
Sparse-matrix Representation of Spiking Neural
P Systems for GPUs

Miguel Á. Mart́ınez-del-Amor1, David Orellana-Mart́ın1, Francis G.C. Cabarle2,
Mario J. Pérez-Jiménez1, Henry N. Adorna2

1Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: mdelamor@us.es, dorellana@us.es, marper@us.es
2Algorithms and Complexity Laboratory
Department of Computer Science
University of the Philippines Diliman
Diliman 1101 Quezon City, Philippines
E-mail: fccabarle@up.edu.ph, hnadorna@up.edu.ph

Summary. Current parallel simulation algorithms for Spiking Neural P (SNP) systems
are based on a matrix representation. This helps to harness the inherent parallelism
in algebraic operations, such as vector-matrix multiplication. Although it has been
convenient for the first parallel simulators running on Graphics Processing Units
(GPUs), such as CuSNP, there are some bottlenecks to cope with. For example, matrix
representation of SNP systems with a low-connectivity-degree graph lead to sparse
matrices, i.e. containing more zeros than actual values. Having to deal with sparse
matrices downgrades the performance of the simulators because of wasting memory and
time.

However, sparse matrices is a known problem on parallel computing with GPUs, and
several solutions and algorithms are available in the literature. In this paper, we briefly
analyse some of these ideas and apply them to represent some variants of SNP systems.
We also conclude which variant better suit a sparse-matrix representation.

Keywords: Spiking Neural P systems, Simulation Algorithm, Sparse Matrix
Representation, GPU computing, CUDA

1 Introduction

Spiking Neural P (SNP) systems [9] are a type of P systems [16] composed of a
directed graph inspired by how neurons are interconnected by axons and synapses

162 M.A. Mart́ınez-del-Amor et al.

in the brain. Neurons communicate through spikes, and the time difference between
them plays an important role in the computation.

The simulation of SNP systems have been carried out through sequential sim-
ulators such as pLinguaCore [11]. For parallel simulation, a matrix representation
was introduced [17], so that the simulation algorithm is based on applying matrix
operations. For instance, efficient algebra libraries have been defined for GPUs,
given that they fit well to the highly parallel architecture of these devices. This
have been harnessed already to introduce the first parallel SNP system simulators
on GPUs, cuSNP [4, 5].

However, this matrix representation can be sparse, having a majority of
zero values, because the directed graph of SNP systems are not normally fully
connected. In many disciplines, sparse vector-matrix operations are natural, so
many solutions have been proposed in the literature [6]. For this reason, we transfer
some of these ideas to the simulation of SNP systems with matrix operations. First,
we give a first approach, which is further optimized by splitting the main matrix
into several structures. Second, ideas to deal with dynamic networks are given.

The paper is structured as follows: Section 2 gives a short formal definition of
SNP systems; Section 3 summarizes the matrix-based simulation algorithm; Sec-
tion 4 briefly introduces GPU computing and sparse vector-matrix representations;
Section 5 discussed the ideas on introducing sparse vector-matrix representation
for SNP system simulation; and the paper finishes with conclusions and future
work.

2 Spiking Neural P Systems

Definition 1. A spiking neural P system of degree q ≥ 1 is a tuple

Π = (O, syn, σ1, . . . , σq, iout)

where:

• O = {a} is the singleton alphabet (a is called spike);
• syn = (V,E) is a directed graph such that V = {σ1, . . . , σq} and (σi, σi) 6∈ E

for 1 ≤ i ≤ q;
• σ1, . . . , σm are neurons of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:
– ni ≥ 0 is the initial number of spikes within neuron labelled by i; and
– Ri is a finite set of rules associated to neuron labelled by i, of the following

forms:
(1) E/ac → ap, being E a regular expression over {a}, c ≥ p ≥ 1 (firing

rules);

Sparse-matrix Representation of SN P Systems 163

(2) as → λ for some s ≥ 1, with the restriction that for each rule E/ac → ap

of type of type (1) from Ri, we have as 6∈ L(E) (forgetting rules).
• iout ∈ {1, 2, . . . , q} such that outdegree(iout) = 0

A spiking neural P system of degree q ≥ 1 can be viewed as a set of q
neurons {σ1, . . . , σq} interconnected by the arcs of a directed graph syn, called
synapse graph There is a distinguished neuron iout, called output neuron, which
communicates with the environment.

