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Summary. Classical membrane systems with symport/antiport rules observe the con-
servation law, in the sense that they compute by changing the places of objects with
respect to the membranes, and not by changing the objects themselves. In these systems
the environment plays an active role because the systems not only send objects to the
environment, but also bring objects from the environment. In the initial configuration of
a system, there is a special alphabet whose elements appear in an arbitrary large number
of copies. The ability of these computing devices to have infinite copies of some objects
has been widely exploited in the design of efficient solutions to computationally hard
problems.

This paper deals with computational aspects of P systems with symport/antiport
and membrane division rules where there is not an environment having the property
mentioned above. Specifically, we establish the relationships between the polynomial
complexity class associated with P systems with symport/antiport, membrane division
rules, and with or without environment. As a consequence, we prove that the role of the
environment is irrelevant in order to solve NP–complete problems in an efficient way.

Key words: Membrane Computing, P System with Symport/Antiport, Mem-
brane Division, Computational Complexity.

1 Preliminaries

An alphabet Γ is a non–empty set whose elements are called symbols. An ordered
finite sequence of symbols is a string or word. If u and v are strings over Γ , then so
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is their concatenation uv, obtained by juxtaposition, that is, writing u and v one
after the other. The number of symbols in a string u is the length of the string and
it is denoted by |u|. As usual, the empty string (with length 0) will be denoted by
λ. The set of all strings over an alphabet Γ is denoted by Γ ∗. In algebraic terms, Γ ∗

is the free monoid generated by Γ under the operation of concatenation. Subsets
of Γ ∗ are referred to as languages over Γ . The set of symbols occurring in a string
u ∈ Γ ∗ is denoted by alph(u).

The Parikh vector associated with a string u ∈ Γ ∗ with respect to the alphabet
Σ = {a1, . . . , ar} ⊆ Γ is ΨΣ(u) = (|u|a1 , . . . , |u|ar ), where |u|ai denotes the number
of occurrences of symbol ai in string u. The application ΨΣ is called the Parikh
mapping associated with Σ. Notice that, in this definition, the ordering of the
symbols from Σ is relevant. If Σ1 = {ai1 , . . . , air} ⊆ Γ , then we define ΨΣ1(u) =
(|u|ai1

, . . . , |u|air
), for each u ∈ Γ ∗.

A multiset m over a set A is a pair (A, f) where f : A → N is a mapping. If
m = (A, f) is a multiset then its support is defined as supp(m) = {x ∈ A | f(x) >
0}. A multiset is empty (resp. finite) if its support is the empty set (resp. a finite
set). If m = (A, f) is a finite multiset over A and supp(m) = {a1, . . . , ak}, then
it will be denoted as m = {af(a1)

1 , . . . , a
f(ak)
k }. That is, superscripts indicate the

multiplicity of each element, and if f(x) = 0 for x ∈ A, then element x is omitted.

A finite multiset m = {af(a1)
1 , . . . , a

f(ak)
k } can also be represented by the string

a
f(a1)
1 . . . a

f(ak)
k over the alphabet {a1, . . . , ak}. Nevertheless, all permutations of

this string identify the same multiset m precisely. We denote by ∅ the empty
multiset and we denote byMf (Γ ) the set of all finite multisets over Γ . Throughout
this paper, we speak about “the finite multiset m” where m is a string, meaning
“the finite multiset represented by the string m”. If m1 = (A, f1), m2 = (A, f2)
are multisets over A, then we define the union of m1 and m2 as m1+m2 = (A, g),
where g = f1 + f2, that is, g(a) = f1(a) + f2(a), for each a ∈ A.

For any sets A and B the relative complement A \ B of B in A is defined as
follows: A \ B = {x ∈ A | x /∈ B}. For any set A we denote |A| the cardinal
(number of elements) of A, as usual.

In what follows, we assume the reader is already familiar with the basic notions
and terminology of P systems. For details, see [7].

2 P Systems with Symport/Antiport Rules and Membrane
Division

Cell division is an elegant process that enables organisms to grow and reproduce.
Mitosis is a process of cell division which results in the production of two daughter
cells from a single parent cell. Daughter cells are identical to one another and to the
original parent cell. Through a sequence of steps, the replicated genetic material
in a parent cell is equally distributed to two daughter cells. While there are some
subtle differences, mitosis is remarkably similar across organisms.
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Before a dividing cell enters mitosis, it undergoes a period of growth where the
cell replicates its genetic material and organelles. Replication is one of the most
important functions of a cell. DNA replication is a simple and precise process that
creates two complete strands of DNA (one for each daughter cell) where only one
existed before (from the parent cell).

Next, we introduce an abstraction of these operation in the framework of P
systems with symport/antiport rules. In these models, the membranes are not
polarized; the membranes obtained by division have the same labels as the original
membrane, and if a membrane is divided, its interaction with other membranes
or with the environment is locked during the division process. In some sense, this
means that while a membrane is dividing it closes its communication channels.

