
Open Problems, Research Topics, Recent Results
on Numerical and Spiking Neural P Systems
(The “Curtea de Argeş 2015 Series”)

Gheorghe Păun1, Tingfang Wu2, Zhiqiang Zhang2

1 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania
gpaun@us.es

2 Key Laboratory of Image Information Processing and Intelligent Control
School of Automation, Huazhong University of Science and Technology
Wuhan 430074, Hubei, China
whutwutf@163.com, zhiqiangzhang@hust.edu.cn

Summary. A series of open problems and research topics are formulated, about numer-
ical and spiking neural P systems, initially prepared as a working material for a three
months research stage of the second and the third co-author in Curtea de Argeş, Roma-
nia, in the fall of 2015. Further problems were added during this period, while certain
problems were addressed in this time; some details and references are provided for such
cases.

1 Introduction

In membrane computing there are numerous open problems and research top-
ics in circulation, many of them also collected in systematic lists, compiled,
for instance, for the yearly Brainstorming Week on Membrane Computing, see
http://ppage.psystems.eu and www.gcn.us.es. Because the present list had
initially a working material character, we do not provide here complete references.
Furthermore, as the reader is supposed to be a researcher in membrane computing,
we do not give basic definitions either (but we give details for the new classes of
P systems considered). As a general reference we refer to the Handbook [8].

The list deals only with numerical P systems (in short, NP systems, [7]) and
spiking neural P systems (in short, SNP systems, [3]). Some problems are more
specific, many others are just general ideas, so that the first step in approaching
them implies a formal definition (possibly, of new classes of NP or SNP systems).
We recall some details from several papers written in Curtea de Argeş during the
mentioned period of time.

286 Gh. Păun, T. Wu, Z. Zhang

2 Bridging NP and SNP

The two “exotic” classes of P systems (their “biochemistry” is not very closely
related to the biological one) have many common and, also, many different char-
acteristics. Of the first type is the fact that both of them process numbers and a
specific “production” of a cell is distributed among neighboring cells. Thus, it is
just natural to check whether features of one class can be extended to the other
class, and conversely. This proves to be a very fruitful idea.

Here are a few more precise suggestions of this kind.

A. NP with SNP features. Three main ingredients of SNP systems can be
exported also to NP systems: the tissue-like arrangement of membranes, the regular
expressions which control the application of spiking rules, and the replication of the
production to all the adjacent cells. However, further features can be considered –
only a few suggested below, so this is already a general research issue.

B. Passing from the cell-like membrane structure of usual NP systems to tissue-
like NP systems is just an extension which will also extend all computing power
results and computational complexity properties. As the distribution of the produc-
tion of a compartment is done with a precise identification of the target variables, a
simple (real-time?) mutual simulation between cell-like and tissue-like NP systems
is expected.

C. What about using, in the tissue-like NP systems, weights on “synapses”
instead of repartition coefficients? The simulation of NP systems with weights by
systems with repartition coefficients and conversely is a natural research topic.
What about using both repartition coefficients and weights on “synapses”? (This
might also have economic interpretations, thus bringing the model closer to the
initial motivation, the economics.)

D. Associating a regular expression with each evolution program seems to be a
non-trivial extension of the enzymatic control from [6]. (Note that we can compare
the values of two variables, even in terms of regular expressions, in the following
way: (x1x2)∗x∗2 can be interpreted as x2(t) ≥ x1(t), meaning that the value of x2
at time t is greater than or equal to the value of x1 at time t.) In what cases can
this intuition be confirmed? A good candidate is the descriptional complexity of
various NP systems, for instance, constructed for controlling robots.

E. While considering a regular expression looks like adding computing power,
distributing the production of a cell to all neighboring variables, replicated, on the
one hand, increases the total values of variables in the system, on the other hand,
removes the control possibilities provided by the repartition coefficients. Which
is the power (and the efficiency) of NP systems with such a repartition protocol
remains to be checked.

F. Directly related to the previous idea is the following problem: what about
NP systems with an “egalitarian” repartition, i.e., with all distribution coefficients
equal in each evolution program/in each compartment/in the whole system? A

Open Problems on Numerical and SN P Systems 287

particular case is that of considering all distribution coefficients equal to 1. Are
such restricted NP systems still universal?

G. Continuing with the restrictions, what about considering NP systems with
only k ≥ 1 variables in the distribution protocols? Is any difference in power
between NP systems with k variables and those with k + 1 variables, for various
values of k? (It is expected that k = 1 is, indeed, a special case.) What about
NP systems with both egalitarian distribution and at most k variables in each
distribution protocol?

H. SNP with NP features. This is the “reverse” of problem A, again with
(at least) three basic directions: considering SNP systems with a cell-like membrane
structure, using a production function instead of spiking rules, and considering a
distribution protocol for communicating the produced spikes. What else, it remains
to imagine.

I. SNP systems with a cell-like membrane structure look “non-natural” from a
biological point of view, but it is mathematically interesting, especially in view of
the children-parent membrane interaction; remember that circularity is not allowed
in standard SNP systems.