If a neuron σi contains k spikes at an instant t, and ak ∈ L(E), k ≥ c, then
the rule E/ac → ap can be applied. By the application of that rule, c spikes are
removed from neuron σi and the neuron fires producing p spikes immediately. The
spikes produced by a neuron σi are received for all neuron σj such that (σi, σj) ∈ E.
If σi is the output neuron then the spikes are sent to the environment.

The rules of type (2) are forgetting rules, and they are applied as follows: If
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be applied.
By the application of this rule all s spikes are removed from σi.

In spiking neural P systems, a global clock is assumed, marking the time for
the whole system. Only one rule can be executed in each cell at step t. As models
of computation, spiking neural P systems are Turing complete, i.e. as powerful as
Turing machines. On one hand, common way to introduce input to the system is
to encode into some or all of the ni’s the input(s) of the problem to be solved. On
the other hand, a common way to obtain the output is by observing iout: either
by getting the interval t2 − t1 = n, where iout sent its first two spikes at times t1
and t2 (we say n is computed or generated by the system), or by counting all the
spikes sent by iout to the environment until the system halts.

Aside from computing numbers, spiking neural P systems can also compute
strings, and hence, languages. More general ways to provide the input or receive the
output include the use of spike trains, i.e. a stream or sequence of spikes entering or
leaving the system. Further results and details on computability, complexity, and
applications of spiking neural P systems are detailed in [15], a dedicated chapter
in the Handbook in [8], and an extensive bibliography until February 2016 in [14].
There are some interesting ingredients we are going to explain here. A broader
explanation of them and more variants is provided at [1, 3, 13].

2.1 Spiking Neural P Systems with Budding

Based on the idea of neuronal budding, where a cell is divided in two new cells, we
can abstract it to budding rules. In this process, the new cells can differ in some
aspects: their connections, contents and shape. A budding rule has the following
form:

[E]i → []i/[]j ,

where E is a regular expression and i, j ∈ {1, . . . , q}.
If a neuron σi contains s spikes, as ∈ L(E), and there is no neuron σj such that

there exists a synapse (i, j) in the system, then the rule [E]i → []i/[]j is enabled

164 M.A. Mart́ınez-del-Amor et al.

and it can be executed. A new neuron σj is created, and both neurons σi and σj
are empty after the execution of the rule. This neuron σi keeps all the synapses
that were going in, and this σj inherits all the synapses that were going out of
σi in the previous configuration. There is also a synapse (i, j) between neurons σi
and σj , and the rest of synapses of σj are given to the neuron depending on the
synapses of syn.

2.2 Spiking Neural P Systems with Division

Inspired by the process of mitosis, division rules have been widely used within the
field of Membrane Computing. In SN P systems, a division rule can be defined as
follows:

[E]i → []j ||[]k,

where E is a regular expression and i, j, k ∈ {1, . . . , q}.
If a neuron σi contains s spikes, as ∈ L(E), and there is no neuron σg such

that the synapse (g, i) or (i, g) exists in the system, g ∈ {j, k}, then the rule
[E]i → []j ||[]k is enabled and it can be executed. Neuron σi is then divided into
two new cells, σj and σk. The new cells are empty at the time of their creation.
The new neurons keep the synapses previously associated to the original neuron
σi, that is, if there was a synapse from σg to σi, then a new synapse from σg to σj
and a new one to σk are created, and if there was a synapse from σi to σg, then a
new synapse from σj to σg and a new one from σk to σg are created. The rest of
synapses of σj and σk are given by the ones defined in syn.

