
P Systems with Randomized Right-hand
Sides of Rules

Artiom Alhazov1,2?, Rudolf Freund3, and Sergiu Ivanov4,5

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Academiei 5, Chişinău, MD-2028, Moldova
artiom@math.md

2 Key Laboratory of Image Information Processing
and Intelligent Control of Education Ministry of China
School of Automation,
Huazhong University of Science and Technology
Wuhan 430074, China

3 Faculty of Informatics, TU Wien
Favoritenstraße 9–11, 1040 Vienna, Austria
rudi@emcc.at

4 LACL, Université Paris Est – Créteil Val de Marne
61, av. Général de Gaulle, 94010, Créteil, France
sergiu.ivanov@u-pec.fr

5 TIMC-IMAG/DyCTiM, Faculty of Medicine of Grenoble
5 avenue du Grand Sablon, 38700, La Tronche, France
sergiu.ivanov@univ-grenoble-alpes.fr

Summary. P systems are a model of hierarchically compartmentalized multiset rewrit-
ing. We introduce a novel kind of P systems in which rules are dynamically constructed
in each step by non-deterministic pairing of left-hand and right-hand sides. We define
three variants of right-hand side randomization and compare each of them with the power
of conventional P systems. It turns out that all three variants enable non-cooperative P
systems to generate exponential (and thus non-semi-linear) number languages. We also
give a binary normal form for one of the variants of P systems with randomized rule
right-hand sides. Finally, we also discuss extensions of the three variants to tissue P
systems, i.e., P systems on an arbitrary graph structure.

? The work is supported by National Natural Science Foundation of China (61320106005
and 61033003) and the Innovation Scientists and Technicians Troop Construction
Projects of Henan Province (154200510012).

14 A. Alhazov, R. Freund, S. Ivanov

1 Introduction

Membrane computing is a research field originally founded by Gheorghe Păun
in 1998, see [13]. Membrane systems (also known as P systems) are a model of
computing based on the abstract notion of a membrane. Formally, a membrane is
treated as a container delimiting a region; a region may contain objects which are
acted upon by the rewriting rules associated with the membranes. Quite often, the
objects are plain symbols coming from a finite alphabet, but P systems operating
on more complex objects (e.g., strings, arrays) are often considered, too, e.g.,
see [9].

A comprehensive overview of different flavors of membrane systems and their
expressive power is given in the handbook which appeared in 2010, see [14]. For
a state of the art snapshot of the domain, we refer the reader to the P systems
website [17], as well as to the bulletin of the International Membrane Computing
Society [16].

Dynamic evolution of the set of available rules has been considered from the
very beginning of membrane computing. Already in 1999, generalized P systems
were introduced in [8]; in these systems the membranes, alongside the objects,
contain operators which act on these objects, while the P system itself acts on
the operators, thereby modifying the transformations which will be carried out
on the objects in the subsequent steps. Among further ideas on dynamic rules,
one may list rule creation [4], activators [1], inhibiting/deinhibiting rules [7], and
symport/antiport of rules [6]. One of the more recent developments in this direc-
tion are polymorphic P systems [2, 3, 12], in which rules are defined by pairs of
membranes, whose contents may be modified by moving objects in or out.

We remark that the previous studies on dynamic rule sets either treated the
rules as atomic entities (symport/antiport of rules, operators in generalized P
systems), or allowed virtually unlimited possibilities of tampering with their shape
(polymorphic P systems). In the present work, we propose a yet different approach
which can be seen as an intermediate one.

In P systems with randomized rule-right-hand sides (or with randomized RHS,
for short), the available left-hand sides and right-hand sides of rules are fixed,
but the associations between them are re-evaluated in every step: a left-hand side
may pick a right-hand side arbitrarily (randomly). In Section 3, we present three
different formal definitions of this intuitive idea of randomized RHS:

1. rules exchange their RHS,
2. each rule randomly picks an RHS from a common collection of RHS, shared

between the rules,
3. each rule randomly picks an RHS from a possible collection of RHS associated

with the rule itself.

P systems with randomized RHS may have a real-world (possibly biological)
application for representing systems in a hostile environment. The modifications
such P systems effect on their rules may be used to represent perturbations caused

P Systems with Randomized Rules 15

by the environment (mutations), somewhat in the spirit of faulty Turing machines
(e.g., see [5]).

In this article, we will focus on the expressive power of P systems with random-
ized RHS, as well as on comparing them to the classical model with or without
cooperative rules. One of the central conclusions of the present work is that non-
cooperative P systems with randomized RHS can generate exponential number
languages, thus (partially) surpassing the power of conventional P systems.

This paper is structured as follows. Section 2 recalls some preliminaries about
multisets, strings, permutations, as well as conventional P systems. Section 3 de-
fines the three variants of RHS randomization. Section 4 discusses the computa-
tional power of the three variants of P systems with randomized RHS. Section 5
shows a binary normal form for one of the variants of P systems with randomized
RHS. Section6 discusses extensions of the three variants of RHS randomization to
tissue P systems. Finally, Section 7 summarizes the results of the article and gives
some directions for future work.

2 Preliminaries

In this paper, the set of positive natural numbers {1, 2, . . . } is denoted by N+, the
set of natural numbers also containing 0, i.e., {0, 1, 2, . . . }, is denoted by N. Given
k ∈ N+, we will call the set N+

k = {x ∈ N+ | 1 ≤ x ≤ k} an initial segment of N+.
An alphabet V is a finite set. The families of recursively enumerable, context-

free, linear, and regular languages, and of languages generated by tabled Linden-
mayer systems are denoted by RE, CF , LIN , REG, and ET0L, respectively. The
families of sets of Parikh vectors as well as of sets of natural numbers (multiset lan-
guages over one-symbol alphabets) obtained from a language family F are denoted
by PsF and NF , respectively.

For further introduction to the theory of formal languages and computability,
we refer the reader to [14, 15].

2.1 Linear Sets over N

A linear set over N generated by a set of vectors A = {ai | 1 ≤ i ≤ d} ⊂fin Nn
(here A ⊂fin B indicates that A is a finite subset of B) and an offset a0 ∈ Nn is
defined as follows:

〈A,a0〉N =

{
a0 +

∑d

i=1
kiai

∣∣∣∣∣ ki ∈ N, 1 ≤ i ≤ d

}
.

If the offset a0 is the zero vector 0, we call the corresponding linear set homoge-
neous; we also use the short notation 〈A〉N = 〈A,0〉N.

We use the notation NnLINN = {〈A,a0〉N | A ⊂fin Nn, a0 ∈ Nn}, to refer to
the class of all linear sets of n-dimensional vectors over N. Semi-linear sets are

16 A. Alhazov, R. Freund, S. Ivanov

defined as finite unions of linear sets. We use the notation NnSLINN to refer
to the classes of semi-linear sets of n-dimensional vectors. In case no restriction
is imposed on the dimension, n is replaced by ∗. We may omit n if n = 1. A
finite union of linear sets which only differ in the starting vectors is called uniform
semilinear:

NnSLINU
N =

{⋃
b∈B〈A,b〉N | A ⊂fin Nn, B ⊂fin Nn

}
Let us denote such a set by 〈A,B〉N.

Note that a uniform semilinear set 〈A,B〉N can be seen as a pairwise sum of
the finite set B and the homogeneous linear set 〈A〉N:

〈A,B〉N = {a + b | a ∈ 〈A〉N,b ∈ B}.

This observation immediately yields the conclusion that the sum of two uniform
semilinear sets 〈A1, B1〉N and 〈A2, B2〉N is uniform semilinear as well and can be
computed in the following way:

〈A1, B1〉N + 〈A2, B2〉N = {a + b | a ∈ 〈A1 ∪A2〉N,b ∈ B1 +B2}.

As is folklore,

PsCF = PsLIN = PsREG = N∗SLINN.

2.2 Multisets

A multiset over V is any function w : V → N; w(a) is the multiplicity of a in w.
A multiset w is often represented by one of the strings containing exactly w(a)
copies of each symbol a ∈ V . The set of all multisets over the alphabet V is
denoted by V ◦. By abusing string notation, the empty multiset is denoted by λ.
The projection (restriction) of w over a sub-alphabet V ′ ⊆ V is the multiset w|V ′

defined as follows:

w|V ′(a) =

{
w(a), a ∈ V ′;
0, a ∈ V r V ′.

Example 1. The string aab can represent the multiset w : {a, b} → N with w(a) = 2
and w(b) = 1. The projection w|{a} = w′ is defined as w′(a) = w(a) = 2 and
w′(b) = 0.

