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Summary. In this paper we consider three restricted variants of P systems with active
membranes: (1) P systems using out communication rules only, (2) P systems using ele-
mentary membrane division and dissolution rules only, and (3) polarizationless P systems
using dissolution and restricted evolution rules only. We show that every problem in P
can be solved with uniform families of any of these variants. This, using known results on
the upper bound of the computational power of variants (1) and (3) yields new charac-
terizations of the class P. In the case of variant (2) we provide a further characterization
of P by giving a semantic restriction on the computations of P systems of this variant.

1 Introduction

P systems with active membranes were introduced in [19]. These P systems have
the possibility of dividing elementary (or even non-elementary) membranes. It was
soon discovered that this feature (combined with maximal parallelism) makes this
variant a rather powerful computational device, and efficient solutions of problems
that are complete in NP [10, 19, 24, 30] (or even in PSPACE [1, 28]) were given. In
order to establish the connection between classical complexity classes and P system
families, recognizer P systems were introduced in [23, 25]. Since then recognizer
P systems are considered as the natural framework to study the computational
power of various classes of P system families. Among the many research lines in
Membrane Computing, one is to find efficient solutions of computationally hard
problems by various types of recognizer P systems with active membranes (see e.g.
[2, 3, 4, 17, 18, 22]).

It is not too surprising that membrane division is necessary in these systems
to solve computationally hard problems efficiently [30]. However, in [20] Păun
conjectured that polarization is also necessary. More precisely, Păun conjectured
that polarizationless P systems working in polynomial time can solve only problems
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in P. Although this conjecture has not been proven yet, there are some partial
results. In [8] it was shown that without dissolution rules these systems can solve
exactly the problems in P. The conjecture was also confirmed in the following
cases: when dissolution rules are allowed, but the P systems can employ only
restricted, so-called symmetric, division rules [12], and when the initial membrane
structure is a nested sequence of membranes, and the system can employ only
dissolution and elementary membrane division rules [29].

It was observed in [13] that the P lower bound in the characterization of P in
[8] comes from the polynomial uniformity of the examined P systems. In fact, ac-
cording to [11] the used uniformity condition dominates the computational power
of uniform families of polarizationless P systems with no dissolution rules. This
initiated a sequence of papers where P systems with active membranes under
reasonably tight uniformity conditions were examined [15, 16]. Moreover, several
solutions of problems in P with restricted classes of P systems under tight unifor-
mity conditions were given [5, 9, 14, 15].

In this paper we continue the work in this research line. First we show that
uniform families of P systems with active membranes using out communication
rules only can solve every problem in P. Then we show a similar result when the
applicable rules are the elementary membrane division and the dissolution rules.
The proofs are given by solving a restricted, but still P-complete variant of the
well know HornSat problem, the satisfiability problem of Horn formulas.

Finally, we show that uniform families of polarizationless P systems with active
membranes using dissolution and restricted evolution rules can simulate polyno-
mial time Turing machines efficiently. The restriction made on the evolution rules
is that each rule can introduce at most one object during a computation step.
This result is stronger than the one appearing in [6] since there communication
and not restricted evolution rules were used too. In [15] a solution of a P-complete
problem was given using dissolution and restricted evolution rules only, however
the presented family of P systems was semi-uniform.

Using the P upper bound given in [30], our first and third result give new
characterizations of P in terms of Membrane Computing techniques. In our second
result we use such P systems where the initial membrane structure is a nested
sequence of membranes, and during the computation the number of membranes on
the deepest level is at most two. It can be seen that the set of those problems that
can be solved by those P systems with active membranes which have this semantic
restriction during their computations are in P. This yields another characterization
of the complexity class P.

The paper is organized as follows. In the next section the necessary notations
and notions are recalled. In Section 3 we give the main result of the paper. Finally,
some conclusions are given in the last section.
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2 Preliminaries

Here we recall the necessary notions used later. Nevertheless, we assume that the
reader is familiar with the basic concepts of formal language theory, propositional
logic, and Membrane Computing techniques (for a comprehensive guide to these
topics see e.g. [7, 21, 26], respectively). N denotes the set of natural numbers. For
n,m ∈ N, n < m, [n,m] denotes the set {n, n+ 1, . . . ,m}. If n = 1, then [n,m] is
denoted by [m].

Propositional formulas and the HornSat problem.

A propositional variable is a variable whose value can be either true or false. If it
is not confusing, we will often call propositional variables simply variables. We fix
an infinite set V ar = {x1, x2, x3, . . .} of variables (for the better readability of the
paper we will often denote some of these variables by x, y, z, . . .). For a number
n ∈ N, V arn is the set {x1, . . . , xn}. An interpretation of the variables in V arn is
a function I : V arn → {true, false}.

The propositional variables and their negations are called literals. l is a positive
(resp. negative) literal, if l = x (resp. l = ¬x), for some x ∈ V ar, where ¬ denotes
the operation of negation. A clause C is a disjunction of finitely many pairwise
different literals satisfying that there is no x ∈ V ar such that both x and ¬x
occur in C. A clause C is a positive unit clause if C consists of one positive literal.
A formula in conjunctive normal form (CNF) is a conjunction of finitely many
clauses. Let ϕ be a formula in CNF with variables in V arn (n ∈ N). We will
sometimes consider ϕ as a finite set of clauses, where the clauses are finite sets of
literals. ϕ is satisfiable, if there is an interpretation under which ϕ evaluates true.
Moreover, ϕ is a Horn formula if every clause in ϕ contains at most one positive
literal.

The HornSat problem sounds as follows: given a Horn formula ϕ, decide
if ϕ is satisfiable. It is known that HornSat is P-complete. Let Horn3Sat be
that restriction of HornSat where every clause of the input formula can con-
tain at most three literals. Moreover, let Horn3SatNorm be that restriction of
Horn3Sat where the input formula is in the following normal form: every clause
of the formula is a positive unit clause or it contains exactly two negative literals.
For example, x ∧ (¬x ∨ y) ∧ (¬y ∨ ¬z ∨ u) is an instance of Horn3Sat, but not
of Horn3SatNorm, since (¬x∨ y) neither is a positive unite clause nor contains
exactly two negative literals.

Next we show that Horn3SatNorm is P-complete. The proof resembles to
that of the NP-completeness of the 3Sat problem (the 3Sat problem is the satis-
fiability problem of those formulas in CNF which can have only clauses with three
literals, see e.g. [27]).

Proposition 1. Horn3SatNorm is P-complete.

