
Kernel P Systems Modelling, Testing and
Verification

Marian Gheorghe1, Rodica Ceterchi2, Florentin Ipate2,3 and Savas Konur1

1 School of Electrical Engineering and Computer Science, University of Bradford
Bradford BD7 1DP, UK
{m.gheorghe, s.konur}@bradford.ac.uk

2 Department of Computer Science, University of Bucharest
Str. Academiei nr. 14, 010014, Bucharest, Romania
florentin.ipate@ifsoft.ro, rceterchi@gmail.com

3 Department of Computer Science, University of Piteşti
Str Targul din Vale, nr 1, 110040, Argeş, Romania

Summary. A kernel P system (kP system, for short) integrates in a coherent and elegant
manner many of the P system features most successfully used for modelling various
applications and, consequently, it provides a framework for analyzing these models. In
this paper, we illustrate the modeling capabilities of kernel P systems by showing how
other classes of P systems can be represented with this formalism and providing a number
of kP system models for sorting algorithms. Furthermore, the problem of testing systems
modelled as kP systems is also discussed and a test generation method based on automata
is proposed. We also demonstrate how formal verification can be used to validate that
the given models work as desired.

1 Introduction

Membrane systems were introduced in [27] as a new natural computing paradigm
inspired by the structure and distribution of the compartments of living cells, as
well as by the main bio-chemical interactions occurring within compartments and
at the inter-cellular level. They were later also called P systems. An account of the
basic fundamental results can be found in [28] and a comprehensive description of
the main research developments in this area is provided in [29]. The key challenges
of the membrane systems area and a discussion on some future research directions,
are available in a more recent survey paper [20].

In recent years, significant progress has been made in using P systems to model
and simulate systems and problems from various areas. However, in order to facil-
itate the modelling, in many cases various features have been added in an ad-hoc
manner to these classes of P systems. This has led to a multitude of P systems
variants, without a coherent integrating view. The newly introduced concept of

206 M. Gheorghe et al

kernel P systems (kP systems) [16, 17] provides a response to this problem. A kP
system integrates in a coherent and elegant manner many of the P system features
most successfully used for modelling various applications and, consequently, it pro-
vides a framework for analyzing these models. Furthermore, the expressive power
of these systems has been illustrated by a number of representative case studies
[19, 17]. The kP system model is supported by a modelling language, called kP-
Lingua, capable of mapping a kP system specification into a machine readable
representation. Furthermore, kP systems are supported by a software framework,
kPWorkbench [21], which integrates a set of related simulation and verification
tools and techniques.

Another complementary method to simulation and verification is testing, a
major activity in the lifecycle of software systems. In practice, software products
are almost always validated through testing. Testing has been discussed for cell-
like P systems and various strategies, such as rule coverage based and automata
based techniques, have been proposed [15, 24]. Until now, however, testing has not
been discussed in the context of kP systems.

In this paper we further illustrate the modeling capabilities of kernel P systems
by showing that other classes of P systems can be represented with this formalisms
and by providing a number of kP system models for sorting algorithms. We present
in this paper the relationship between kP systems and active membrane systems
with electrical charges, whereas in [16, 17, 18] we have also investigated the rela-
tionship with neural-like P systems. We also study here the relationship between
kP systems and P systems with symport/antiport rules. Furthermore, the problem
of testing systems modelled as kP systems is also discussed and a test generation
method based on automata is proposed. We also demonstrate how formal verifi-
cation can be used to validate that the given models work as desired.

2 kP Systems - Main Concepts and Definitions

We consider that standard P system concepts such as strings, multisets, rewriting
rules, and computation are well-known and refer to [28] for their formal notations
and precise definitions. The kP system concepts and definitions introduced below
are from [16, 17]; some are slightly changed and this will be mentioned.

Definition 1. T is a set of compartment types, T = {t1, . . . , ts}, where ti =
(Ri, σi), 1 ≤ i ≤ s, consists of a set of rules, Ri, and an execution strategy, σi,
defined over Lab(Ri), the labels of the rules of Ri.

Remark 1. The compartments that appear in the definition of the kP systems
will be instantiated from these compartment types. The types of rules and the
execution strategies will be discussed later.

Definition 2. A kernel P (kP) system of degree n is a tuple

kΠ = (A,µ,C1, . . . , Cn, i0),

Kernel P Systems Modelling, Testing and Verification 207

where A is a finite set of elements called objects; µ defines the initial membrane
structure, which is a graph, (V,E), where V are vertices indicating components,
and E edges; Ci = (ti, wi), 1 ≤ i ≤ n, is a compartment of the system consisting
of a compartment type from T and an initial multiset, wi over A; io is the output
compartment where the result is obtained.

2.1 kP System Rules

The discussion below assumes that the rules we refer to belong to the same com-
partment, Ci.

Each rule r may have a guard g which refers to the multiset where the rule is
applied to. Its generic form is r {g}. The rule r is applicable to a multiset w when
its left hand side is contained into w and g is true for w.

The guards are constructed using multisets over A, as operands, and relational
and Boolean operators. Let us first introduce some notations.

For a multiset w over A and an element a ∈ A, we denote by |w|a the number
of objects a occurring in w. Let us denote Rel = {<,≤,=, 6=,≥, >}, the set of
relational operators, γ ∈ Rel, a relational operator, an a multiset and r {g} a
rule with guard g. We first introduce an abstract relational expression which is
evaluated for any multiset where the rule is applied to.

Definition 3. If g is the abstract relational expression γan and w is the multiset
it refers to, then the guard denotes the relational expression |w|aγn. The guard g
is true for the multiset w if |w|aγn is true.

One can consider the Boolean operators ¬ (negation), ∧ (conjunction) and
∨ (disjunction), listed with respect to the decreasing precedence order. Abstract
Boolean expressions are obtained by connecting abstract relational expressions by
Boolean operators.

Definition 4. If g is the abstract Boolean expression and the current multiset
is w, then the guard denotes the Boolean expression for w, obtained by replacing
abstract relational expressions with relational expressions for w. The guard g is
true for the multiset w when the Boolean expression for w is true.

Definition 5. A guard is: (i) one of the Boolean constants true or false; (ii) an
abstract relational expression; or (iii) an abstract Boolean expression.

Example 1. If g is the guard ≥ a5∧ ≥ b3∨¬ > c and w a multiset it refers to, then
g is true in w if it has at least 5 a′s and 3 b′s or no more than one c.

Definition 6. A rule from a compartment Cli = (tli , wli) can have one of the
following types:

• (a) rewriting and communication rule: x→ y {g},
where x ∈ A+ and y has the form y = (a1, t1) . . . (ah, th), h ≥ 0, aj ∈ A
and tj indicates a compartment type from T – see Definition 2 – with instance

208 M. Gheorghe et al

compartments linked to the current compartment; tj might also indicate the
type of the current compartment, tli , (in this case it is not present on the right
hand side of the rule); if a link does not exist (i.e., there is no link between the
two compartments in E) then the rule is not applied; if a target, tj, refers to a
compartment type that has more than one instance connected to Cli , then one
of them will be non-deterministically chosen;

• (b) structure changing rules; the following types of rules are considered:
– (b1) membrane division rule: [x]tli → [y1]ti1 . . . [yp]tip {g},

where x ∈ A+ and yj ∈ A∗; the compartment Cli will be replaced by p
compartments; the j-th compartment, instantiated from the compartment
type tij contains the same objects as Cli , but x, which will be replaced by yj;
all the links of Cli are inherited by each of the newly created compartments;

– (b2) membrane dissolution rule: []tli → λ {g};
the compartment Cli will be destroyed together with its links;

– (b3) link creation rule: [x]tli ; []tlj → [y]tli − []tlj {g};
the current compartment is linked to a compartment of type tlj and x is
transformed into y; if more than one instance of the compartment type tlj
exists then one of them will be non-deterministically picked up; g is a guard
that refers to the compartment instantiated from the compartment type tl1 ;

– (b4) link destruction rule: [x]tli − []tlj → [y]tli ; []tlj {g};
is the opposite of link creation and means that the compartments are dis-
connected.

The membrane division is defined slightly differently here compared to [16, 17].
Currently, the right hand side of the rule uses simple multisets with no target
compartments, as they were initially introduced in [16, 17].

2.2 kP System Execution Strategies

In kP systems the way in which rules are executed is defined for each compartment
type t from T – see Definition 1 and Remark 1. As in Definition 1, Lab(R) is the
set of labels of the rules R.