We will (ab)use the symbol ∈ to denote the relation “is a member of” for
multisets. Therefore, for a multiset w, a ∈ w will stand for w(a) > 0.

2.3 Strings and Permutations

A (non-empty) string s over an alphabet V traditionally is defined as a finite
ordered sequence of elements of V . Equivalently, we can define a string of length

P Systems with Randomized Rules 17

k as a function assigning symbols to positions: s : N+
k → V . Thus, the string

s = aab can be equivalently defined as the function s : N+
3 → {a, b} with s(1) = a,

s(2) = a, and s(3) = b. We will use the traditional notation |s| to refer to the
length of the string s (i.e., the size k of the initial segment N+

k it is defined on).
In addition, the size of the empty string λ is 0.

A string s : N+
k → V is not necessarily surjective (there may be symbols from

V that do not appear in s). We will use the notation set(s) to refer to the set of
symbols appearing in s (the image of s):

set(s) =
{
a ∈ V | a = s(i) for some i ∈ N+

|s|
}
.

Given a string s : N+
k → V , a prefix of length k′ ≤ k of s is the restriction of s

to N+
k′ ⊆ N+

k. For example, aa is a prefix of length 2 of the string aab. We will
use the notation prefk′(s) to denote the prefix of length k′ of s.

Given a finite set A, a permutation of A is any bijection ρ : A → A. Given a
permutation σ : N+

k → N+
k and a string s : N+

k → V of length k, applying σ to
s is defined as σ(s) = s ◦ σ (where ◦ is the function composition operator).

Example 2. Following the widespread tradition, we will write permutations in
Cauchy’s two-line notation. The permutation σrev of N+

3 which “reverses the
order” of the numbers, can be written as follows:

σrev =

(
1 2 3
3 2 1

)
.

Applying σrev to a string reverses it:

σrev(aab) = baa.

Any finite set B trivially can be represented by one of the strings listing all of its
elements exactly once. All such strings are equivalent modulo permutations. Given
a fixed enumeration B = {b1, . . . , bn}, we define the canonical string representation
of B to be the string δ(B) = b1 . . . bn.

2.4 Rule Sides

We consider arbitrary labeled multiset rules r : u→ v over an alphabet V , where
r is the rule label we attach for convenience, and u and v are strings over V
representing multisets. As usual, the application of such a rule means replacing
the multiset represented by u by the multiset represented by v.

For a given rule r : u→ v, we define the left-hand-side and the right-hand-side
functions as follows:

lhs(u→ v) = lhs(r) = (u),
rhs(u→ v) = rhs(r) = (v).

Using the brackets (and), for a given string w, the notation (w) is used to
describe the multiset represented by w. As usual, we will extend the notations

18 A. Alhazov, R. Freund, S. Ivanov

for these functions lhs and rhs lifted to sets of rules: given a set of rules R,
lhs(R) = {lhs(r) | r ∈ R} and rhs(R) = {rhs(r) | r ∈ R}. Furthermore, for
any string (finite ordered sequence) of rules ρ : N+

k → R we define the strings of
left-hand sides lhs(ρ) = lhs ◦ ρ and of right-hand sides rhs(ρ) = rhs ◦ ρ.

Example 3. Take R = {r1 : aa→ ab, r2 : cc→ cd} and consider the string of rules
ρ = r1r1r2. Then lhs(ρ) = (aa)(aa)(cc) and rhs(ρ) = (ab)(ab)(cd). Thus, lhs(ρ)
and rhs(ρ) can be considered as strings of multisets.

We will (ab)use the symbol → for combining two strings of multisets α, β :
N+

k → V ◦ of the same length k. The string α → β will be defined as follows, for
any i ∈ N+

k:
(α→ β)(i) = α(i)→ β(i).

Example 4. Consider the following two strings of multisets: α = (aa)(aa)(cc) and
β = (ab)(ab)(cd). α→ β is simply the string of rules that can be obtained by taking
the multisets from α as left-hand sides and β as right-hand sides, in the given order:
α → β = (aa) → (ab)(aa) → (ab)(cc) → (cd) (which exactly corresponds with ρ
from Example 3).

2.5 (Hierarchical) P Systems

A (hierarchical) P system is a construct

Π = (O, T, µ, w1, . . . , wn, R1, . . . Rn, hi, ho),

where O is the alphabet of objects, T ⊆ O is the alphabet of terminal objects,
µ is the membrane structure injectively labeled by the numbers from {1, . . . , n}
and usually given by a sequence of correctly nested brackets, wi are the multisets
giving the initial contents of each membrane i (1 ≤ i ≤ n), Ri is the finite set of
rules associated with membrane i (1 ≤ i ≤ n), and hi and ho are the labels of the
input and the output membranes, respectively (1 ≤ hi ≤ n, 1 ≤ ho ≤ n).

In the present work, we will mostly consider the generative case, in which Π will
be used as a multiset language-generating device. We therefore will systematically
omit specifying the input membrane hi.

Quite often the rules associated with membranes are multiset rewriting rules (or
special cases of such rules). Multiset rewriting rules have the form u→ v, with u ∈
Oo \{λ} and v ∈ Oo. If |u| = 1, the rule u→ v is called non-cooperative; otherwise
it is called cooperative. Rules may additionally be allowed to send symbols to
the neighboring membranes. In this case, for rules in Ri, v ∈ O × Tari, where
Tari contains the targets out (corresponding to sending the symbol to the parent
membrane), here (indicating that the symbol should be kept in membrane i),
and inh (indicating that the symbol should be sent into the child membrane h of
membrane i). Note that all variants of the function rhs, as well as the operator
→ from the previous section can be naturally extended to rules having right-hand
sides with target indications (from O × Tari).

P Systems with Randomized Rules 19

In P systems, rules are often applied in the maximally parallel way: in any
derivation step, a non-extendable multiset of rules has to be applied. The rules are
not allowed to consume the same instance of a symbol twice, which creates com-
petition for objects and may lead to the P system choosing non-deterministically
between the maximal collections of rules applicable in one step.

A computation of a P system is traditionally considered to be a sequence of
configurations it can successively pass through, stopping at the halting configura-
tion. A halting configuration is a configuration in which no rule can be applied
any more, in any membrane. The result of a computation of a P system Π as de-
fined above is the contents of the output membrane ho projected over the terminal
alphabet T .

Example 5. For readability, we will often prefer a graphical representation of P
systems. For example, the P system Π1 = ({a, b}, {b}, [

1
]
1
, a, R, 1) with the rule

set R = {a→ aa, a→ b} may be depicted as in Figure 1.

a→ aa

a→ b

a
1

Fig. 1. The example P system Π1

Due to maximal parallelism, at every step Π1 may double some of the symbols
a, while rewriting some other instances into b.

Note that, even though Π1 might express the intention of generating the set
of numbers of the powers of two, it will actually generate the whole of N+ (due to
halting). Indeed, for any n ∈ N+, an can be generated in n steps by choosing to
apply, in the first n − 1 steps, a → aa to exactly one instance of a and a → b to
all the other instances, and by applying a→ b to every a in the last step (in fact,
for n > 1, in each step except the last one, in which a → b is applied twice, both
rules are applied exactly once, as exactly two symbols a are present, whereas all
other symbols are copies of b).

While maximal parallelism and halting by inapplicability are staple ingredients,
various other derivation modes and halting conditions have been considered for P
systems, e.g., see [14].

We will use the notation OPn(coo) to denote the family of P systems with at
most n membranes, with cooperative rules. To denote the family of such P systems
with non-cooperative rules, we replace coo by ncoo. To denote the family of lan-
guages of multisets generated by these P systems, we prepend Ps to the notation,
and to denote the family of the generated number languages, we prepend N .

20 A. Alhazov, R. Freund, S. Ivanov

3 P Systems with Randomized RHS

In this section we consider three different variants of defining P systems with
randomized RHS. We immediately point out that, despite the common intuitive
background, the details of the resulting semantics vary quite a lot.

3.1 Variant 1: Random RHS Exchange

In this variant of P systems, rules randomly exchange right-hand sides at the
beginning of every evolution step. This variant was the first to be conceived and
is the closest to the classical definition.

A P system with random RHS exchange is a construct

Π = (O, T, µ, w1, . . . , wn, R1, . . . Rn, ho),

where the components of the tuple are defined as in the classical model (Sec-
tion 2.5).