Proof. Since this problem is a restriction of HornSat, it is in P. Thus, it
is enough to show that HornSat can be reduced using logarithmic space to
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Horn3SatNorm. First we show that HornSat reduces to Horn3Sat. Let ϕ
be a Horn formula over the variables in V arn (n ∈ N). We construct an instance
ϕ′ of Horn3Sat such that ϕ′ is satisfiable if and only if ϕ is satisfiable. Let C be a
clause in ϕ. If C has at most three literals, then let C be a clause of ϕ′. Otherwise,
assume that C = x1 ∨¬x2 ∨ · · · ∨¬xk for some k ∈ [4, n]. It can be easily seen that
C is satisfiable if and only if (x1 ∨ ¬x2 ∨ ¬y) ∧ (y ∨ ¬x3 ∨ · · · ∨ ¬xk) is satisfiable,
where y is a new variable, not included in V arn. In this way we can construct
the formula (x1 ∨ ¬x2 ∨ ¬y1) ∧ (y1 ∨ ¬x3 ∨ ¬y2) ∧ · · · ∧ (yk−3 ∨ ¬xk−1 ∨ ¬xk),
which is satisfiable (over V arn ∪{y1, . . . , yk−3}) if and only if C is satisfiable (over
V arn). To a clause with no positive literal one can give a very similar construction.
Then we add these new clauses to ϕ′. Clearly, ϕ′ is satisfiable if and only if ϕ is
satisfiable, and the mapping ϕ 7→ ϕ′ can be carried out by a deterministic Turing
machine using logarithmic space in the size of ϕ.

Next we show that Horn3Sat reduces to Horn3SatNorm. To this end let ϕ
be an instance of Horn3Sat over the variables in V arn. We construct an instance
ϕ′ of Horn3SatNorm such that ϕ′ is satisfiable if and only if ϕ is satisfiable. For
every clause C of ϕ, if C corresponds to the restrictions made on the instances of
Horn3SatNorm, then let C be a clause of ϕ′. Otherwise we replace C with the
set C′ of clauses defined as follows:

• if C = ¬x, then let C′ = {¬x ∨ ¬y, y},
• if C = x1 ∨ ¬x2, then let C′ = {x1 ∨ ¬x2 ∨ ¬y, y}, and
• if C = ¬x1 ∨ ¬x2 ∨ ¬x3, then let C′ = {¬x1 ∨ ¬x2 ∨ y,¬y ∨ ¬x3},

where y is always a new variable not used yet during the construction. Clearly
the clauses in C′ always have the desired forms, and ϕ′ is satisfiable if and only
if ϕ is satisfiable. Moreover, the described construction can be carried out by a
logarithmic space Turing machine. Thus, since logarithmic space reductions are
closed under composition, we have that HornSat can be efficiently reduced to
Horn3SatNorm, which finishes the proof of the statement.

Turing machines.

In this paper we will use that variant of Turing machines which appears, e.g.,
in [27]. A (deterministic) Turing machine is a 7-tuple M = (Q,Σ, Γ, δ, q0, qa, qr)
where

• Q is the finite set of states,
• Σ is the input alphabet,
• Γ is the tape alphabet including Σ and a distinguished symbol t 6∈ Σ, called

the blank symbol,
• δ : (Q − {qa, qr}) × Γ → Q × Γ × {−1, 1} is the transition function; the

ith component of δ(q,X) (i ∈ [1, 3], q ∈ Q − {qa, qr}, X ∈ Γ ) is denoted by
proji(δ(q,X)),

• q0, qa, and qr are the initial, accepting, and rejecting states, respectively.
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M works on a single infinite tape that is closed on the left-hand side. During
the computation of M , the tape contains only finitely many non-blank symbols,
and it is blank elsewhere. Let w ∈ Σ∗. The initial configuration of M on w is the
configuration where w is placed at the beginning of the tape, the head points to the
first letter of w, and the current state of M is q0. A computation step performed
by M can be described as follows. If M is in state p and the head of M reads
the symbol X, then M changes its state to q and writes X ′ onto X if and only if
δ(p,X) = (q,X ′, d), for some d ∈ {−1, 1}. Moreover, if d = 1 (resp. d = −1), then
M moves its head one position to the right (resp. to the left) (by definition, M can
never move the head off the left-hand end of the tape even if the head points to
the first cell and d = −1). We say that M accepts (resp. rejects) w, if M can reach
from the initial configuration on w the accepting state qa (resp. the rejecting state
qr). We note here that M can stop only in these states. The language accepted by
M is the set L(M) consisting of those words in Σ∗ that are accepted by M .

P systems with active membranes.

In this paper we consider several restricted variants of P systems with active
membranes. In general, a P system with active membranes [19] is a construct of
the form Π = (Γ,H, µ,w1, . . . , wm, R), where m is the initial degree of the system,
Γ is the alphabet of objects, H is a finite set of labels of the membranes; µ is a
membrane structure consisting of m membranes and labelled with elements of H;
w1, . . . , wm ⊆ Γ ∗ are the initial multisets of objects placed in the m regions of µ;
and R is a finite set of rules defined as follows:

(a) [a→ v]eh, for e ∈ {+,−, 0}, h ∈ H, a ∈ Γ, v ∈ Γ ∗
(object evolution rules, associated with membranes and depending on the label
and the charge of the membranes, but not directly involving the membranes,
in the sense that the membranes are neither taking part in the application of
these rules nor are they modified by them);

(b) a[ ]e1h → [b]e2h , for e1, e2 ∈ {+,−, 0}, h ∈ H, a, b ∈ Γ
(in communication rules, sending an object into a membrane, maybe modified
during this process; also the polarization of the membrane can be modified,
but not its label);

(c) [a]e1h → [ ]e2h b, for e1, e2 ∈ {+,−, 0}, h ∈ H, a, b ∈ Γ
(out communication rules; an object is sent out of the membrane, maybe modi-
fied during this process; also the polarization of the membrane can be modified,
but not its label);

(d) [a]eh → b, for e ∈ {+,−, 0}, h ∈ H, a, b ∈ Γ
(membrane dissolving rules; in reaction with an object, a membrane can be
dissolved, while the object specified in the rule can be modified);

(e) [a]e1h → [b]e2h [c]e3h , for e1, e2, e3 ∈ {+,−, 0}, h ∈ H, a, b, c ∈ Γ
(division rules for elementary membranes; in reaction with an object, the mem-
brane is divided into two membranes with possibly different polarizations; the
object a specified in the rule is replaced in the two new membranes by (possibly
new) objects b and c respectively, and the remaining objects are duplicated).
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As it is usual in membrane computing, P systems with active membranes work in
a maximally parallel manner:

• In one step, any object of a membrane that can be used by a rule must be
used, but one object can be used by only one rule in (a)-(e).

