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sergiu.ivanov@u-pec.fr

5 TIMC-IMAG/DyCTiM, Faculty of Medicine of Grenoble
5 avenue du Grand Sablon, 38700, La Tronche, France
sergiu.ivanov@univ-grenoble-alpes.fr

Summary. We introduce a novel kind of P systems in which the application of rules in
each step is controlled by a function on the applicable multisets of rules. Some examples
are given to exhibit the power of this general concept. Moreover, for three well-known
models of P systems we show how they can be simulated by P systems with a suitable
fairness function.

1 Introduction

Membrane computing is a research field originally founded by Gheorghe Păun
in 1998, see [5]. Membrane systems (also known as P systems) are a model of
computing based on the abstract notion of a membrane and the rules associated to
it which control the evolution of the objects inside. In many variants of P systems,
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the objects are plain symbols from a finite alphabet, but P systems operating on
more complex objects (e.g., strings, arrays) have been considered, too, e.g., see [2].

A comprehensive overview of different flavors of membrane systems and their
expressive power is given in the handbook, see [6]. For a state of the art snapshot
of the domain, we refer the reader to the P systems website [9] as well as to the
bulletin series of the International Membrane Computing Society [8].

In this paper we introduce a novel kind of P systems in which the application
of rules in each step is controlled by a function on the applicable multisets of
rules, possibly also depending on the current configuration; we call this function
the fairness function. In the standard variant, the fairness function will be used to
choose those applicable multisets for which the fairness function yields the minimal
value.

After recalling some preliminary notions and definitions in the next section, in
Section 3 we will define our new model of fair P systems and give some examples
to exhibit the power of this general concept. In Section 4, for three well-known
models of P systems we will show how they can be simulated by P systems with a
suitable fairness function. Future research topics finally are touched in Section 5.

2 Preliminaries

In this paper, the set of positive natural numbers {1, 2, . . . } is denoted by N+, the
set of natural numbers also containing 0, i.e., {0, 1, 2, . . . }, is denoted by N. The
set of integers denoted by Z.

An alphabet V is a finite set. A (non-empty) string s over an alphabet V is
defined as a finite ordered sequence of elements of V .

A multiset over V is any function w : V → N; w(a) is the multiplicity of a in w.
A multiset w is often represented by one of the strings containing exactly w(a)
copies of each symbol a ∈ V ; the set of all these strings representing the multiset w
will be denoted by str(w). The set of all multisets over the alphabet V is denoted
by V ◦. By abusing string notation, the empty multiset is denoted by λ.

The families of sets of Parikh vectors as well as of sets of natural numbers
(multiset languages over one-symbol alphabets) obtained from a language family
F are denoted by PsF and NF , respectively. The family of recursively enumerable
string languages is denoted by RE.

For further introduction to the theory of formal languages and computability,
we refer the reader to [6, 7].

2.1 (Hierarchical) P Systems

A hierarchical P system (P system, for short) is a construct

Π = (O, T, µ, w1, . . . , wn, R1, . . . Rn, hi, ho),

where O is the alphabet of objects, T ⊆ O is the alphabet of terminal objects,
µ is the membrane structure injectively labeled by the numbers from {1, . . . , n}
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and usually given by a sequence of correctly nested brackets, wi are the multisets
giving the initial contents of each membrane i (1 ≤ i ≤ n), Ri is the finite set of
rules associated with membrane i (1 ≤ i ≤ n), and hi and ho are the labels of the
input and the output membranes, respectively (1 ≤ hi ≤ n, 1 ≤ ho ≤ n).

In the present work, we will mostly consider the generative case, in which Π will
be used as a multiset language-generating device. We therefore will systematically
omit specifying the input membrane hi.

Quite often the rules associated with membranes are multiset rewriting rules (or
special cases of such rules). Multiset rewriting rules have the form u→ v, with u ∈
Oo \{λ} and v ∈ Oo. If |u| = 1, the rule u→ v is called non-cooperative; otherwise
it is called cooperative. Rules may additionally be allowed to send symbols to
the neighboring membranes. In this case, for rules in Ri, v ∈ O × Tari, where
Tari contains the targets out (corresponding to sending the symbol to the parent
membrane), here (indicating that the symbol should be kept in membrane i),
and inj (indicating that the symbol should be sent into the child membrane j of
membrane i).

In P systems, rules are often applied in the maximally parallel way: in any
derivation step, a non-extendable multiset of rules has to be applied. The rules are
not allowed to consume the same instance of a symbol twice, which creates com-
petition for objects and may lead to the P system choosing non-deterministically
between the maximal collections of rules applicable in one step.