This idea was explored in [14]; we recall some details.
A cell-like SN P system (in short, a cSN P system), of degree m ≥ 1, is a

construct
Π = (O,µ, n1, . . . , nm, R1, . . . , Rm, io),

where O = {a}, µ is a hierarchical membrane structure with m membranes, ni, 1 ≤
i ≤ m, is the number of spikes present in compartment i of µ at the beginning of
the computation, Ri, 1 ≤ i ≤ m, is the finite set of rules from compartment i, and
io indicates the output region (this is the environment if io = env).

Besides forgetting rules of the form as → λ, s ≥ 1, the sets Ri contain spiking
rules of the (extended) form E/ac → u, where E is a regular expression over O,
c ≥ 1, and u is a sequence of couples of the form (ap, tar), where p ≥ 1 and tar
is a target indication specifying the destination of the p associated spikes. This
target can be here, out, in, inj , where j is the label of a membrane, with the usual
meaning in cell-like P systems, or inall, with the meaning that the p spikes will
be sent, replicated, to all immediately inner membranes (each of them will receive
p spikes). Of course, in the case of non-extended rules, when only one spike is
produced by a rule, only one couple of the form (a, tar) will be used.

The computations in a cSN P system are defined as in usual SN P systems:
(at most) one rule in each compartment is applied, but the compartments work
in parallel, synchronously. The result can be obtained as the number of the spikes
in region io in the moment when the computation halts, and this can be inside
the system or outside, when io = env. We denote by Nin(Π) the set of numbers
computed (generated) by the system Π in the internal mode. We will not consider
here also the external output in the form of the number of spikes sent out, as this
is a direct dual of the inner mode, but, like in SN P systems, we also consider as
the result of a computation the distance in time between the first two steps when

288 Gh. Păun, T. Wu, Z. Zhang

the system sends spikes out; this can be done by rules introducing couples (ap, out)
used in the skin region of Π, hence in this case the indication of io is omitted. We
denote by N2(Π) the set of numbers computed by Π in this sense, by means of
halting or non-halting computations. (By convention, number 0 is computed by a
computation which sends out spikes only once.)

It is important to note that in the previous definition we have imposed no
restriction on the number of produced spikes, that is, it can be greater than the
number of consumed spikes. Actually, we need rules for producing more spikes
than consumed, otherwise we cannot increase the number of spikes in the system
– unless if we use the replication target command inall.

We denote by NαcSNPm(forg, here, int, inall), α ∈ {2, in}, the family of
sets of numbers Nα(Π) computed by cSN P systems Π with at most m mem-
branes, using forgetting rules and target indications of the types here, int, inall,
together with indications in, out. We explicitly write only forg and the indications
here, int, inall because these features are powerful and they can be avoided in cer-
tain cases (this also happens in standard SN P systems with forg). When all spiking
rules E/ac → u have c greater than or equal to the number of spikes in u we write
NαcSN

′Pm(...) instead of NαcSNPm(...). When the number of membranes is not
bounded, we replace the subscript m with ∗.

Here are the results reported in [14]:

1. NincSNP4(here, int) = NRE.
2. NincSNP7(int) = NRE.
3. NincSNP7 = NRE.
4. NincSN

′P∗(int, inall) = NRE.
5. N2cSNP4(here, int) = NRE.
6. N2cSN

′P∗(here, int, inall) = NRE.

Several open problems and research topics were formulated in [14].
First, a large research area is open just by checking whether the results obtained

for usual SN P systems can be extended to cSN P systems. Many questions are of
interest: looking for small (as the number of membranes) universal cSN P systems,
adding anti-spikes, working in a parallel way also in the membranes, working
asynchronously, and so on and so forth. In [14] one starts directly with extended
systems (without delay). Which is the power of non-extended cSN P systems? In
this case we need a way to replicate spikes. In [14] inall it is used to that aim;
what else can be imagined? Look for restrictions which lead to characterizations
of sub-universal families of numbers (such as NREG) or of languages (in the case
of the external output; note that the spike train can be also a sequence of symbols
over an arbitrary alphabet).

The languages generated by cell-like SN P systems were investigated in [13] –
many results were obtained, but also many questions remain to be further exam-
ined. We do not enter into details.

J. Replacing the spiking rules with a production function (of one variable if only
spikes are considered, of two variables if also anti-spikes are used; the interplay

Open Problems on Numerical and SN P Systems 289

with the annihilation rule is also of interest – useful seems to be to apply the
annihilation rule after computing the production, of both spikes and anti-spikes).
The production function can be a polynomial, as in usual NP systems, but we can
try to capture also other neural ingredients, such as the sigmoid function on which
the functioning of the biological neuron is based.

K. Using a distribution protocol, for SNP systems with “standard” spiking
rules looks easy: just associate distribution coefficients to synapses. This add “pro-
gramming” possibilities, hence simpler proofs than for usual SNP systems are ex-
pected.

3 Further Problems for NP

The investigations on NP systems reported so far only deal with the basic systems
and with the enzymatic ones, but there are many possibilities for considering fur-
ther classes. Some ideas were mentioned also before, a few others will be suggested
below, but the reader can imagine many more.