• If an object can be used by two or more different rules, then one of these rules
is non-deterministically chosen.

• A membrane can be the subject of only one rule in (b)-(d) during each step.

We say that an evolution rule [a → v]eh is 1-restricted if |v| ≤ 1 (i, the number
of objects in v is at most one). A layer is a nested membrane structure, that
is a layer has the form [. . . [ ]h1 . . .]hn (n ≥ 1, h1, . . . , hn ∈ H). For two layers
µ1 = [. . . [ ]h1 . . .]hj and µ2 = [. . . [ ]g1 . . .]gk (j, k ≥ 1, h1, . . . , hj , g1, . . . , gk ∈ H),
the composition µ1[µ2] of µ1 and µ2 is the layer [. . . [[. . . [ ]g1 . . .]gk ]h1

. . .]hj
. A

region is a composition of finitely many layers.

Recognizer P systems.

A recognizer P system [23, 25] is a P system Π with a designated input membrane
and having the following properties. The alphabet Γ of objects has two designated
elements yes and no. Every computation of Π halts and sends to the environment
the same object which is either yes or no, and these objects are sent out in the
last step of the computation (if the examined P system model does not have
out communication rules, then the output of the systems appears in the skin
membrane). The input of Π is a multiset over Γ , which is added to the input
membrane of the system in the initial configuration.

Uniform families of P systems.

A family Π = {Π(i)}i∈N of recognizer P systems decides a problem L if, for every
instance x of L with length n, starting Π(n) with an appropriate encoding of x in
its input membrane, Π(n) sends to the environment yes if and only if x ∈ L.

We will use uniform families of recognizer P systems to solve problems in P.
Clearly, we should use such a uniformity condition that is reasonably weak to work
with in class P. According to the widely believed fact that Turing machines using
logarithmic space are strictly weaker than Turing machines working in polynomial
time, we will use logarithmic space uniform families of P systems. We denote by L
the family of functions that can be computed by Turing machines using logarithmic
amount of space.

Assume that a family Π = {Π(i)}i∈N of recognizer P systems decides a problem
L. Π is called (L,L)-uniform if and only if (i) there are functions f, cod ∈ L such
that, for every n ∈ N, Π(n) = f(1n) (i.e., the P system Π(n) can be constructed
by a logarithmic space Turing machine from the unary representation of n); (ii)
for every instance x of L with size n, cod(x) is a multiset encoding x over the
alphabet of objects in Π(n).

For a type F of recognizer P systems, we denote by (L,L)−PMCF the class
of those problems that can be decided by (L,L)-uniform families of P systems
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of type F working in polynomial time. AM+out (resp. AM+e,+d) denotes the
family of P systems with active membranes having out communication (resp. di-
vision and dissolution) rules only. Similarly, AM0

+evo(1),+d denotes the family of
polarizationless P systems having 1-restricted evolution and dissolution rules only.

3 Results

Here we show that recognizer P systems of typeAM+out,AM+e,+d, orAM0
+evo(1),+d

and working in polynomial time are capable to solve every problem in P. First we
consider two solutions of Horn3SatNorm, then we give an efficient simulation of
Turing machines.

3.1 The solution of Horn3SatNorm

By definition, if ϕ is an instance of Horn3SatNorm, then every clause of ϕ is
either a positive unit clause or it has exactly two negative literals. In the rest of this
section by a clause we mean a clause having this property. Using the well known
equivalences of propositional logic, a clause having exactly two negative literals ¬x
and ¬y can be written in the form x∧ y →↓ or x∧ y → z, where z is a variable,→
denotes the operation of implication and ↓ denotes a formula with constant false
truth value. We will often use these expressions to denote the corresponding clauses
of the input formula (in fact, we will often call these expressions clauses, although
strictly speaking they are not clauses). Moreover, for the sake of simplicity, we will
not indicate the sign ∧ of conjunction in the left-hand side of these expressions.

Let ϕ be an instance of Horn3SatNorm. Clearly, if ϕ is true in an inter-
pretation I, then I(x) = true must hold for every positive unite clause {x} in ϕ.
Assume now that C = xy → z is a clause of ϕ, where x, y are variables and z is
either a variable or ↓. We observe that if I(x) = I(y) = true, then C is true in I
if and only if z is true too. That is, if z =↓, then x, y, z cannot be all true in I.
We will use these observations in the following algorithm H3SN, which decides if
an instance ϕ of Horn3SatNorm over variables in V arn (n ≥ 1) is satisfiable or
not. Let N (n) denote the set of those clauses over variables in V arn which contain
exactly two negative literals, and let m = |N (n)|. In the rest of this section we
assume a fixed enumeration c1, . . . , cm of clauses in N (n).

Algorithm H3SN

1. input: ϕ
2. X := {x ∈ V arn | x ∈ ϕ} // x is a positive unit clause in ϕ
3. For i = 1 . . . n do
4. For j = 1 . . .m do
5. If cj = xy → u ∈ ϕ and x, y ∈ X then X := X ∪ {u}
6. If ↓ is in X then return no
7. else return yes
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To demonstrate the work of H3SN consider the following example. Let ϕ = x∧y∧
(xy → z) ∧ (xz →↓). Then, initially, X = {x, y}. Since x, y ∈ X and xy → z ∈ ϕ,
X becomes {x, y, z}. Then, since x, z ∈ X and xz →↓∈ ϕ, X becomes {x, y, z, ↓}.
After this the value of X remains the same until H3SN halts. Thus, since ↓∈ X,
H3SN outputs no. This is correct as ϕ is unsatisfiable.

In this section we give two families of P systems with rather restricted sets
of applicable rules to solve the Horn3SatNorm problem in polynomial time.
Both solutions are based on Algorithm HS3N . In these solutions the P systems
cannot employ evolution and in communication rules. In addition, in the first
solution dissolution and membrane division rules, while in the second solution out
communication rules are also not allowed.

In both solutions the P systems, roughly, work as follows. Let ϕ be an instance
of Horn3SatNorm over the variables in V arn. The initial membrane structure
consists of n regions, and the innermost membrane contains cod(ϕ) (that is, the
encoding of ϕ). A region ri corresponds to the ith round of the main loop in
Algorithm H3SN.