2.3 Spiking Neural P Systems with Plasticity

It is known that new synapses can be created in the brain thanks to the process
of synaptogenesis. We can recreate this process in the framework of spiking neural
P systems defining plasticity rules in the following form:

E/ac → αk(i,Nj),

where E is a regular expression, c ≥ 1, α ∈ {+,−,±,∓}, k ≥ 1 and Nj ⊆
{1, . . . , q}. For a neuron σi, let us define the presynapses of this neuron as
pres(i) = {j|(i, j) ∈ syn}.

If a neuron σi contains s spikes, as ∈ L(E), then the rule E/ac → αk(i,Nj) is
enabled and can be executed. The rule consumes c spikes and, depending on the
value of α, it performs one of the following:

• If α = + and Nj − pres(i) = ∅, or if α = − and pres(i) = ∅, then there is
nothing more to do.

• If α = + and |Nj−pres(i)| ≤ k, deterministically create a synapse to every σg,
g ∈ Nj − pres(i). Otherwise, if |Nj − pres(i)| > k, then non-deterministically
select k neurons in Nj−pres(i) and create one synapse to each selected neuron.

Sparse-matrix Representation of SN P Systems 165

• If α = − and |pres(i)| ≤ k, deterministically delete all synapses in pres(i).
Otherwise, if |pres(i)| > k, then non-deterministically select k neurons in
pres(i) and delete each synapse to the selected neurons.

• If α = {±,∓}, create (respectively, delete) synapses at time t and then delete
(resp., create) synapses at time t+ 1. Even when this rule is applied, neurons
are still open, that is, they can continue receiving spikes.

Let us notice that if, for some σi, we apply a plasticity rule with α ∈ {+,±,∓},
when a synapse is created, a spike is sent from σi to the neuron that has
been connected. That is, when σi attaches to σj through this method, we have
immediately transferring one spike to σj .

3 Simulation of SNP Systems

So far, P system parallel simulators make use of ad-hoc representations, specifically
defined for a certain variant [12]. In order to ease the simulation of SNP system and
its deployment to parallel environments, a matrix representation was introduced
[17]. By using a set of algebraic operations, it is possible to reproduce the
transitions of a computation. Although the baseline representation only involves
SNP systems without delays and static structure, many extensions have followed
such as for enabling delays or supporting non-determinism [4, 5].

This representation includes the following vectors and matrices, for a SNP
system π of degree (n,m) (n rules and m neurons):

Configuration vector : Ck is the vector containing all spikes in every neuron
on the kth computation step/time, where C0 denotes the initial configuration. It
contains m elements.

Spiking vector : Sk shows if a rule is going to fire at the transition step k
(having value 1) or not (having value 0). Given the non-determinism nature of
SNP systems, it would be possible to have a set of valid spiking vectors. However,
for the computation of the next configuration vector, only a spiking vector is used.
It contains n elements.

Spiking transition matrix : Mπ is a matrix comprised of aij elements where aij
is given as

Definition 2.

aij =

−c, rule ri is in σj and is applied consuming c spikes;
p, rule ri is in σs (s 6= j and (s, j) ∈ syn)

and is applied producing p spikes in total;
0, rule ri is in σs (s 6= j and (s, j) /∈ syn).

Thus, rows represent rules and columns represent neurons in the spiking
transition matrix. Note also that a negative entry corresponds to the consumption
of spikes. Thus, it is easy to observe that each row has exactly one negative entry,
and each column has at least one negative entry [17]. It contains n ·m elements.

166 M.A. Mart́ınez-del-Amor et al.

Hence, to compute the transition k, it is enough to select a spiking vector Sk
and calculate: Ck = Sk ·Mπ + Ck−1.

4 GPU Computing and SpMV Operations

The Graphics Processing Unit (GPU) has been employed for P system simulations
since the introduction of CUDA . This technology allows to run scientific
computations in parallel on the GPU, given that a device typically contains
thousands of cores and high memory bandwidth [10]. However, parallel computing
on a GPU has more constraints than on a CPU: threads have to run in a SIMD
fashion, accessing data in a coalesced way; that is, best performance is achieved
when the execution of threads is synchronized and accessing contiguous data from
memory.