As different from conventional P systems, Π does not apply the rules from Ri
directly. Instead, for each membrane 1 ≤ i ≤ n, we take the canonical representa-
tion of Ri, i.e., δ(Ri), and non-deterministically (randomly) choose a permutation
σ : N+

|Ri| → N+
|Ri| to compute the canonical representation of Rσi from δ(Ri) as

follows:
δ(Rσi) = lhs(δ(Ri))→ σ(rhs(δ(Ri))).

We now extract the set of rules Rσi = set(δ(Rσi)) described by the string δ(Rσi)
as constructed above. Π will then apply the rules from Rσi according to the usual
maximally parallel semantics in membrane i.

In other words, Π non-deterministically permutes the right-hand sides of rules
in each membrane i, and then applies the obtained rules according to the maxi-
mally parallel semantics.

Note that we first have to transform the set Ri into its canonical string repre-
sentation δ(Ri) in order to be able to obtain a correct representation of the |Ri|
rules and from that a correct representation of the |Ri| rules in Rσi , even if the
number of different left-hand sides and/or different right-hand sides of rules does
not equal |Ri|.

Example 6. Consider the P system Π2 = ({a, b}, {b}, [
1

]
1
, a, R, 1) with the rule

set R = {a→ aa, c→ b}. Π2 is graphically represented in Figure 2.
The number language generated by Π2 (the set of numbers of instances of b

that may appear in the skin after Π2 has halted) is exactly {2n | n ∈ N+}. Indeed,
while Π2 applies the identity permutation on the right-hand sides, a → aa will
double the number of symbols a, while the rule c → b will never be applicable.
When Π2 exchanges the right-hand sides of the rules, the rule a → b will rewrite
every symbol a into a symbol b. After this has happened, no rule will ever be
applicable any more and Π2 will halt with 2n symbols b in the skin, where n + 1
is the number of computation steps taken.

P Systems with Randomized Rules 21

a→ aa

c→ b

a
1

Fig. 2. The P system Π2 with random RHS exchange generating the number language
{2n | n ∈ N}.

We will use the notation

OPn(rhsExchange, coo)

to denote the family of P systems with random RHS exchange, with at most n
membranes, with cooperative rules. To denote the family of such P systems with
non-cooperative rules, we replace coo by ncoo. To denote the family of languages
of multisets generated by these P systems, we prepend Ps to the notation, and to
denote the family of the generated number languages, we prepend N .

3.2 Variant 2: Randomized Pools of RHS

In this variant of P systems, every membrane has some fixed left-hand sides and a
pool of available right-hand sides to build rules from. An RHS from the pool can
only be used once.

A P system with randomized pools of RHS is a construct

Π = (O, T, µ, w1, . . . , wn, H1, . . . Hn, ho),

where Hi defines the left- and right-hand sides available in membrane i and the
other components of the tuple are defined as in the classical model (Section 2.5).

For 1 ≤ i ≤ n, Hi = (li, ri) is a pair of strings of multisets over O. The string
ri may contain target indications (i.e., be a string of multisets over O×Tari). The
strings li and ri are not necessarily of the same length. The length of the shortest
of the two strings li and ri is denoted by

ki = min(|li|, |ri|).

At the beginning of every computation step in Π, for every membrane i, we
construct the set of rules it will apply in the following way:

1. non-deterministically choose two (random) permutations

σl : N+
|li| → N+

|li|, σr : N+
|ri| → N+

|ri|;

2. take the first ki elements out of σl(li) and σr(ri):

l′i = prefki(σl(li)), r′i = prefki(σr(ri));

22 A. Alhazov, R. Freund, S. Ivanov

3. construct the set of rules Ri to be applied in membrane i by combining the
left- and right-hand sides from l′i and r′i:

Ri = set(l′i → r′i).

In step (3), we combine the strings l′i and r′i using the operator → defined in
Subsection 2.4 and then apply the operator set to obtain the corresponding set of
rules from the string representation.

After having constructed the set Ri for each membrane i, Π will proceed to
applying the obtained rules according to the usual maximally parallel semantics.

When computing the strings l′i and r′i, we apply two different permutations σl
and σr to li and ri, in order to ensure fairness for the participation of left-hand
and right-hand sides when |li| 6= |ri|. For example, if we only permuted ri in the
case in which |li| > |ri|, the left-hand sides located at positions k > |ri| in li would
never be used.

We do not explicitly prohibit repetitions in li or in ri, but we avoid repeated
rules by constructing Ri using the set function.

Example 7. Consider the following P system with randomized pools of RHS:
Π3 = ({a, b}, {b}, [

1
]
1
, a,H, 1), with H =

(
(a), (aa)(b)

)
; (a) stands for the mul-

tiset containing an instance of a, while (aa)(b) is the string denoting the two
multisets (aa) and (b). The graphical representation of Π3 is given in Figure 3.

a aa
b

a
1

Fig. 3. The P system Π3 with randomized pools of RHS generating the number language
{2n | n ∈ N}.

The pair H = (l, r) of strings of multisets is represented by listing the multisets
of l and r in two columns and by drawing a vertical line between the two columns.

Π3 follows exactly the same pattern as Π2 from Example 6: while the identity
permutation is applied to r, Π3 keeps doubling the symbols a in the skin. Once
the multisets (aa) and (b) are permuted in r, and thus the rule a → b is formed,
all symbols a are rewritten into symbols b in one step and Π3 must halt. Note that
randomly taking the right-hand sides from a given pool avoids having the extra
dummy rule c→ b in Π2.

We will use the notation

OPn(rhsPools, coo)

to denote the family of P systems with randomized pools of RHS, with at most n
membranes, with cooperative rules. To denote the family of such P systems with

P Systems with Randomized Rules 23

non-cooperative rules, we replace coo by ncoo. To denote the family of languages
of multisets generated by these P systems, we prepend Ps to the notation, and to
denote the family of the generated number languages, we prepend N .

3.3 Variant 3: Individual Randomized RHS

In this variant of P systems, each rule is constructed from a left-hand side and a
set of possible right-hand sides.

A P system with individual randomized RHS is a construct

Π = (O, T, µ, w1, . . . , wn, P1, . . . Pn, ho),

where Pi is the set of productions associated with the membrane i and the other
components of the tuple are defined as in the classical model (Section 2.5).

A production is a pair u→ R, where u ∈ O◦ is the left-hand side and R ⊆ O◦
is a finite set of right-hand sides. The right-hand sides in R may have target
indications, i.e., for a production in membrane i, we may consider R ⊆ (O ×
Tari)

◦. At the beginning of each computation step, for every membrane i, for
each production u → R ∈ Ri, Π will non-deterministically (randomly) pick a
right-hand side v from R and will construct the rule u → v (this happens once
per production). Π will then apply the rules thus constructed according to the
maximally parallel semantics.

Example 8. Generating the language of the powers of two is the easiest compared
with Variants 1 and 2. Indeed, consider the P system with individual random-
ized RHS Π4 = ({a, b}, {b}, [

1
]
1
, a, P, 1) with only one production: P = {a →

{aa, b})}. Its graphical representation is given in Figure 4.

a→ {aa, b}
a

1

Fig. 4. The P system Π4 with individual randomized RHS generating the number lan-
guage {2n | n ∈ N}.

Π4 works exactly like Π2 and Π3 from Examples 6 and 7: it doubles the number
of symbols a and halts by rewriting them to b in the last step.

We will use the notation

OPn(rndRhs, coo)

to denote the family of P systems with individual randomized RHS, with at most
n membranes, with cooperative rules. To denote the family of such P systems with
non-cooperative rules, we replace coo by ncoo. To denote the family of languages

24 A. Alhazov, R. Freund, S. Ivanov

of multisets generated by these P systems, we prepend Ps to the notation, and to
denote the family of the generated number languages, we prepend N .

We will sometimes want to set an upper bound k on the number of right-
hand sides per production. To refer to the family of P systems with individual
randomized RHS with such an upper bound, we will replace rndRhs by rndRhsk

in the notation above.

3.4 Halting with Randomized RHS

The conventional (total) halting condition for P systems can be naturally lifted to
randomized RHS: a P system Π with randomized RHS (Variant 1, 2, or 3) halts
on a configuration C if, however it permutes rule right-hand sides in Variant 1, or
however it builds rules out of the available rule sides in Variants 2 and 3, no rule
can be applied in C, in any membrane.