For an arbitrary clause C with variables in V arn, cod(ϕ) contains an object

O∃C or O 6∃C (but not both) according to that C occurs in ϕ or not. Moreover, for
every clause of the form xy → u (x, y ∈ V arn, u ∈ V arn ∪ {↓}), ri has a layer l
whose membranes are indexed by this clause. The objects in the inner membrane
of l go through l (either by out communication or by dissolution rules, according
to the used model), and during this the system performs the following task. It
first checks whether all the objects O∃xy→u, O∃x, O∃y , and O 6∃u were present in the

innermost membrane of l. If yes, then the system rewrites O 6∃u to O∃u. In this way
the system can determine which variables of ϕ must be true in order to make ϕ
true in an interpretation. After performing the above task in all layers of region
rn, the skin contains either O∃↓ or O 6∃↓ . If O∃↓ occurs in the skin, then ϕ cannot be
satisfied and the system introduces object no, otherwise it introduces yes.

Formally, we encode an instance ϕ of Horn3SatNorm with variables in V arn
as follows. First, let

Σ(n) = {Oe | O ∈ V (n) ∪ C(n), e ∈ {∃, 6 ∃}},
where V (n) = {Vu | u ∈ V arn ∪ {↓}} and C(n) = {Cxy→u | x, y ∈ V arn, u ∈
V arn ∪ {↓}}. Then the encoding of ϕ is cod(ϕ) = {O∃c ∈ Σ(n) | c ∈ ϕ} ∪ {O 6∃c ∈
Σ(n) | c 6∈ ϕ} ∪ {V 6∃↓ }. We note here that technically there is no need to dis-
tinguish in the notation between positive unite clauses and clauses having two
negative literals. Nevertheless, we decided to do so to improve the readability of
the constructions. Since the size of ϕ is clearly polynomial in n, it can be seen that
cod is a function in L.

A solution using out communication rules only.

Here we solve
Horn3SatNorm with a family Π = {Π(n)}n∈N of recognizer P systems of type
AM+out, where Π(n) = (Γ (n), H(n), µ(n),W (n), R(n)) is defined as follows:
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• Γ (n) = Σ(n) ∪ {V ∃+x | x ∈ V arn ∪ {↓}} ∪ {yes, no}.
• H = {(xy → u, α) | x, y ∈ V arn, u ∈ V arn ∪ {↓}, α ∈ {a, b, c}} ∪ {sk | k ∈

[m+ n]} ∪ {skin}.
• µ(n) = S[rn[rn−1[. . . r2[r1] . . . ]], where S = [[[ ]s1 . . .]sm+n ]skin and, for every

i ∈ [n], ri is a region defined as follows. ri = lcm [. . . lc2 [lc1 ] . . . ], where, for every
j ∈ [m], the layer lcj has the form [[[ ](cj ,a)](cj ,b)](cj ,c).

• The input membrane is the innermost membrane in the initial membrane struc-
ture.

• W (n) is the sequence of empty initial multisets.
• R consists of the following subsets of rules, where x, y ∈ V arn and u ∈ V arn∪{↓
}:
(1) [C∃xy→u]0(xy→u,a) → [ ]+(xy→u,a)C

∃
xy→u,

[C∃xy→u]0(xy→u,β) → [ ]0(xy→u,β)C
∃
xy→u,

[C 6∃xy→u]0(xy→u,α) → [ ]−(xy→u,α)C
6∃
xy→u (α ∈ {a, b, c}, β ∈ {b, c}).

These rules are used to initialize the layers in the following sense: the first
membranes of those layers that are indexed by a clause in ϕ get positive
charges, the second and third membranes keep their neutral charges, while
all the membranes of the remaining layers get negative charges.

(2) [V ev ]−(xy→u,α) → [ ]−(xy→u,α)V
e
v ,

[Cers→v]
−
(xy→u,α) → [ ]−(xy→u,α)C

e
rs→v

(e ∈ {∃, 6 ∃}, r, s ∈ V arn, v ∈ V arn ∪ {↓}, α ∈ {a, b, c}).
Every membrane with negative charge lets all of the objects to pass through
itself.

(3) [V ∃x ]+(xy→u,a) → [ ]−(xy→u,a)V
∃+
x ,

[V ∃+x ]0(xy→u,b) → [ ]+(xy→u,b)V
∃
x .

If ϕ has a clause xy → u, that is, the membrane with label (xy → u, a) has
positive charge, and V ∃x exists in this membrane, then these rules are used
to store this information in the positive charge of the membrane with label
(xy → u, b).

(4) [V ∃y ]+(xy→u,b) → [ ]−(xy→u,b)V
∃+
y ,

[V ∃+y ]0(xy→u,c) → [ ]+(xy→u,c)V
∃
y .

If the membrane with label (xy → u, b) has positive charge and V ∃y exists
in this membrane, then these rules are used to store this information in the
positive charge of the membrane with label (xy → u, c).

(5) [V 6∃u ]+(xy→u,c) → [ ]−(xy→u,c)V
∃
u .

The positive charge of the membrane with label (xy → u, c) indicates that
xy → u is a clause of the system and that both variables x and y has to be
true in an interpretation in order to make ϕ true. Thus, with this rule the
system rewrites V 6∃u to V ∃u indicating that u must be also true to make ϕ
true.
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(6) [V ∃u ]p(xy→u,α) → [ ]−(xy→u,α)V
∃
u (p ∈ {+, 0}, α ∈ {a, b, c}).

If the system already knows that u must be true to make ϕ true, then the
charges of the corresponding membranes are set to negative.

(7) [V 6∃x ]p(xy→u,α) → [ ]−(xy→u,α)V
6∃
x ,

[V 6∃y ]p(xy→u,α) → [ ]−(xy→u,α)V
6∃
y (p ∈ {+, 0}, α ∈ {a, b, c}).

If any of the variables on the left-hand side of a clause xy → u is not con-
sidered to be true yet, then the charges of membranes of the corresponding
layer are set to negative by these rules, and V ∃u cannot be introduced by
this layer.

(8) [V e↓ ]0sk → [ ]0skV
e
↓ , [V ∃↓ ]0skin → [ ]0skinno, [V 6∃↓ ]0skin → [ ]0skinyes

(k ∈ [m+ n], e ∈ {∃, 6 ∃}).
The first rule is used to move object V ∃↓ or V 6∃↓ towards the skin membrane.
When they arrive at the skin, the system sends to the environment the
correct answer.

Correctness, running time, and (L,L)-uniformity.

First we observe that during the computation of Π(n) the following holds.