Some algorithms fit perfectly to the GPU parallel model, such as algebraic
operations. Indeed, matrix computation is a “hello world” when getting started
with CUDA [18], and there are many efficient libraries for algebra computations
like cuBLAS. It is usual that when working with large matrices, these are almost
“empty”, or with a majority of zero values. This is known as sparse matrix, and
this downgrades the runtime in two ways: lot of memory is wasted, and lot of
operations are redundant.

Given the importance of linear algebra in many computational disciplines,
sparse vector-matrix operations (SpMV, in short) have been subject of study in
parallel computing (and so, on GPUs). Today there exists many approaches to
tackle this problem [2]. In this paper, we will focus on two formats to represent
sparse matrices, assuming that threads will access rows in parallel:

• CSR format. Only non-null values are represented by using 3 arrays: row
pointers, non-zero values and columns (see Figure 1 for an example). First,
the row-pointers array is accessed, which contains a position per row of the
original matrix. Each position says the index where the row start in the non-
zero values and columns arrays. The non-zero values and the columns arrays
can be seen as a single array of pairs, since every entry has to be accessed at the
same time. Once a row is indexed, then a loop over the values in that row has
to be performed, so that the corresponding column is found, and therefore, the
value. If the column is not present, then the value is assumed to be zero, since
this data structures contains all non-zero values. The main advantage is that
it is a full-compressed format if NumNonZeroV alues · 2 > NumZeroV alues,
where NumNonZeroV alues and NumZeroV alues are the number of non-zero
and zero values in the original matrix, respectively. However, the drawbacks is
that the search of elements in the non-zero values and columns arrays is not
coalesced when using parallelism per row. Moreover, since it is a full-compressed
format, there is no room for modifying the values, such as introducing new non-
zero values.

Sparse-matrix Representation of SN P Systems 167

3 0 1 0
0 2 4 1
0 0 0 0
-2 1 5 1

0 2 5 5

3 1 2 4 1 -2 1 5 1

0 2 1 2 3 0 1 2 3

Row pointers:

Non-zero val:

Columns:

Fig. 1: CSR format example

• ELL format. This representation aims at increase the memory coalescing access
of threads in CUDA. This is achieved by using a matrix of pairs, containing
a trimmed, transposed version of the original matrix (see Figure 2 for an
example). Each column of the ELL matrix is devoted for each row of the
matrix, even though the row is empty (all elements are zero). Every element
is a pair, where the first position denotes the column and the second is the
value, of only the non-zero elements in the corresponding row. However, the
size of the matrix is fixed, so the number of columns equals the number of rows
of the original matrix, but the number of rows is the maximum length of a
row in terms of non-zero values; in other words, the maximum amount of non-
zero elements in a row of the original matrix. Rows containing fewer elements
will pad the difference with null elements. The main advantage of this format
is that threads will always access the elements of all rows in coalesced way,
and the null elements padded by short rows can be utilize to incorporate new
data. However, there is a waste of memory, which is worst when the rows are
unbalance in terms of number of zeros.

3 0 1 0
0 2 4 1
0 0 0 0
-2 1 5 1

(0,3) (1,2) X (0,-2)
(2,1) (2,4) X (1,1)

X (3,1) X (2,5)
X X X (3,1)

 Length of
 longest row

Column Value

Fig. 2: ELL format example

5 Sparse Matrix Representation of SNP Systems

SNP systems in the literature typically are not fully connected graphs. In such
situations, the transition matrix gets sparse, and therefore, further optimizations
based on SpMV can be conveyed. In the following subsections, we discuss some

168 M.A. Mart́ınez-del-Amor et al.

approaches. Of course, if the graph inherent to a SNP system leads to a dense
transition matrix, then a normal format can be employed, because using sparse
formats will increase the memory footprint.