Definition 7. For a compartment type t = (R, σ) from T and r ∈ Lab(R),
r1, . . . , rs ∈ Lab(R), the execution strategy, σ, is defined by the following

• σ = λ, means no rule from the current compartment will be executed;
• σ = {r} – the rule r is executed;
• σ = {r1, . . . , rs} – one of the rules labelled r1, . . . , rs will be chosen non-

deterministically and executed; if none is applicable then none is executed; this
is called alternative or choice;

• σ = {r1, . . . , rs}∗ – the rules are applied an arbitrary number of times (arbitrary
parallelism);

• σ = {r1, . . . , rs}> – the rules are executed according to maximal parallelism
strategy x;

Kernel P Systems Modelling, Testing and Verification 209

• σ = σ1& . . .&σs, means executing sequentially σ1, . . . , σs, where σi, 1 ≤ i ≤
s, describes any of the above cases, namely λ, one rule, a choice, arbitrary
parallelism or maximal parallelism; if one of σi fails to be executed then the
rest is no longer executed;

• for any of the above σ strategy only one single structure changing rule is al-
lowed.

Arbitrary parallelism and maximal parallelism for rewriting and communica-
tion rules, as well as for structure changing rules (cell division, dissolution), are
discussed in [29].

Remark 2. In certain cases the operator & will be ignored and the sequential exe-
cution will be denoted as σ = σ1 . . . σs.

Remark 3. A computation, as usual in membrane computing, is defined as a se-
quence of finite steps starting from the initial configuration, with the initial mul-
tisets distributed in compartments. In each step the rules are selected according
to the execution strategy and this is given by the execution strategy in each com-
partment. The result of a computation will be the number of objects collected in
the output compartment. For a kP systems kΠ, the set of all these numbers will
be denoted by M(kΠ).

Remark 4. When a terminal alphabet, F , is considered, the result of a computation
will be the number of objects from F collected in the output compartment and
this will be denoted by Mt(kΠ)

3 kP Systems and Other Classes of P Systems

In this section we will investigate the relationship between kP systems and P
systems with active membranes, but other relevant classes of P systems will be also
considered, especially those with various applications, such as symport/antiport
P systems. In [17, 18] neural-like P systems have been also considered.

3.1 P Systems with Active Membranes versus kP Systems

We study how P systems with active membranes are simulated by kP systems. In
this case we are dealing with a cell-like system, so the underlying structure is a tree
and we have a set of labels (types) for the compartments of the system. The way
the relationship between these P systems is presented in the sequel is a natural
extension of the method proposed in [16, 17, 18]. In the previous investigations the
set of objects from the output compartment has been mixed up with the rest of the
objects of the system. In this investigation we separate the objects corresponding
to the output compartment and provide a more consistent notation for the kP
system involved. We also deal in this investigation with active membrane systems
with an upper bound for the number of active components

210 M. Gheorghe et al

Definition 8. A P system with active membranes of initial degree n is a tuple (see
[29], Chapter 11) Π = (O,H, µ,w1,0, . . . , wn,0, R, i0) where:

• O is an alphabet of objects, w1,0, . . . , wn,0 are the initial strings in the n initial
compartments and i0 is the output compartment;

• H is the set of labels for compartments;
• µ defines the tree structure associated with the system;
• R consists of rules of the following types:

– (a) rewriting rules: [u → v]eh, for h ∈ H, e ∈ {+,−, 0} (set of electrical
charges), u ∈ O+, v ∈ O∗;

– (b) in communication rules: u[]e1h → [v]e2h , for h ∈ H, e1, e2 ∈ {+,−, 0},
u ∈ O+, v ∈ O∗;

– (c) out communication rules: [u]e1h → []e2h v, for h ∈ H, e1, e2 ∈ {+,−, 0},
u ∈ O+, v ∈ O∗;

– (d) dissolution rules: [u]eh → v, for h ∈ H\{s}, s denotes the skin membrane
(the outmost one), e ∈ {+,−, 0}, u ∈ O+, v ∈ O∗;

– (e) division rules for elementary membranes: [u]e1h → [v]e2h [w]e3h , for h ∈ H,
e1, e2, e3 ∈ {+,−, 0}, u ∈ O+, v, w ∈ O∗;

The rules are executed in accordance with the maxim parallelism, but in each
compartment only one of the rules (b)-(e) is executed. In the sequel we assume
that the output compartment is neither dissolved nor divided. The result of a
computation, obtained in i0 is denoted by M(Π).

The following result shows how the computation of a P system with active
membranes starting with n1 compartments and an upper bound to the number of
active compartments can be performed by a kP system using only rewriting and
communication rules. A first idea of this result has been given in [16, 17, 18].

Theorem 1. If Π is a P system with active membranes having n1 initial com-
partments and an upper bound to the number of active compartments in any com-
putation, then there exists a kP system, kΠ, of degree 2 and using only rewriting
and communication rules, such that M(Π) = M(kΠ).

Proof. Let Π = (O,H, µ,w1,0, . . . , wn1,0, R, i0) be a P system with active mem-
branes of initial degree n1. Initially, the polarizations of the n1 compartments are
all 0, i.e., e1 = . . . = en1

= 0.
We will build a kP system with two compartments. Compartment C1 will cap-

ture the contents and rules of all the compartments of Π. The other compartment,
C2 will be associated to i0 and this will collect the result.

We will need to keep track of a dynamic system of membranes, since we have
dissolution and division of elementary membranes. We will identify a membrane by
a pair (i, h) where i ∈ I is an index associated with an instance of the membrane
and h ∈ H is its label. We use the index in addition to the label as the same label
might appear several times in the system, especially after a membrane division
rule has been applied. We work under the assumption that I is finite. Its cardinal
is equal to the maximum number of active membranes that may appear in any

Kernel P Systems Modelling, Testing and Verification 211

computation – this is assumed to have an upper limit. We let i0 ∈ I and i0 ∈ H.
We will denote by (I×H)c the currently used pairs (i, h). We assume that for any
(i, h) ∈ (I×H)c and (j, h′) ∈ (I×H)c, we have i 6= j. This way we make sure that
the cardinal of (I×H)c is always at most the cardinal of I. Whenever a membrane
dissolution takes place, its index and label are removed from (I × H)c. When a
membrane division rule is applied the index and label of the divided compartment
are removed from (I ×H)c and two new values of indices with the same label are
selected and added to the set (I ×H)c. The tuple (i0, i0) is always in (I ×H)c

We will codify a compartment [w]eh by two tuples < e, i, h > and < w, i, h >,
with (i, h) ∈ (I×H)c, and where, for a multiset w = a1 . . . am, < w, i, h > denotes
< a1, i, h > . . . < am, i, h >. These tuples appear in C1. When h = i0 then in
addition to the tuples present in C1, in C2, for [w]ei0 we have e and w. For a
compartment with label h and electrical charge e in Π there is only one tuple
< e, i, h > in C1, when h 6= i0, or an e in C2, otherwise.

By p(i, h) we denote the parent of the membrane with label h and of index i. If
p(i, h) = (i′, h′) it means that the membrane with label h′ and index i′ is the parent
of the membrane with label h and index i. By < x, p(i, h) > and < e, p(i, h) > we
denote the tuples < x, i′, h′ > and < e, i′, h′ >, respectively.

A new symbol, δ, will be used for the membrane dissolution and division to
control the transfer of objects after these rules have been applied. Hence, we will
use the guard

= δall :=
∧

(¬ =< δ, i, h >| i ∈ I, h ∈ H).

We also introduce a guard checking that the symbols γ1 ans γ2, related with
the communication with the output compartment, i0, do not appear in the current
multiset:

= γall := (¬ = γ1) ∧ (¬ = γ2).

We construct kΠ using T = {t1, t2}, where tj = (R′j , σj) (where R′j and σj
will be defined later), 1 ≤ j ≤ 2, as follows: kΠ = (A,µ′, C1, C2, 2), where the
elements of the system are given below.

• µ′ is the graph with nodes C1, C2 and the edge linking them;
• The alphabet is

A = O ∪{0, 0′,+,+′,−,−′, γ1, γ2}
∪ (

⋃
(i,h)∈I×H({< a, i, h >| a ∈ O ∪ {δ}} ∪ {< e, i, h >| e ∈ {0,+,−}}))

• Cj = (tj , w
′
j,0w

′′
j,0), 1 ≤ j ≤ 2 and C2 is the output compartment.

– The initial multiset, w′1,0w
′′
1,0, is given by

w′1,0 =< w1,0, 1, h1 > . . . < wn1,0, n1, hn1 > wi0,0

where wi0,0 means that wi0,0 does not appear in the initial multiset of C1

(it will appear in C2).

w′′1,0 = {< e1, 1, h1 > . . . < en1 , n1, hn1 > ei0

212 M. Gheorghe et al

where e1 = . . . = en1
= 0, for all the initial multisets and initial membranes

of Π, and, similar to the above case, ei0 means that ei0 does not appear in
the initial multiset. The initial multiset w′2,0w

′′
2,0, is given by

w′2,0 = wi0,0, w
′′
2,0 = ei0 .