1. If all the membranes in a layer l have negative charge, then l does not con-
tribute to the computation, i.e. all objects pass through the membranes of l
without any change.

2. For every C ∈ C(n), either C∃C or C 6∃C (but not both) occurs in the system (the
same object during the whole computation).

3. For every x ∈ V arn∪{↓}, either V ∃x or V 6∃x (but not both) occurs in the system.
Indeed, the rules that can change an object of this form are rules in (3)-(5) (not
counting the rules that introduce yes or no at the last step of the computation).
Rule in (5) removes V 6∃u and introduces V ∃u , thus the observation remains true
after applying it. Concerning rules in (3)-(4), it is enough to observe that if
the first rule can be applied, then the second rule can be applied too in the
next step.

Now consider a layer lxy→u (x, y ∈ V arn, u ∈ V arn ∪{↓}). At the beginning of
the computation every membrane in lxy→u has neutral charge. According to the
objects that pass through this layer we can distinguish the following cases.

1. All of the objects C∃xy→u, V ∃x , V ∃y , and V 6∃u pass through the membranes of

lxy→u. Then the system rewrites the object V 6∃u to V ∃u .
2. Any of the objects C 6∃xy→u, V 6∃x , V 6∃y , or V ∃u passes through the membranes of
lxy→u. Then the charge of every membrane in lxy→u is set to negative, and
thus this layer cannot contribute to the computation. (Notice that in this
case the computation is not deterministic but confluent, i.e., all the possible
computations in the layer yield the same result.)

It follows that the objects passing trough the layer lxy→u simulate step 5 of Al-
gorithm H3SN. Thus, sending objects through a region corresponds to performing
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steps 4−5 of this algorithm. Since the algorithm performs steps 4−5 n times, the
work of the P system in the n regions corresponds to the work of the algorithm.
Thus, V ∃↓ or V 6∃↓ eventually appears in membrane s1. In the next m+ n steps this
object gets to the skin by rules in (8). There the system computes yes or no ac-
cordingly, which is then sent to the environment. It can bee seen that during this
computation all the other objects occurring in the systems arrive to membrane s1,
and the computation halts.

This justifies the correctness of Π(n). Since Π(n) has polynomial number of
objects in the initial configuration and no evolution rules are performed during its
work, sending all the objects through a region takes polynomial steps. Thus the
running time of Π(n) is also polynomial.

It can be seen that all the ingredients of Π(n) can be enumerated and written
onto the output tape by a logarithmic space Turing machine. Thus, using that
Horn3SatNorm is P-complete, we get the following result.

Theorem 1. P ⊆ (L,L)−PMCAM+out
.

A solution using elementary membrane division and dissolution rules
only.

In this subsection we solve Horn3SatNorm with a family Π = {Π(n)}n∈N of
recognizer P systems of type AM+e,+d. The solution is similar to the one given
in the previous subsection, however, there is a substantial difference: here the
presence of the necessary objects to simulate step 5 of Algorithm H3SN are checked
by the application of membrane division rules. Consequently, those objects that
do not take part in the simulation are duplicated several times. In particular, at
certain points of the computation the P system has multiple copies of objects of
the form V 6∃x . However, the correctness of the computation requires that at the
beginning of the work in a layer there is at most one copy of objects of this form.
Therefore we will apply special layers, that will remove those objects that could
cause the system to give incorrect results. The following is the formal definition of
Π(n) = (Γ (n), H(n), µ(n),W (n), R(n)):

• Γ (n) = Σ(n) ∪ {w,w1, w2,#, $} ∪ {yes, no}.
• H(n) = {skin, s} ∪ {(xy → u, α) | x, y ∈ V arn, u ∈ V arn ∪ {↓}, α ∈
{a, b, c, d}} ∪ {dO | O ∈ V (n) ∪ C(n) ∪ {w}}.

• µ(n) is defined as follows. Let C = xy → u be a clause (x, y ∈ V arn, u ∈
V arn ∪ {↓}) and lC be the layer DC [MC ], where DC and MC are defined as
follows:

MC = [ [ [ [ [ [ ](xy→u,a)](xy→u,b)]dw ](xy→u,c)]dw ](xy→u,d)

and DC is a layer containing, for every O ∈ V (n) ∪ C(n), the membrane [ ]dO
fifteen times if O 6= Vu, and once, otherwise. Intuitively, MC is that part of
the layer which is responsible to simulate step 5 in Algorithm H3SN, and layer
DC is used (together with membranes with label dw in MC) to remove those
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objects that are produced by the used division rules, but should be removed in
order to keep the behaviour of the system correct.
To finish the construction, let µ(n) = S[rn[rn−1[. . . r2[r1] . . . ]], where S =
[[ ]s]skin and, for every i ∈ [n], ri is the region lcm [. . . lc2 [lc1 ] . . . ].

• The input membrane is the innermost membrane in the initial membrane struc-
ture.

• W (n) is a sequence of empty initial multisets.
• R consists of the following subsets of rules, where x, y ∈ V arn and u ∈ V arn∪{↓
}:
(1) [V 6∃u ]0(xy→u,a) → [w]−(xy→u,a)[#]−(xy→u,a),

[V ∃u ]0(xy→u,a) → [w1]−(xy→u,a)[#]−(xy→u,a).

These rules are used to decide if V 6∃u or V ∃u is present in a membrane with
label (xy → u, a). If V 6∃u is present, then the system introduces w which
indicates that the system should work further to decide if V ∃u should be
introduced or not. Object w1 indicates that V ∃u is present in the system
and thus it should not be introduced later. # indicates that the membrane
containing it is not used effectively in the computation.

(2) [w]−(xy→u,a) → w, [w1]−(xy→u,a) → w1,

[#]−(xy→u,a) → $.

These rules pass the information computed by rules in (1) to the membrane
labelled with (xy → u, b). $ is a dummy object not used later.

(3) [C∃xy→u]0(xy→u,b) → [C∃xy→u]+(xy→u,b)[C
∃
xy→u]+(xy→u,b),

[C 6∃xy→u]0(xy→u,b) → [C 6∃xy→u]−(xy→u,b)[C
6∃
xy→u]−(xy→u,b).

These rules decide if object C∃xy→u or C 6∃xy→u exists in the system. The
result is stored in the polarizations of the new membranes.

(4) [w]+(xy→u,b) → w, [w]−(xy→u,b) → w2,

[w1]+(xy→u,b) → w1, [w1]−(xy→u,b) → w1.

These rules introduce objects that will control the computation according
to the information computed by the previous subsets of rules. For example,
if w and C 6∃xy→u is present in the inner membrane, then w2 is introduced.