L. For instance, we can consider NP systems with restricted communication,
in the sense that the production of a compartment is distributed only to variables
from one or two levels out of the three used so far: here, down, up. For “one-way”
systems it is expected to obtain rather restricted families of numbers generated in
this way. Which cases still lead to universality?

M. A very natural idea is, instead of having the variables associated with
compartments, to move variables across variables by associating with them the
usual target indications here, in, out.

Numerical P systems with migrating variables (in short, MNP systems) were
considered in [17] in the following form:

Π = (m,H, µ, V ar, (Pr1, V ar1(0)), . . . , (Prm, V arm(0)), (xi0 , j0)),

where:

• m ≥ 1 is the number of membranes;
• H is an alphabet (of labels for membranes in µ);
• µ is a hierarchical (cell-like) membrane structure with m membranes labeled

with the elements of H;
• V ar = {x1, x2, . . . , xn} is a set of variables for the system;
• V ari ⊂ V ar, 1 ≤ i ≤ m, is a set of variables from V ar, initially present in

region i;
• V ari(0), 1 ≤ i ≤ m, is a vector which indicates the values of the initial variables

in region i;
• Pri, 1 ≤ i ≤ m, is the finite set of programs in region i; each program has the

following form:

290 Gh. Păun, T. Wu, Z. Zhang

Fj,i(xp1 , . . . , xpk)→ cj,1|(xr1 , tar1) + . . .+ cj,q|(xrq , tarq),

where Fj,i(xp1 , . . . , xpk) is the production function, cj,1|(xr1 , tar1) + . . . +
cj,q|(xrq , tarq) is the repartition protocol of the program and tar1, . . . , tarq ∈
{here, out, in}; the symbols here, out, in are called target commands or target
indications; all the variables xp1 , . . . , xpk and xr1 , . . . , xrq are from V ar.

• xi0 ∈ V ar, j0 ∈ H.

The variables initially placed in membrane i have non-zero values speci-
fied by V ari(0), 1 ≤ i ≤ m. A variable equal to zero is simply supposed not
to be present in a membrane. This is called the NZP assumption. A program
Fj,i(xp1 , . . . , xpk)→ cj,1|(xr1 , tar1)+ . . .+cj,q|(xrq , tarq) can be applied only when
all variables xp1 , . . . , xpk (“production variables”) are present in membrane i at
that time with non-zero values. By using the production function, the system
computes a production value which is distributed to variables specified by the
repartition protocol. An important observation is that variables involved in the
production function are reset to zero after computing the production value.

The application of programs is as usual in numerical P systems, with the fol-
lowing specific points. After the application of the program, the variables involved
in the repartition protocol are moved to the region indicated by the target com-
mand associated with them. Specifically, here means the variable will be placed
in the same region i where the program is applied; out means the variable will
be moved to the region immediately outside membrane i – this region can be the
environment in the case when i is the skin membrane; in means the variable should
be moved to a membrane immediately inside membrane i, non-deterministically
chosen.

When a program is applied, for a variable involved in the program there are five
cases to consider: i) if the variable appears in the production (it must be present in
the membrane for the program to be applied) and not also in the repartition proto-
col, then this variable is zeroed and removed from the membrane; ii) if the variable
appears both in the production function (with a non-zero value) and in the repar-
tition, then it is first zeroed, then the variable with the contribution received from
the repartition protocol is moved to the membrane indicated by the associated
target; iii) if the variable appears in the repartition protocol and is not present
in the membrane (hence it must not appear in the production function), then the
variable with its contribution received from the repartition protocol is moved to
the membrane as the associated target indicates; iv) if the variable appears in
the repartition protocol and it was initially present in the membrane but not in
the production, then the initial value plus the contribution it receives is moved
to the membrane indicated by its associated target; v) if the variable appears in
several repartition protocols, then, in order to avoid any conflicts/complications,
we restrict to applying programs where the same variable has associated the same
target indication in all programs; then, each program separately changes the vari-
able as stated above and the variable, with the summed value, is moved to the
associated target.

Open Problems on Numerical and SN P Systems 291

After moving variables to the target membranes, all the values of the same
variable received from different membranes are added up, and the sum is the value
of this variable in the destination membrane. If the sum is zero, then the variable is
simply removed from the membrane. (Another possibility is to immediately move
variables with the value received from each program to the associated targets and
to sum the values at the destination.)

MNP systems can evolve in the all-parallel mode (at each step, in each mem-
brane, all programs which can be applied are applied, allowing that several pro-
grams share the same variable), in the sequential mode (at each step, only one
program is applied in each membrane; if more than one program in a membrane
can be used, then one of them is non-deterministically chosen), or in the one-
parallel mode (apply programs in the all-parallel mode with the restriction that
one variable can appear in only one of the applied programs; in the case of multiple
choices, the programs to apply are chosen in the non-deterministic way). In the
one-parallel mode, where more than one program can be applied in a membrane,
one can also impose the restriction that there is no conflict between the targets
associated with variables in the repartition protocols of the applied programs.

