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Summary. The main objective of this article is to modelize the process of decay of
Uranium 238 within the framework of Membrane Computing, so the evolution of great
numbers of particles can be progressively followed and the results of the desintegrations
(nuclei coming from α and β− decays) can be counted.

In order to model the process in an accurate manner, exploiting the properties of
maximal parallelism and non-determinism of Membrane Computing, a Population Dynamic
P system (or PDP for short) restricted to one environment and a P system conformed by
only the skin have been selected.

The difficulty in the characterisation of this reactions lays in the simultaneity of the
different decays, since the number of desintegrations of nucleous of each specie depend on
the number of atoms of the initial population. In order to solve this problem and keep
their attachment, the characteristic time of production of each decay has been translated
into probabilities of deintregration of a nucleous using the decay constant λ.

1 Introduction

In this paper we are considering the Uranium-238 decay, which will be explained
in the following sections. One of the first objectives was to prove that making use
of Membrane Computing and the P-lingua simulation, we could obtain the results
previously known, e.g. the ways that intermediate products of the decay took to
arrive to the final product or the amount of different elements that were produced
during the chain. Nevertheless, during the development of this project another
interesting problem, which will be explained and discussed in later on, appeared:
time implementation. At this point, our main goal was to look for different ways
of modeling the physical process as close as possible to reality. Even so, it is still
interesting to know which products we obtain in each disintegration, so we are able
to proof the most probable ways of decay.
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The problem with half-lifetimes.

During the modeling of the decay processes we found out some problems when
implementing the time involving the reactions, i.e. the disintegration of one element
into another one has an intrinsic half-lifetime associated to it. This parameter T1/2,
found in equations (1) and (2), determines the time that takes for the element
to reduce the number of its nuclei to half of the initial ones. Also, an important
constant is τ , the decay constant, defined as: τ = 1

λ , which represents the probability
of a nucleus to decay, per unit of time.

dN
dt = −λN (1)

T1/2 = ln 2
λ

(2)

Being N the number of nuclei at a given time t, and λ, the number of disinte-
grations per second, which is a constant for a given reaction.

From (1) it can be noticed that the rate of disintegration depends not only
on the constant of disintegration, λ, but also on the population of nuclei at the
time we are calculating the disintegration rate. This is the reason why rather than
considering the rate as the parameter to characterize the reactions, sometimes is
better to consider what we define as half-lifetime, T1/2, which is constant because
it only depends on λ.

These processes occur all at the same time, so to say, from the first moment
when we obtain the second nucleus of the chain, another reaction begins to take
place: it does not wait for all the first elements to react. Taking into account that
P-Systems are based in systems that evolve by steps of time we were aware we
had to find a way to approximate as close as we could to the fact that time is
continuous. To do so while trying not to differ a lot from what happens in reality
we went through different models making some changes in the implementation of
the time. The two methods that we selected, which will be further explained in
following sections, were the following:

• Steps of time: The first approach to the problem of Uranium decay consisted in
translating the half-lifetimes of the different decays of the chain by a logarithmic
scale so the considered range of variation was reduced enough in other to assign
a proportional and arbitrary amount of time for each step. There it has been
considered that one reaction must be applied to all nuclei before beginning
the following reaction of the chain. In this case, index notation was used to
represent the duration of each step. Although not being a model really close
to the real situation, one could obtain the expected results. So, for example,
the first reaction was assigned a counter that went from 1 to 7. This counter
ensured that no reaction could begin before having ended previously the earlier
step in the chain.
In a way, this process roughly simulated the different periods of time required
for each element of the chain to vanish. However it doesn’t allow that different
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elements react at the same time. The next step in the chain has to wait until
the previous one finished. Therefore, although the simulation that implements
this rules approaches reasonably well the amount of particles gathered at the
end of the process, it was not a good approach to reality, as in a real decay
several reactions of the chain take place at the same time.