In this case V ∃u will not be introduced at the end of the computation in this
layer (see rules in (8)).

(5) [V ∃y ]0(xy→u,c) → [V ∃y ]+(xy→u,c)[V
∃
y ]+(xy→u,c),

[V 6∃y ]0(xy→u,c) → [V 6∃y ]−(xy→u,c)[V
6∃
y ]−(xy→u,c).

These rules decide if object V ∃y or V 6∃y exists in the system. The result is
stored in the polarizations of the new membranes.

(6) [w]+(xy→u,c) → w, [w]−(xy→u,c) → w2,

[w1]+(xy→u,c) → w1, [w1]−(xy→u,c) → w1,

[w2]+(xy→u,c) → w2, [w2]−(xy→u,c) → w2.
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These rules introduce objects that will control the computation according
to the information computed by the previous subset of rules.

(7) [V ∃x ]0(xy→u,d) → [V ∃x ]+(xy→u,d)[V
∃
x ]+(xy→u,d),

[V 6∃x ]0(xy→u,d) → [V 6∃x ]−(xy→u,d)[V
6∃
x ]−(xy→u,d).

These rules decide if object V ∃x or V 6∃x exists in the system. The result is
stored in the polarizations of the new membranes.

(8) [w]+(xy→u,d) → V ∃u , [w]−(xy→u,d) → V 6∃u ,

[w1]+(xy→u,d) → V ∃u , [w1]−(xy→u,d) → V ∃u
[w2]+(xy→u,d) → V 6∃u , [w2]−(xy→u,d) → V 6∃u .

These rules are used to handle the different cases of possible computations in
a layer. For example, w indicates that at the beginning of the computation
in a layer the system contained objects V 6∃u , C∃xy→u, and V ∃y .

(9) [Oe]0dO → $, [w]0dw → $, [wi]
0
dw
→ $

(O ∈ V (n) ∪ C(n), e ∈ {∃, 6 ∃}, i ∈ [2]).
These rules are used to remove certain objects from the system.

(10)[V 6∃↓ ]0s → [no]−s [$]−s , [V ∃↓ ]0s → [yes]−s [$]−s , [κ]−s → κ (κ ∈ {yes, no}).
These rules are used to send out the computed answer to the environment.

Correctness, running time, and (L,L)-uniformity.

First we observe that during the computation of Π(n) the following holds:

1. The membrane structure has the form [. . . [M ]h1
. . .]hk

(h1, . . . , hk ∈ H(n)),
where M is either a membrane or it is of the form [ ]g1 [ ]g2 (g1, g2 ∈ H(n)),
and

2. objects occur only in the innermost membranes.

The correctness of the system follows from the following lemma.

Lemma 1. Let C = xy → u (x, y ∈ V arn, u ∈ V arn ∪ {↓}) and consider the layer
lC = DC [MC ]. Assume that, for every O ∈ C(n) ∪ V (n), either one copy of O∃

or one copy of O 6∃ occurs in lC. Let O be an object in lC. Depending on O the
following holds:

1. If O ∈ Σ(n) − {V 6∃u }, then after dissolving all the membranes in lC, Π(n)
contains exactly one copy of O.

2. If O = V 6∃u and lC contains all of the objects C∃C , V ∃x , and V ∃y , then after

dissolving all the membranes in lC, Π(n) contains no V 6∃u and exactly one copy
of V ∃u .

3. If O = V 6∃u and lc contains C 6∃C , V 6∃x , or V 6∃y , then after the work in lC Π(n)

contains exactly one copy of V 6∃u .

Proof. By assumption, lC contains exactly one copy of O. Then Statement 1 can
be seen by distinguishing the following two sub-cases:
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Case 1. O 6= V ∃u . Then during the work in MC , O is duplicated by the correspond-
ing rules rules in (1), (3), (5), and (7), and the other rules are not applied to O
in MC . This yields sixteen copies of O in DC . Out of these copies fifteen ones are
removed during the computation in DC .
Case 2. O = V ∃u . Then the second rule in (1) removes first V ∃u and introduces one
copy of w1. After this, membrane (C, a) is dissolved using rules in (2). In the next
two steps, w1 is duplicated first due the division of membrane (C, b) by rules in (3),
then the yielded membranes are dissolved by rules in (4). Thus, at this point of the
computation two copies of w1 are in membrane dw. However, in the next step one
copy is removed due to the corresponding rule in (9). After this, membrane (C, c)
is divided (rules in (5)) and the new membranes are dissolved (rules in (6)). At
this point, two copies of w1 are in membrane dw, and one copy is removed by the
corresponding rule in (9). Finally, w1 is duplicated by rules in (7), and then the
two copies of w1 introduce two copies of V ∃u . During the dissolution of membranes
in DC one copy of V ∃u is removed which proves the statement.

Statement 2 can be seen as follows. The computation starts with removing the
object V 6∃u and introducing one w (first rule in (1)). Then the new membranes with
label (C, a) are dissolved by the corresponding rules in (2). In membrane (C, b) the
first rule of (3) is applied and thus w is duplicated. At this point membranes with
label (C, b) have positive charges, thus only the first rule in (4) can be applied.
After this the corresponding rule in (9) removes one copy of w. During the next
step the first rule in (5) is applied, and then only the first rule in (6) can be used.
Again, one copy of w is removed by the corresponding rule in (9). Then the first
rule in (7) divides membrane (C, d), w is again duplicated, and by the first rule in
(8) each w introduces one copy of V ∃u . During the work in DC , one copy of V ∃u is
removed.

The system has several different computations in the case of Statement 3.
We discuss here only one of them, the remaining ones can be treated similarly.
Assume for example that lC contains C∃C and V 6∃y . Then the computation goes in the
same way as in the case of Statement 2 until the application of the corresponding
dissolution rules in (4). But now the second rule in (5) is applied, and thus, in the
next step, only the second rule in (6) can be applied. Therefore here two copies of
w2 are introduced. Then the computation continues similarly as in Case 2 in the
proof of Statement 1. However here, when rules from (8) are applied the system
has two copies of w2, and thus two copies of V 6∃u are introduced by the fifth and
sixth rules in (8). One of these copies is eliminated during the work in DC .