Definition 1. A P system with symport/antiport rules and membrane division of
degree q ≥ 1 is a tuple Π = (Γ, E , µ,M1, . . . ,Mq,R1, · · · ,Rq, iout), where:

1. Γ is a finite alphabet.
2. E ⊆ Γ .
3. µ is a membrane structure (a rooted tree) whose nodes are injectively labelled

with 1, 2 . . . , q.
4.M1, . . . ,Mq are multises over Γ .
5. R1, · · · ,Rq are finite set of rules of the following forms:

(a)Communication rules: (u, out), (u, in), (u, out; v, in), for u, v multisets over
Γ and |u|+ |v| > 0;

(b)Division rules: [a]i → [b]i[c]i, where i ̸= iout and a, b, c ∈ Γ ;
6. iout ∈ {0, 1, . . . , q}.

A P system with symport/antiport rules and membrane division

Π = (Γ, E , µ,M1, . . . ,Mq,R1, · · · ,Rq, iout)

of degree q can be viewed as a set of q membranes, labelled by 1, . . . , q, arranged in
a hierarchical structure, such that: (a)M1, . . . ,Mq represent the finite multisets
of objects initially placed in the q membranes of the system; (b) E is the set of
objects initially located in the environment of the system, all of them available in
an arbitrary number of copies; and (c) iout represents a distinguished region which
will encode the output of the system. We use the term region i (0 ≤ i ≤ q) to refer
to membrane i in the case 1 ≤ i ≤ q and to refer to the environment in the case
i = 0.

A rule of the type (u, out) or (u, in) is called a symport rule. A rule of the
type (u, out; v, in), where |u|+ |v| > 0, is called an antiport rule. A P system with
symport rules (resp. with antiport rules) is a P system with only symport rules
(resp. only antiport rules) as communication rules. The length of rule (u, out) or
(u, in) (resp. (u, out; v, in)) is defined as |u| (resp. |u|+ |v|).

An instantaneous description or a configuration at an instant t of a P system
with symport/antiport and membrane division is described by all multisets of
objects over Γ associated with all the membranes present in the system, and the
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multiset of objects over Γ − E associated with the environment at that moment.
Recall that there are infinitely many copies of objects from E in the environment,
and hence this set is not properly changed along the computation. The initial
configuration is (M1, · · · ,Mq; ∅).

A rule (u, out) ∈ Ri is applicable to a configuration C at an instant t if mem-
brane i is in C and multiset u is contained in such membrane. When applying a
rule (u, out) ∈ Ri, the objects specified by u are sent out of membrane i into the
region immediately outside (its father), this can be the environment in the case of
the skin membrane.

A rule (u, in) ∈ Ri is applicable to a configuration C at an instant t if membrane
i is in C and multiset u is contained in the immediately upper region (its father),
this is the environment in the case when the rule is associated with the skin
membrane (the root of the tree µ). When applying a rule (u, in) ∈ Ri, the multiset
of objects u enters the region defined by the membrane i from the immediately
upper region (its father), this is the environment in the case when the rule is
associated with the skin membrane (the root of the tree µ).

A rule (u, out; v, in) ∈ Ri is applicable to a configuration C at an instant t if
membrane i is in C and multiset u is contained in such membrane, and multiset
v is contained in the immediately upper region (its father). When applying a rule
(u, out; v, in) ∈ Ri, the objects specified by u are sent out of membrane i into
the region immediately outside (its father), at the same time bringing the objects
specified by v into membrane i.

A rule [a]i → [b]i[c]i ∈ Ri is applicable to a configuration C at an instant t if the
following holds: (a) membrane i is in C; (b) object a is contained in such membrane;
and (c) membrane i is neither the skin membrane nor the output membrane (if
iout ∈ {1, . . . , q}). When applying a division rule [a]i → [b]i[c]i, under the influence
of object a, the membrane with label i is divided into two membranes with the
same label; in the first copy, object a is replaced by object b, in the second one,
object a is replaced by object c; all the other objects residing in membrane i are
replicated and copies of them are placed in the two new membranes. The output
membrane iout cannot be divided.

The rules of a P system with symport/antiport rules and membrane division are
applied in a non-deterministic maximally parallel manner (at each step we apply a
multiset of rules which is maximal, no further applicable rule can be added), with
the following important remark: if a membrane divides, then the division rule is
the only one which is applied for that membrane at that step; the objects inside
that membrane do not evolve by means of communication rules. In other words,
before division a membrane interrupts all its communication channels with the
other membranes and with the environment. The new membranes resulting from
division will interact with other membranes or with the environment only at the
next step – providing that they do not divide once again. The label of a membrane
precisely identifies the rules which can be applied to it.

Let us fix a P system with symport/antiport rules and membrane division Π.
We say that configuration C1 yields configuration C2 in one transition step, denoted
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by C1 ⇒Π C2, if we can pass from C1 to C2 by applying the rules from R1∪· · ·∪Rq

following the previous remarks. A computation ofΠ is a (finite or infinite) sequence
of configurations such that:

1. the first term of the sequence is the initial configuration of the system;
2. each non-initial configuration of the sequence is obtained from the previous

configuration by applying rules of the system in a maximally parallel manner
with the restrictions previously mentioned; and

3. if the sequence is finite (called halting computation) then the last term of the
sequence is a halting configuration (a configuration where no rule of the system
is applicable to it).