Initially, the indices (I × H)1 = {(1, h1) . . . (n1, hn1
)} \ {(i0, i0)} are used

in association with compartment C1 and (i0, i0) for C2. The currently used
indices are (I ×H)c = (I ×H)1 ∪ {(i0, i0)}.

– R′1 and R′2 contain the rules below.
(a.1) For each (i, h) ∈ I × H \ {(i0, i0)} and each rule [u → v]eh ∈ R, e ∈

{+,−, 0}, we add to R′1 the rule < u, i, h >→< v, i, h > {=< e, i, h >
∧= δall ∧= γall}; these rules are applied only when the polarization e
appears in the compartment with index i and label h and none of the
(δ, j, h′), γ1, γ2 appears, i.e., no dissolution or division has started and
no communication with the output compartment, i0, takes place – see
below.

(a.2) For (i, h) = (i0, i0), we add to R′1 the rule < u, i0, i0 >→< v, i0, i0 >
{=< e, i0, i0 > ∧= δall ∧= γall} and the rule u→ v {= e ∧= γall} to
R′2.

(b.1) For each (i, h) ∈ I ×H \ {(i0, i0)}, such that p(i, h) 6= (i0, i0), and each
rule u[]e1h → [v]e2h ∈ R, e1, e2 ∈ {+,−, 0}, we add to R′1 the rule <
u, p(i, h) >< e1, i, h >→< v, i, h >< e2, i, h > {= δall ∧= γall}; these
rules will transform < u, p(i, h) > corresponding to u from the parent
compartment to < v, i, h > corresponding to v from the compartment
with index i and label h; the polarization is changed; as there is only
one object < e1, i, h >, it follows that only one single rule corresponding
to the compartment can be applied at any moment of the computation.

(b.2) When (i, h) = (i0, i0), then the rules added to R′1 are < u, p(i0, i0) ><
e1, i0, i0 >→< v, i0, i0 >< e2, i0, i0 > (ve′2γ1, 2)γ1 {= δall ∧= γall} and
γ1 → λ; and the rules added to R′2 are e′2 → e2{= γ1} and γ1e → λ,
e ∈ {0,+,−}. The first rule apart from simulating the communication
rule, also introduces γ1 in both compartments. In C2 it helps changing
the polarization of it and in C1 it helps with the synchronisation of the
computation. Then the symbol disappears.

(b.3) When p(i, h) = (i0, i0), then we add to R′1 the rules < u, i0, i0 ><
e1, i, h >→< v, i, h >< e2, i, h > (γ2, 2)γ2 {= δall ∧= γall} and γ2 → λ.
The rule uγ2 → λ is added to R′2. Similar to (b.2), γ2 is introduced in
both compartments and in C2 it helps removing u.

(c.1) For each (i, h) ∈ I ×H \ {(i0, i0)}, such that p(i, h) 6= (i0, i0), and each
rule [u]e1h → []e2h v ∈ R, e1, e2 ∈ {+,−, 0}, we add the rule < u, i, h ><
e1, i, h >→< v, p(i, h) >< e2, i, h > {= δall ∧= γall}.

(c.2) When (i, h) = (i0, i0), then we add to R′1 the rule < u, i0, i0 ><
e1, i0, i0 >→< v, p(i0, i0) >< e2, i0, i0 > (e′2γ1, 2)γ1 {= δall ∧ = γall}.
As in (b.2), we use γ1 → λ in R′1 and e′2 → e2{= γ1} in R′2. We need to

Kernel P Systems Modelling, Testing and Verification 213

add to R′2 the rule uγ1e→ λ. The rules make sure that in C1 we simulate
the communication rule and in C2 u disappears and the polarization is
changed to e2.

(c.3) When p(i, h) = (i0, i0), then the rule added to R′1 is < u, i, h ><
e1, i, h >→< v, i0, i0 >< e2, i, h > (v, 2) {= δall ∧ = γall}. This rule
simulates the communication rule and introduces v into C2.

(d.1) for each (i, h) ∈ I ×H \ {(i0, i0)}, such that p(i, h) 6= (i0, i0), and each
rule [u]eh → v ∈ R, e ∈ {+,−, 0}, we add to R′1 the rule < u, i, h ><
e, i, h >→< v, p(i, h) >< δ, i, h > {= δall ∧ = γall}; all the objects
corresponding to those from the compartment of index i and label h
must be moved to the parent compartment - this will happen in the
presence of (δ, i, h) when no other transformation will take place; this is
obtained by using in R′1 rules < a, i, h >→< a, p(i, h) > {=< δ, i, h >},
a ∈ O and < δ, i, h >→ λ; the set (I×H)c will change now by removing
the pair (i, h) from it.

(d.2) When p(i, h) = (i0, i0), then the rules above will become < u, i, h ><
e, i, h >→< v, i0, i0 >< δ, i, h > (v, 2) {= δall ∧ = γall} and <
a, i, h >→< a, i0, i0 > (a, 2) {= (δ, i, h)}, a ∈ O.

(e) For each (i, h) ∈ I ×H \ {(i0, i0)} and each rule [u]e1h → [v]e2h [w]e3h ∈ R,
e1, e2, e3 ∈ {+,−, 0}; we add to R′1 the rule < u, i, h >< e1, i, h >→<
v, j1, h >< e2, j1, h >< w, j2, h >< e3, j2, h >< δ, i, h > {= δall ∧
= γall} – the pair (i, h) is removed from (I × H)c and two new pairs
(j1, h) and (j2, h), existing in I×H, with j1 6= j2, are added to (I×H)c
and one < u, i, h > is transformed into < v, j1, h > and < w, j2, h >
and their associated electrical charges; then the content corresponding
to compartment of index i and label h will be moved to those of index
j1 and j2 and the same label h, hence rules < a, i, h >→< a, j1, h ><
a, j2, h > {=< δ, i, h >}, a ∈ O are added to R′1; finally, < δ, i, h >→ λ
is also included in the set of rules of C1; it is clear that only one division
rule for the same compartment is applied in any step of the computation.

We note that in C ′2 there are no rules for dissolution and division as the output
compartment is not afected by these rules.

The execution strategy in both compartments, C1 and C2 is maximal paral-
lelism.

For a sequence of rules applied in Π, we have a corresponding sequence of rules
in kΠ. Obviously the objects obtained in the output compartment of Π are the
same with those obtained in C2 of kΠ.

3.2 P Systems with Symport/Antiport versus kP Systems

The following definition is from [29].

Definition 9. A P system (of degree d ≥ 1) with antiport and/or symport rules
is a construct

214 M. Gheorghe et al

Π = (O,F,E, µ, w1,0, · · · , wd,0, R1, · · · , Rd, i0) where

O is the alphabet of objects; F ⊆ O is the alphabet of terminal objects; E ⊆ O
is the set of objects occurring in an unbounded number in the environment; µ
is a membrane structure consisting of d membranes (usually labelled with i and
represented by corresponding brackets [i and]i, 1 ≤ i ≤ d); wi, 1 ≤ i ≤ d,
are strings over O associated with regions 1, · · · , d of µ, representing the initial
multisets of objects present in the regions of µ; Ri, 1 ≤ i ≤ d, are finite sets of
rules of the form (u, out; v; in), with u 6= λ and v 6= λ (antiport rule) and/or
(x, out) or (x, in), with x 6= λ (symport rules); i0, 1 ≤ i0 ≤ d, specifies the output
membrane of Π.

We will show now that one can construct for any symport/antiport P system a
kernel P system, such that they compute the same result. We will adopt a slightly
different way of computing the result of the kP systems by allowing it to use a set
of terminal objects. In this case, according to Remark 4, the result will be given by
the number of terminal objects from the output compartment. We can now state
the main result of this section.

Theorem 2. For any P system with symport/antiport rules, Π, there is a kP
system, kΠ, using only rewriting and communication rules and having a terminal
set of objects, such that M(Π) = Mt(kΠ).

Proof. Let Π = (O,F,E, µ, w1,0, · · · , wd,0, R1, · · · , Rd, i0) be a P system, of degree
d, with symport and antiport rules as given by Definition 9.

We construct a kP system kΠ of degree one in the following manner. We take
one unique compartment C1. Apart from the d membranes in system Π, numbered
by 1, 2, · · · , d, we think of the environment as a new membrane, with label 0.