Note that, for Variants 1 and 3, the permutations chosen do not affect the
applicability of rules, because applicability only depends on left-hand sides, which
are always the same in any membrane. The situation is different for Variant 2,
because the number of available left-hand sides in a membrane of Π may be bigger
than the number of available right-hand sides. Therefore, if Π is a P system with
randomized pools of RHS, the way rule sides are permuted may affect the number
of rules applicable in a given configuration. This is why, for Π to halt on C, we
require no rule to be applicable for any permutation.

In this paper, we will mainly consider P systems with randomized pools of RHS
in which, in every membrane, there are at least as many right-hand sides as there
are left-hand sides. To refer to P systems with this restriction, we will use the
notation rhsPools′. In these systems, the problem with the applicability of rules
as described above can be avoided.

3.5 Equivalence Between Variants 1 and 2

Before discussing the computational power of the P systems with randomized RHS
in general, we will briefly point out a strong relationship between P systems with
random RHS exchange and P systems with randomized pools of RHS, with the
restriction that every membrane contains at least as many right-hand sides as it
has left-hand sides, i.e., for P systems with randomized RHS of type rhsPools′.

Theorem 1. For any k ∈ {coo, ncoo}, the following holds:

PsOPn(rhsExchange, k) = PsOPn(rhsPools′, k).

Proof. Any membrane with random RHS exchange trivially can be transformed
into a membrane with randomized pools of RHS by listing the left-hand sides of
the rules in the pool of LHS and the right-hand sides of the rules in the pool of
RHS.

P Systems with Randomized Rules 25

Conversely, consider a membrane i with randomized pools of RHS, with the
string li of LHS and the string ri of RHS, |li| ≤ |ri|. We can transform it into a
membrane with random RHS exchange as follows. For every LHS u from li, pick
(and remove) an RHS v from ri, and construct the rule u → v. According to our
supposition, we will exhaust the LHS before (or at the same time as) the RHS. For
every RHS v′ which is left, we add a new (dummy) symbol z′ to the alphabet, and
add the rule z′ → v′. Since the symbol z′ is new and does not appear in any RHS,
it will never be produced and the rule z′ → v′ will essentially serve as a stash for
the RHS v′. �

3.6 Flattening

The folklore flattening construction (see [14] for several examples as well as [10] for
a general construction) is quite directly applicable to P systems with individual
randomized RHS.

Proposition 1 (flattening). For any k ∈ {coo, ncoo}, the following is true:

PsOP1(rndRhs, k) = PsOPn(rndRhs, k).

Proof (sketch). Since in the case of individual randomized RHS, randomization has
per rule granularity (whereas in the other two variants randomization occurs at the
level of membranes), we can simulate multiple membranes by attaching membrane
labels to symbols. For example, a production ab→ {cd, f} in membrane h becomes
ahbh → {chdh, fh}, while the send-in production a → {(b, ini), (b, inj)} becomes
ah → {bi, bj}. �

On the other hand, for Variants 1 and 2 similar results cannot be proved in
such a way, a situation which happens very seldom in the area of P systems,
especially in the case of variants of the standard model. Yet intuitively, it is easy
to understand why this happens, as in both Variants 1 and 2 the right-hand sides
in just one membrane can randomly be chosen for any left-hand side, whereas
different membranes can separate the possible combinations of left-hand sides and
right-hand sides of rules. A formal proof showing that flattening is impossible for
the types rhsExchange and rhsPools′ will be given in the succeeding section by
constructing a suitable example.

4 Computational Power of Randomized RHS

In this section, we look into the computational power of the three different versions
of P systems with randomized right-hand sides. We first shortly consider the case
of cooperative rules and then focus on the case of non-cooperative rules.

26 A. Alhazov, R. Freund, S. Ivanov

4.1 Cooperative Rules

The following result concerning the relationship between P systems with individual
randomized RHS and conventional P systems holds for both cooperative and non-
cooperative rules:

Proposition 2. For any n ∈ N+ and α ∈ {ncoo, coo}, PsOPn(rndRhs, α) ⊇
PsOPn(α).

Proof. Any conventional P system can be trivially seen as a P system with in-
dividual randomized RHS in which every production has exactly one right-hand
side. �

Now, the computational completeness of cooperative P systems trivially implies
the computational completeness of P systems with individual randomized RHS.

Corollary 1. For any n ∈ N+, PsOPn(rndRhs, coo) = PsRE.

4.2 Non-cooperative Rules

First we mention an upper bound for the families PsOPn(ρ, ncoo), for any variant
ρ ∈ {rhsExchange, rhsPools′, rndRhs}:

Proposition 3. For any n ∈ N+ and ρ ∈ {rhsExchange, rhsPools′, rndRhs},

PsOPn(ρ, ncoo) ⊆ PsET0L.

Proof. No matter how the rule sets are constructed in the three different variants,
we always get a finite set of different sets of rules—tables—corresponding to tables
in ET0L-systems, which can also mimic the contents of different membranes in
the usual way by using symbols marked with the corresponding membrane label.

�

Next we show one of the central results of this paper: randomized rule right-
hand sides allow for generating non-semilinear languages already in the non-
cooperative case.

Theorem 2. The following is true for ρ ∈ {rhsExchange, rhsPools′, rndRhs}:

{2m | m ∈ N} ∈ NOPn(ρ, ncoo) \NOPn(ncoo).

Proof. The statement follows (for n ≥ 1) from the constructions given in Exam-
ples 6, 7, and 8 and from the well-known fact that non-cooperative P systems
operating under the total halting condition cannot generate non-semilinear num-
ber languages (for example, see [14]). �

P Systems with Randomized Rules 27

This result is somewhat surprising at a first glance, but becomes less so when
one remarks that the constructions from all three examples only effectively use one
rule to do the multiplication, which is non-deterministically changed to a “halting”
rule. Since there is only one rule acting at any time, randomized right-hand sides
allow for clearly delimiting different derivation phases.

It turns out that this approach of synchronization by randomization can be
exploited to generate even more complex non-semilinear languages.

Theorem 3. Given a fixed subset of natural factors {f1, . . . , fk} ⊆ N, the following
is true for any ρ ∈ {rhsExchange, rhsPools′, rndRhs}:

L = {fn1
1 · . . . · f

nk

k | n1, . . . , nk ∈ N} ∈ NOP1(ρ, ncoo).

Proof. First consider the P system with randomized pools of RHS Π5 =
({a, b}, {b}, [

1
]
1
, a,H, 1) with H = (l, r), l = (a) and r =

(
af1
)
. . .
(
afk
) (
b
)
. This

P system is graphically represented in Figure 5.

a af1

...

afk

b

a
1

Fig. 5. The P system Π5 with randomized pools of RHS generating the number language
{fn1

1 · . . . · f
nk
k | n1, . . . , nk ∈ N}.

Similarly to the P systems from Examples 6, 7, and 8, Π5 halts by choosing to
pick the right-hand side b and constructing the rule a→ b. If Π5 picks a different
right-hand side, it will multiply the contents of the skin membrane (membrane 1)
by one of the factors fi, 1 ≤ i ≤ k. This proves that L ∈ NOP1(rhsPools′, ncoo),
and, according to Theorem 1, L ∈ NOP1(rhsExchange, ncoo) as well: take the P
system with the rules {a → af1 , z2 → af2 , . . . , zk → afk , zk+1 → b} (the rules
with zj in their left-hand sides are dummy rules).

To show that L ∈ NOP1(rndRhs, ncoo), just construct a P system with the
only production a→ {af1 , . . . , afk , b}. �

Therefore, randomizing the right-hand sides of rules in non-cooperative P sys-
tems allows for generating non-semilinear languages which cannot be generated
without randomization. A natural question to ask is whether randomizing the
RHS leads to a strict increase in the computational power. The answer is trivially
positive for P systems with individual randomized RHS (Variant 3).

Proposition 4. For any n ∈ N+, PsOPn(rndRhs, ncoo)) PsOPn(ncoo).

28 A. Alhazov, R. Freund, S. Ivanov

Proof. The inclusion follows from Proposition 2, as any conventional P system can
be trivially seen as a P system with individual randomized RHS in which every
production has exactly one right-hand side. Theorem 3 proves the strictness of the
inclusion. �

On the other hand, the other two variants of randomizing right-hand sides—
random RHS exchange (Variant 1) and randomized pools of RHS (Variant 2)—
actually prevent one-membrane P systems with non-cooperative rules from gen-
erating some semilinear languages, which result also shows that flattening is not
possible for these two variants.