5.1 Approach with ELL Format

The first approach to compress the representation of a sparse transition matrix,
Mπ, is to use the ELL format (see Figure 3 for an example), leading to the
compressed matrix Ms

π. The following aspects have to be taken into consideration:

• The number of rows of Ms
π equals the maximum amount of non-zero values in

a row of Mπ, denoted by Z. It can be shown that Z = MaxOutDegree + 1,
where MaxOutDegree is the maximum output degree found in the neurons
of the SNP system. Z can be derived from the composition of the transition
matrix, where a row devoted for a rule E/ac → ap contains the values +p for
every neuron (columns) to which the neuron it belongs has a synapse, and a
value −c for consuming the spikes in the neuron it belongs.

• The values inside columns can be sorted, so that the consumption of spikes
(−c values) are placed at the first row. In this way, all threads can start with
the same task, consuming spikes.

• Every position of Ms
π is a pair (although not represented in Figure 3), where

the first element is a neuron label, and second is +p.

The idea is to assign a thread to each rule, and so, one per column of the
spiking vector Sk and one per column of Ms

π (real rows of the transition matrix).
For the vector-matrix multiplication, it is enough to iterate Z times (number of
rows in Ms

π). In each iteration, the computed value is added to the corresponding
neuron position in the configuration vector Ck. Since some threads will possibly
write to the same positions in the configuration vector, a solution would be to
use atomic operations, which are available on GPUs to calculate additions, among
others.

5.2 Optimized Approach

If, in general, there are more than one rule in the neurons, lot of threads in
the first approach will be inactive (having a 0 in the spiking vector), causing
branch divergence and non-coalesced memory access. Moreover, note in Figure 3
that columns corresponding to rules belonging to the same neuron will contain
redundant information: the generation of spikes is replicated for all synapses.

Therefore, a more efficient sparse matrix representation can be obtained when
maintaining the synapses separated from the rule information. This can be done
as follows:

• Rule information. By using a CSR-like format (see Figure 4 for an example),
rules of the form E/ac → ap (also forgetting rules are included, assuming

Sparse-matrix Representation of SN P Systems 169

-c -c

+p

+p

+p

-c

+p

+p

+p

-c

+p

+p

-c

+p

+p

-c

+p

+p

+p

+p

-c

+p

+p

+p

+p

+p

+p

-c

+p

-c

+p

1 0 0 0 1 1 1 0 1

σ
0

σ
1

σ
2

σ
3

σ
4

Spiking vector:

Sparse transition
matrix:

 Z

Fig. 3: Sparse matrix representation of a SNP system based on ELL format

p = 0) can be represented by a double array storing the values c and p (also
the regular expression, but this is required only to select a spiking vector, and
hence is out of scope of this work). A pointer array is employed to relate, for
each neuron, the subset of rules that has associated.

• Synapse matrix, Syπ. It has a column per neuron i, and a row for every neuron j
such that (i, j) ∈ Syn (there is a synapse). That is, every element of the matrix
corresponds to a synapse or null, given that the number of rows equals to the
maximum output degree in the neurons of the SNP system π, and padding is
required.

• Spiking vector is modified, containing only m positions, one per neuron, and
stating which rule 0 ≤ r ≤ n is selected.

The way to operate with this approach is to assign a thread to each column of
the synapse matrix (requiring m threads, one per neuron). Each thread will access
to the corresponding rule stated in the spiking vector, delete c in the configuration
vector Ck, and add p to each neuron defined in synapse matrix in Ck.

170 M.A. Mart́ınez-del-Amor et al.

-c

0

-c

+p

-c

+p

-c

+p

-c

+p

-c

+p

-c

+p

-c

+p

-c

+p
Rule info:

0 3 5 6 7Rule index:

σ
0

σ
1

σ
2

σ
3

σ
4

σ
0

σ
1

σ
2

σ
3

σ
4

2Synapses:
(4,2) є Syn

 Z = max out degree

Fig. 4: Optimized sparse matrix representation

5.3 Ideas for Dynamic Networks

The optimized sparse matrix representation discussed in Section 5.2 can be further
extended to support rules that modify the network, such as budding, division or
plasticity.