A computation of a P system is traditionally considered to be a sequence of
configurations it successively can pass through, stopping at the halting configura-
tion. A halting configuration is a configuration in which no rule can be applied
any more, in any membrane. The result of a computation of a P system Π as de-
fined above is the contents of the output membrane ho projected over the terminal
alphabet T .

Example 1. For readability, we will often prefer a graphical representation of P
systems; moreover, we will use labels to identify the rules. For example, the P
system Π1 = ({a, b}, {b}, [

1
]
1
, a, R1, 1) with the rule set R1 = {1 : a → aa, 2 :

a→ b} may be depicted as in Figure 1.

1 : a→ aa

2 : a→ b

a
1

Fig. 1. The example P system Π1

Due to maximal parallelism, at every step Π1 may double some of the symbols
a, while rewriting some other instances into b.

Note that, even though Π1 might express the intention of generating the set
of numbers of the powers of two, it will actually generate the whole of N+ (due to
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the halting condition). Indeed, for any n ∈ N+, an can be generated in n steps by
choosing to apply, in the first n− 1 steps, 1 : a→ aa to exactly one instance of a
and a → b to all the other instances, and by applying 2 : a → b to every a in the
last step (in fact, for n > 1, in each step except the last one, in which 2 : a → b
is applied twice, both rules are applied exactly once, as exactly two symbols a are
present, whereas all other symbols are copies of b). �

While maximal parallelism and halting by inapplicability have been standard
ingredients from the beginning, various other derivation modes and halting condi-
tions have been considered for P systems, e.g., see [6].

2.2 Flattening

The folklore flattening construction (see [6] for several examples as well as [3] for
a general construction) is quite often directly applicable to many variants of P
systems. Hence, also for the systems considered in this paper we will not explicitly
mention how results are obtained by flattening.

3 P Systems with a Fairness Function

In this section we consider variants of P systems using a so-called fairness function
for choosing a multiset of rules out of the set of all multisets of rules applicable to
a configuration.

3.1 The General Idea of a Fairness Function in P Systems

Take any (standard) variant of P systems and any (standard) derivation mode.
The application of a multiset of rules in addition can be guided by a function
computed based on specific features of the underlying configuration and of the
multisets of rules applicable to this configuration. The choice of the multiset of
rules to be applied then depends on the function values computed for all the
applicable multisets of rules.

Therefore, in general we extend the model of a hierarchical P system to the
model of a hierarchical P system with fairness function (fair P system for short)

Π = (O, T, µ, w1, . . . , wn, R1, . . . Rn, hi, ho, f),

where f is the fairness function defined for any configuration C of Π, the cor-
responding set Applδ(Π,C) of multisets of rules from Π applicable to C in the
given derivation mode δ, and any multiset of rules R ∈ Applδ(Π,C). We then
use the values f(C,Applδ(Π,C), R) for all R ∈ Applδ(Π,C) to choose a multi-
set R′ ∈ Applδ(Π,C) of rules to be applied to the underlying configuration C. A
standard option for choosing R′ is to require it to yield the minimal value for the
fairness function, i.e., we require f(C,Applδ(Π,C), R′) ≤ f(C,Applδ(Π,C)), R)
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for all R ∈ Applδ(Π,C). As usually the derivation mode δ will be obvious from
the context, we often shall omit it.

The fairness function may be independent from the underlying configuration,
i.e., we may write f(Appl(Π,C), R) only; in the simplest case, f is even indepen-
dent from Appl(Π,C), hence, in this case we only write f(R).

Fair or Unfair

One may argue that it is fair to use rules in such a way that each rule should
be applied if possible and, moreover, all rules should be applied in a somehow
balanced way. Hence, a fairness function for applicable multisets should compute
the best value for those multisets of rules fulfilling these guidelines.

On the other hand, we may choose the multiset of rules to be applied in such a
way that it is the unfairest one. In this sense, let us consider the following unfair
example.

Example 2. Consider the P system Π1 = ({a, b}, {b}, [
1

]
1
, a, R1, 1) with the rule

set R1 = {1 : a → aa, 2 : a → b} as considered in Example 1 together with the
fairness function f2 defined as follows: if a rule is applied n times then it contributes
to the function value of the fairness function f2 for the multiset of rules with 2−n.
The total value for f2(R) for a multiset of rules R containing k copies of rule
1 : a → aa and m copies of rule 2 : a → b then is the sum 2−k + 2−m. The
resulting fair P system Π2 = ({a, b}, {b}, [

1
]
1
, a, R1, 1, f2) is depicted in Figure 2;

we observe that it can also be written as (Π1, f2).