In what follows, we will use the expression “only one rule is applied” to refer
to the fact that only one given rule u → v is applied in a certain configuration,
possibly in multiple copies. Dually, by saying “at least two rules are applied”, we
mean that at least two different rules, u→ v and u′ → v′, are applied, possibly in
multiple copies each.

Theorem 4. For ρ ∈ {rhsExchange, rhsPools′}, the following holds:

Lab = {an | n ∈ N} ∪ {bn | n ∈ N} /∈ PsOP1(ρ, ncoo).

Proof. Consider a P system Π with randomized RHS of the variant given by ρ
and with non-cooperative rules. We immediately remark that no left-hand side in
Π may be a or b, because in this case Π will never be able to halt with its only
(skin) membrane containing either the multiset an or bn. Furthermore, any RHS
of Π contains combinations of symbols a, b, or LHS symbols. Indeed, if an RHS
contained a symbol not belonging to these three classes, instances of this symbol
would pollute the halting configuration. Finally, Π contains no RHS v such that
a ∈ v and b ∈ v. If Π did contain such an RHS, then any computation could be
hijacked to produce a mixture of symbols a and b.

With these remarks in mind, the statement of the theorem follows from the
contradicting Lemmas 1 and 2, which are shown immediately after this proof. �

Lemma 1. Take a Π ∈ OP1(ρ, ncoo), ρ ∈ {rhsExchange, rhsPools′}, such that it
generates the number language Ps(Π) = Lab. Then it must have a computation in
which more than one rule is applied (two different left-hand sides are employed)
in at least one step.

Proof. Suppose that Π applies exactly one rule in every step of every computation.
We make the following two remarks:

1. Since the words in Lab are of unbounded length, Π must have an LHS t and
an RHS v such that t ∈ v, otherwise all computations of Π would have one
step and would only produce words of bounded length.

2. Every such RHS v must contain at most one kind of LHS, i.e., if t1 and t2 are
two LHS of Π then t1 ∈ v and t2 ∈ v implies t1 = t2. If this were not the case,
after using v, Π would have to apply two different rules (assuming that Π has
at least as many RHS as LHS).

P Systems with Randomized Rules 29

According to these observations, as well as to those from the proof of Theo-
rem 4, any RHS v of Π is the of the form v = αβ, where α ∈ {ak, bk | k ∈ N},
β ∈ {tk | k ∈ N}, and t is an LHS of Π. Note that both α and β may be empty.
According to observation (1), Π must have at least an RHS for which β 6= λ and
there exists such an RHS which must be applied an unbounded number of times.

In what follows, we will separately treat the cases in which Π contains or does
not contain mixed RHS, i.e., RHS for which both α 6= λ and β 6= λ.

No mixed RHS:

Suppose that any RHS of Π which contains a left-hand side is of the form tk2 . Then,
according to our previous observations on the possible forms of the RHS of Π, all
RHS containing a are of the form ai and all RHS containing b are of the form bj .
According to the remarks from the proof of Theorem 4, a and b must not be LHS
of Π. Therefore, in any computation of Π, all of a’s and b’s are produced in the
last step. But then, the number of terminal symbols Π produces in a computation
can be calculated as a product of the sizes of the RHS of the rules it has applied,
which implies that there exists such a p ∈ N such that ap /∈ Ps(Π) and therefore
Ps(Π) 6= Lab. (p may be picked to be the smallest prime number greater than the
length of the longest RHS of Π.)

Mixed RHS:

It follows from the previous paragraph that, in order to generate the number
language Lab, Π should contain and apply at least one RHS of the form aitk11 and
at least one RHS of the form bjtk22 . Take a computation C of Π producing a and
applying the rule t→ aitk11 at a certain step. Instead of this rule, apply t→ bjtk22 ,
and, in the following step, the rule t2 → aitk11 . (We can do so because Π is allowed
to pick any permutation of RHS.) Now, Π may continue applying the same rules
as in C and eventually halt with a configuration containing both a and b. This
implies that Ps(Π) 6= Lab.

It follows from our reasoning that, if Π applies exactly one rule in any step of
any computation, it cannot produce Lab, which proves the lemma. �

Lemma 2. Take a Π ∈ OP1(ρ, ncoo), ρ ∈ {rhsExchange, rhsPools′}, such that it
generates the number language Ps(Π) = Lab. Then, in every computation of Π,
exactly one rule is applied (one left-hand side is employed) in every step.

Proof. Suppose that, in every computation of Π, there exists a step at which at
least two different rules are applied. This immediately implies that Π has no RHS
of the form ai or bj , for i, j ≥ 0. Indeed, consider a computation producing the
multiset an and a step in it at which more than one rule is applied. Then Π can
replace one of the RHS introduced into the system at this step by bj and thus end
up with a mix of a’s and b’s in the halting configuration. Therefore, all RHS of
Π containing a have the form aiva and all RHS containing b have the form bjvb,

30 A. Alhazov, R. Freund, S. Ivanov

where va and vb are non-empty multisets which only contain LHS symbols (which
are neither a nor b).

Now, consider a computation Ca of Π halting on the multiset an, and take the
last step sa at which at least two different rules are applied. We will consider three
different cases, based on whether a and an LHS t appear in the configurations of
Ca after step sa.

Both a and t are present:

Suppose both a and an LHS t are present at step sa + 1 in computation Ca. Then
t is the only LHS present, because, by our hypothesis, only one rule is applied
(maybe in multiple instances) at step sa + 1. In this case, replace the rule applied
at step sa + 1 in Ca by t → bjvb, where bjvb is a right-hand side of Π used in a
computation Cb producing b’s. From step sa + 2 on in the modified computation,
just apply the same rules as applied to the symbols of vb (and to those derived from
vb) in Cb. The modified computation will reach a halting configuration containing
a mix of a’s and b’s.

Only a is present:

Suppose only a is present at step sa + 1 in computation Ca. Then all of the
RHS used at step sa are λ, because Π has no RHS of the form ai. Then, replace
one of these empty RHS by bjvb, where bjvb is a right-hand side of Π used in a
computation Cb producing b’s. As before, just apply the same rules as in Cb in the
modified computation to get a mix of a’s and b’s in the halting configuration.

No symbols a are present:

Suppose now that there are no instances of a present at step sa+1 in computation
Ca. Recall that Π has no RHS of the form ai. Since we suppose that sa is the last
step at which at least two different rules are applied, this means that, in order to
produce any a’s in Ca, Π must have and use an RHS of the form aitk. This RHS
contains (multiple copies of) exactly one kind of LHS symbol: t.

Consider a computation Cb halting on the multiset bn. We pick n sufficiently
big to ensure that Cb uses at least two RHS containing b: bjvb and bj

′
v′b (possibly

the same). Without losing generality, we may suppose that these two RHS are
either used at the same step in Cb or that bj

′
v′b is used at a later step than bjvb.

Then, replace bj
′
v′b by aitk, pick one of the LHS symbols t′ ∈ v′b and apply the

same rules to t (and to the symbols derived from t) in the modified derivation
as were applied to t′ (and to the symbols derived from t′) in Cb. The modified
derivation will therefore contain a mix of a’s and b’s in the halting configuration.

It follows from our reasoning that, if in any derivation of Π there is a step at
which at least two different rules are applied, then Ps(Π) 6= Lab, which proves the
lemma. �

P Systems with Randomized Rules 31

The previous two lemmas are contradicting each other, which means that there
exist no one-membrane P systems with random RHS exchange or with random
pools of RHS which generate the union language Lab = {an | n ∈ N}∪{bn | n ∈ N}
(this is the statement of Theorem 4). Together with Theorem 3, this leads us to
the curious conclusion that one-membrane non-cooperative P systems with random
RHS exchange or with randomized pools of RHS are incomparable in power to the
conventional P systems.

Corollary 2. For ρ ∈ {rhsExchange, rhsPools′}, the following two statements are
true:

PsOP1(ρ, ncoo) \ PsOP1(ncoo) 6= ∅, (1)

PsOP1(ncoo) \ PsOP1(ρ, ncoo) 6= ∅. (2)

Proof. Statement (1) follows from Theorem 3. Statement (2) follows from Theo-
rem 4. �

Theorem 4 also allows us to draw a negative conclusion as to the computational
completeness of one-membrane non-cooperative P systems with random RHS ex-
change (Variant 1) and non-cooperative P systems with randomized pools of RHS
(Variant 2).

Corollary 3. For ρ ∈ {rhsExchange, rhsPools′}, the following is true:

PsOP1(ρ, ncoo) (PsRE.