Besides programs as above (called non-enzymatic), numerical P systems also
have enzymatic programs of the form Fj,i(xp1 , . . . , xpk)|ej,i → cj,1|(xr1 , tar1)+. . .+
cj,q|(xrq , tarq), where ej,i is a variable present in membrane i and different from
xp1 , . . . , xpk and xr1 , . . . , xrq . Such a program is applied at time t only if ej,i(t) >
min(xp1(t), . . . , xpk(t)). Note that ej,i(t) remains unchanged in the program where
it appears as an enzymatic variable; in other programs, ej,i can appear as a usual
variable in production functions or repartition protocols, and it can be “consumed”
or receive “contributions”.

If every program is enzymatic, we call the system purely enzymatic.
Using the programs in the way mentioned above, we obtain transitions among

configurations. A sequence of such transitions forms a computation. If no program
can be applied in the current configuration, we say that the system halts. When
the system halts, the value taken by the special variable xi0 in membrane j0 is the
number generated by the computation.

The set of natural numbers generated by a system Π working in the one-parallel
or sequential mode is denoted by Nα(Π), α ∈ {one, seq}, where one stands for one-
parallel, seq stands for sequential. We use NαM

0βNPDm (polyn(r), V ark1 , P rok2),
to denote the family of all sets Nα(Π), α ∈ {one, seq}, β ∈ {E, pE,−} of numbers
generated by β numerical P systems Π with migrating variables (E = enzymatic,
pE = purely enzymatic; if the system is non-enzymatic, then β is omitted), with at
most m membranes, at most k1 variables, and at most k2 programs, with produc-
tion functions which are polynomials of degree at most n, with integer coefficients,
with at most r variables in each polynomial; D indicates the use of determinis-
tic systems (we remove it when the systems may also be non-deterministic); the
superscript 0 means the system works under the NZP assumption. If this assump-
tion is removed, hence the variables can be present also with value zero, and the
programs can be applied if the variables are present in the membrane, does not

292 Gh. Păun, T. Wu, Z. Zhang

matter whether or not their values are zero (we say that we work without the
NZP assumption), then the superscript 0 is removed. If one of the parameters
m,n, r, k1, k2 is not bounded, then we replace it with ∗.

Here are part of the results proved in [17]:

1. NαM
0NP1(poly1(1), V ar2, P ro2)− SLIN+

1 6= ∅, α ∈ {one, seq}.
2. SLIN+

1 ⊂ NαM0NP1(poly1(1), V ar∗, P ro∗), α ∈ {one, seq}.
3. NoneM

0NP1(poly1(3), V ar∗, P ro∗) = NRE.
4. NseqM

0NP2(poly1(3), V ar∗, P ro∗) = NRE.
5. NoneMENP1(poly1(3), V ar∗, P ro∗) = NRE.
6. NseqMENP2(poly1(3), V ar∗, P ro∗) = NRE.

Also the possibility to generate strings with these systems was explored in [17].

N. Associate a language to a computation in an NP system. For instance,
the values of a variable can form a string – in general, over an infinite alphabet
(like in [2]), or on a finite alphabet. For instance, we can consider the binary string
obtained by marking with 0 and 1 the odd and the even values of the distinguished
variable. We can also “read” the natural numbers modulo a given constant k ≥ 2,
so that we can obtain strings over an alphabet with k letters.

O. In particular, we can associate a language to an NP system by considering
an external output: we add a variable also to the environment, which gets parts
of the production of the skin compartment. This can be used both for computing
numbers and strings (in the latter case, following the suggestions from the previous
question).

NP systems used as string generators were considered in [16]. A string is asso-
ciated with a computation in a way somewhat similar to that adopted for spiking
neural P systems: one just considers a special variable out in the environment
which can appear in the repartition protocol of programs in the skin region of a
numerical P system. At each step its value is first reset to zero, then it receives a
new value. If at one step it receives several values from several programs, all these
values are added up and the sum is the value it receives at this step. If the value is
a number i between 1 to q, for some constant q, then the symbol bi is added to the
generated string. If at any step variable out receives a value which is greater than
q or smaller than 0, then this computation aborts, no result is associated with it.

In order to define the generated string, we need to define its end. This is clear
in the case when the computation halts (no further program can be applied), and
this can be taken as a definition of successful computations in purely enzymatic P
systems. In non-enzymatic and in (non-purely) enzymatic systems the computa-
tions never halt, and then we define the end of the string by means of a signal, e.g.,
the step when the system sends out value 0. Because for purely enzymatic systems
we have halting at our disposal, in this case we avoid sending out value 0, that is,
this case is simply ignored. (For a general definition, however, a decision should
be made also for value 0 sent out. A possibility is to proceed as in spiking neural
P systems, where in such a case a special symbol, b0, is added to the string.)

Open Problems on Numerical and SN P Systems 293

It still remains a case not covered: the steps when the system sends no value
to variable out. We have two choices: to forbid such steps, by the definition of
correct computations, or to proceed as in the case of spiking neural P systems and
to associate the string λ to the generated string (the string is not increased, the
system can continue working).