The kP system we build is kΠ = (A,F ′, µ′, C1, 1). The alphabet, A, of kΠ will
consist of objects given by pairs < x, i >∈ O × {0, 1, · · · , d}. For a multiset w =
a1 · · · am in membrane i we use the notation < w, i > for < a1, i >, · · · < am, i >.

The initial multiset is

w′1,0 =< w1,0, 1 > · · · < wd,0, d >

i.e., it contains all the pairs having the first element the initial multiset of mem-
brane i and the second one i, 1 ≤ i ≤ d. Initially, the environment associated with
Π does not have any other objects apart from those in E. The set of rules, R′1, of
the kP system, includes the rules below.

• If a rule (u, out; v, in), u 6= λ, v 6= λ, is in membrane i with parent j and j 6= 0,
then we add the rule
< u, i >< v, j >→< u, j >< v, i >.

• If a rule (u, out; v, in), u 6= λ, v 6= λ, is in membrane i with parent j, j = 0,
then we decompose u = u1u2 and v = v1v2, such that u1, v1 ∈ (O \ E)∗ and
u2, v2 ∈ E∗ and add the rule
< u, i >< v1, 0 >→< u1, 0 >< v, i >.

Kernel P Systems Modelling, Testing and Verification 215

If u1 = λ or v1 = λ we interpret < λ, 0 > as λ, i.e. for v1 = λ and u1 6= λ the
rule becomes < u, i >→< u1, 0 >< v, i >.

• If a rule (u, out), u 6= λ, is in membrane i with parent j and j 6= 0, then we
add the rule
< u, i >→< u, j >.

• If a rule (u, out), , u 6= λ, is in membrane i with parent j, j = 0, we add the
rule
< u, i >→< u1, 0 >,
where u = u1u2 with u1 ∈ (O \ E)∗ and u2 ∈ E∗.
If u1 = λ, then again < λ, 0 > is λ, and the rule becomes < u, i >→ λ.

• If a rule (v, in), v 6= λ, is in membrane i with parent j, and j 6= 0, then we add
the rule
< v, j >→< v, i >.

• If a rule (v, in), v 6= λ, is in membrane i with parent j, j = 0, then we add the
rule
< v1, 0 >→< v, i >,
where v = v1v2 with v1 ∈ (O \ E)+ and v2 ∈ E∗.
Note that in this last case v1 6= λ.

Note that the environment (membrane 0) is treated differently by the above
rules. We do not keep track of elements over E in the environment, which are
in an unbounded number, but we must keep track of elements over O \ E in the
environment. If an u must go into the environment, then we decompose u = u1u2
such that u1 ∈ (O \ E)∗ and u2 ∈ E∗, and only < u1, 0 > will appear in the
right-hand side of the rule. Similarly, if a v comes from the environment, we have
v = v1v2 with v1 ∈ (O \ E)+ and v2 ∈ E∗, and < v1, 0 > must be consumed by
the rule.

The execution strategy of kΠ will be maximal parallelism.
The terminal alphabet is F ′ = {< a, i0 >| a ∈ F}. Note that multisets over F ′

obtained in kΠ will correspond to multisets over F obtained in membrane i0 by
Π.

Remark 5. It remains an open problem to devise a kP system with two compart-
ments, where C1 reflects the functioning of the entire system, while C2 simulates
membrane i0.

4 Sorting with kP Systems

Sorting is a central topic in Computer Science (see [25]). A variety of approaches to
sorting have been investigated, for different algorithms, and with different P system
models. A first approach was [3], in which a BeadSort algorithm was implemented
with tissue P systems. Another approach was [6], in which algorithms inspired from
sorting networks were implemented using P systems with communication. Other
papers ([1], [30]) use different types of P systems, and refine the sorting problem

216 M. Gheorghe et al

to sorting by ranking. A first overview of sorting algorithms implemented with P
systems was [2]. A dynamic sorting algorithm was proposed in [7]. The bitonic
sort was implemented with P systems [8], spiking neural P systems were used
for sorting [10], other network algorithms were implemented using P systems [9].
Another overview of sorting algorithms implemented with P systems is provided
by [11]. First implementations of sorting with kP systems were proposed in [16, 17].

The problem can be stated as follows: suppose we want to sort x1, · · · , xn,
n ≥ 1, in ascending order, where xi, 1 ≤ i ≤ n, are positive integer values. Each
such number, xi, 1 ≤ i ≤ n, will be represented as a multiset axi

i , 1 ≤ i ≤
n, where ai is an object from a given set. In the next sections we will present
two sorting algorithms using different representations of the sequence of positive
integer numbers. More precisely, we start with an algorithm already studied in
several other papers, [6, 2] for various types of P systems. Here we implement
it using kP systems, by representing each element xi by axi , 1 ≤ i ≤ n. The
multisets axi , 1 ≤ i ≤ n, are stored in separate compartments, Ci, 1 ≤ i ≤ n
(Section 4.1). In Section 4.2 these positive integer numbers are represented by axi

i ,
1 ≤ i ≤ n, and stored in one compartment C1; an additional one, C2, is used
for implementation purposes. In Section 4.3 it is used again the representation
axi
i , 1 ≤ i ≤ n, but a more complex structure of compartments is provided in

order to maximise the parallel behaviour of the system implementing the sorting
algorithm. The algorithm used in Section 4.1 and Section 4.2 makes comparisons
of adjacent compartments by employing a two stage process. In the first stage all
pairs “odd-even” are compared (C2i−1 with C2i, i ≥ 1) and in the second stage all
pairs “even-odd” are involved (C2i with C2i+1, i ≥ 1).

4.1 Sorting Using kP Systems with an Element per Compartment

The approach presented below follows [16, 17], but stopping conditions have been
also considered and the sequence of numbers is obtained in ascending order.

Let us consider a kP system, kΠ1, having n compartments Ci = (ti, wi,0),
where ti = (Ri, σi), 1 ≤ i ≤ n, and a set of objects A = {a, b, c, p, p′}. In each
compartment, Ci, the initial multiset, wi,0, 1 ≤ i ≤ n, includes the representation
of the positive integer number xi, i.e., axi , the multiset c2(n−1) and the object
p for all odd index values, when n is an even number, and for all odd index
values, but the last, when n is odd. The objects p stored initially in compartments
indexed by odd values indicate that one starts with stage one, whereby “odd-
even” compartment pairs are compared first. The multiset c2(n−1) will be used
in a counting process, in each of the compartments, that will help stoping the
algorithm when the sorting is complete.

Let us consider for n = 6 the sequence 3, 6, 9, 5, 7, 8. Then the initial multisets
are:
w1,0 = a3c10p;w2,0 = a6c10;w3,0 = a9c10p;w4,0 = a5c10;w5,0 = a7c10p;w6,0 =
a8c10. As n is even, p appears in all compartments indexed by odd values, i.e., C1,
C3, and C5.

Kernel P Systems Modelling, Testing and Verification 217

In each compartment Ci, ti contains the following set of rules, denoted Ri,
1 ≤ i ≤ n,
r1,i : a→ (b, i+ 1) {≥ p}, i < n;
r2,i : p→ p′;
r3,i : p′ → (p, i + 1), for i odd and i < n, and r′3,i : p′ → (p, i− 1), for i even and
i > 1;
r4,i : ab→ a(a, i− 1), i > 1;
r5,i : b→ a, i > 1.

We also consider the rule r : c → λ. This rule is used for implementing the
counting process mentioned above. By using the two stage process of comparing
“odd-even” pair of compartments and then “even-odd” ones, one needs at most
n− 1 stages to complete the sorting. As it will be explained below, each stage will
involve two steps and consequently after 2(n − 1) steps one expects to stop the
sorting process.

In each compartment Ci, the execution strategy is given by
σi = {r}{r1,i, r2,i, r3,i, r4,i}> {r5,i}>,

if i is odd; for even values of i, r3,i is replaced by r′3,i. The execution strategy, σi,
tells us that a sequence of three sets of rules are executed in each step. The first
one indicates that one single rule is applied and then two sets of rules are used,
each of them applied in a maximal parallel manner.