• Probabilistic model: in which it has been taken into account that once a nucleus
has decayed into the next one, the following reaction can take place for that
recently generated nucleus. This model is a useful way to determine which
particles were generated at each moment, i.e. one could thoroughly examine
the intermediate stages of the decay.

2 Uranium-238 decay chain

2.1 Radioactive series

Nuclear decays [2] are transitions to less energetic —and thus more stable— states.
An initial unstable nucleus can naturally decay into another nucleus, usually but
not necessarily lighter, following different modes characterized by the emitted
particles and the resultant nuclei. The ones concerning our study are the α decay
(3) and the β− decay (4), where the emitted particles can be He nuclei (α particles)
or electrons (along with their corresponding antineutrino).

A
ZX → A−4

Z−2Y + 4
2He (3)

A
ZX → A

Z+1Y + e− + ν̄e (4)

Where A is the mass number and Z the atomic number. Other possible decay
modes are the β+ decay (with emission of positrons and electronic neutrinos), the
gamma emission, and the electronic capture. Of the three kinds of possible emitted
particles (α, β and γ), γ particles have the largest penetrating power, while α
particles interact more with matter.

The resulting nuclei of a nuclear decay can still be unstable and therefore decay
into another nuclei and the corresponding particle. In this way, several decays may
take place until a stable nucleus is reached. This process of chained decays that
begins on a unstable parent nucleus and end on a number of stable nuclei is called
a radioactive series or decay chain.

The parent nuclei of the radioactive series usually have very large lifetimes (i.e.
the time it takes to the initial population to disappear entirely). There are four
main radioactive series (three of them being natural), and all of them end in lead,
which is stable.
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2.2 U-238 decay chain

As we can see in Table 1, the Uranium decay chain consists of 15 main steps (i.e.
decay reactions). This table shows the most probable decay modes, but there are
other decays with an extremely low probability of occurring, showed with more
detail in the second part of Table 1. Nevertheless, independently from the path
chosen, the final product is always lead (Pb-206), which is stable. A diagram of
the whole U-238 decay chain and its less probable decay modes can be found in
Figure 1.
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Parent T1/2 (s) λ (decays/s) τ (s) Decay modes Reaction fr,1