All computations start from an initial configuration and proceed as stated above;
only halting computations give a result, which is encoded by the objects present
in the output region iout in the halting configuration.

If C = {Ct}t<r+1 of Π (r ∈ N) is a halting computation, then the length of C,
denoted by |C|, is r, that is, |C| is the number of non-initial configurations which
appear in the finite sequence C. We denote by Ct(i), 1 ≤ i ≤ q, the multiset of
objects over Γ contained in all membranes labelled by i (by applying division
rules different membranes with the same label can be created) at configuration Ct.
We denote by Ct(0) the multiset of objects over Γ \E contained in the environment
at configuration Ct. Finally, we denote by C∗t the multiset Ct(0)+Ct(1)+ · · ·+Ct(q).

Definition 2. A P system with symport/antiport rules and membrane division
Π = (Γ, E , µ,M1, . . . ,Mq,R1, · · · ,Rq, iout), where E = ∅, is called a P system
with symport/antiport rules, membrane division and without environment.

Usually, we omit the alphabet of the environment in the tuple describing such
P system.

3 Recognizer P systems with symport/antiport rules

Let us recall that a decision problem is a pair (IX , θX) where IX is a language over
a finite alphabet (whose elements are called instances) and θX is a total boolean
function over IX . Many abstract problems are not decision problems. For example,
in combinatorial optimization problems some value must be optimized (minimized
or maximized). In order to deal with such problems, they can be transformed into
roughly equivalent decision problems by supplying a target/threshold value for the
quantity to be optimized, and then asking whether this value can be attained.

There exists a correspondence between decision problems and formal languages.
So that, the solvability of decision problems is defined through the recognition of
the languages associated with them.

In order to study the computing efficiency of membrane systems, the notions
from classical computational complexity theory are adapted for membrane com-
puting, and a special class of cell-like P systems is introduced in [10]: recognizer P
systems (called accepting P systems in a previous paper [9]).
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Definition 3. A recognizer P system with symport/antiport rules and membrane
division of degree q ≥ 1 is a tuple

Π = (Γ, E , Σ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout)

where:

• (Γ, E ,M1, . . . ,Mq,R1, · · · ,Rq, iout) is a P system with symport/antiport rules
and membrane division of degree q ≥ 1, as defined in the previous section;

• The working alphabet Γ has two distinguished objects yes and no, at least one
copy of them present in some initial multisetsM1, . . . ,Mq, but none of them
is present in E;

• Σ is an (input) alphabet strictly contained in Γ such that E ∩Σ = ∅;
• M1, . . . ,Mq are multisets over Γ \Σ;
• iin ∈ {1, . . . , q} is the input membrane;
• The output region iout is the environment;
• All computations halt;
• If C is a computation of Π, then either object yes or object no (but not both)

must have been released into the output region (the environment), and only at
the last step of the computation.

Definition 4. A recognizer P system with symport/antiport rules, membrane di-
vision and without environment of degree q ≥ 1 is a tuple

Π = (Γ, E , Σ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout)

where:

• (Γ, E , Σ,M1, . . . ,Mq,R1, · · · ,Rq, iout) is a P system with symport/antiport
rules and membrane division.

• The working alphabet Γ has two distinguished objects yes and no, at least one
copy of them present in some initial multisetsM1, . . . ,Mq, but none of them
is present in E.

• E = ∅.
• Σ is an (input) alphabet strictly contained in Γ such that E ∩Σ = ∅.
• M1, . . . ,Mq are multisets over Γ \Σ.
• iin ∈ {1, . . . , q} is the input membrane.
• iout ∈ {1, . . . , q} is the output membrane.
• All computations halt.
• If C is a computation of Π, then either object yes or object no (but not both)

must have been released into the output region, and only at the last step of the
computation.

For each multiset m ∈ Mf (Σ), the computation of the system Π with input m ∈
Mf (Σ) starts from the configuration of the form (M1, . . . ,Miin +m, . . . ,Mq; ∅),
that is, the input multiset m has been added to the contents of the input mem-
brane iin, and we denote it by Π +m. Therefore, we have an initial configuration
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associated with each input multiset m (over the input alphabet Σ) in this kind of
systems.

Given a recognizer P system with symport/antiport rules (with or without
environment) and a halting computation C = {Ct}t<r+1 of Π (r ∈ N), we define
the result of C as follows:

Output(C) =


yes, if Ψ{yes,no}(Mr,iout) = (1, 0) ∧

Ψ{yes,no}(Mt,iout) = (0, 0) for t = 0, . . . , r − 1
no, if Ψ{yes,no}(Mr,iout) = (0, 1) ∧

Ψ{yes,no}(Mt,iout) = (0, 0) for t = 0, . . . , r − 1

where Ψ is the Parikh mapping, and Mt,iout is the multiset over Γ \ E associated
with the output region at the configuration Ct, in particular, Mr,iout is the multiset
over Γ \ E associated with the output region at the halting configuration Cr.