Clearly, the initial configuration of Π(n) satisfies the conditions of Lemma 1.
Let C be a clause having exactly two negative literals. Let moreover x ∈ V arn∪{↓
}. Then at the end of the computation in layer lC either V ∃x or V 6∃x occurs in
the system. Therefore the computation of the system in a region corresponds to
performing steps 4 − 5 of Algorithm H3SN. Since this algorithm performs steps
4 − 5 n times, the work of Π(n) in the n regions corresponds to the work of the
algorithm. This justifies the correctness of Π(n).
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Since Π(n) has polynomial number of membranes in layer lC , and in lC the
number of the applied division rules is constant, we have that dissolving all the
membranes in lC takes polynomial time. As in the initial configuration there are
n regions and each region has polynomial number of layers, it follows that the
running time of Π(n) is also polynomial.

Finally, it can be seen that all the ingredients of Π(n) can be enumerated and
written onto the output tape by a logarithmic space Turing machine. Using the
P-completeness of Horn3SatNorm we obtain the following theorem.

Theorem 2. P ⊆ (L,L)−PMCAM+e,+d
.

3.2 Simulating Turing Machines

Here we show that, for every polynomial time Turing machine M , an (L,L)-
uniform family Π of polarizationless recognizer P systems can be constructed
such that the members of Π can simulate the work of M efficiently using only
dissolution and 1-restricted evolution rules.

Let M = (Q,Σ, Γ, δ, q0, qa, qr) be an f(n)-time Turing machine, for some poly-
nomial f(n). Notice that M can use at most f(n) cells of its tape during its
computations. Let k = |Q| and m = |Γ |. Assume that Q = {s1, . . . , sk}, where
s1 = q0, sk−1 = qa and sk = qr. Likewise, assume that Γ = {X1, . . . , Xm}, where
Xm = t. The idea of the simulation is the following. The initial membrane struc-
ture µ is a composition of f(n) regions. The input membrane is the innermost
membrane. During the simulation of the tth step of M , the objects in the in-
nermost membrane will dissolve all the membranes in the tth region as follows.
Assume that after t − 1 steps M is in state si (i ∈ [k − 2]), the position of the
head is p, and the head scans Xj . Then the innermost membrane of the tth region
contains an object O that represents si and p, and another object O′ representing
Xj on the pth position of the tape. The regions are composed from k ·m · f(n)
membranes (that is, in every region, for every state–tape symbol–position triple
there is a corresponding membrane). During the simulation of the tth step of M , O
dissolves all the membranes that correspond to a state si′ with i′ < i or a position
p′ < p. Meanwhile O′ evolves using a counter and at the appropriate time step it
starts to dissolve all the membranes corresponding to si, p, and tape symbol Xj′

with j′ < j. After this the simulation of one step of M is performed using the
value δ(si, Xj). Then the remaining membranes in the tth region are dissolved,
and the system continues with the simulation of the next step of M .

Construction of the P system.

The uniform family of P systems that will perform the above described simulation
is defined as follows. Let w = a1 . . . an be an input of M (a1, . . . , an ∈ Σ) and
N = f(n) · k ·m. Let cod(w) be a multiset over the alphabet

Σ(n) = {(Xj , p, t)
(c), (si, p, t)

(c′) |
j ∈ [m], i ∈ [k], p ∈ [f(n)], t ∈ [0, f(n)], c ∈ [0, N ], c′ ∈ [0, N +m]}
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defined as follows: cod(w) = {(a1, 1, 0)(0), . . . , (an, n, 0)(0)} ∪ {(t, n+ 1, 0)(0), . . . ,
(t, f(n), 0)(0)} ∪ (s1, 1, 0)(0). Intuitively, an object (Xj , p, t)

(c) in Σ(n) represents
the fact that after t steps M has Xj on the pth position of its tape. We call these

objects position objects. Similarly, an object (si, p, t)
(c′) represents the fact that

after t steps M is in state si and the head points to the pth position of the tape.
We call these objects state objects. The indexes c, c′ are counters used for technical
reasons. It can be seen that cod ∈ L.

Let Π = {Π(n)}n∈N be a uniform family of P systems, where Π(n) = (Γ (n),
H(n), µ(n),W (n), R(n)) is defined as follows:

• Γ (n) = Σ(n) ∪ {yes, no}.
• H(n) = {(si, p,Xj , t) | i ∈ [k], p, t ∈ [f(n)], j ∈ [m]}.

Intuitively, a label (si, p,Xj , t) corresponds to the following configuration of M
after t steps on w: the current state is si, the position of the head is p, and the
scanned symbol is Xj . We will often call si, p, and t the state, position, and
time labels of the corresponding membrane, respectively.

• µ(n) is a composition S[rf(n)[. . . [r1]]] of regions, where S = [ ]skin, and a
region rt (t ∈ [f(n)]) is a composition of layers defined as follows. For every
i ∈ [k] and p ∈ [f(n)], let lsi,p,t = [. . . [ ](si,p,X1,t) . . .](si,p,Xm,t), and let rt =
lsk,f(n),t[. . . [lsk,1,t[. . . [ls1,f(n),t[. . . [ls1,1,t] . . .]] . . .]] . . .].

• The input membrane is the innermost membrane in µ(n).
• W (n) is a sequence of empty initial multisets.
• R consists of the following sets of rules:

(1) [(si, p, t)
(0)](si′ ,p′,Xj ,t+1) → (si, p, t)

(0)

(j ∈ [m], i ∈ [k − 2], i′ ∈ [k], p, p′ ∈ [f(n)], t ∈ [0, f(n) − 1], and i′ < i or
p′ < p).
These rules are used to find the first such membrane whose state and posi-
tion labels correspond to the state and position stored in the state object.

(2) [(Xj , p, t)
(c) → (Xj , p, t)

(c+1)](si,p′,Xj′ ,t+1)

(j, j′ ∈ [m], i ∈ [k], p, p′ ∈ [f(n)], t ∈ [0, f(n)− 1], c ∈ [0, N − 1]).
These rules are used to increment the counter c in the position objects.
When this counter equals to N , the system can start to use rules in (3).

(3) [(Xj , p, t)
(N)](si,p,Xl,t+1) → (Xj , p, t)

(N),

[(Xj , p, t)
(N) → (Xj′ , p, t+ 1)(0)](si,p,Xj ,t+1),

[(Xj , p
′, t)(N) → (Xj , p

′, t+ 1)(0)](si,p,X1,t+1)

(j, l ∈ [m], l < j, i ∈ [k − 2], p, p′ ∈ [f(n)], p 6= p′, t ∈ [0, f(n) − 1], and
Xj′ = proj2(δ(si, Xj))).
If the position stored in an object (Xj , p, t)

(N) corresponds to the posi-
tion label of the current membrane, then this object starts to dissolve the
membranes until a membrane whose label stores Xj is found. When this
membrane is found, (Xj , p, t)

(N) evolves according to the value of δ(si, Xj),
its counter is reset, and its component t is incremented. Those position ob-
jects that store a different position than the position label of the current
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membrane evolve immediately such that their counter is reset and their
component t is incremented. Notice that after performing the computations
by these rules, the position objects have no impact on the computation in
region rt+1.