238
92 U (a) 1.41× 1017 4.92× 10−18 2.03× 1017 α (100%): 234

90 Th [a]0 → x[b]0 9.68× 10−1

234
90 Th (b) 2.08× 106 3.33× 10−7 3.00× 106 β− (100%): 234

91 Pa [b]0 → z[c]0 5.33× 10−1

234
91 Pa (c) 2.41× 104 2.87× 10−5 3.48× 104 β− (100%): 234

92 U [c]0 → z[d]0 6.22× 10−1

234
92 U (d) 7.74× 1012 8.95× 10−14 1.12× 1013 α (100%): 230

90 Th [d]0 → x[e]0 2.29× 10−1

230
90 Th (e) 2.38× 1012 2.92× 10−13 3.43× 1012 α (100%): 226

88 Ra [e]0 → x[f ]0 2.53× 10−1

226
88 Ra (f) 5.05× 1010 1.37× 10−11 7.28× 1010 α (100%): 222

86 Rn [f ]0 → x[g]0 3.30× 10−1

222
86 Rn (g) 3.30× 105 2.10× 10−6 4.77× 105 α (100%): 218

84 Po [g]0 → x[h]0 5.70× 10−1

218
84 Po (h) 1.86× 102 3.73× 10−3 2.68× 102 α (99.98%): 214

82 Pb

β− (0.02%): 218
85 At

[h]0 → x[v]0
[h]0 → z[j]0

7.20× 10−1

1.44× 10−4

214
82 Pb (v) 1.62× 103 4.27× 10−4 2.34× 103 β− (100%): 214

83 Bi [v]0 → z[k]0 6.77× 10−1

214
83 Bi (k) 1.19× 103 5.81× 10−4 1.72× 103 β− (99.979%): 214

84 Po

α (0.021%): 210
81 Tl

[k]0 → x [n]0
[k]0 → z [m]0

1.43× 10−4

6.83× 10−1

214
84 Po (m) 1.64× 10−4 4.22× 103 2.37× 10−4 α (100%): 210

82 Pb [m]0 → x[p]0 1.00× 100

210
82 Pb (p) 7.00× 108 9.90× 10−10 1.01× 109 β− (100%): 210

83 Bi

α (1.9×10−6%): 206
80 Hg

[p]0 → x [o]0
[p]0 → z [q]0

7.90× 10−9

4.16× 10−1

210
83 Bi (q) 4.33× 105 1.60× 10−6 6.25× 105 β− (100%): 210

84 Po

α (13.2× 10−5%): 206
81 Tl

[q]0 → x [s]0
[q]0 → z [r]0

7.45× 10−7

5.64× 10−1

210
84 Po (r) 1.20× 107 5.80× 10−8 1.72× 107 α (100%): 206

82 Pb [r]0 → x[t]0 4.98× 10−1

206
82 Pb (t) Stable — — — — —

Other (less probable) decays

218
85 At (j) 1.50 4.62× 10−1 2.16

α (99.9%): 214
83 Bi

β− (0.1%): 218
86 Rn

[j]0 → x [k]0
[j]0 → z [l]0

8.16× 10−1

8.17× 10−4

218
86 Rn (l) 3.50× 10−2 1.98× 101 5.05× 10−2 α (100%): 214

84 Po [l]0 → x[m]0 8.92× 10−1

210
81 Tl (n) 7.80× 101 8.89× 10−3 1.13× 102 β− (100%): 210

82 Pb [n]0 → z[p]0 7.38× 10−1

206
80 Hg (o) 4.99× 102 1.39× 10−3 7.20× 102 β− (100%): 206

81 Tl [o]0 → z[s]0 7.00× 10−1

206
81 Tl (s) 2.52× 102 2.75× 10−3 3.64× 102 β− (100%): 206

82 Pb [r]0 → x[t]0 4.98× 10−1

Table 1: Half-life times, decay constants, mean lifetimes, decay modes, reaction
and probability functions for each reaction in the U-238 decay chain. The letter
in brackets corresponds to the letter assigned to each nucleus for implementation.
Half-lifes and probabilities for the chain decays obtained from [3] [5]; probabilities
for the less probable decays obtained from [4]. The probability function associated
to each transformation rule depends on the decay constant and the decay mode
probability.
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238
92 U

234
90 Th 234

91 Pa 234
92 U

230
90 Th

226
88 Ra

222
86 Rn

218
84 Po 218

85 At 218
86 Rn

214
82 Pb 214

83 Bi 214
84 Po

210
81 Tl 210

82 Pb 210
83 Bi 210

84 Po

206
80 Hg 206

81 Tl 206
82 Pb
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Fig. 1: Uranium decay chain.
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3 P-system model

Population Dynamics P systems (PDP systems) [1] are a kind of P systems that
combines the characteristics of both cell-like and tissue-like models. A PDP system
is constituted by (i) a set of connected environments placed in the nodes of a directed
graph (ii) identical cell-like structures of hierarchically arranged membranes placed
inside each environment, (iii) a working alphabet of objects and (iv) a set of rules
which describe how objects evolve and move inside the P systems (R) and among
the environments (Rε).

Formally, a Population Dynamics P system of degree (q,m) with q,m ≥ 1,
taking T time units, T ≥ 1, is a tuple

(G,Γ,Σ, T,Rε, µ,R, {fr,j : r ∈ R, 1 ≤ j ≤ m}, {Mij : 1 ≤ i ≤ q, 1 ≤ j ≤ m})
(5)

where:

• G = (V, S) is a directed graph and V = {e1, . . . , em} are the elements called
environments.