We say that a computation C is an accepting computation (respectively, reject-
ing computation) if Output(C) = yes (resp., Output(C) = no), that is, if object yes
(resp., object no) appears in the output region associated with the corresponding
halting configuration of C, and neither object yes nor no appears in the output
region associated with any non–halting configuration of C.

Let us notice that if a recognizer P system

Π = (Γ, E , Σ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout)

has a symport rule of the type (i, λ/u, 0) then alph(u) ∩ (Γ \ E) ̸= ∅, that is,
the multiset u must contains some object from Γ \ E because on the contrary, all
computations of Π would be not halting.

For each natural number k ≥ 1, we denote by CDC(k) (respectively, CDS(k)
or CDA(k)) the class of recognizer P systems with membrane division and with
symport/antiport rules (resp., allowing only symport or antiport rules) of length

at most k. In the case of P systems without environment, we denote by ĈDC(k)

(ĈDS(k) or ĈDA(k) respectively) the class of recognizer P systems with mem-
brane division without environment and with symport/antiport rules (allowing
only symport or only antiport rules respectively) of length at most k.

4 Polynomial Complexity Classes of P Systems with
Symport/Antiport

In this section, we define what solving a decision problem in the framework of
P systems with symport/antiport rules in a uniform and efficient way, means.
Bearing in mind that they provide devices with a finite description, a numerable
family of membrane systems will be necessary in order to solve a decision problem.

Definition 5. We say that a decision problem X = (IX , θX) is solvable in a uni-
form way and polynomial time by a family Π = {Π(n) | n ∈ N} of recognizer
P systems with symport/antiport rules and membrane division (with or without
environment) if the following holds:
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• The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ N.

• There exists a pair (cod, s) of polynomial-time computable functions over IX
such that:
− for each instance u ∈ IX , s(u) is a natural number, and cod(u) is an input

multiset of the system Π(s(u));
− for each n ∈ N, s−1(n) is a finite set;
− the family Π is polynomially bounded with regard to (X, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ IX every com-
putation of Π(s(u)) with input cod(u) is halting and it performs at most
p(|u|) steps;

− the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u), then
θX(u) = 1;

− the family Π is complete with regard to (X, cod, s), that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) with input cod(u) is an
accepting one.

From the soundness and completeness conditions above we deduce that every
P system Π(n) is confluent, in the following sense: every computation of a system
with the same input multiset must always give the same answer.

Let R be a class of recognizer P systems with symport/antiport rules. We
denote by PMCR the set of all decision problems which can be solved in a uniform
way and polynomial time by means of families of systems from R. The class
PMCR is closed under complement and polynomial–time reductions [9].

In what follows, we prove two technical results concerning recognizer P systems.

Proposition 1. Let Π = (Γ, E , Σ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout) be a recog-
nizer P systems with symport/antiport rules with length at most k, k ≥ 2, and
without membrane division. Let M = |M1+ · · ·+Mq| and let C = (C0, C1, . . . , Cm)
be a computation of Π Then, |C∗0 | = M , and for each t, 0 ≤ t < m, we have

|C∗t+1| ≤ |C∗t | · k, and |C∗t+1| ≤M · kt

Proof: Obviously, |C∗0 | = |C0(0) + C0(1) + · · · + C0(q)| = |M1 + · · · +Mq| = M .
Suppose 0 ≤ t < m, and let us compute C∗t+1 = Ct+1(0) + Ct+1(1) + · · ·+ Ct+1(q).
Bearing in mind that only the skin membrane can send and receive objects from
the environment, we have

Ct+1(0) + Ct+1(2) + Ct+1(3) + · · ·+ Ct+1(q) ⊆ Ct(0) + Ct(1) + · · ·+ Ct(q)

Next, let us see what objects membrane 1 can receive at step t+ 1.

• On the one hand, membrane 1 can receive objects from Ct(0).
• On the other hand, membrane 1 can receive objects from E by means of rules

in the skin membrane of the types:



P Systems with Symport/Antiport and Membrane Division 137

– (a ei1 . . . eir , in) with a ∈ Ct(0) and ei1 , . . . , eir ∈ E , r ≤ k − 1.
– (a, out; ei1 . . . eir , in) with a ∈ Ct(1) and ei1 , . . . , eir ∈ E , r ≤ k − 1.

Then, |Ct+1(1)| ≤ |Ct(0) + Ct(1)| · (k − 1). So, we have

|C∗t+1| = |Ct+1(0) + Ct+1(2) + Ct+1(3) + · · ·+ Ct+1(q)|+ |Ct+1(1)|
≤ |Ct(0) + Ct(1) + · · ·+ Ct(q)|+ |Ct(0) + Ct(1)| · (k − 1)
≤ |C∗t |+ |C∗t | · (k − 1) ≤ |C∗t | · k

Finally, let us see that |C∗t+1| ≤ M · kt by induction on t. For t = 1 the result is
trivial because of |C∗1 | ≤ (|C∗0 |+M) · (k − 1) = 2M · (k − 1).