In this way, we define two languages generated by a numerical P system Π.
If at each step a positive value is sent to variable out (with the exception of the
last step, for non-enzymatic and for enzymatic P systems, when value 0 is sent
out, marking the end), then we denote the generated language by Lres(Π) (with
res coming from restricted). If in the steps when no value is sent out (neither 0)
we interpret that the system adds λ to the generated string, then the generated
language is denoted by Lλ(Π).

For an easier remembering, we synthesize the previous conventions/definitions
in a table:

Sending out Non-enzymatic & Enzymatic Purely enzymatic
1, 2, . . . , q bi bi
< 0 or > q abort abort

0 end signal ignored here
nothing λ or forbidden (res) λ or forbidden (res)

We denote by LαβNP γm(polyn(r), V ark1 , P rok2), α ∈ {res, λ}, β ∈ {E, pE,−},
γ ∈ {hal, fin}, the family of languages Lα(Π), generated by β numerical P sys-
tems Π (E = enzymatic, pE = purely enzymatic; if the system is non-enzymatic,
then β is omitted) with at most m membranes, at most k1 variables, and at most
k2 programs, with production functions which are polynomials of degree at most
n, with integer coefficients, with at most r variables in each polynomial; the su-
perscript γ = hal is used for purely enzymatic systems, to indicate that the result
is obtained when the system reaches a halting configuration; in the case when the
end of the computation is defined by means of a signal (sending value 0 out), then
we replace hal by fin. If one of the parameters m,n, r, k1, k2 is not bounded, then
we replace it with ∗.

Here are some of the results proved in [16]:

1. LresβNP γ∗ (poly ∗ n(∗), V ar∗, P ro∗) ⊆ REC, β ∈ {E, pE,−}, γ ∈ {hal, fin}.
2. LresNP fin1 (poly1(1), V ar1, P ro2)− FIN 6= ∅.
3. REG ⊆ LresNP fin1 (poly1(1), V ar∗, P ro∗).

4. LresNP fin1 (poly1(4), V ar4, P ro4)−REG 6= ∅..
5. LresNP fin1 (poly1(4), V ar7, P ro6)− CF 6= ∅.
6. The family LresNP fin1 (poly1(4), V ar4, P ro7) contain non-semilinear lan-

guages.
7. LrespENPhal1 (poly1(1), V ar2, P ro2)− FIN 6= ∅.
8. FIN ⊂ LrespENPhal1 (poly1(1), V ar∗, P ro∗).
9. REG ⊆ LrespENPhal1 (poly1(2), V ar∗, P ro∗).

10. LrespENPhal1 (poly1(1), V ar6, P ro4)−REG 6= ∅.

294 Gh. Păun, T. Wu, Z. Zhang

11. LrespENPhal1 (poly1(1), V ar9, P ro6)− CF 6= ∅.
12. The family LrespENPhal1 (poly1(1), V ar7, P ro6) contains non-semilinear lan-

guages.
13. RE = LλpENPhal1 (poly1(2), V ar∗, P ro∗).
14. The family LresENPhal1 (poly1(2), V ar4, P ro6) contains non-semilinear lan-

guages.

P. The external variable can be useful also for considering an NP system as a
decidability device: an instance of a decision problem is encoded in the values of
certain variables, and the values of a specified variable – maybe the external one
(which is not used in any production function) – at a well defined moment (in a
halting configuration, if halting can be defined and ensured) is the yes/no answer
to the problem instance. Using NP systems in this way, as decidability devices, is a
general research topic of definite interest. Which is the efficiency of this approach?
Can NP-complete problems be solved in polynomial time in this framework? If
not, which ingredients can help?

Q. In general, what about NP systems with “active membranes”, i.e., with pos-
sibilities of dissolving, creating, dividing membranes? Are these operations useful
for speeding-up the computations?

R. Related also to the previous questions is the natural one of looking for
interesting sequences of numbers and for interesting functions which can be com-
puted by NP systems. Are there hard sequences/functions (hard with respect to
Turing machines) which can be computed in a more efficient way with NP systems
(maybe endowed with membrane manipulating rules)?

S. The answer to the previous question can have a practical interest, e.g., for
robot controllers. In this context, an exercise is natural: passing from robots acting
in a 2D space, as those considered so far in membrane computing area, to 3D robots
(drones, satellites). This is, expectedly, only a programming issue/exercise, but of
interest in view of the popularity of 3D machineries which need an automatic
(maybe intelligent) controller.

T. In robot control there were useful numerical P systems with enzymes con-
trolling the applicability of programs. A natural idea is to count the variables
used as enzymes, then to try to keep this number as small as possible without
diminishing the computing power (without losing the universality). The numbers
of enzymes used so far in proofs is surprisingly large: For instance, the result in
[11] can be written as

NRE = NgenE∗NP∗(poly
1(2), oneP)

= NgenE776NP254(poly2(253), allP)

(the subscript of E indicates the number of enzymes used) whereas the improve-
ment of the last equality given in [10] can be written as

Open Problems on Numerical and SN P Systems 295

NRE = NgenE427NP4(poly1(6), allP).