• Γ ∪Σ is the working alphabet.
• T is a natural number that represents the simulation time of the system.
• Rε is a set of communication rules between environments of the form

(x)ej

p(x,j,j1,...,jh)−−−−−−−−−→ (y1)ej1 · · · (yh)ejh
(6)

where x, y1, · · · yh ∈ Γ, (ej , ejl) ∈ S(l = 1, . . . , h) and p(x,j,j1,...,jh)(t) ∈ [0, 1],
for each t = 1, . . . T .
The previous definition means that, when a communication rule is applied,
object x contained in environment ej passes to environments ej1 . . . ejh, possibly
modified into objects y1, . . . yh. If more than one rule can be applied to (x)ej

,
then the rule executed is chosen randomly according to the probabilities
p(x, j, j1, ..., jh).

• µ is the membrane structure of the cells contained in each of them environments
and each consisting on a set of q hierarchically arranged membranes injectively
labeled by 1, . . . q. The skin membrane, or outer membrane is labeled by 1. The
membranes can also have electrical charges or polarizations, EC = {0,+,−}.

• R is a set of evolution rules applied within each cell. They are of the form
r : u[v]αi → u′[v′]α′i where u, v, u′, v′ ∈M(Γ ), i ∈ 1, . . . q, and α′ ∈ EC.

• For each r ∈ R and for each j, 1 ≤ j ≤ m, fr,j is a computable function which
satisfies that, for each u, v ∈ M(Γ ) all the rules r ∈ R whose left-hand side
is (i, α, u, v) and the right-hand side have a polarization α′,

∑
j=1 fr,j(t) = 1

∀t ≤ T .
• M1j , . . . ,Mqj ∈ M(Γ ) are the initial multisets of objects for environments
j = 1, . . .m placed inside the membranes 1, . . . q of µ.

The tuple of multisets of objects present at any moment in the m environments
and at each of the regions of the P systems (cell-like structures) constitutes the a
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configuration of the system at any time. At the initial configuration of the system,
all environments are assumed to be empty and all the membranes have neutral
polarization.

The system evolves from one configuration to another at each time step by
executing simultaneously all the applicable rules of the setR = Rε∪

⋃m
i=1RΠj

3 in a
maximal way. When there are rules acting on overlapping left-hand sides, i.e. u[v]αi ,
u′[v′]αi where u, u′, v, v′ ∈ M(Γ ), u 6= u′ ∨ v 6= v′ and u ∩ u′ 6= ∅ ∨ v ∩ v′ 6= ∅, the
rule which is executed is selected randomly according to the probability associated
with each rule.

Finally, it is interesting to highlight the fact that a global clock is considered in
the system, marking the time for the whole system, so the application of all rules
(both from Rε and R) are synchronized in all environments.

3 Πj = {Γ, µ,R,M1j , . . . ,Mqj} denotes the P system in environment ej and RΠj , the
set of rules defined on the considered P system.
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2,2

3,24,2
b5a2

a6

2,1
3,1

[ab]1 → a2b[ ]1

[a]2
0,2−−→ b[ ]2

[a]2
0,8−−→ a[a]2

[ab]1 → a2b[ ]1

[a]2
0,2−−→ b[ ]2

[a]2
0,8−−→ a[a]2

1,1

1,3

2,3

b7a5

[ab]1 → a2b[ ]1

[a]2
0,2−−→ b[ ]2

[a]2
0,8−−→ a[a]2

b7a5

1,2

2,2
3,2

a5

a3b3

b4a2

(a)2
0,25−−→ (b)1

(a)2
0,75−−→ (a)1

(a)2
0,5−−→ (a)3

(ab2)3 → (a2)1

(ab)3 → (b)2

(a)2
0,5−−→ (b)3

3,3

Fig. 2: A graphical example of a PDP system

4 Implementation

4.1 First model

The Step of time model is the simplest possible modelization of the Uranium decay
problem, as it characterizes the half-lifetime, the characteristic time parameter,
of the nuclear reactions using the clock steps of time defined in the membrane
computing model. This first rought approximation is based on two assumptions:

• The nuclear reaction of a given element cannot begin until all the progenitor
nuclei of this element have reacted.