It turns out that allowing multiple membranes strictly increases the expressive
power of Variants 1 and 2 and allows for easily generating all semilinear languages,
as shown by the following theorem.

Theorem 5. For ρ ∈ {rhsExchange, rhsPools′}, the following holds:

N∗SLINN ∈ PsOP∗(ρ, ncoo).

Proof. Consider the following semilinear language of d-dimensional vectors L =⋃
1≤i≤n〈Ai,bi〉N, where Ai ⊂fin Nd and bi ∈ Nd. We construct the corresponding

P system with randomised pools of RHS:

Π6 =
(
O, T, [[]

2
. . . []

n+1
]
1
, w0, λ, . . . , λ,H1, . . . Hn+1, 1

)
,

with the alphabet and the initial contents of the skin defined as follows:

• O = {a1, . . . , ad, t} contains a symbol per each dimension of the vectors, plus
the special symbol t,

• T = {a1, . . . , ad} contains exactly one symbol per dimension of vectors,
• w0 = t.

32 A. Alhazov, R. Freund, S. Ivanov

The pools of LHS and RHS H1 = (l1, r1) associated with the skin membrane 1 of
Π6 are:

l1 = (t), r1 =
(
u1 (t, in2)

)
. . .
(
un (t, inn+1)

)
,

where the multiset ui corresponds to the offset bi: Ps(ui) = bi, 1 ≤ i ≤ n. Finally,
the pools of rule sides Hi+1 = (li+1, ri+1) associated with inner membrane i + 1
are defined as follows:

li+1 = (t), ri+1 =
(
t (vi1, out)

)
. . .
(
t (viki , out)

) (
λ
)
,

where the multisets vij , 1 ≤ j ≤ ki, correspond to the vectors of the set Ai =
{ai1, . . . ,aiki}: Ps(vij) = aij , 1 ≤ j ≤ ki. By abuse of notation, we write (w, out)
to mean that every symbol instance in w gets the target indication out. Π6 is
graphically represented in Figure 6.

t t (v11, out)
. . .

t (v1k1 , out)
λ

λ
2

t t (vn1, out)
. . .

t (vnkn , out)
λ

λ
n+ 1

. . .

t u1 (t, in2)
. . .

un (t, inn+1)

t

1

Fig. 6. The P system Π6 with randomized pools of RHS generating the semilinear
language L =

⋃
1≤i≤n〈Ai,bi〉N.

Π6 starts by non-deterministically building one of the rules t→ ui (t, ini+1) in
the skin membrane. An application of this rule adds the multiset corresponding
to the offset bi to the skin membrane and puts t into inner membrane i + 1.
In the following steps only rules in membrane i + 1 may become applicable. In
this membrane, Π6 may build rules of the form t → t (vij , out), 1 ≤ j ≤ ki,
which will sustain t while also sending the multiset vij corresponding to the vector
aij ∈ Ai out into the skin. Alternatively, Π6 may choose to build the rule t → λ,
an application of which will erase t and halt the system. In such a computation, Π6

generates the multiset language corresponding to 〈Ai,bi〉N. Since Π6 can choose
to send t into any one of its inner membranes in the first step and since the
computations of said membranes cannot interfere, we conclude that Ps(Π6) = L.

To complete the proof, we evoke Theorem 1 to show that there exists a P system
with random RHS exchange (Variant 1) generating the same language L.

This theorem allows us to draw a definitive conclusion about the impossibility
of flattening for non-cooperative Variants 1 and 2, in contrast to Proposition 1
showing the opposite result for Variant 3.

Corollary 4. For ρ ∈ {rhsExchange, rhsPools′} and any k ≥ 2, the following
holds:

PsOP1(ρ, ncoo) (PsOPk(ρ, ncoo).

P Systems with Randomized Rules 33

We conclude this section with two more observations regarding the computa-
tional power of the Variants 1 and 2. We have seen that, with a single membrane
and without cooperation, such P systems cannot generate all semilinear languages;
yet it turns out they can generate all uniform semilinear languages.

Theorem 6. For ρ ∈ {rhsExchange, rhsPools′}, the following is true:

N∗SLINU
N ⊆ PsOP1(ρ, ncoo).

Proof. Consider two finite sets of d-dimensional vectors A,B ⊂fin Nd, A =
{x1, . . . ,xn}, B = {y1 . . . ,ym}, and the uniform semilinear set 〈A,B〉N. We will
now construct the P system Π = (O, T, []

1
, w0, H, 1) with pools of randomized

RHS in the following way:

• O = {a1, . . . , ad, t} contains a symbol per each dimension of the vectors, plus
the special symbol t,

• T = {a1, . . . , ad} contains exactly one symbol per dimension of vectors,
• w0 = t,
• H = (l, r), with l = (t) and r = (w′1t) . . . (w

′
nt) (v′1) . . . (v′m),

such that Ps(w′i) = xi, 1 ≤ i ≤ n, and Ps(v′j) = yj , 1 ≤ j ≤ m.

In every step, Π either chooses one of the RHS (w′it) which will enable it to reuse
the left-hand side symbol t in the following step, or it constructs a rule of the form
t→ v′j , which erases the only instance of t and halts the system. Thus, Π performs
arbitrary additions of vectors xi ∈ A and then, in the last step of the computation,
introduces one of the initial offsets yj ∈ B. Therefore, Ps(Π) = 〈A,B〉N. The fact
that we can construct such a P system Π for any uniform semilinear set proves
the statement of the theorem. �

Even though one-membranenon-cooperative P systems with random RHS ex-
change and with randomized pools of RHS cannot generate all unions of linear
languages (Theorem 4), they can still generate some limited unions of exponential
languages.

Theorem 7. For ρ ∈ {rhsExchange, rhsPools′}, the following is true:

L′ab =
{
a2

n

| n ∈ N
}
∪
{
b2

n

| n ∈ N
}
∈ PsOP1(ρ, ncoo).

Proof. A P system Π7 generating the language L′ab can be constructed as follows:
Π7 = ({a, b, t}, {a, b}, []

1
, t,H, 1), where H = (l, r), l = (t) and r = (tt)(a)(b). A

graphical representation of Π7 is given in Figure 7.
Π7 works by sequentially multiplying the number of symbols t by 2, until it

decides to rewrite every instance of t to a or every instance of t to b. Therefore,
Ps(Π7) = L′ab. According to Proposition 1, there also exists a P system with
random RHS exchange generating L′ab, which completes the proof. �

34 A. Alhazov, R. Freund, S. Ivanov

t tt
a
b

t
1

Fig. 7. The P system Π7 with randomized pools of RHS generating the union language

L′ab =
{
a2

n

| n ∈ N
}
∪
{
b2

n

| n ∈ N
}

The construction from the previous proof can be clearly extended to any num-
ber of distinct terminal symbols and to any function of the number of steps f(n)
given by a product of exponentials (like in Theorem 3). That is, one can con-
struct a P systems with random RHS exchange or with randomized pools of RHS

generating the union language
{
a
f(n)
i

∣∣∣ n ∈ N, 1 ≤ i ≤ m
}

, for some fixed number

m. Note, however, that we cannot use the same approach to generate unions of
two different exponential functions. We conjecture that generating such unions is
entirely impossible with Variants 1 and 2 of randomized RHS.

5 Variant 3: A Binary Normal Form

In this section we present a binary normal form for P systems with individual
randomized RHS: we prove that, for any such P system, there exists an equivalent
one in which every production has at most two right-hand sides.

We now introduce a (rather common) construction: symbols with finite timers
attached to them. Given an alphabet O, we define the following two functions:

timerso(t, O) =

t⋃
i=1

{〈a, i〉 | a ∈ O} ,

timersr(t) = {〈a, i〉 → 〈a, i− 1〉 | 2 ≤ i ≤ t}
∪ {〈a, 1〉 → a | a ∈ O}.

Informally, timerso(t, O) attaches a t-valued timer to every symbol in O, while
timersr(t) contains the rules making this timer work.

We also define the following function setting a timer to the value t > 0 for each
symbol in a given string a1 . . . an:

wait(t, a1 . . . an) = 〈a1, t〉 . . . 〈an, t〉.

For t = 0, wait is defined to be the identity function: wait(0, a1 . . . an) = a1 . . . an.
We can now show that, for any P system with individual randomized RHS

there exists an equivalent one having at most two RHS per production.

Theorem 8 (normal form). For any Π ∈ OPn(rndRhs, k), k ∈ {coo, ncoo},
there exists a Π ′ ∈ OPn(rndRhs2, k) such that Ps(Π ′) = Ps(Π).