(4) [(si, p, t)
(c) → (si, p, t)

(c+1)](si,p,Xl,t+1),

[(si, p, t)
(N+m) → (si′ , p

′, t+ 1)(0)](si,p,Xl,t+1)

(i ∈ [k − 2], i′ ∈ [k], p ∈ [f(n)], t ∈ [0, f(n) − 1], c ∈ [N + m − 1], l ∈ [m],
si′ = proj1(δ(si, Xl)), p

′ = max{p+ proj3(δ(si, Xl)), 1}).
The counter of the state object is incremented using the first rule. Until
the counter reaches N + m, the appropriate position object can find the
corresponding membrane using rules in (3). Then the state object evolves
according to the value of the transition function of M . Moreover, its counter
is reset and its component t is incremented.

(5) [(si, p, t+ 1)(0)](si′ ,p′,Xj ,t+1) → (si, p, t+ 1)(0)

(i ∈ [k − 2], i′ ∈ [k], p, p′ ∈ [f(n)], j ∈ [m], t ∈ [0, f(n)− 1]).
After simulating a step of M using rules in (1)-(4), the remaining mem-
branes in region rt+1 are dissolved by these rules.

(6) [(sk−1, p, t)
(0) → yes]h, [(sk, p, t)

(0) → no]h,
[yes]h′ → yes, and [no]h′ → no
(p, t ∈ [f(n)], h ∈ H(n), h′ ∈ H(n)− {skin}).
These rules are used to produce the answer of Π(n) according to which
halting state is reached by M on the input.

Correctness, running time, and (L,L)-uniformity.

Let w = a1 . . . an be an input of M (a1, . . . , an ∈ Σ). We show that Π(n) produces
yes started with cod(w) in its input membrane if and only if w ∈ L(M). The work
of Π(n) can be described as follows. Initially, the object (s1, 1, 0)(0) (representing
that M starts its work in its initial state and the head is positioned to the first
letter of the input) is in the innermost membrane of region r1. Now assume that
Π(n) has already simulated t steps of M , that is, the innermost membrane of Π(n)
is the most deeply nested membrane of region rt+1, and this membrane contains
an object (si, p, t)

(0), for some i ∈ [k] and p ∈ [f(n)]. If i ∈ [k − 1, k], i.e., M
has reached one of its halting states, then Π(n), using rules in (6) computes the
answer of the system yes or no accordingly. Otherwise, rules from (1) are applied
until a membrane with label (si, p,X1, t + 1) is reached. Meanwhile, the counter
c in position objects is incremented using rules in (2). By the time this counter
becomes N , the corresponding membrane is reached by the rules in (1).

Now those position objects that store different positions than p evolve by the
third rule in (3) to such objects that will be used next time only in the next region
rt+2 (i.e., in the simulation of the next step of M). Concerning the position object
storing p, assume that this object is (Xj , p, t)

(N). Then (Xj , p, t)
(N) is used to find

that membrane in layer lsi,p,t+1 whose label contains Xj . When this membrane is
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found, (Xj , p, t)
(N) evolves according to the transition function of M . Moreover,

its counter is reset and its time component is incremented. Thus this object is not
used any more in this region.

Meanwhile, rules in (4) are used to increment the counter c of (si, p, t)
(c). By

the time this counter becomes N +m, the position object (Xj , p, t)
(N) has reached

the membrane it searched for. Now the second rule in (4) is used to produce object
(si′ , p

′, t+1)(0) where si′ and p′ are calculated according to the transition function
of M . Finally, (si′ , p

′, t+1)(0) is used to dissolve the remaining membranes of rt+1.
If this is done, the system is ready to simulate the next step of M . With this we
have seen that Π(n) simulates correctly the computation of M on w.

It can be seen that dissolving a region in the membrane structure takes O(N)
steps and N = O(f(n)). Moreover, Π(n) has f(n) regions. Thus the running time
of the system is O(f2(n)), that is, polynomial in n. The (L,L)-uniformity of Π
follows from the observation that the size of Π(n) is also polynomial in n. Thus
we have the following result.

Theorem 3. P ⊆ (L,L)−PMCAM0
+evo(1),+d

.

As we have observed on page 197, our solution of Horn3SatNorm by P
systems of type AM+e,+d is such that every membrane has at most two child
membranes in every configuration of each computation of the system. Let k ≥ 1.
We say that a P system Π is k-bounded, if every membrane has at most k child
membranes in every configuration of each computation of Π. For a type F of
P systems, denote PMCF≤k

the set of those problems that can be decided by
such polynomially uniform families of P systems of type F which have k-bounded
members only. Denote AM−e those P systems with active membranes that do
not employ membrane division rules. It can be seen using the generalization of
the proof of PMCAM−e ⊆ P in [30] that PMCAM≤2

⊆ P also holds. Using the
results obtained in the paper we can give the following new characterizations of
P.

Corollary 1. P = (L,L)−PMCAM+out = (L,L)−PMCAM+e,+d,≤2
= (L,L)−

PMCAM0
+evo(1),+d

.

4 Conclusions

In this paper we have shown that uniform families of the following restricted vari-
ants of P systems with active membranes can solve all problems in P: (1) P systems
where only out communication rules are used, (2) P systems where only elemen-
tary membrane division and dissolution rules are used, and (3) polarizationless
P systems where only dissolution and 1-restricted evolution rules are used. Using
the obtained results concerning variants (1) and (3), and known results about the
upper bound on the power of these variants we could give new characterizations
of P in terms of Membrane Computing techniques.
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It remained an open question if the variant (2) could solve problems outside
of P. It is known that without polarizations of the membranes this is not possible
[29]. It is also an open question if these systems can solve all problems in P
when polarizations of the membranes are not allowed. Nevertheless, we could give
another characterization of P using variant (2) when we made a simple semantic
restriction on the computations of this variant.
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Salomaa, A., Sośık, P., Zandron, C. (eds.) Membrane Computing: 15th International
Conference, LNCS vol. 8961 (2014) 229–240

7. Gensler, H.J.: Introduction to Logic, Routledge, London (2002)
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