• The duration of each reaction can be represented assigning different clock steps
to every reaction.
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The timescale of the reactions (characterized by the half-lifetime, T1/2) involved
in the network of nuclear reactions is huge, varying 21 orders of magnitude: the
T1/2 of the fastest reaction is of about ≈ 10−4 s while for the slowest T1/2 ≈ 1017 s.

In order to translate the half-lifetime of each reaction to a number of clock
iterations, a logarithmic scale is considered. The number of clock iterations is
therefore calculated assigning a scaled integer number to each reaction according
to the “weight” of time for each reaction.

The implementation of this model is done therefore in a single cell-like membrane
through rules of the type

[ai → ai+1 1 ≤ i ≤ 7]1
[a8 → b1, z]1
[bi → bi+1 1 ≤ i ≤ 4]1
[b5 → c1, x, y]1

when there’s a single via decay or

[hi −−−−→ hi+1 1 ≤ i ≤ 3]1
[h4

99,98%−−−−→ v1, z]1
[h4

0,02%−−−−→ j1, x, y]1
when competition rules are considered.

The letter assignation is specified at Table 1, as it is the same as the one used
in the probabilistic model. x, y and z represent α particles, e− (electrons) and νe
(electron antineutrino).

As can be seen, after seven clock steps of computation the nuclei a decays into b.
The nuclei b then waits 4 steps of computation before evolving. When competition
rules apply, the nuclei h also waits a given number of computations after evolving
according to a given probability.

Although it is not being a model really close to the real situation, with it
one could obtain the results expected. The main application of the Steps of time
model is then, to obtain the number of nuclei and particles of each kind once the
process has ended, taking into account that some nuclei can decay by different
vias according to a given probability. However, it cannot predict the number of
nuclei of each kind after a given amount of time. The representation of the model
is staggered-like, so it doesn’t represent a continuous and soft process and therefore
the approximation is not accurate.

To sum up, the biggest disadvantage in this modelization was that the next step
in the chain had to wait until the previous one had finished completely. Therefore,
although the simulation which implemented these rules approached reasonably the
amount of particles gathered at the end of the process, it wasn’t a good approach
to reality, as in a real decay several reactions of the chain take place at the same
time.
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4.2 Second model

In order to implement the experiment of the Uranium Decay using the framework
of Membrane Computing, it has been chosen the PDP system model restricted to a
single environment containing a membrane structure composed by a sole membrane
of neutral polarization α = 0, so the system can be described as a P system

Π1 = (Γ = {a, b...z}, µ = [ ],R = {r1,i, i = 1, ..., 38},M1,q=1 = an)

Within this membrane, different objects, which represent the intermediate products
in the decay chain, evolve in each step of the computation using PDP evolution
rules of the type described in the previous section.

The alphabet of objects Γ is composed by all the intermediate products described
in Table 1. A letter has been associated to each decay product in order to enable
an easier modeling of the problem. As discussed in section 2, each decay mode α
or β− generates a different kind of particles, which also have a letter associated (x
for α particles and z for particles generated in β− decay), so the total number of
particles obtained from the α and β− decay can be accounted at the end of the
computation.

In order to model the smooth and continuous decay of every specie in time,
competition rules have been considered. For example, given the first reaction, the
decay of U238

92 into Th234
90 through the α mode.

[a]1
1−fa−−−→ [a]1

[a]1
fa−→ x[b]1

where a and b are the letters associated to U238
92 and Th234

90 respectively. The
rule applied will be chosen taking into account the probability associated with it,
denoted by fa,1 ≡ fa. From this it can be seen why it is so important that the
probability sums up to 1.