The improvements of the above results in [4] are also not concerned with keeping
under control the number of variables used as enzymes.

In [18], the following – again surprising – results were obtained:

NRE = NaccE1NP1(poly1(2), allP)

= NgenE2NP1(poly1(2), oneP)

= NaccE1NP1(poly1(2), oneP).

What other results about enzymatic numerical P systems remain to be im-
proved from this point of view? (What about small universal numerical P sys-
tems?)

U. The previous problem is related to another way to control the use of pro-
grams, namely by means of thresholds, constants associated with programs, com-
pared with the current values of variables in the production function or with the
value of the production itself. See precise definitions in [19] and [15]. Universality
results with a small number of thresholds are obtained in these papers.

4 Further Problems for SNP

V. In the same way as NP systems can compute (also for robot controllers) func-
tions f : Nn −→ Nm, such a function can be computed also by SNP systems. Can
such systems be used for designing robot controllers? Which is the (practical and
theoretical) efficiency of such an approach?

W. On the one hand, the brain is supposed to be a non-Turing “computer”, on
the other hand, it is supposed to have a deterministic conscious part and a non-
deterministic unconscious part, the first one problems problems to the latter, this
one proposing solutions, which are evaluated by the conscious part, and the process
is iterated until either finding the right solution, or the problem is abandoned. Can
such a strategy be implemented in terms of SNP systems? Is it possible to devise
such a hybrid SNP system able of computing beyond Turing?

X. What about extending to SNP systems other ideas currently explored in
hypercomputing, see, e.g., [9]? Can they be formulated for SNP systems in such
a way to make them compute beyond Turing (as – again – the human brain is
supposed to do)?

For instance, what about accelerated SNP systems, where the neurons “learn”
during the functioning of the system. First time when a neuron uses a rule, the
application of the rule lasts one time unit (the time is measured by an external
clock, the user clock). Next time (does not matter how many steps the neuron is
not working in between), the rule is applied in half of a user time unit – and so
on, always half of the duration of the previous rule application.

296 Gh. Păun, T. Wu, Z. Zhang

Thus, a neuron which works each step, in two external time units will perform
an infinity of steps.

The example in figure below shows an SN P system with only one spike inside,
with neurons 1 and 4 working only once, but with neurons 2 and 3 working each
step from step 2 on. Thus, in at most 2 external time units, neurons 2 and 3 send
to neuron 4 any number of spikes. When m spikes are present in neuron 4, neuron
4 fires and the computation halts.

Thus, irrespective how large is m, starting with only one spike inside, this
system will produce m spikes (sent outside) in at most 4 external time units (but
working internally a number of steps which depends on m).

�
�

�
�

�� �
�� �

�
�

�
�

=
R

?

6

-

}

R

o

1
a

a→ a

2

a→ a
3

a→ a

out

am → am

Conjectures:

1. Using the acceleration, we can solve NP-complete problems in polynomial
time. (The first step is to find a suitable problem to be addressed in this
framework.)

2. Accelerated P systems can go beyond Turing (can solve the halting problem –
see the example of [1]); can this result be extended to SN P systems?

Both these conjectures are, metaphorically, supported by the fact that the brain
is efficient and “non-Turing”.

Y. Add to SNP systems further biologically-inspired features, to get closer
to the brain. Ideally, bring enough further features to the SNP systems so that
processes taking place in the “real” brain can be modeled/simulated (at the level
of biologists interest).

Z. We have left to the end a very promising new class of SNP systems, which
are no longer using regular expressions for controlling the application of spiking
rules, but instead polarizations are associated with the neurons and the rules. The
idea was explored in [12]. For the reader convenience, we recall the definition with
full details.

Open Problems on Numerical and SN P Systems 297

A spiking neural P systems with polarizations (in short, a PSN P system) of
degree m ≥ 1 is a construct of the form

Π = (O, σ1, σ2, . . . , σm, syn, in, out),

where

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form

σi = (αi, ni, Ri), 1 ≤ i ≤ m,

where:
(a) αi ∈ {+, 0,−} is the initial polarization of neuron σi;
(b)ni is the initial number of spikes contained in σi;
(c) Ri is a finite set of rules of the following two forms:

(i) α/ac → a;β, for α, β ∈ {+, 0,−}, c ≥ 1 (spiking rules);
(ii)α/as → λ;β, for α, β ∈ {+, 0,−}, s ≥ 1 (forgetting rules);

3. syn ⊆ {1, 2, . . . ,m}×{1, 2, . . . ,m} with i 6= j for each (i, j) ∈ syn, 1 ≤ i, j ≤ m
(synapses between neurons);

4. in, out ∈ {1, 2, . . . ,m} indicate the input and output neurons, respectively.