Figure 5 shows an example on how a budding rule can be supported. First,
the synapse matrix has to be flexible enough to host new neurons. This can
be accomplished by allocating a matrix large enough to populate new neurons
(probably up to fill the whole memory available on the GPU). Thus, for a budding
rule [E]i → []j/[]k, the required operations to modify the synapse matrix are:

1. Allocate a column for the new neuron k.
2. Copy column i to k.

Sparse-matrix Representation of SN P Systems 171

3. Delete content of column i and add only one element for k.
4. Change label i to j.

This will require to use a map of the column labels of the synapse matrix,
saying to which neuron it corresponds. The same map can be used to index the
rule information structure. A further optimization is to swap the labels i for k
instead of copying the column content. One major drawback of this approach is
that the creation of new neurons cannot run fully in parallel; that is, assigning
new columns to created neurons in a transition step is a serialized process. Some
techniques such as prefix sum can be applied to cope with this issue and convert
a serial process into a logarithmic-step operation.

y

i

x

i

k

k

x

y

Fig. 5: Extension for budding

An example for division rules can be seen in Figure 6. Again, the synapse matrix
has to be extended to contain empty columns to host populated new neurons
during the simulation, and a map of neuron labels have to be managed.

For a division rule [E]i → []j ||[]k, the following operations have to be performed:

1. Allocate a new column for neuron k.
2. Copy column i to k.
3. Change label of i to j.
4. Find all occurrences of i in the synapse matrix, change it for j and add k in

the column.

The last operation can be shown to be very expensive, since it requires to loop
all over the synapse matrix. Moreover, when adding k in all the neurons containing
i in the synapses, it would be possible to exceed the predetermined size Z. For
this situation, a special array of overflows will be needed, like ELL+COO format
for SpMV [2].

Finally, Figure 7 shows an example for plasticity rules. In this case, the
synapse matrix can be allocated in advance to an exact size, since no new neurons

172 M.A. Mart́ınez-del-Amor et al.

j

y

 j

x

k

y

x

k

i

y

i

x

Fig. 6: Extension for division

are created. However, enough rows Z have to be pre-established to support the
maximum amount of synapses, what can be precomputed by looking to the initial
out degrees of the neurons and the size of the N sets in the plasticity rules for
adding synapses: E/ac → αk(i,Nj), with α = +/± /∓.

The following operations have to be performed to reproduce the behaviour:

1. When deleting synapses, loop Z times to find the corresponding neurons in
the matrix, and set them to null. Holes might appear in the columns.

2. When adding synapses, loop Z times to find holes in the column and add the
corresponding neurons.

Since holes might appear in the columns when deleting synapses, we will need
to loop over Z times every column to compute the next transition, or to add new
synapses. Sorting algorithms can be run in parallel, but most probably it will not
worth the effort.

6 Conclusions and Future Work

In this paper, we have analysed the problem of having sparse matrices in the
matrix representation of SNP systems. Downgrades in the simulator performance
would appear if no solutions are found. However, this is a known issue in other
disciplines, and efficient sparse matrix representations have been introduced in the
literature.

We proposed a two efficient sparse representations for SNP systems, one based
on the classic format ELL, and an optimized one based on CSR and ELL. We also
analysed their behaviour when supporting rules for dynamic networks: division,
budding and plasticity. The representation for plasticity poses more advantages
than the one for division and budding, since the synapse matrix size can be
pre-computed. Thus, no label mapping nor empty columns for new neurons are

Sparse-matrix Representation of SN P Systems 173

α=+

I
1

α=-

I
2

I
3

k

 k

 Z=max possible out
 degree of a neuron

Fig. 7: Extension for plasticity

required. Moreover, simulating the creation of new neurons in parallel can damage
the performance of the simulator significantly, because this operation can be
sequential. Plasticity rules do not create new neurons, so this is avoided.

As future work, we plan to provide implementations of this ideas within cuSNP
framework, and deep analyse the different results with real examples from the
literature. We believe that this ideas will help to bring efficient tools to simulate
SNP systems on GPUs, enabling the simulation of large networks in parallel.