Let t be such that 1 < t < m and the result holds for t. Then,

|C∗t+1| ≤ |C∗t | · k
h.i
≤ M · kt−1 · k = M · kt

�

Proposition 2. Let Π = {Π(n) | n ∈ N} a family of recognizer P systems from
CDC(k), where k ≥ 2, solving a decision problem X = (IX , θX) in polynomial
time according to Definition 5. Let (cod, s) be a polynomial encoding associated with
that solution. There exists a polynomial function r(n) such that for each instance
u ∈ IX , 2r(|u|) is an upper bound of the number of objects in all membranes of the
system Π(s(u)) + cod(u) along any computation.

Proof: Let p(n) be a polynomial function such that for each u ∈ IX every com-
putation of Π(s(u)) + cod(u) is halting and it performs at most p(|u|) steps.

Let u ∈ IX be an instance of X and

Π(s(u)) + cod(u) = (Γ, E , Σ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout)

Let M = |M1 + · · · +Mq|. Let C = (C0, C1, . . . , Cm), 0 ≤ m ≤ p(|u|), be a
computation of Π.

First, let us suppose that we apply only communication rules at m consecutive
transition steps. From Proposition 1 we deduce that |C∗0 | = M and |C∗t+1| ≤M ·kt,
for each t, 0 ≤ t < m. Thus, if we apply in a consecutive way the maximum
possible number of communication rules (without applying any division rules) to
the system Π(s(u)) + cod(u), in any instant of any computation of the system,
M · kp(|u|) is an upper bound of the number of objects in the whole system.

Now, let us consider the effect of applying in a consecutive way the maximum
possible number of division rules (without applying any communication rules) to
the system Π(s(u))+ cod(u) when the initial configuration has M · kp(|u|) objects.
After that, an upper bound of the number of objects in the whole system by any
computation is M · kp(|u|) · 2p(|u|) · p(|u|). Then, we consider a polynomial function
r(n) such that r(|u|) ≥ log(M)+ p(|u|) · (1+ log k)+ log(p(|u|)), for each instance
u ∈ IX . The polynomial function r(n) fulfills the property required.

�
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Corollary 1. Let Π = {Π(n) | n ∈ N} a family of recognizer P systems with
symport/antiport rules and membrane division, solving a decision problem X =
(IX , θX) in polynomial time according to Definition 5. Let (cod, s) a polynomial
encoding associated with that solution. Then, there exists a polynomial function
r(n) such that for each instance u ∈ IX , 2r(|u|) is an upper bound of the number
of objects from E which are moved from the environment to all membranes of the
system Π(s(u)) + cod(u) along any computation.

Proof: It suffices to note that from Proposition 2 there exists a polynomial func-
tion r(n) such that for each instance u ∈ IX , 2r(|u|) is an upper bound of the
number of objects in all membranes of the system Π(s(u)) + cod(u). �

5 Simulating Systems from CDC(k) by Means of Systems

from ĈDC(k)

The goal of this section is to show that any P system with symport/antiport rules
and membrane division can be simulated by a P system symport/antiport rules,
membrane division and without environment, in an efficient way.

First of all, we define the meaning of efficient simulations in the framework of
recognizer P systems with symport/antiport rules.

Definition 6. Let Π and Π ′ be recognizer P systems with symport/antiport rules.
We say that Π ′ simulates Π in an efficient way if the following holds:

1. Π ′ can be constructed from Π by a deterministic Turing machine working in
polynomial time.

2. There exists an injective function, f , from the set Comp(Π) of computations
of Π onto the set Comp(Π ′) of computations of Π ′ such that:
⋆ There exists a deterministic Turing machine that constructs computation

f(C) from computation C in polynomial time.
⋆ A computation C ∈ Comp(Π) is an accepting computation if and only if

f(C) ∈ Comp(Π ′) is an accepting one.
⋆ There exists a polynomial function p(n) such that for each C ∈ Comp(Π)

we have |f(C)| ≤ p(|C|).

Now, for every family of recognizer P system with symport/antiport rules and
membrane division solving a decision problem, we design a family of recognizer P
systems with symport/antiport rules, membrane division and without environment
efficiently simulating it, according to Definition 6.

In what follows throughout this Section, let Π = {Π(n) | n ∈ N} a family of
recognizer P systems with symport/antiport rules and membrane division solving
a decision problem X = (IX , θX) in polynomial time according to Definition 5,
and let r(n) be a polynomial function such that for each instance u ∈ IX , 2r(|u|)

is an upper bound of the number of objects from E which are moved from the
environment to all membranes of the system by any computation of Π(s(u)) +
cod(u).
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Definition 7. For each n ∈ N, let

Π(n) = (Γ, E , Σ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout)

an element of the previous family Π, and for the sake of simplicity we denote
r instead of r(n) and 1 is the label of the skin membrane. Let us consider the
recognizer P system with symport/antiport rules of degree q1 = 1+ q · (r+2)+ |E|,
with membrane division and without environment

S(Π(n)) = (Γ ′, Σ′, µ′,M′
0,M′

1, . . . ,M′
q1 ,R

′
0,R′

1, . . . ,R′
q1 , i

′
in, i

′
out)

defined as follows:

• Γ ′ = Γ ∪ {αi : 0 ≤ i ≤ r − 1}.
• Σ′ = Σ.
• Each membrane i ∈ {1, . . . , q} of Π provides a membrane of S(Π(n)) with the

same label. In addition, S(Π(n)) has:
⋆ r+1 new membranes, labelled by (i, 0), (i, 1), . . . , (i, r), respectively, for each

i ∈ {1, . . . , q}.
⋆ A distinguished membrane labelled by 0.
⋆ A new membrane, labelled by lb, for each b ∈ E.