We assume that any two compartments, Ci, Ci+1, 1 ≤ i < n, are connected.
In the first step, of the “odd-even” stage, in every compartment one c is re-

moved by applying r : c → λ; then the only applicable rules are r1,i, r2,i in all
compartments indexed by an odd value. Given the presence of p in these compart-
ments, rules r1,i move all objects a from each compartment with an odd index
value, i, i < n, to the compartment Ci+1 by transforming them into bs and rules
r2,i transforming p into p′. In the next step, another c is removed from every
compartment and rules r3,i, r4,i, r5,i are then applied. The rules r3,i are applied in
compartments with an odd index value and r4,i are applied in compartments with
an even index value, this means p′ is moved as p from each Ci, i an odd value
and i < n, to compartment Ci+1 and every ab, in each Cj , j an even value and
j > 1, is transformed into an a kept in the compartment and another a moved
to Cj−1. At the end of the step, in each compartment Cj , j an even value and
j > 1, and in accordance with the execution strategy, the remaining b objects, if
any, are transformed into as. These two steps implement comparators between two
adjacent compartments, in this case “odd-even” pairs. If axi from Ci and axi+1

from Ci+1, i < n, are such that xi > xi+1 then the multisets axi is moved to Ci+1

and axi+1 to Ci. In the next step, the first of the second stage, ps appear in even
compartments and the comparators are now acting between pairs of compartments
Ci, Ci+1, where i is even and i < n.

Given that the algorithm must stop in maximum 2(n−1) steps, one can notice
that in step 2(n− 1) the counter, c, disappears, i.e., becomes λ, and the first rule
from the execution strategy, r, is no longer applicable and then the next sets of

218 M. Gheorghe et al

rules are not executed either. Hence, the process stops with the multisets codifying
for positive integer values in asceding order.

The table below presents the first four steps of the sorting process.

Compartments - Step C1 C2 C3 C4 C5 C6

0 a3c10p a6c10 a9c10p a5c10 a7c10p a8c10

1 c9p′ a6b3c9 c9p′ a5b9c9 c9p′ a8b7c9

2 a3c8 a6c8p a5c8 a9c8p a7c8 a8c8p
3 a3c7 c7p′ a5b6c7 c7p′ a7b9c7 a8c7p′

4 a3c6p a5c6 a6c6p a7c6 a9c6p a8c6

Now, one can state the result of the algorithm presented above and the number
of steps involved.

Theorem 3. The above algorithm sorts in ascending order a sequence of n, n ≥ 1,
positive integer numbers in 2(n− 1) steps.

4.2 Sorting Using kP Systems with Two Compartments

In this section we use a representation of the positive integer numbers x1, · · · , xn as
multisets ax1

1 , · · · , axn
n , where a1, · · · , an are from a given set of objects. We consider

a kP system, kΠ2, with two compartments Cj = (tj , wj,0), 1 ≤ j ≤ 2, which are
linked and A = {a1, . . . , an, c}. The initial multisets are w1,0 = ax1

1 · · · axn
n cn−1

and w2,0 = cn−1.
Finally, the kP system kΠ2 will lead to a multiset a

xi1
1 · · · axin

n in compartment
C1, such that xi1 ≤ · · · ≤ xin .

In compartments C1 the rules are
R1,1 = {aiai+1 → (ai, 2)(ai+1, 2) | 1 ≤ i < n & i = 1, 3, ...};
R2,1 = {ai → (ai+1, 2) | 1 ≤ i < n & i = 1, 3, ...};
R3,1 = {ai → (ai, 2) | 1 ≤ i ≤ n}.

We also consider the rule r : c→ λ, like in the previous section.
Compartment C2 has the rules

R1,2 = {aiai+1 → (ai, 1)(ai+1, 1) | 1 ≤ i < n & i = 2, 4, ...};
R2,2 = {ai → (ai+1, 1) | 1 ≤ i < n & i = 2, 4, ...};
R3,2 = {ai → (ai, 1) | 1 ≤ i ≤ n};
and the rule r defined above.

The execution strategies of these compartments are
σj = {r}Lab(R1,j)

>Lab(R2,j)
>Lab(R3,j)

>, j = 1, 2.
In compartment C1 one implements “odd-even” comparison steps and in C2

“even-odd” steps. The process starts with compartment C1. The execution strat-
egy in each compartment starts by decrementing the counter (using r), then the
comparators are implemented by executing first R1,j and then R2,j , j = 1, 2, both
in maximally parallel manner. After that all the pairs ai, ai+1 are sent to the other
compartment and when axi

i and a
xi+1

i+1 are such that xi > xi+1 then ai is trans-
formed into ai+1 and sent to the other compratment, i.e., ai and ai+1 are swapped

Kernel P Systems Modelling, Testing and Verification 219

and sent to the other compartment. In the last part, are moved to the other com-
partment all the objects ai, 1 ≤ i ≤ n, that remained there after comparisons.
This is the case when a pair ai and ai+1 has its objects with their multiplicities,
xi and xi+1, respectively, in the right order, i.e., xi ≤ xi+1.

Clearly after at most n−1 steps the objects a1, · · · , an have their multiplicities
in the ascending order and the sorting process stops as r is no longer applicable
and the execution strategy is not applicable any more.

Theorem 4. The above algorithm sorts in ascending order a sequence of n, n ≥ 1,
positive integer numbers in n− 1 steps.

One can produce a similar implementation whereby the comparison of two
neighbours is made more directly and with simpler rules, but with more complex
guards.

In this case we extend the definition of a guard, by allowing θan to be of the
form θaf(z), where f(z) is a function over the multisets of objects returning a
positive integer value. For the current multiset z, one can define, for instance,
fb(z) = |z|b, Then a rule a → b{> afb(·)} is applicable to z if the guard is true,
i.e., |z|a > |z|b.

The extended definition of the guard allows us to implement a comparator
with simpler rules than in the previous case. We have the pair of integers x1, x2
represented as a1

x1 , a2
x2 . Consider the pair of guarded rewriting rules

a1 → a2{> a1
fa2

(·)} and a2 → a1{< a2
fa1

(·)}

where fa2(w) = |w|a2 and fa1(w) = |w|a1 . Then both guards codify the condi-
tion x1 > x2.

If x1 ≤ x2 the rules are not applicable, while if x1 > x2, then the x1 copies of
a1 are rewritten as a2, and x2 copies of a2 are rewritten as a1, interchanging the
values and achieving eventually x1 ≤ x2.

A kP system, kΠ3, is defined now for sorting the sequence of n, n ≥ 1, positive
integer numbers. It consists of two compartment C1 and C2 which are linked. They
have the same initial multisets like kΠ2. The sets of rules associated with these
compartments are

• R1 consisting of three subsets of rules (R1 is responsible for “odd-even” stages):
– {r | r : c→ λ};
– R1,1 = {ai → (ai+1, 2){> a

fai+1
(·)

i } | i = 1, 3 · · · & i < n};
– R2,1 = {ai+1 → (ai, 2){< a

fai
(·)

i+1 } | i = 1, 3 · · · & i < n};
– R3,1 = {ai → (ai, 2) | i = 1, · · · , n}.

The function fai is defined fai(z) = |z|ai , 1 ≤ i ≤ n, for any multiset z.
Similarly, one defines R2 in compartment C2, which is used to implement

the “even-odd” stage. The execution strategy is given by σj = {r}Lab(R1,j ∪
R2,j)

>Lab(R3,j)
>, j = 1, 2.

220 M. Gheorghe et al

Theorem 5. The above algorithm sorts in ascending order a sequence of n, n ≥ 1,
positive integer numbers in n− 1 steps.

Remark 6. 1. The kP system kΠ3 has simpler rules (non-cooperative) than kΠ2

(cooperative rules), but the guards of the rules in kΠ2 are simpler than those be-
longing to kΠ3.
2. The number of rules applied in each step to interchange axi

i and a
xi+1

i+1 is
max{xi, xi+1} for kΠ2 and xi + xi+1 for kΠ3. Hence, kΠ2 uses less rules than
kΠ3 in each one of the n− 1 steps.

4.3 A kP System for Sorting in Constant Time

We suppose the integers to be sorted x1, · · ·xn distinct.
We use a total of n2 + 2n compartments:

- Ci,j , 1 ≤ i, j ≤ n, where each Ci,j will be responsible for a comparison;
- Ci, 1 ≤ i ≤ 2n, where each Ci, 1 ≤ i ≤ n, will collect the results of comparing

xi to the rest; and Ci, n+ 1 ≤ i ≤ 2n, will collect the sorted result.

The connections between compartments are given by the set of edges

E = ∪ni=1Ei

where

Ei = {(Ci, Ci,j) | 1 ≤ j ≤ n} ∪ {(Ci, Ck) | n+ 1 ≤ k ≤ 2n}, 1 ≤ i ≤ n.