P Systems with Randomized Rules 35

Proof. Consider the following P system with individual randomized RHS Π =
(O, T, µ, w1, . . . , wn, P1, . . . Pn, ho) that has at least one production with more than
two RHS. We will construct another P system with individual randomized RHS
Π ′ = (O′, T, µ, w1, . . . , wn, P

′
1, . . . P

′
n, ho) such that Ps(Π ′) = Ps(Π). The new

alphabet will be defined as

O′ = O ∪ timerso(t, O) ∪ {p1, . . . , pt | p ∈ Vp},

where t+ 2 is the number of right-hand sides in the productions of Π having the
most of them, and Vp is an alphabet containing a symbol for each of the individual
productions of Π. (If there are two identical productions in Π which belong to
two different membranes, Vp will contain one different symbol for each of these
two productions.)

For every membrane 1 ≤ i ≤ n, the new set of productions P ′i is constructed
by applying the following procedure to every production p ∈ Pi:

• If p has the form u→ {v}, we add the production u→ {wait(t, v)} to P ′i .
• If p has the form u→ {v1, v2}, we add u→ {wait(t, v1), wait(t, v2)} to P ′i .
• If p has the form u→ {v1, . . . , vk}, with k ≥ 3, we add the following productions

to Pi: {
u→ {wait(t, v1), p1}

}
∪
{
pj → {wait(t− j, vj+1), pj+1} | 1 ≤ j < k − 2

}
∪
{
pk−2 → {wait(t− k + 2, vk−1), wait(t− k + 2, vk)}

}
.

These productions are graphically represented in Figure 8, in which arrows go
from LHS to the associated RHS.

u p1

wait(t, v1)

. . . pj pj+1

wait(t− j, vj+1)

. . . pk−2 wait(t− k + 2, vk)

wait(t− k + 2, vk−1)

Fig. 8. Timers allow sequential choice between any number of right-hand sides.

Finally we add the rules from timersr(t), treated as one-RHS production, to every
P ′i .

Instead of directly choosing between the right hand-sides of a production p :
u→ {v1, . . . , vk} in one step, Π ′ chooses between v1 and delaying the choice to the
next step, by producing p1. This choice between settling on an RHS or continuing
the enumeration in the next step may be kept on until k − 2 RHS have been
discarded. If pk−2 is reached, Π ′ must choose one of the two remaining RHS.

Thus, Π ′ evolves in “macro-steps”, each consisting of exactly t steps. In the
first step of a “macro-step”, Π ′ acts on the symbols from O, producing some
symbols with timers and delaying some of the choices by producing symbols pj .
All symbols with timers wait exactly until the t-th step of the “macro-step” to

36 A. Alhazov, R. Freund, S. Ivanov

turn into the corresponding clean versions from O. Since t + 2 is the number of
RHS in the biggest production of Π, Π ′ has the time to enumerate all of the RHS
of this production.

Since every delayed choice of Π ′ is uniquely identified by a production-specific
symbol pj , and since only the productions from timersr(t) can act upon the sym-
bols with timers in Π ′, the simulations of two different productions of Π cannot
interfere. This concludes the proof of the normal form. �

6 Tissue P Systems with Randomized Right-hand Sides of
Rules

We now extend the idea of randomized right-hand sides of rules to tissue P systems,
where the underlying graph structure is an arbitrary graph structure and not a
rooted tree as in the case of hierarchical P systems. Moreover, we also might allow
every cell to interact with the environment in case the underlying variant of tissue
P system allows/requires that, yet in the following we will assume one of the n cells
to figure as the environment, thus being the only cell in which some elementary
objects may appear infinitely often

Following the general notation as described for networks of cells in [11], we
define a tissue P system as follows:

A tissue P system is a construct

Π = (n,O, T, w1, . . . , wn, R, hi, ho),

where n is the number of cell, labeled by 1 to n, O is the alphabet of objects,
T ⊆ O is the alphabet of terminal objects, wi are the multisets giving the initial
contents of each cell i (1 ≤ i ≤ n), R is the finite set of rules, and hi and ho are the
labels of the input and the output cells, respectively (1 ≤ hi ≤ n, 1 ≤ ho ≤ n). If
e is the label of the environment, then we may contain an infinite part. The rules
in R are of the form

(u1, . . . , un)→ (v1, . . . , vn)

interpreted as follows: the multisets ui are replaced by the multisets vi, 1 ≤ i ≤ n.
Such a rule can also be written as follows:

n∏
i=1

(i, ui)→
n∏
i=1

(i, vi)

Special ingredients can be added to the rules, for example promoters Pi (which
have to be present in cell i) and/or inhibitors Qi (which must not be present in
cell i), with Pi and Qi being finite sets of multisets from O; then a rule

((u1, . . . , un)→ (v1, . . . , vn); (P1, . . . , Pn), (Q1, . . . , Qn))

is applicable to a configuration if and only if cell i contains all elements of Pi and
no element from Qi, 1 ≤ i ≤ n.

P Systems with Randomized Rules 37

Now let m rules be given as

n∏
i=1

(i, u
(k)
i)→

n∏
i=1

(i, v
(k)
i), 1 ≤ k ≤ m.

According to the general definition of tissue P systems as given above, the rules are
not assigned to specific cells but to the whole tissue P system (although assigning
rules to cells is another interesting variant to be investigated in the future). For
the rules we now have several possibilities to interpret the randomization of the
right-hand sides of rules:

Variant A This variant in the strictest way resembles the way randomization
was defined for hierarchical P systems:

For a rule
∏n
i=1(i, u

(k)
i) →

∏n
i=1(i, v

(k)
i), we simply take

∏n
i=1(i, v

(k)
i) as the

right-hand side of the rule and then define Variants 1, 2, and 3 as for hierar-
chical P systems.

Variant B For the Variants 1 and 2, the right-hand sides
∏n
i=1(i, v

(k)
i) of the m

rules are separated into the elements v
(k)
1 to v

(k)
n and the elements v

(k)
i for each

cell i, 1 ≤ i ≤ n, are randomized independently, i.e., we take the multisets

Mi = 〈v(k)i | 1 ≤ k ≤ m〉

as starting points for randomization and for constructing the rules by taking
out one element from Mi for each i, 1 ≤ i ≤ n, to construct the right-hand
side of a rule.

Variant C As a special variant of Variant B, for randomization in Variants 1

and 2 we only take those v
(k)
i for which v

(k)
i 6= λ, i.e., we now instead take the

multisets

M ′i = 〈v(k)i | v(k)i 6= λ, 1 ≤ k ≤ m〉 = 〈x ∈Mi | x 6= λ〉.

Moreover, we may consider two subvariants how to construct the new right-
hand sides of rules:
Variant C.1 If M ′i is empty, then we cannot construct any randomized rule.
Variant C.2 If M ′i is empty, then we take (i, λ) for every constructed ran-

domized rule.

We observe that for Variant 3, i.e., for individual randomized RHS, we only
consider Variant A. Therefore, for all three Variants 1 to 3 we will use the notation

OtPn(α,X)

to denote the family of tissue P systems with at most n cells using rules of type X
with α denoting the type of randomization according to Variants 1 to 3. To denote
the family of languages of multisets generated by these P systems, we prepend Ps
to the notation, and to denote the family of the generated number languages, we
prepend N . For the Variants 1 and 2, we may also add an additional parameter

β ∈ {B,C.1, C.2} (to indicate how to deal with empty v
(k)
i) thus obtaining the

notations OtPn(α, β,X) etc.

38 A. Alhazov, R. Freund, S. Ivanov

6.1 Equivalence Between Variants 1 and 2 for Variant A

For randomized pools of RHS, again we consider the restriction that there are at
least as many right-hand sides as it has left-hand sides for the rules to be con-
structed, i.e., the type rhsPools′. Then again we obtain the equivalence between
tissue P systems with random RHS exchange and tissue P systems with random-
ized pools of RHS of type rhsPools′. The proof follows the same lines as the proof
of Theorem 1, now taking into account that we only have to consider the whole
system (or, if rules are assigned to cells, we simply replace membrane by cell).

Proposition 5. For any n ∈ N+ and X ∈ {coo, ncoo}, the following holds:

PsOtPn(rhsExchange, X) = PsOtPn(rhsPools′, X).