• µ′ is the rooted tree obtained from µ as follows:
⋆ Membrane 0 is the root of µ′ and it is the father of the root of µ.
⋆ For each b ∈ E, membrane 0 is the father of membrane lb.
⋆ We consider a linear structure whose nodes are (i, 0), (i, 1), . . . , (i, r) and

such that (i, j) is the father of (i, j − 1), for each 1 ≤ i ≤ q and 1 ≤ j ≤ r.
⋆ For each membrane i of µ we add the previous linear structure being mem-

brane i the father of membrane (i, r).
• Initial multisets:M′

0 = ∅,M′
lb
= {α0}, for each b ∈ E, and

(1 ≤ i ≤ q)


M′

(i,0) =Mi

M′
(i,1) = ∅

. . . . . .
M′

(i,r) = ∅
M′

i = ∅

• Set of rules:

R′
0 ∪R′

1 ∪ · · · ∪ R′
q ∪ {R′

(i,j) : 1 ≤ i ≤ q, 0 ≤ j ≤ r} ∪ {R′
lb
: b ∈ E}

where R′
0 = ∅, R′

i = Ri for 1 ≤ i ≤ q, and

R′
(i,j) = {

(
a, out;λ, in) : a ∈ Γ}, for 1 ≤ i ≤ q ∧ 0 ≤ j ≤ r}

R′
lb

= {[αj ]lb → [αj+1]lb [αj+1]lb : 0 ≤ j ≤ r − 2} ∪
{[αr−1]lb → [b]lb [b]lb , (lb, out;λ, in)}, for b ∈ E

• i′in = (iin, 0), and i′out = 0.
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Let us notice that S(Π(n)) can be considered as an extension of Π(n) without
environment, in the following sense:

⋆ Γ ⊆ Γ ′, Σ ⊆ Σ′ and E = ∅.
⋆ Each membrane in Π is also a membrane in S(Π(n)).
⋆ There is a distinguished membrane in S(Π(n)) labelled by 0 which plays the

role of environment of Π(n).
⋆ µ is a subtree of µ′.
⋆ R ⊆ R′, and now 0 is the label of a “ordinary membrane” in S(Π(n)).

Next, we analyze the structure of the computations of system S(Π(n)) and we
compare them with the computations of Π(n).

Lemma 1. Let C′ = (C′0, C′1, . . . ) be a computation of S(Π(n)). For each t (1 ≤
t ≤ r) the following holds:

• C′t(i) = ∅, for 0 ≤ i ≤ q.
• For each 1 ≤ i ≤ q, and 0 ≤ j ≤ r we have:

C′t(i, j) =
{
Mi, if j = t
∅, if j ̸= t

• For each b ∈ E, there exist 2t membranes labelled by lb whose father is mem-
brane 0 and their content is:

C′t(lb) =
{
{αt}, if 1 ≤ t ≤ r − 1
{b}, if t = r

Proof: By induction on t.
Let us start with the basic case t = 1. The initial configuration of system

S(Π(n)) is the following:

• C′0(i) = ∅, for 0 ≤ i ≤ q.
• For each 1 ≤ i ≤ q we have C′0(i, 0) =Mi, and C′0(i, j) = ∅, for 1 ≤ j ≤ r.
• For each b ∈ E , there exists only one membrane labelled by lb whose contents

is {α0}.

At configuration C′0, only the following rules are applicable:

• [α0]lb → [α1]lb [α1]lb , for each b ∈ E .
•

(
a, out;λ, in

)
∈ R(i,0), for each a ∈ supp(Mi).

Thus,

(a) For each i (1 ≤ i ≤ q) we have:
C′1(i) = ∅
C′1(0) = ∅
C′1(i, 0) = ∅
C′1(i, 1) =Mi

C′1(i, j) = ∅, for 2 ≤ j ≤ r
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(b) For each b ∈ E , there are 2 membranes labelled by lb whose father is membrane
0 and their content is {α1}.

Hence, the result holds for t = 1.
By induction hypothesis, let t be such that 1 ≤ t < r, and let us suppose the

result holds for t, that is,

• C′t(i) = ∅, for 0 ≤ i ≤ q.
• For each 1 ≤ i ≤ q, and 0 ≤ j ≤ r we have:

C′t(i, j) =
{
Mi, if j = t
∅, if j ̸= t

• For each b ∈ E , there exist 2t membranes labelled by lb whose father is mem-
brane 0 and their content is C′t(lb) = {αt} (because t ≤ r − 1).