Each Ci,j , 1 ≤ i, j ≤ n, will contain the initial multiset wi,j,0 = ai
xiaj

xja and the
rules
r′i,j : ai → ajF{> ai

fj(·)}; r′′i,j : aj → ai{< aj
fi(·)}; r′′′i,j : a→ a′;

ri,j : a′ → (F, i){≥ F},
where fi(z) = |z|ai and fj(z) = |z|aj .
The execution strategy is σi,j = {r′i,j , r′′i,j , r′′′i,j , ri,j}>.
Note that the rules r′i,j , r

′′
i,j implement a comparator between xi and xj , similar

to the one of the previous section. The modified comparator produces also a symbol
F (False) when xi > xj , signifying that xi ≤ xj is false. If the rewriting rules
r′i,j , r

′′
i,j and r′′′i,j have acted, then a single F will be sent to compartment Ci (by

using the rule ri,j).
In compartment Ci, 1 ≤ i ≤ n, we have the initial multiset wi,0 = ai

xia and
the rules
r′i : a→ a′; r′′i : a′ → a′′;
ri,0 : ai → (a, n + 1){< F ∧ = a′′}; ri,k : ai → (a, n + k + 1){= F k ∧ = a′′},
1 ≤ k ≤ n− 1.

The execution strategy is σi = {r′i, r′′i , ri,0, · · · , ri,n−1}>.
Compartments Ci, n+ 1 ≤ i ≤ 2n, are initially empty and contain no rules.
The functioning of the system is as follows. Initially, in compartments Ci,j , 1 ≤

i, j ≤ n, the rules r′i,j , r
′′
i,j , and r′′′i,j act. If xi > xj the values will be interchanged

Kernel P Systems Modelling, Testing and Verification 221

and some F s will be produced (rules r′i,j , r
′′
i,j are used), signifying that xi ≤ xj is

false. Also r′′′i,j is used to transform a in a′. If at least one F is produced in Ci,j ,
then a single F will be sent to Ci, using rule ri,j . In parallel, in each compartment
Ci, 1 ≤ i ≤ n, in the first two steps the rules r′i and r′′i are applied.

After these two steps, no rules are applicable in Ci,j , 1 ≤ i, j ≤ n, and in
Ci, 1 ≤ i ≤ n, the rules ri,k, 0 ≤ k ≤ n − 1, might be applicable, depending
on the number of F s collected.The number of F s tells us how many comparisons
xi ≤ xj , 1 ≤ j ≤ n, are false. If we have k such F s in Ci, it means that xi is
greater than exactly k other values, which means that in the sorted order it must
be the (k+ 1)-th component. This is accomplished by sending axi in Cn+k+1. The
maximum number of F s in Ci is n − 1 because Ci,i will never produce an F . If
there are no F s in Ci, this means that xi is the minimum, and axi will be sent
to Cn+1. Compartments Cn+i, 1 ≤ i ≤ n, collect the result of sorting. Each such
Cn+i will contain at the end of the computation the string axki , xki being the i-th
value in the sorted order. The computation has three steps, the first two ones in
which Ci,j , 1 ≤ i, j ≤ n, work, and a third one in which Ci, 1 ≤ i ≤ n, work.

Theorem 6. The above kP system sorts n integers in 3 steps.

4.4 Sorting in Constant Time with Membrane Division

The algorithm in the previous section uses only rewriting and communication rules.
This solution, although computationally efficient, requires an initial, quite com-
plex, arrangement of compartments and multisets. We present here an algorithm
which creates its working space by using membrane division rules.

We want to sort n distinct integers, x1, · · ·xn, represented as a1
x1 , · · · , anxn .

We start with a total of 3n compartments:

- Ci, 1 ≤ i ≤ n, where each Ci, will collect the results of comparing xi to the
rest;

- Ci, n+ 1 ≤ i ≤ 2n, will collect the sorted result;
- Ck, 2n + 1 ≤ k ≤ 3n, such that C2n+i ⊂ Ci, responsible for creating the

comparator compartments.

The connections between compartments are given by the set of edges

E = ∪ni=1Ei

where
Ei = {(Ci, C2n+i)} ∪ {(Ci, Ck) | n+ 1 ≤ k ≤ 2n}, 1 ≤ i ≤ n.

In compartment Ci, 1 ≤ i ≤ n, we have the initial multiset wi,0 = ai
xia and

the rules
r′i : a→ a′; r′′i : a′ → a′′; r′′′i : a′′ → a′′′;
ri,0 : ai → (a, n + 1){< F ∧ = a′′′}; ri,k : ai → (a, n + k + 1){= F k ∧ = a′′′},
1 ≤ k ≤ n− 1.

The execution strategy is σi = {r′i, r′′i , r′′′i , ri,0, · · · , ri,n−1}>.

222 M. Gheorghe et al

Compartments Ci, n+ 1 ≤ i ≤ 2n, are initially empty and contain no rules.
Compartments C2n+i, 1 ≤ i ≤ n, contain an initial multiset s, where s is a new

object, and the membrane division rules

[s]2n+i → [a1
x1ai

xia]i,1 · · · [ajxjai
xia]i,j · · · [anxnai

xia]i,n, 1 ≤ i ≤ n.

These rules will generate in each Ci the compartments Ci,j , 1 ≤ j ≤ n. In each
Ci,j we will have the multiset aj

xjai
xia, and the rules

r′i,j : ai → ajF{> ai
fj(·)}; r′′i,j : aj → ai{< aj

fi(·)}; r′′′i,j : a→ a′;
ri,j : a′ → (F, i){≥ F},

where fi(z) = |z|ai and fj(z) = |z|aj .
The execution strategy is σi,j = {r′i,j , r′′i,j , r′′′i,j , ri,j}>.
Note that this is the comparator of the previous section, which sends a single

F in Ci if xi ≤ xj is false.
During the first step, in compartment Ci rule r′i is executed, while in C2n+i

the membrane division rule is applied, generating the Ci,j , 1 ≤ j ≤ n. The next
three steps are identical to the ones of the previous algorithm.

Theorem 7. The above kP system sorts n integers in 4 steps.

5 Simulating and Verifying kP Systems

In Section 4, we have illustrated that kP systems provide a coherent and expressive
language that allow us to model various systems that were originally implemented
by different P system variants. In addition to the modelling aspect, there has
been a significant progress on analysing kP systems using various simulation and
verification methodologies. The methods and tools developed in this respect have
been integrated into a software platform, called kPWorkbench, to support the
modelling and analysis of kP systems.

The ability of simulating kernel P systems is an important feature of this tool.
Currently, there are two different simulation approaches, kPWorkbench Sim-
ulator and Flame (Flexible Large-Scale Agent Modelling Environment). Both
simulators receive as input a kP system model written in kP–Lingua and out-
puts a trace of the execution, which is mainly used for checking the evolution of
a system and for extracting various results out of the simulation. The simulators
provide traces of execution for a kP system model, and an interface displaying
the current configuration (the content of each compartment) at each step. It is
useful for checking the temporal evolution of a kP system and for inferring various
information from the simulation results.

Another important analysis method that kPWorkbench features is formal
verification, requiring an exhaustive analysis of system models against some queries
to be verified. The automatic verification of kP systems brings in some challenges
as they feature a dynamic structure by preserving the structure changing rules such
as membrane division, dissolution and link creation/destruction. kPWorkbench

Kernel P Systems Modelling, Testing and Verification 223

Prop. Pattern (i) Informal query, (ii) Formal query using patterns

1 Existence
(i) The numbers will be eventually sorted, i.e. the multisets representing the
numbers will be in ascending order in the compartments
(ii) eventually
(c1.a <= c2.a & c2.a <= c3.a & c3.a <= c4.a & c4.a <= c5.a & c5.a <= c6.a)

2 Universality
(i) Counters in different compartments are always sync’ed
(ii) always (c1.c = c2.c & c2.c = c3.c & c3.c = c4.c & c4.c = c5.c & c5.c = c6.c)

3 Steady-state
(i) In the state-state, the numbers are sorted
(ii) steady-state
(c1.a <= c2.a & c2.a <= c3.a & c3.a <= c4.a & c4.a <= c5.a & c5.a <= c6.a)

4 Existence
(i) The algorithm will eventually stop
(ii) eventually (ci.c = 0)

5 Response
(i) An unsorted state of two adjacent compartments will always be followed by
a sorted one
(ii) (ci.a >ci+1.a) followed-by (ci.a <= ci+1.a)

Table 1: List of properties derived from the property language and their representations
in different formats.

employs different verification strategies to allieviate these issues. The framework
supports both Linear Temporal Logic (LTL) and Computation Tree Logic (CTL)
properties by making use of the Spin [22] and NuSMV [13] model checkers.

In order to facilitate the formal specification, kPWorkbench features a prop-
erty language, called kP-Queries, comprising a list of natural language statements
representing formal property patterns, from which the formal syntax of the Spin
and NuSMV formulas are automatically generated. The property language editor
interacts with the kP-Lingua model in question and allows users to directly access
the native elements in the model, which results in less verbose and shorter state
expressions, and hence more comprehensible formulas. kP-Queries also features a
grammar for the most common property patterns. These features and the natural
language like syntax of the language make the property construction much easier.