1 : a→ aa

2 : a→ b

a; f2
1

Fig. 2. The P system Π2

In this fair P system (or in this case we might also call it maximally unfair)
with one membrane working in the maximally parallel way, we again start with
the axiom a and use the two rules 1 : a→ aa and 2 : a→ b. If we apply only one
of these rules to all m objects a, then the function value is 2−m and is minimal
compared to the function values computed for a mixed multiset of rules using both
rules at least once.

Starting with the axiom a we use the rule 1 : a → aa in the maximal way k
times thus obtaining 2k symbols a. Then in the last step, for all a we use the rule
2 : a→ b thus obtaining 2k symbols b. We cannot mix the two rules in one of the
derivation steps as only the clean use of exactly one of them yields the minimal
value for the fairness function.
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We observe that the effect is similar to that of controlling the application of
rules by the well-known control mechanism called label selection, e.g., see [4], where
either the rule with label 1 or the rule with label 2 has to be chosen. We will return
to this model in Section 4.3. �

The following weird example shows that the fairness function should be cho-
sen from a suitable class of (at least recursive) functions, as otherwise the whole
computing power comes from the fairness function:

Example 3. Take the fair P system Π3 with one membrane working in the maxi-
mally parallel way, starting with the axiom a and using the three rules 1 : a→ aa,
2 : a→ a, and 3 : a→ b, see Figure 3.

1 : a→ aa

2 : a→ a

3 : a→ b

a; fM
1

Fig. 3. The P system Π3

Moreover, let M ⊂ N+, i.e., an arbitrary set of positive natural numbers. The
fairness function fM on multisets of rules over these three rules and a configuration
containing m symbols a is defined as follows: For any multiset of rules R containing
copies of the rules 1 : a→ aa, 2 : a→ a, and 3 : a→ b,

• f(R) = 0 if R only contains m copies of rule 3 and m ∈M ,
• f(R) = 0 if R only contains exactly one copy of rule 1 and the rest are copies

of rule 2,
• f(R) = 1 for any other applicable multiset of rules.

Again the choice is made by applying only multisets of rules which yield the
minimal value f(R) = 0. If we use rule 1 : a→ aa once and rule 2 : a→ a for the
rest, this increases the number of symbols a in the skin membrane by one. Thus,
in m− 1 steps we get m symbols a. If m is in M, we now may use rule 3 : a→ b
for all symbols a, thus obtaining m symbols b, and the system halts. In that way,
the system generates exactly {bm | m ∈M}.

To make this example a little bit less weird, we may only allow computable
sets M. Still, the whole computing power is in the fairness function fM alone, with
fM only depending on the multiset of rules. �

We now again return to Example 2 and illustrate how the same result can be
obtained by using another fairness function in the standard unfair mode using the
multsets of rules with minimal fairness value; on the other hand, we will also show
what happens if we try to be fair and use the rules in a balanced way.
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Example 4. Consider the P system Π1 = ({a, b}, {b}, [
1

]
1
, a, R1, 1) with the rule

set R1 = {1 : a → aa, 2 : a → b} as considered in Example 1 together with
the fairness function f4(R) for any multiset R of rules defined as follows: consider
f4(R) = |str(R)|, i.e., f4(R) is the number of different strings representing the mul-
tiset R. The resulting fair P system Π4 = (Π1, f4) = ({a, b}, {b}, [

1
]
1
, a, R1, 1, f4)

is depicted in Figure 4.

1 : a→ aa

2 : a→ b

a; f4
1

Fig. 4. The P system Π4

With the standard selection of multisets of rules to be applied by choosing
those with the minimal value of the fairness function, we obtain the same result
for the set of multisets generated by Π4, i.e., {a2n | n ∈ N}, because only the pure
multisets of rules R containing only copies of rule 1 or only copies of rule 2 yield
f(R) = 1, whereas any mixed multiset of rules containing both rules at least once
yields a bigger value.