Note that the definition of PSN P systems is the same as the usual definition
of SN P systems given in the literature, with two differences: the applicability of
a rule is not determined by checking the total number of spikes contained in the
neuron against a regular expression associated with the rule, but the neurons have
charges and a rule can be applied only if the neuron has the charge indicated in
the left hand side of the rule. Of course, in order to use a rule, the total number
of spikes inside the neuron should not be less than the number of spikes consumed
by the rule. Moreover, the neurons not only send out spikes, but also charges, even
when using forgetting rules.

A spiking rule α/ac → a;β is used as follows. If the neuron σi has the charge α
and it contains at least c spikes, then the rule can be applied, and its application
means that c spikes are consumed, the neuron fires and produces a spike, which
carries the charge β. The spike is replicated and each neuron σj such that (i, j) ∈
syn receives the spike and the charge β.

The output neuron also sends spikes out of the system, but no electrical charge
is sent out (it is “lost” in the environment).

A forgetting rule α/as → λ;β is applied when the neuron has the charge α and
contains at least s spikes; s spikes are removed from the neuron and the charge β
is sent to all neurons σj such that (i, j) ∈ syn. (Note that we do not necessarily
forget all spikes, as in the case of usual SN P systems, where exactly s spikes
should be present in order to use a forgetting rule as → λ.)

After a neuron receives charges from other neurons, we perform a computation
of charges inside the neuron as described below:

298 Gh. Păun, T. Wu, Z. Zhang

1. several positive charges (+), several neutral charges (0), several negative
charges (−) lead to one positive charge (+), one neutral charge (0), one negative
charge (−), respectively;

2. a positive charge (+) and a negative charge (−) cancel each other and give the
neutral charge (0);

3. a positive charge (+) or a negative charge (−) is not changed by a neutral
charge (0).

We stress that (i) the computation of charges takes no time; (ii) step 1 of the
above computation of charges is done first. For example, if a given neuron which
is initially neutral receives two positive charges and one negative charge, then first
the two positive charges lead to one positive charge, after that the positive charge
and the negative charge cancel each other, thus the neuron remains neutral.

As usual in SN P systems, a global clock is assumed, marking the time for the
whole system, hence the functioning of the system is synchronized. In each time
unit, if a neuron σi can use one of its rules, then a rule from Ri must be used. If
several rules can be used at the same time in a neuron, then the one to be applied
is chosen non-deterministically. Thus, the rules are used in a sequential manner in
each neuron, but the neurons function in parallel with each other.

The configuration of the system is described by both the number of spikes
and the charge of each neuron; thus, the initial configuration of the system is
C0 = 〈n1, n2, . . . , nm;α1, α2, . . . , αm〉. Using the rules as described above, one can
define transitions among configurations. A transition between two configurations
C1, C2 is denoted by C1 ⇒ C2. Any sequence of transitions starting from the initial
configuration is called a computation. A computation is successful if it reaches a
configuration where no rule can be used in any neuron of the system. We say that
the computation is halting.

A PSN P system can be used as a generative, an accepting, or a computing
device.

With any computation, halting or not, we associate a spike train, the sequence
of symbols 0 and 1 describing the behavior of the output neuron: 1 indicates a
spiking step, 0 indicates a step when no spike exits the system. With a spike train,
a result of a computation can be defined in several ways. For instance, the result of
a computation can be defined as usual in general SN P systems: we only consider
the first two time instances t1 and t2 that neuron out spikes and we say that the
number t2 − t1 is computed/generated by Π. The set of all numbers generated in
this way by a PSN P system Π is denoted by N2(Π) (the subscript 2 indicates
that the computation result is encoded by the time distance between the first two
spikes of any computation).

In the generative case, the neuron with label in is ignored. In the accepting
mode, the neuron with label out is ignored. A number n is introduced in the system,
by introducing a sequence 10n−11 in neuron in (two spikes are introduced, at a
time distance of n steps) and this number is accepted if the computation halts.

When both an input and an output neuron are considered, the PSN P systems
can be used to compute numerical functions. In order to compute a function f :

Open Problems on Numerical and SN P Systems 299

Nk → N, k natural numbers n1, . . . , nk are introduced into the system by “read-
ing” from the environment a spike train of the form z = 10n1−110n2−11 . . . 10nk−11.
Note that exactly k+1 spikes are “read”, that is, after the last spike, it is assumed
that no further spike is sent to the input neuron. The result of the computation
is also encoded as the distance between the first two spikes emitted by the output
neuron with the restriction that the system outputs exactly two spikes and halts
(maybe some further steps after the second spike), hence it produces a spike train
of the form 0b10r−110d for some b, d ≥ 0 with r = f(n1, n2, . . . , nk). The system
outputs no spike in the b ≥ 0 steps from the beginning of the computation until
the first spike.

We denote N2PSNP (chp) the family of all sets of numbers N2(Π) generated
by PSN P systems with at most p charges.

The two results proved in [12] are the following:

1. NRE = N2PSNP (ch3).
2. There exists a universal PSN P system (with three charges) for computing

functions, having 164 neurons.

The proofs are rather complex, at least in comparison with the proofs of the
corresponding results for usual SN P systems, and this is due to the fact that the
polarizations provide a much weaker control on the applicability of the rules in
neurons than the regular expressions.