7 Conclusions and Open Problems

In this article, we introduced and partially studied P systems with randomized rule
right-hand sides. This is a model of P systems with dynamic rules, in which the
matching between left-hand and right-hand sides is non-deterministically changed
during the evolution. In each step, such P systems first construct the rules from
the available rule sides and then apply them, in a maximally parallel way.

We defined three different randomization semantics: random RHS exchange
(Variant 1), randomized pools of RHS (Variant 2), and individual randomized
RHS (Variant 3). We studied the computational power of the three variants and
showed that Variant 3 is quite different in power from Variants 1 and 2. Indeed,
P systems with individual randomized RHS (Variant 3) appear as a strict extension
of conventional P systems, while random RHS exchange (Variant 1) and random-
ized pools of RHS (Variant 2) seem to increase the power when only one LHS is
used, but to decrease the power when more LHS are present. Finally, we gave a
binary normal form for P systems with individual randomized RHS (Variant 3).

7.1 Open Questions

The present work leaves open quite a number of open questions. We list the ones
appearing important to us, in no particular order.

Full power of Variants 1 and 2:

Are cooperative, multi-membrane P systems with random RHS exchange (Vari-
ant 1) or with randomized pools of RHS (Variant 2) computationally complete?
If not, what would be the upper bound on their power? In this article, we showed
that applying these two randomization semantics to the non-cooperative, one-
membrane case, yields a family of multiset languages incomparable with the fam-
ily of semi-linear vector sets. How much more can be achieved with cooperativity?

P Systems with Randomized Rules 39

We conjecture that, even with LHS containing more than one symbol, Variants 1
and 2 will not be computationally complete. However, we expect that considering
systems with multiple membranes may actually bring a substantial boost in com-
putational power, because, in both Variants 1 and 2, randomization happens over
each single membrane, meaning that one might use a rich membrane structure to
finely control its effects.

Compare the variants:

How do the three variants of RHS randomization compare among one another
when applied to non-cooperative rules? We saw that, in all three cases, exponential
number languages can be generated. We also saw that individual randomized RHS
(Variant 3) produce a strict superset of the semi-linear languages (Proposition 4).
Does it imply that Variant 3 is strictly more powerful than Variants 1 and 2? We
conjecture a positive answer to this question.

Excess of LHS:

In the case of P systems with randomized pools of RHS (Variant 2), what is the
consequence of having more LHS available in a membrane than there are RHS?
The results in this paper concern a “restricted” version of Variant 2, in which we
require that LHS are never in excess. How strong is this restriction? Our conjecture
is that allowing an excess of LHS does not increase the computational power.

Applications to vulnerable systems:

As noted in the introduction to the present work, randomized RHS can be seen as
a representation of systems mutating in a toxic environment. However, we did not
give any concrete examples. It would be interesting to look up any such concrete
cases and to evaluate the relevance of this unconventional modeling approach.

7.2 Further Variants

Forbidding identical rules:

In any of the three variants, it may happen that identical rules are constructed, in
any membrane. In the previous chapters, in this case this rule was simply taken
into the set of rules. Yet we could also forbid such a situation to happen and in
such a case completely abandon the whole rule set. Another solution can be to
take out all rules having been constructed more than once from the constructed
rule set.

The situation of getting identical rules can easily be avoided by avoiding iden-
tical RHS: the right-hand sides of rules can be made different by adding suitable
powers of a dummy symbol d, which does not count for the final result (i.e., d is
no terminal symbol). As d also does not appear on the left-hand side of a rule, the
computational power of any of the P systems variant considered in this paper will
not be changed by this changing of the set of RHS available for constructing the
set of rules.

40 A. Alhazov, R. Freund, S. Ivanov

Identical RHS in Variant 3:

In P systems with individual randomized RHS the computational power mainly
arises from the possibility to specify different sets of RHS for the left-hand sides of
rules. What happens if the set R of RHS must be the same for all left-hand sides?

References

1. Artiom Alhazov. A note on P systems with activators. In Gheorghe Păun, Agust́ın
Riscos-Núñez, Alvaro Romero-Jiménez, and Fernando Sancho-Caparrini, editors,
Second Brainstorming Week on Membrane Computing, Sevilla, Spain, February 2-7
2004, pages 16–19, 2004.

2. Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, and Marion Oswald. Observations
on P systems with states. In Marian Gheorghe, Ion Petre, Mario J. Pérez-Jiménez,
Grzegorz Rozenberg, and Arto Salomaa, editors, Multidisciplinary Creativity. Hom-
mage to Gheorghe Păun on His 65th Birthday. Spandugino, 2015.

3. Artiom Alhazov, Sergiu Ivanov, and Yurii Rogozhin. Polymorphic P systems. In
Marian Gheorghe, Thomas Hinze, Gheorghe Păun, Grzegorz Rozenberg, and Arto
Salomaa, editors, Membrane Computing, volume 6501 of Lecture Notes in Computer
Science, pages 81–94. Springer, 2011.

4. Fernando Arroyo, Angel V. Baranda, Juan Castellanos, and Gheorghe Păun. Mem-
brane computing: The power of (rule) creation. Journal of Universal Computer
Science, 8:369–381, 2002.

5. Ilir Çapuni and Péter Gács. A Turing machine resisting isolated bursts of faults.
CoRR, abs/1203.1335, 2012.

6. Matteo Cavaliere and Daniela Genova. P systems with symport/antiport of rules.
In Gheorghe Păun, Agust́ın Riscos-Núñez, Alvaro Romero-Jiménez, and Fernando
Sancho-Caparrini, editors, Second Brainstorming Week on Membrane Computing,
Sevilla, Spain, February 2–7 2004, pages 102–116, 2004.

7. Matteo Cavaliere, Mihai Ionescu, and Tseren-Onolt Ishdorj. Inhibiting/de-inhibiting
rules in P systems. In Pre-proceedings of the Fifth Workshop on Membrane Comput-
ing (WMC5), Milano, Italy, June 2004, pages 174–183, 2004.

8. Rudolf Freund. Generalized P-Systems. In Gabriel Ciobanu and Gheorghe Păun,
editors, Fundamentals of Computation Theory, 12th International Symposium, FCT
’99, Iaşi, Romania, August 30–September 3,1999, Proceedings, volume 1684 of Lecture
Notes in Computer Science, pages 281–292. Springer, 1999.

9. Rudolf Freund. P systems working in the sequential mode on arrays and strings. In
Cristian Calude, Elena Calude, and Michael J. Dinneen, editors, Developments in
Language Theory, 8th International Conference, DLT 2004, Auckland, New Zealand,
December 13-17, 2004, Proceedings, volume 3340 of Lecture Notes in Computer Sci-
ence, pages 188–199. Springer, 2004.

10. Rudolf Freund, Alberto Leporati, Giancarlo Mauri, Antonio E. Porreca, Sergey Ver-
lan, and Zandron. Flattening in (tissue) P systems. In Artiom Alhazov, Svetlana Co-
jocaru, Marian Gheorghe, Yurii Rogozhin, Grzegorz Rozenberg, and Arto Salomaa,
editors, Membrane Computing, volume 8340 of Lecture Notes in Computer Science,
pages 173–188. Springer, 2014.

P Systems with Randomized Rules 41

11. Rudolf Freund and Sergey Verlan. A formal framework for static (tissue) p systems.
In George Eleftherakis, Petros Kefalas, Gheorghe Păun, Grzegorz Rozenberg, and
Arto Salomaa, editors, Membrane Computing: 8th International Workshop, WMC
2007 Thessaloniki, Greece, June 25-28, 2007. Revised Selected and Invited Papers,
pages 271–284. Springer, 2007.

12. Sergiu Ivanov. Polymorphic P systems with non-cooperative rules and no ingredients.
In Marian Gheorghe, Grzegorz Rozenberg, Arto Salomaa, Petr Sośık, and Claudio
Zandron, editors, Membrane Computing - 15th International Conference, CMC 2014,
Prague, Czech Republic, August 20–22, 2014, Revised Selected Papers, volume 8961
of Lecture Notes in Computer Science, pages 258–273. Springer, 2014.

13. Gheorghe Păun. Computing with Membranes. Journal of Computer and System
Sciences, 61:108–143, 1998.

14. Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa. The Oxford Handbook of
Membrane Computing. Oxford University Press, Inc., New York, NY, USA, 2010.

15. Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal Languages, 3
volumes. Springer, New York, NY, USA, 1997.

16. Bulletin of the International Membrane Computing Society (IMCS). http://

membranecomputing.net/IMCSBulletin/index.php.
17. The P Systems Website. http://ppage.psystems.eu/.