References

1. H. Adorna, F. Cabarle, L.F. Maćıas-Ramos, L. Pan, M.J. Pérez-Jiménez, B. Song,
T. Song, L. Valencia-Cabrera. Taking the pulse of SN P systems: A quick survey,

174 M.A. Mart́ınez-del-Amor et al.

in: M. Gheorghe, I. Petre, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa (eds.),
Multidisciplinary creativity, Spandugino, 2015, pp. 3–16.

2. N. Bell, M. Garland. Efficient Sparse Matrix-Vector Multiplication on CUDA.
NVIDIA Technical Report NVR-2008-004, 2008.

3. F. Cabarle, H. Adorna, M.J. Pérez-Jiménez, T. Song. Spiking neural P systems with
structural plasticity, Neural Computing and Applications, 26, 8 (2015), pp. 1905–1917

4. J.P. Carandang, J.M.B. Villaflores, F.G.C. Cabarle, H.N. Adorna, M.A. Mart́ınez-
del-Amor. CuSNP: Spiking Neural P Systems Simulators in CUDA. Romanian
Journal of Information Science and Technology, 20, 1 (2017), 57–70.

5. J.P. Carandang, F.G.C. Cabarle, H.N. Adorna, N.H.S. Hernandez, M.A. Mart́ınez-
del-Amor. Nondeterminism in Spiking Neural P Systems: Algorithms and Simula-
tions. Asian Conference on Membrane Computing 2017. Submitted.

6. K. Fatahalian, J. Sugerman, P. Hanrahan. Understanding the efficiency of GPU
algorithms for matrix-matrix multiplication, In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware (HWWS ’04) , ACM,
2004, pp. 133-137.

7. M. Harris. Mapping computational concepts to GPUs, ACM SIGGRAPH 2005
Courses, NY, USA, 2005.

8. O. Ibarra, A. Leporati, A. Păun, S. Woodworth. Spiking Neural P Systems, in: Gh.
Păun and G. Rozenberg and A. Salomaa (eds.), The Oxford Handbook of Membrane
Computing, Oxford University Press, 2010, pp. 337–362.

9. M. Ionescu, Gh. Păun, T. Yokomori. Spiking Neural P Systems, Journal Fundamenta
Informaticae, 71, 2-3 (2006), 279-308.

10. D. Kirk, W. Hwu, Programming Massively Parallel Processors: A Hands On
Approach, 1st ed. MA, USA: Morgan Kaufmann, 2010.

11. L.F. Maćıas, I. Pérez-Hurtado, M. Garćıa-Quismondo, L. Valencia-Cabrera, M.J.
Pérez-Jiménez, A. Riscos-Núñez. A P-Lingua based simulator for Spiking Neural P
systems, Lecture Notes in Computer Science, 7184 (2012), 257–281.

12. M.A. Mart́ınez-del-Amor, M. Garćıa-Quismondo, L.F. Maćıas-Ramos, L. Valencia-
Cabrera, A. Riscos-Núñez, M.J. Pérez-Jiménez. Simulating P systems on GPU
devices: a survey. Fundamenta Informaticae, 136, 3 (2015), 269-284.

13. L. Pan, Gh. Păun, M.J. Pérez-Jiménez. Spiking neural P systems with neuron division
and budding, Science China Information Sciences, 54, 8 (2011), 1596–1607.

14. L. Pan, T. Wu, Z. Zhang. A Bibliography of Spiking Neural P Systems. Bulletin of
the International Membrane Computing Society, June 2016, 63–78.

15. Gh. Păun, M.J. Pérez-Jiménez. Algorithmic Bioprocesses, Spiking neural P systems.
Recent results, research topics, Springer, 2009, pp. 273–291.

16. G. Păun. Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143, and TUCS Report No 208.

17. X. Zeng, H. Adorna, M. A. Mart́ınez-del-Amor, L. Pan, M. J. Pérez-Jiménez. Matrix
representation of spiking neural p systems. Lecture Notes in Computer Science, 6501
(2011), 377–391.

18. NVIDIA corporation,NVIDIA CUDA C programming guide, version 3.0, CA, USA:
NVIDIA, 2010.