Then, at configuration C′t only the following rules are applicable:

(1) If t ≤ r − 2, the rules [αt]lb → [αt+1]lb [αt+1]lb , for each b ∈ E .
(2) If t = r − 1, the rules [αt]lb → [b]lb [b]lb , for each b ∈ E .
(3)

(
a, out;λ, in

)
∈ R(i,t), for each a ∈ supp(Mi).

From the application of rules of types (1) or (2) at configuration C′t, we deduce
that there are 2t+1 membranes labelled by lb in C′t+1, for each b ∈ E , whose father
is membrane 0 and their content is {αt+1}, if t ≤ r − 2, or {b}, if t = r − 1.

From the application of rules of type (3) at configuration C′t, we deduce that

C′t+1(i, j) =

{
Mi, if j = t+ 1
∅, if 0 ≤ j ≤ r ∧ j ̸= t+ 1

Bearing in mind that no other rule of system S(Π(n)) is applicable, we deduce
that C′t+1(i) = ∅, for 0 ≤ i ≤ q.

This completes the proof of this Lemma.
�

Lemma 2. Let C′ = (C′0, C′1, . . . ) be a computation of the P system S(Π(n)). Con-
figuration C′r+1 is the following:

(1) C′r+1(0) = b2
r

1 . . . b2
r

α , where E = {b1, . . . , bα}.
(2) C′r+1(i) =Mi = C0(i), for 1 ≤ i ≤ q.
(3) C′r+1(i, j) = ∅, for 1 ≤ i ≤ q, 0 ≤ j ≤ r.
(4) For each b ∈ E, there exist 2r membranes labelled by lb whose father is mem-

brane 0 and their content is empty.

Proof: From Lemma 1, the configuration C′r is the following:

• C′r(i) = ∅, for 0 ≤ i ≤ q.
• For each i (1 ≤ i ≤ q) we have

C′r(i, j) =
{
Mi, if j = r
∅, if j ̸= r
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• For each b ∈ E , there exist 2r membranes labelled by lb whose father is mem-
brane 0 and their content is {b}.

At configuration C′r only the following rules are applicables:

•
(
a, out;λ, in

)
∈ R(i,r), for each a ∈ Γ ∩ supp(Mi).

•
(
b, out;λ, in

)
∈ Rlb , for each b ∈ E .

Thus,

• C′r+1(0) = b2
r

1 . . . b2
r

α , where E = {b1, . . . , bα}.
• C′r+1(i) =Mi = C0(i), for 1 ≤ i ≤ q.
• C′r+1(i, j) = ∅ , for 1 ≤ i ≤ q and 0 ≤ j ≤ r.
• For each b ∈ E , there exist 2r membranes labelled by lb whose father is mem-

brane 0 and their content is empty.

�

Definition 8. Let C = (C0, C1, . . . , Cm) be a halting computation of Π(n). Then
we define the computation S(C) = (C′0, C′1, . . . , C′r, C′r+1, . . . , C′r+1+m) of S(Π(n)) as
follows:

(1) The initial configuration is:
C′0(i) = ∅, for 0 ≤ i ≤ q
C′0(i, 0) = C0(i), for 1 ≤ i ≤ q
C′0(i, j) = ∅, for 1 ≤ i ≤ q and 1 ≤ j ≤ r
C′0(lb) = α0, for each b ∈ E

(2) The configuration C′t, for 1 ≤ t ≤ r, is described by Lemma 1.
(3) The configuration C′r+1 is described by Lemma 2.
(4) The configuration C′r+1+s, for 0 ≤ s ≤ m, coincides with the configuration Cs

of Π, that is, Cs(i) = C′r+1+s(i), for 1 ≤ i ≤ q. The content of the remaining
membranes (excluding membrane 0) at configuration C′r+1+s is equal to the
content of that membrane at configuration C′r+1, that is, these membranes do
not evolve after step r + 1.

That is, every computation C of Π(n) can be “reproduced” by a computation S(C)
of S(Π(n)) with a delay: from step r+1 to step r+1+m, the computation S(C)
restricted to membranes 1, . . . , q provides the computation C of Π(n).

From Lemma 1 and Lemma 2 we deduce the following:

(a) S(C) is a computation of S(Π(n)).
(b)S is an injective function from Comp(Π(n)) onto Comp(S(Π(n))).

Proposition 3. The P system S(Π(n)) defined in Definition 7 simulates Π(n) in
an efficient way.

Proof. In order to show that S(Π(n)) can be constructed from Π(n) by a deter-
ministic Turing machine working in polynomial time, it is enough to note that the
amount of resources needed to construct S(Π(n)) from Π(n) is polynomial in the
size of the initial resources of Π(n). Indeed,
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1. The size of the alphabet of S(Π(n)) is |Γ ′| = |Γ |+ r.
2. The initial number of membranes of S(Π(n)) is 1 + q · (r + 2) + |E|.
3. The initial number of objects of S(Π(n)) is the initial number of objects of

Π(n) plus |E|.
4. The number of rules of S(Π(n)) is |R′| = |R|+ (r + 1) · |E|+ |Γ | · q · (r + 1).
5. The maximal length of a communication rule of S(Π(n)) is equal to the max-

imal length of a communication rule of Π(n).