Some of the commonly used patterns are “next”, “existence”, “absence”, “uni-
versality”, “recurrence”, “steady-state”, “until”, “response” and “precedence”.
The details can be found in [21].

We now illustrate the usage of the query patters on the sorting algorithm
given in Section 4.1. The other algorithms can be considered in a similar manner.
In order to verify that the algorithm works as desired, we have constructed a set of
properties specified in kP-Queries, listed in Table 1. The applied pattern types are
given in the second column of the table. For each property we provide the following
information; (i) informal description of each kP-Query, and (ii) the formal kP-
Query using the patterns. The queries given in Table 1 capture that the algorithm
given in Section 4.1 works as desired.

We note that both kP–Lingua model and the queries are automatically con-
verted into the languages required by the corresponding model checkers. So, the
verification process in kPWorkbench is carried out in automatic manner.

224 M. Gheorghe et al

6 Testing kP Systems Using Automata Based Techniques

In this section we outline how the kP systems obtained in the previous sections
can be tested using automata based testing methods. The approach presented
here follows the blueprint presented in [24] and [15] for cell-like P systems. We
illustrate our approach on kΠ1, the application of our approach on the other kP
system modeling sorting algorithms is similar.

Naturally, in order to apply an automata based testing method to a kP model,
a finite automata needs to be obtained first. In general, the computation of a kP
system cannot be fully modelled by a finite automaton and so an approximate
automaton will be sought. The problem will be addressed in two steps.

• Firstly, the computation tree of a P system will be represented as a determin-
istic finite automaton. In order to guarantee the finiteness of this process, an
upper bound k on the length of any computation will be set and only compu-
tations of maximum k transitions will be considered at a time.

• Secondly, a minimal model, that preserves the required behaviour, will be de-
fined on the basis of the aforementioned derivation tree.

Let Mk = (Ak, Qk, q0,k, Fk, hk) be the finite automaton representation of the
computation tree, where Ak is the finite input alphabet, Qk is the finite set of
states, q0,k ∈ Qk is the initial state, Fk ⊆ Qk is the set of final states, and
hk : Qk × Ak −→ Qk is the next-state function. Ak is composed of the tuples of
multisets that label the transition of the computation tree. The states of Tk corre-
spond to the nodes of the tree. For testing purposes we will consider all the states
as final. It is implicitly assumed that a non-final “sink” state qsink that receives
all “rejected” transitions, also exists.

Consider kΠ1, the kP system in section 4.1, n = 6 and the sequence to be
sorted 3, 6, 9, 5, 7, 8. Then the initial multisets are:
w1,0 = a3c10p;w2,0 = a6c10;w3,0 = a9c10p;w4,0 = a5c10;w5,0 = a7c10p;w6,0 =
a8c10. As kΠ1 is a deterministic kP system, there are no ramification in the com-
putation tree. For k = 3, this is represented below.

Compartments - Step C1 C2 C3 C4 C5 C6

0 rr31,1r2,1 r rr91,3r2,3 r rr71,5r2,5 r

1 rr3,1 rr34,2 rr3,3 rr54,4r
4
5,4 rr3,5 rr74,6

2 r rr61,2r2,2 r rr91,4r2,4 r rr2,6
3 r rr′3,2 rr51,3r5,3 rr′3,4 rr71,5r

2
5,5 rr

′
3,6

Let us denote
α1 = (rr31,1r2,1, r, rr

9
1,3r2,3, r, rr

7
1,5r2,5, r),

α2 = (rr3,1, rr
3
4,2, rr3,3, rr

5
4,4r

4
5,4, rr3,5, rr

7
4,6),

α3 = (r, rr61,2r2,2, r, rr
9
1,4r2,4, r, rr2,6),

α4 = (r, rr′3,2, rr
5
1,3r5,3, rr

′
3,4, rr

7
1,5r

2
5,5, rr

′
3,6).

Kernel P Systems Modelling, Testing and Verification 225

Then, for k = 3, Mk = (Ak, Qk, q0,k, Fk, hk), where
Ak = {α1, α2, α3, α4}, Qk = {q0,k, q1,k, q2,k, q3,k, q4,k}, Fk = Qk, and hk, the next-
state function, is defined by: hk(qi−1,k, αi) = qi,k), 1 ≤ i ≤ 4.

As Mk is a deterministic finite automaton over Ak, one can find the minimal
deterministic finite automaton that accepts exactly the language defined by Mk.
However, as only sequences of at most k transitions are considered, it is irrelevant
how the constructed automaton will behave for longer sequences. Consequently,
a deterministic finite cover automaton of the language defined by Mk will be
sufficient.

A deterministic finite cover automaton (DFCA) of a finite language U is a
deterministic finite automaton that accepts all sequences in U and possibly other
sequences that are longer than any sequence in U [4], [5]. A minimal DFCA of U is
a DFCA of U having the least possible states. A minimal DFCA may not be unique
(up to a renaming of its states). The great advantage of using a minimal DFCA
instead of the minimal deterministic automaton that accepts precisely the language
U is that the size (number of states) of the minimal DFCA may be much less than
that of the minimal deterministic automaton that accepts U . Several algorithms
for constructing a minimal DFCA (starting from the deterministic automaton that
accepts the language U) exist, the best known algorithm [26] requires O(n log n)
time, where n denotes the number of states of the original automaton. For details
about the construction of a minimal DFCA we refer the reader to [24] and [26].

A minimal DFCA of the language defined by Mk, k = 3, is M = (A,Q, q0, F, h),
where A = Ak, Q = {q0, q1, q2, q3}, F = Q and h defined by: h(qi−1, αi) = qi,
1 ≤ i ≤ 3 and h(q3, α4) = q0.

Now, suppose we have a finite state model (automaton) of the system we want
to test. In conformance testing one constructs a finite set of input sequences, called
test suite, such that the implementation passes all tests in the test suite if and only
if it behaves identically to the specification on any input sequence. Naturally, the
implementation under test can also be modelled by an unknown deterministic finite
automaton, say M ′. This is not known, but one can make assumptions about it
(e.g. that may have a number of incorrect transitions, missing or extra states).
One of the least restrictive assumptions refers to its size (number of states). The
W -method [12] assumes that the difference between the number of states of the
implementation model and that of the specification has to be at most β, a non-
negative integer estimated by the tester. The W -method involves the selection of
two sets of input sequences, a state cover S and a characterization set W [12].

In our case, we have constructed a DFCA model of the system and we are
only interested of the behavior of the system for sequences of length up to an
upper bound k. Then, the set suite will only contain sequences of up to length k
and its successful application to the implementation under test will establish that
the implementation will behave identically to the specification for any sequence
of length less then or equal to k. This situation is called conformance testing
for bounded sequences. Recently, it was shown that the underlying idea of the
W -method can also be applied in the case of bounded sequences, provided that

226 M. Gheorghe et al

the sets S and W used in the construction of the test suite satisfy some further
requirements; these are called a proper state cover and strong characterization
set, respectively [23]. In what follows we informally define these two concepts and
illustrate them on our working example. For formal definitions we refer the reader
to [23] or [24].

A proper state cover of a deterministic finite automaton M = (A,Q, q0, F, h) is
a set of sequences S ⊆ A∗ such that for every state q ∈ Q, S contains a sequence
of minimum length that reaches q. Consider M the DFCA in our example. Then λ
is the sequence of minimum length that reaches q0, σ1 is a sequence of minimum
length that reaches q1, α1α2 is a sequence of minimum length that reaches q2,
α1α2α3 is a sequence of minimum length that reaches q3. Furthermore, we can use
any input symbol in A \ {α1} to reach the (implicit) “sink” state, for example α2.
Thus, S = {λ, α1, α1α2, α1α2α3, α2} is a proper state cover of M .

A strong characterization set of a minimal deterministic finite automaton M =
(A,Q, q0, F, h) is a set of sequences W ⊆ A∗ such that for every two distinct
states q1, q2 ∈ Q, W contains a sequence of minimum length that distinguishes
between q1 and q2. Consider again our running example. λ distinguishes between
the (non-final) “sink” state and all the other (final) states. A transition labelled α1

is defined from q0, but not from q1, q2 or q3, so α1 is a sequence of minimum length
that distinguishes q0 from q1, q2 and q3. Similarly, α2 is a sequence of minimum
length that distinguishes q1 from q2 and q3 and α3 is a sequence of minimum
length that distinguishes between q2 and q3. Thus W = {λ, α1, α2, α3} is a strong
characterization set of M ,

Once we have established the sets S and W and the maximum number β of ex-
tra states that the implementation under test may have, a test suite is constructed
by extracting all sequences of length up to k from the set

S(A0 ∪A1 ∪ . . . ∪Aβ)W,

where Ai denotes the set of input sequences of length i ≥ 0.
Note that some test sequences may be accepted by the DFCA model - these

are called positive tests - but some others may not be accepted (they end up in
the (non-final) “sink” state) - these are called negative tests.

