynomial time. Then:



184 D. Orellana-Martin
Theorem 2. P = PMC »4¢

In [8, 9], an upper bound of the complexity of P systems with active membranes
was given. In fact, algorithms used there did not complain about the “direction of
the edges” in the graph defining the systems, so the same technique can be used
here.

Theorem 3. PSPACE = PMCop 4¢(4e,4¢,4d,+n)

In fact, we can use this technique to define an upper bound for systems that
use separation rules instead of division rules.

Theorem 4. PMCgs g (+e,+¢,+d,+n) Y PMCsac(te,+¢,+d,+n) © PSPACE

4.2 Polarizationless P systems with active cells

In previous works, P systems with active membranes were demonstrated to be
too powerful in order to obtain new frontiers to tackle the problem P vs. NP. In
order to obtain less powerful systems, polarizationes were avoided, giving place
to polarizationless P systems with active membranes. Some frontiers of efficiency
were obtained in this new framework. We can do the same in P systems with active
cells, so we would obtain polarizationless P systems with active cells. These systems
are defined as polarizationless P systems with active membranes are defined to P
systems with active membranes.
We use the following notations:

e DAC(a, B,6,7), where a € {+e,—¢}, B € {+¢,—c}, § € {+d,—d} and o €
{+n, —n},is the class of all recognizer polarizationless P systems with active
cells and division rules.

o SAC(a, B,6,7), where a € {+e,—e}, B € {+¢,—c}, § € {+d,—d} and « €
{+n, —n},is the class of all recognizer polarizationless P systems with active
cells and separation rules.

The meaning of parameters is the same than before.

In [3, 12] that families of P systems which make no use of dissolution rules
can only solve tractable problems in an efficient way. The technique used is the
dependency graph technique, and we can adapt it to P systems with active cells,
S0:

Theorem 5. P = PMCDACO(+€,+C,—d,+n) = PMCS.ACO(-&-e,-&-c,—d,—i-n)

Proof. Here, the creation of the graph differs from the original one since a cell can
have two parent cells, unlike in active membranes, where each membrane could
have at most one parent membrane. So, we have to contemplate this in the next
algorithm:

Input: IT (with R as its set of rules and H as its label set)
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Vi < 0; Eg < 0
for eachrule r € R of Il do
if r=[a— u | Aalph(u) = {a1,...,as} then

Vir = VirU 3 {(ah). (ay. 1)}

Enr  Eq U ;{«a, h), (az,h))}

else if r=[al]p,— b[ ]x then
VH «— VH U Z {(aah)7<b’ hl)}

h'=f(h)
EH <_EHU Z {((a‘ah)v(ba h/))}
h'=f(h)
else if r=a| ]n —[b]s then
Vi< VapU > {(a,h),(b,h)}
h=f(h")
En <« Enu > {((a,h), (b))}
h=f(h’)
else ifr=[al,—[b

Jn[ ¢ ]n then
Vi < Vi U{(a,h), (b,h), (c,h)}
B  Eir U{((a,h), (b.h)), (a, ), (c. )}
else if r=[al [Fo]h[Fl]hthen
Vir <V U{(a,h)}

The running time of this algorithm is bounded by O(|R| - q), where ¢ is the
value max (max{length(r) : r € R}, |H|). The rest of the demonstration is similiar
to the given in [3, 12].

(]

In [1], a uniform solution to QSAT problem was given with polarizationless P
systems with active membranes that make use of dissolution and division rules
for elementary and non-elementary membranes. This solution, of course, can be
adapted to polarizationless P systems with active cells. Thus:

Theorem 6. PSPACE = PMCp 4c0 (e 4 +d,+n)

Here, a new version of the Paun’s conjecture can be outlined:

?
P =PMCp4co(se,te,4+d,—n)

4.3 Minimal cooperation in polarizationless P systems with active
membranes

Some interesting results have been reached in the framework of P systems with
active membranes when minimal cooperation has been introduced. That is, with
this kind of rules, we can make the objects in the regions collaborate with each
other. The term minimal tell us that the left part of a rule can have at most two
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objects, but even with this restriction, these systems are powerful enough to solve
computationally hard problems.

In the context of polarizationless P systems with active cells, the following
kinds of minimal cooperation in object evolution rules are considered.

e Primary minimal cooperation (pmec): object evolution rules are of the form
[u— v ]p, where h € H, u,v are multisets over I', and 1 < |ul,|v] < 2, but at
least one object evolution rule verifies |u| = 2.

e Bounded minimal cooperation (bmc): object evolution rules are of the form
[u— v ]p, where h € H, u,v are multisets over I', and 1 < |u| < |v| < 2, but
at least one object evolution rule verifies |u| = 2.

e Minimal cooperation and minimal production (mcmp): object evolution rules
are of the form [ a — b |, [ @ = b |n, where h € H, a,b,c € I', but at least
one object evolution rule is of the second type.

We use the same notations that in polarizationless P systems with active cells
(that make use of classical object evolution rules), but now « € {pme, bme, memp}.

In [10], the use of bounded minimal cooperation were demonstrated to be strong
enough to solve NP-complete problems.

Theorem 7. NP Uco — NP C PMCp 4co(pme,+c,—d,—n)
In [13], this result was improved by using mcmp rules, that is:
Theorem 8. NP Uco — NP C PMC'DAcO(mcmp7+C7_d7_n)

Nevertheless, it is different when we use separation rules instead of division
rules. In this framework, it was demonstrated in [11] that the use of bounded
minimal cooperation is not powerful enough to solve NP-complete problems. It
was demonstrated with the algorithmic technique, and in this case we can adapt
the algorithm to deal with polarizationless P systems with active cells.

Theorem 9. P = PMCgs 4¢0(bme,+c,+d,+n)

Bearing in mind that minimal cooperation with minimal production in object
evolution rules is a particular case of bounded minimal cooperation, we deduce
the following result:

Theorem 10. P = PMCg 4co(memp,+c,+d,+n)

In order to obtain efficient solutions to presumably intractable problems in the
framework of polarizationless P systems with active cells, we have to make use of
primary minimal cooperation. We can use the same solution to SAT problem that
n [12], therefore:

Theorem 11. NP Uco — NP C PMCgs 40 (pme,+c,~d,—n)
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5 Conclusions

In this work, we present a new kind of families of P systems, the so-called P
systems with active cells. The union of the syntax and semantics of P systems
with active membranes and the structure of tissue-like P systems give this kind of
membrane systems some interesting properties. It is useful in order to obtain new
frontiers of efficiency regarding the direction of the edges. We can see P systems
with active membranes as directed graphs that have edges in only one direction. If
we remove the restriction of the direction of the edges, we obtain P systems with
active membranes. It is no surprising that these membrane systems are at least as
powerful as the former ones.

Some classical results in P systems with active membranes are reviewed to
obtain their equivalent when we are treating with P systems with active cells.
Both systems with polarizations and polarizationless ones are studied, giving an
upper bound of them and, like in the framework of active membranes, is PSPACE.

Minimal cooperation have been recently investigated to study its relevance in
the power of polarizationless P systems with active membranes, and here we give
their counterpart active cells definitions. All the results given here are quite similar
to their active membranes counterparts, therefore a first question appear:

e Does the direction matter? That is, does:
PMC am(a,8.57) = PMCac(a,p.67)

remains?
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