On the other hand, if we try to be fair and use both rules in a balanced way,
i.e., by choosing those multisets of rules yielding the maximum values of f4, then
the generated set is the singleton {b}, which can be generated in one step from
the axiom a by using rule 2 : a→ b. Any other derivation starting with using rule
1 : a → aa will not yield any result due to running into an infinite computation
without any chance to halt: as soon as aa has been generated, only once the rule
1 : a → aa and once the rule 2 : a → b can be used as only this combination of
rules yields f4(〈1, 2〉) = |{12, 21}| = 2 > 1 = f4(〈1, 1〉) = f4(〈2, 2〉) (we here use
the brackets 〈, 〉 to describe a multiset). �

The problem with halting observed in the example above when using only
non-cooperative rules seems to be an inherent one when using a fair (balanced)
selection of multisets of rules. These variants may deserve further investigations in
the future, but in this paper we will restrict ourselves to the standard (maximally
unfair) selection of multisets of rules to be applied as in the previous examples.

4 First Results

In this section, we show three general results. The first one describes how priorities
can be simulated by a suitable fairness function in P systems of any kind working in
the sequential mode. The second one exhibits how P systems with energy control,
see [1], can be simulated by suitable fair P systems for any arbitrary derivation
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mode. Finally we show how P systems with rule label control, see [4], can be
simulated by suitable fair P systems for any arbitrary derivation mode.

4.1 Simulating Priorities in the Sequential Derivation Mode

In the sequential derivation mode, exactly one rule is applied in every derivation
step of the P system Π. Given a configuration C and the set of applicable rules
Appl(Π,C) not taking into account a given priority relation < on the rules, we
define the fairness function to yield 0 for each rule in Appl(Π,C) for which no rule
in Appl(Π,C) with higher priority exists, and 1 otherwise. Thus, only a rule with
highest priority can be applied. More formally, this result now is proved for any
kind of P systems working in the sequential derivation mode:

Theorem 1. Let (Π,<) be a P system of any kind with the priority relation < on
its rules and working in the sequential derivation mode. Then there exists a fair
P system (Π, f) with fairness function f simulating the computations in (Π,<)
selecting the multisets of rules with minimal values.

Proof. First we observe that the main ingredient Π is exactly the same in both
(Π,<) and (Π, f), i.e., we only replace the priority relation < by the fairness
function f . As already outlined above, for any configuration C of Π we now define
f for any rule r as follows (we point out that here the fairness function not only
depends on {r}, but also on Appl(Π,C)):

• f(Appl(Π,C), {r}) = 0 if and only if there exists no rule r′ ∈ Appl(Π,C) such
that r < r′, and

• f(Appl(Π,C), {r}) = 1 if and only if there exists a rule r′ ∈ Appl(Π,C) such
that r < r′.

If we now define the task of f as choosing only those rules with minimal value, i.e.,
a rule r can be applied to configuration C if and only if f(Appl(Π,C), {r}) = 0,
then we obtain the desired result. �

4.2 Simulating Energy Control

Recently we have considered P systems where a specific amount of energy is as-
signed to each rule, see [1]. There, only those multisets of rules are applied which
use the minimal amount of energy. In a similar way the amount of energy coming
up with a multiset of rules can be seen as the value of the fairness function. The
minimal amount of energy then exactly corresponds with the minimal fairness.

In this paper, from the two variants of energy-controlled P systems we only
consider the one where the energy is directly assigned to the rules. This variant
of P systems is called a rule energy-controlled P system. The multisets or sets of
rules to be applied to a given configuration must fulfill the condition of yielding
the minimal amount of energy.
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Formally, in a rule energy-controlled P system the rules are of the form (p, v)
where p is a rule of a specific type like cooperative or non-cooperative and v is an
integer energy value. The total energy value of a mutiset of rules can be defined
in different ways, but in the following we will assume it to simply be the sum of
energy values of the rules in the multiset and denote this function computing the
energy value of a multiset of rules in this way by σ.

Theorem 2. Let (Π,σ) be a rule energy-controlled P system working in any
derivation mode, using any kind of rules and using the sum function σ for comput-
ing the energy value of a multiset of rules. Then there exists a fair P system (Π ′, f)
with fairness function f simulating the computations in (Π,σ) with f selecting the
multisets of rules with minimal values.

Proof. By definition, in the rule energy-controlled P system (Π,σ) a multiset of
rules can be applied to given configuration only if the application of σ yields the
minimal value in Z. The fair P system (Π ′, f) with fairness function f now is
constructed from (Π,σ) by replacing any rule with energy (p, v) by the rule p
itself, but on the other hand defining the fairness function f for a multiset of rules
to take v as the value assigned to the rule p having been obtained from (p, v). By
summing up these values for the whole multiset and selecting only those multisets
of rules applicable to a given configuration in the given derivation mode which
have minimal values, f fulfills the same task in (Π ′, f) as σ does in (Π,σ). Hence,
in any derivation mode, (Π ′, f) simulates exactly step by step the derivations in
(Π,σ), obviously yielding the same computation results. �

4.3 Simulating Label Selection

In P systems with label selection only rules belonging to one of the predefined
subsets of rules can be applied to a given configuration, see [4].