7 Conclusions

In this paper, we have investigated the relationships between kP systems, on the
one hand, and active membrane systems with polarization and symport/antiport
membrane systems, on the other hand. We have also illustrated the modeling
power of kP systems by providing a number of kP system models for sorting
algorithms. We have also discussed the problem of testing systems modelled as
kernel P systems and proposed a test generation method based on automata.
Namely, we have outlined how the kP systems can be tested using automata based

Kernel P Systems Modelling, Testing and Verification 227

testing methods. Furthermore, we have shown how formal verification can be used
to validate that the given models work as desired.

We have also begun a study on the ability of kP aytems to simulate other
particular classes of P systems, We have presented here the case of P systems with
active membranes, and P systems with symport/antiport rules.

In future studies we aim to connect kP systems with other classes of P systems,
especially those utilised in various applications, and to show how other problems
can be solved, tested and verified by using kP systems.

Acknowledgements.

MG and SK acknowledge the support provided for synthetic biology research by
EPSRC ROADBLOCK (project number: EP/I031812/1). The work of FI and
MG were supported by a grant of the Romanian National Authority for Scientific
Research, CNCS-UEFISCDI (project number: PN-II-ID-PCE-2011-3-0688).

References

1. A. Alhazov, D. Sburlan, Static Sorting Algorithms for P Systems, Pre-Proc. 4th

Workshop on Membrane Computing (A. Alhazov et al., eds.), GRLMC Rep. 28/03,
Tarragona, 17 – 40, 2003.

2. A. Alhazov, D. Sburlan, Static Sorting P Systems. In [14], 215 – 252, 2006.
3. J.J. Arulanandham, Implementing Bead-Sort with P Systems, Unconventional Mod-

els of Computation (C.S. Calude et al., eds.), Lecture Notes in Computer Science,
2509, 115–125, 2002.

4. C. Câmpeanu, N. Santean, S. Yu. Minimal Cover-Automata for Finite Languages,
Workshop on Implementing Automata (J.-M. Champarnaud et al., eds.), Lecture
Notes in Computer Science, 1660, 43 – 56, 1998.

5. C. Câmpeanu, N. Santean, S. Yu. Minimal Cover-Automata for Finite Languages.
Theoretical Computer Science, 267(1-2), 3 – 16, 2001.

6. R. Ceterchi, C. Mart́ın-Vide, P Systems with Communication for Static Sorting. In
Pre-Proc. 1st Brainstorming Week on Membrane Computing (M. Cavaliere et al.,
eds.), Technical Report no 26, Rovira i Virgili Univ., Tarragona, 101 – 117, 2003.

7. R. Ceterchi , C. Mart́ın-Vide, Dynamic P Systems, Proc. 4th Workshop on Membrane
Computing (Gh. Păun et al., eds.), Lecture Notes in Computer Science, 2597, 146 –
186, 2003.

8. R. Ceterchi, M.J. Pérez-Jiménez, A.I. Tomescu, Simulating the Bitonic Sort Using P
Systems, Proc. 8th Workshop on Membrane Computing (G. Eleftherakis et al., eds.),
Lecture Notes in Computer Science, 4860, 172 – 192, 2007.

9. R. Ceterchi, M.J. Pérez-Jiménez, A.I. Tomescu, Sorting Omega Networks Simulated
With P Systems: Optimal Data Layouts, (D. Diaz-Pernil et al., eds.), Pre-Proc. 6th

Brainstorming Week on Membrane Computing, RGNC Rep. 01/08, Fénix Editora,
pp. 79 – 92, 2008.

10. R. Ceterchi, A. I. Tomescu, Implementing Sorting Networks with Spiking Neural P
Systems, Fundamenta Informaticae, 87(1), 35 – 48, 2008.

228 M. Gheorghe et al

11. R. Ceterchi, D. Sburlan, Membrane Computing and Computer Science, Chapter 22
of [29], 553–583, 2010.

12. T. S. Chow Testing Software Design Modeled by Finite-State Machines. IEEE Trans-
actions on Software Engineering, 4(3), 178 – 187, 1978.

13. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, A. Tacchella, NuSMV Version 2: An Open Source Tool for Symbolic Model
Checking, Proc. International Conference on Computer-Aided Verification (CAV
2002), (W.A. Hunt, Jr and F. Somenzi, eds.), Lecture Notes in Computer Science,
2404, 359 – 364, 2002.

14. G. Ciobanu, Gh. Păun, M. J. Pérez-Jiménez, eds., Applications of Membrane Com-
puting, Springer, 2006.

15. M. Gheorghe, F. Ipate. On Testing P Systems, Proc. 9th Workshop on Membrane
Computing, (D.W. Corne et al., eds.), Lecture Notes in Computer Science, 5391, 204
– 216, 2009.

16. M. Gheorghe, F. Ipate, C. Dragomir, Kernel P Systems, Pre-proc. 10th Brainstorm-
ing Week on Membrane Computing, (M. A. Mart́ınez-del-Amor et al., eds.), Fénix
Editora, Universidad de Sevilla, 153 – 170, 2012.

17. M. Gheorghe, F. Ipate, C. Dragomir, L. Mierlă, L. Valencia-Cabrera, M. Garćıa-
Quismondo, M.J. Pérez-Jiménez, Kernel P Systems – Version 1, Pre-Proc. 11th
Brainstorming Week on Membrane Computing, (L. Valencia-Cabrera et al., eds.),
Fénix Editora, Universidad de Sevilla, 97 – 124, 2013.

18. M. Gheorghe, F. Ipate, S. Konur, Kernel P Systems and Relationships with other
Classes of P Systems, Multidisciplinary Creativity, (M. Gheorghe et al., eds.), Span-
dugino Publishing House, 64 – 76, 2015.

19. M. Gheorghe, F. Ipate, R. Lefticaru, M.J. Pérez-Jiménez, A. Ţurcanu, L. Valencia-
Cabrera, M. Garćıa-Quismondo, L. Mierlă, 3-COL Problem Modelling Using Simple
kernel P Systems, International Journal of Computer Mathematics, 90(4), 816 – 830,
2013.

20. M. Gheorghe, Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg, Research Frontiers of
Membrane Computing: Open Problems and Research Topics, International Journal
of Foundations of Computer Scienve, 24, 547 – 624, 2013.

21. M. Gheorghe, S. Konur, F. Ipate, L. Mierlă, M. E. Bakir, M. Stannett, An Integrated
Model Checking Toolset for Kernel P Systems, Proc. 16th Conference on Membrane
Computing, (G. Rozenberg et al., eds.), Lecture Notes in Computer Science, 9504,
153 – 170, 2015.

22. G. J. Holzmann, The Model Checker SPIN, IEEE Transactions on Software Engi-
neering, 23(5), 275 – 295, 1997.

23. F. Ipate, Bounded Sequence Testing from Deterministic Finite State Machines, The-
oretical Computer Science, 411(16-18), 1770 – 1784, 2010.

24. F. Ipate, M. Gheorghe. Finite State Based Testing of P Systems, Natural Computing,
8(4), 833 – 846, 2009.

25. D.E. Knuth, The Art of Computer Programming, vol. 3, Sorting and Searching,
Addison-Wesley, 1973.

26. H. Körner. On Minimizing Cover Automata for Finite Languages in O(n log n)
Time, Proc. 7th Conference on Implementation and Application of Automata, (J.-M.
Champarnaud and D. Morel, eds.), Lecture Notes in Computer Science, 2608, 117 –
127, 2002.

27. Gh. Păun, Computing with Membranes, Journal of Computer and System Sciences,
61(1), 108 – 143, 2000.

Kernel P Systems Modelling, Testing and Verification 229

28. Gh. Păun, Membrane Computing - An Introduction, Springer, 2002.
29. Gh. Păun, G. Rozenberg, A. Salomaa, eds., The Oxford Handbook of Membrane

Computing, Oxford University Press, 2010.
30. D. Sburlan, A Static Sorting Algorithm for P Systems with Mobile Catalysts, Analele

Ştiinţifice Universitatea Ovidius Constanţa, 11(1), 195 – 205, 2003.