Again, many research topics remain to be explored. Practically the whole pro-
gram of investigation carried on usual SN P systems has to be explored also for
the new type of spiking neural P systems: normal forms (can we get rid of forget-
ting rules?), using extended rules (producing more than one spike can help, e.g.,
in simplifying the proofs?), generating strings or infinite sequences, considering
asynchronous computations or a parallel/exhaustive use of spiking rules in each
neuron, adding astrocytes or other biology inspired ingredients, and so on and so
forth. Another idea is to consider cell-like PSN P systems; polarized cell-like SN
P systems seem to be challenging to investigate (maybe not universal).

There also appear specific open problems. Of a definite interest is the question
whether or not the number of electrical charges considered in the universality proof
from [12], three, can be decreased. Which is the power of PSN P systems with 2
charges, or even without any charge? Is any of the corresponding classes of com-
puting devices sub-universal? If so, which are the properties (size, closure, decid-
ability) of the corresponding family of sets of numbers or of languages generated?
Finally: can the number of neurons in universal PSN P systems be (significantly)
decreased? (We are pessimistic about this, as clever codifications in terms of the
number of spikes, as usual for standard SN P systems, do not seem to help in the
absence of regular expressions.)

Definitely, we believe that SN P systems with polarizations deserve further
research efforts.

Acknowledgments. This work of T. Wu and Z. Zhang was supported by
the National Natural Science Foundation of China (61033003, 91130034, and

300 Gh. Păun, T. Wu, Z. Zhang

61320106005), Ph.D. Programs Foundation of Ministry of Education of China
(2012014213008), and the Innovation Scientists and Technicians Troop Construc-
tion Projects of Henan Province (154200510012).

References

1. C. Calude, Gh. Păun: Bio-steps beyond Turing, CDMTCS Research Report 226, Univ.
of Auckland (November 2003), and BioSystems, 77 (2004), 175–194

2. J. Dassow, G. Vaszil: P finite automata and regular languages over countable infinite
alphabets. Proc. WMC 2006, Leiden, The Netherlands (H.J. Hoogeboom et al., eds.),
LNCS 4361, Springer, 2006, 367–381.

3. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-
maticae, 71, 2-3 (2006), 279–308.

4. A. Leporati, A.E. Porreca, C. Zandron, G. Mauri: Improving universality results on
parallel enzymatic numerical P systems. Proceedings of 11th Brainstorming Week on
Membrane Computing, Sevilla, February 2013, Fenix Editora, Sevilla, 2013, 177–200.

5. A. Leporati, A.E. Porreca, C. Zandron, G. Mauri: Enzymatic numerical P systems
using elementary arithmetic operations. Membrane Computing. Proc. 14th Intern.
Conf., CMC2013, Chişinău, August 2013, LNCS 8340 (A. Alhazov et al., eds.),
Springer, Berlin, 2014, 249–264.

6. A.B. Pavel, C.I. Vasile, I. Dumitrache: Robot localization implemented with enzy-
matic numerical P systems. Proc. Conf. Living Machines 2012, LNCS 7375, Springer,
2012, 204–215.

7. Gh. Păun, R. Păun: Membrane computing and economics: Numerical P systems.
Fundamenta Informaticae, 73 (2006), 213–227.

8. Gh. Păun, G. Rozenberg, A. Salomaa, eds.: The Oxford Handbook of Membrane
Computing. Oxford University Press, 2010.

9. A. Syropoulos: Hypercomputation: Computing Beyond the Church-Turing Barrier.
Springer, Berlin, 2008.

10. C.I. Vasile, A.B. Pavel, I. Dumitrache: Universality of enzymatic numerical P sys-
tems. International Journal of Computer Mathematics, 90(4) (2013), 869–879.

11. C.I. Vasile, A.B. Pavel, I. Dumitrache, Gh. Păun: On the power of enzymatic numer-
ical P systems. Acta Informatica, 49(6) (2012), 395–412.

12. T. Wu, A. Păun, Z. Zhang, L. Pan: Spiking neural P systems with polarizations.
Submitted, 2015.

13. T. Wu, Z. Zhang, L. Pan: On string languages generated by cell-like spiking neural
P systems. Submitted, 2015.

14. T. Wu, Z. Zhang, Gh. Păun, L. Pan: Cell-like spiking neural P systems. Submitted,
2015.

15. Z. Zhang, L. Pan: Numerical P systems with production thresholds. Submitted, 2015.
16. Z. Zhang, T. Wu, L. Pan, Gh. Păun: On string languages generated by numerical P

systems. Submitted, 2015.
17. Z. Zhang, T. Wu, A. Păun, L. Pan: Numerical P systems with migrating variables.

Submitted, 2015.
18. Z. Zhang, T. Wu, A. Păun, L. Pan: Universal enzymatic numerical P systems with

a small number of enzymatic variables. Submitted, 2015.
19. Z. Zhang, J. Xu, L. Pan: Numerical P systems with thresholds. Submitted, 2015.