For all the variants of P systems defined in Section 2, we may consider to label
all the rules in the sets R1, . . . , Rm in a one-to-one manner by labels from a set H
and to take a set W containing subsets of H. Then a P system with label selection
is a construct

Π ls = (O, T, µ, w1, . . . , wn, R1, . . . Rn, hi, ho, H,W ),

where Π = (O, T, µ, w1, . . . , wn, R1, . . . Rn, hi, ho) is a P system as in Section 2,
H is a set of labels for the rules in the sets R1, . . . , Rm, and W ⊆ 2H . In any
transition step in Π ls we first select a set of labels U ∈ W and then apply a
non-empty multiset R of rules applicable in the given derivation mode restricted
to rules with labels in U .

The following proof exhibits how the fairness function can also be used to
capture the underlying derivation mode.
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Theorem 3. Let (Π,H,W ) be a P system with label selection using any kind of
rules in any kind of derivation mode. Then there exists a fair P system (Π ′, f)
with fairness function f simulating the computations in (Π,H,W ) with f selecting
the multisets of rules with minimal values.

Proof. By definition, in the P system (Π,H,W ) with label selection a multiset
of rules can be applied to given configuration only if all the rules have labels in
a selected set of labels U ∈ W . We now consider the set of all multisets of rules
applicable to a configuration C, denoted by Applasyn(Π,C), as it corresponds to
the asynchronous derivation mode (abbreviated asyn); from those we select all R
which obey to the label selection criterion, i.e., there exists a U ∈ W such that
the labels of all rules in R belong to U , and then only take those which also fulfill
the criteria of the given derivation mode restricted to rules with labels from U .

Hence we define (Π ′, f) by taking Π ′ = Π and, for any derivation mode δ, fδ
for any multiset of rules R ∈ Applasyn(Π,C) as follows:

• fδ(C,Applasyn(Π,C), R) = 0 if there exists a U ∈ W such that the labels of
all rules in R belong to U , and, moreover, R ∈ Applδ(ΠU , C), where ΠU is the
restricted version of Π only containing rules with labels in U , as well as

• fδ(C,Applasyn(Π,C), R) = 1 otherwise.

According to our standard selection criterion, we choose only those multisets of
rules where the fairness function yields the minimal value 0, i.e., those R such
that there exists a U ∈ W such that the labels of all rules in R belong to U and
R is applicable according to the underlying derivation mode with rules restricted
to those having a label in U , which exactly mimicks the way of choosing R in
(Π,H,W ). Therefore, in any derivation mode δ, (Π ′, fδ) simulates exactly step
by step the derivations in (Π,H,W ), obviously yielding the same computation
results. �

5 Conclusions and Future Research

In this article, we introduced and partially studied P systems with the application
of rules in each step being controlled by a function on the applicable multisets of
rules.

We have given several examples exhibiting the power of using suitable fairness
functions. Moreover, we have shown how priorities can be simulated by a suitable
fairness function in P systems of any kind working in the sequential mode as well
as how P systems with energy control or label selection can be simulated by fair
P systems with a suitable fairness function for any derivation mode.

Yet with all these examples and results we have just given a glimpse on what
could be investigated in the future for P systems in connection with fairness func-
tions:
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• consider other variants of hierarchical P systems working in different derivation
modes, e.g., also taking into consideration the set derivation modes;

• extend the notion of fair to tissue P systems, i.e., P systems on an arbitrary
graph structure;

• extend the notion of fair to P systems with active membranes, there probably
also controlling the division of membranes;

• investigate the effect of selecting the multiset of rules to be applied to a given
configuration by other criteria than just taking those yielding the minimal
values for the fairness function;

• consider other variants of fairness functions, either less powerful or taking into
account other features of Appl(Π,C) and/or the multiset of rules R;

• investigate the effect of selecting the multiset to be applied to a given config-
uration by requiring it to contain a balanced (really fair) amount of copies of
each applicable rule;

• show similar simulation results with suitable fairness functions as in Section 4
for other control mechanisms used in the area of P systems;

• . . .
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