From Lemma 1 and Lemma 2 we deduce that:

(a) Every computation C′ of S(Π(n)) has associated a computation C of Π(n) such
that S(C) = C′ in a natural way.

(b)The function S is injective.
(c) A computation C of Π(n) is an accepting computation if and only if S(C) is an

accepting computation of S(Π(n)).

Finally, let us notice that if C is a computation of Π(n) with length m, then S(C)
is a computation of S(Π(n)) with length r + 1 +m. �

6 Computational Complexity Classes of P Systems with
Membrane Division and Without Environment

In this Section, we analyze the role of the environment in the efficiency of P
systems with membrane division. That is, we study the ability of these P systems
with respect to the computational efficiency when the alphabet of the environment
is an empty set.

Theorem 1. For each k ∈ N we have PMCCDC(k+1) = PMC
ĈDC(k+1)

.

Proof: Let us recall that PMCCDC(1) = P (see [4] for details). Then,

P ⊆ PMC
ĈDC(1)

⊆ PMCCDC(1) = P

Thus, the result holds for k = 0. Let us show the result holds for k ≥ 1.

Since ĈDC(k + 1) ⊆ CDC(k + 1) it suffices to prove that PMCCDC(k+1) ⊆
PMC

ĈDC(k+1)
. For that, let X ∈ PMCCDC(k+1).

Let {Π(n) | n ∈ N} be a family of P systems from CDC(k + 1) solving X
according to Definition 5. Let (cod, s) be a polinomial encoding associated with
that solution. Let u ∈ IX be an instance of the problemX that will be processed by
the system Π(s(u))+cod(u). According to Proposition 2, let r(n) be a polynomial
function that 2r(|u|) is an upper bound of the number of objects from E which are
moved from the environment to all membranes of the system by any computation
of

Π(s(u)) + cod(u) = (Γ, E , Σ,M1, . . . ,Miin + cod(u), . . . ,Mq,R, iin, iout)
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Then, we consider the P system without environment

S(Π(s(u)))+ cod(u) = (Γ ′, Σ′,M′
0,M′

1, . . . ,M′
iin + cod(u), . . . ,M′

q1 ,R
′, i′in, i

′
out)

according to Definition 7, where q1 = 1 + q · (r(|u|) + 2) + |E|.
Therefore, S(Π(s(u))) + cod(u) is a P system from ĈDC(k + 1) such that

verifies the following:

• A distinguished membrane labelled by 0 has been considered, which will play
the role of the environment at the system Π(s(u)) + cod(u).

• At the initial configuration, it has enough objects in membrane 0 in order to
simulate the behaviour of the environment of the system Π(s(u))) + cod(u).

• After r(n) + 1 step, computations of Π(s(u)) + cod(u) are reproduced by the
computations of S(Π(s(u))) + cod(u) exactly.

Let us suppose that E = {b1, . . . , bα}. In order to simulate Π(s(u)) + cod(u) by a
P system without environment in an efficient way, we need to have enough objects
in the membrane of S(Π(s(u)))+ cod(u) labelled by 0 available. Specifically, 2r(n)

objects in that membrane are enough.
In order to start the simulation of any computation C of Π(s(u)) + cod(u), it

would be enough to have 2r(n) copies of each object bj ∈ E in the membrane of
S(Π(s(u))) + cod(u) labelled by 0. For this purpose,

• For each b ∈ E we consider a membrane in S(Π(s(u))) + cod(u) labelled by lb
which only contains object α0 initially. We also consider the following rules:
– [αj ]lb → [αj+1]lb [αj+1]lb , for 0 ≤ j ≤ r(|u|)− 2,
– [αp(n)−1]lb → [b]lb [b]lb ,
– (lb, b/λ, 0).

• By applying the previous rules, after r(|u|) transition steps we get 2r(|u|) mem-
branes labelled by lb, for each b ∈ E in such a way that each of them contains
only object b. Finally, by applying the third rule we get 2r(|u|) copies of objects
b in membrane 0, for each b ∈ E .

Therefore, after the execution of r(|u|)+1 transition steps in each computation of
S(Π(s(u))) + cod(u) in membrane 0 of the corresponding configuration, we have
2r(|u|) copies of each object b ∈ E . This number of copies is enough to simulate
any computation C of Π(s(u)) + cod(u) through the system S(Π(s(u)) + cod(u)).

From Proposition 3 we deduce that the family {S(Π(n))| n ∈ N} solves X in
polynomial time according to Definition 5. Hence, X ∈ PMC

ĈDC(k+1)
. �

7 Conclusions and Further Works

Initial configurations of ordinary P systems with symport/antiport rules have an
arbitrarily large amount of copies of some kind of objects belonging to a distin-
guished alphabet which specifies the environment of the system.
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The previous condition is no too nice from the computational complexity point
of view. In this paper, we show that in P systems with with symport/antiport
rules and membrane division the environment can be “removed” without a loss of
efficiency.
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division. In. J. of Computers, communications & control, 3, 3, (2008), 295–303.
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