The decay of a into b takes place through the α decay mode, so a second product
x (α particle) is generated outside the membrane.
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an

0
an

[a]0
1−fa−−−→ [a]0

[a]0
fa−→ x[b]0

[b]0
1−fb−−−→ [b]0

[b]0
fb−→ z[c]0

[c]0
1−fc−−−→ [c]0

[c]0
fc−→ z[d]0

[d]0
1−fd−−−→ [d]0

[d]0
fd−→ x[e]0

[e]0
1−fe−−−→ [e]0

[e]0
fe−→ x[f ]0

[f ]0
fg−→ x[g]0

[f ]0
1−ff−−−→ [f ]0

[g]0
1−fg−−−→ [g]0

[g]0
fg−→ x[h]0

[h]0
1−fh−−−→ [h]0

[h]0
fhp

α
h−−−→ x[v]0

[h]0
fhp

β
h−−−→ z[j]0

[v]0
fv−→ z[k]0

[v]0
1−fv−−−→ [v]0

[j]0
1−fj−−−→ [j]0

[j]0
fjp

α
j−−−→ x[k]0

[j]0
fjp

β
j−−−→ z[l]0

[k]0
1−fk−−−→ [k]0

[k]0
fkp

α
k−−−→ x[n]0

[k]0
fkp

β
k−−−→ z[m]0

[l]0
1−fl−−−→ [l]0

[l]0
fl−→ x[m]0

[n]0
1−fn−−−→ [n]0

[n]0
fn−→ z[p]0

[m]0
1−fm−−−−→ [m]0

[m]0
fm−−→ x[p]0

[p]0
1−fp−−−→ [p]0

[p]0
fpp

α
p−−−→ x[o]0

[p]0
fpp

β
p−−−→ z[q]0

[o]0
1−fo−−−→ [o]0

[o]0
fo−→ z[s]0

[q]0
1−fq−−−→ [q]0

[q]0
fqp

α
q−−−→ x[s]0

[q]0
fqp

β
q−−−→ x[s]0

[s]0
1−fs−−−→ z[t]0

[s]0
fs−→ z[t]0

[r]0
1−fr−−−→ [r]0

[r]0
fr−→ x[t]0

Fig. 3: Implementation of the model with the rules applied

As λ is a physical parameter constant in time and characteristic of each reaction,
it has proved to be the most suitable magnitude to compute the the probability
functions fr,1. The functions fr,1 have been calculated as the normalized logarithm
of the scaled (> 1) λ ’s.

The most significant difficulty in the assignation of fr,1 to every transformation
rule consisted on the great order of magnitude of the times of decay of the different
reagents, as λ ∈ [5·1018, 5·10−3] decays/s (nearly 21 orders of magnitude). Moreover,
in other to compute the probabilities of each reaction, λ needed to be dimensionless
and normalized in such a way that the probabilities of the rules with the same
left-hand objects sum up to 1.
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In order to solve these problems, some assumptions and approximations have
been made. First of all, all values of λ in Table 1 have been divided between the
order of magnitude of minimum λ. This way, we ensure that when the logarithm is
applied the numbers will always be positive (as λ

λmin
> 1), as well as granting that in

logarithm scale, the order of the numbers is not changed. As have been mentioned,
having such a great range of λ is truly inconvenient for doing the computations,
so the rough solution that has been found consists in applying logarithms to the
dimensionless quotient λ

λmin
. In other to obtain a global probability, which assigns

probability equal to one to the rule with the greatest chance to occur, log(r) is
divided by log(r)max for every rule. When the decay mode is not unique, this
function is also multiplied by the probability of occurrence pγr , with γ = {α, β}
representing the possible decay modes.

The method used for obtaining fr,1 explained above, assigns a probability to the
evolving transformation rules, which transforms a reactive into a different object.
As has been explained in section 3, the sum of all probabilities applied over the
same left-hand object must be one. As a consequence, the probability of occurrence
of the non-evolution transformation rule r: [a]0

1−fr,1−−−−→ [a]1 has been computed as
1− fr,1.

The rules start applying when at least one object of the left-hand side of a rule
is generated and continue applying until all this kind of objects are consumed. So,
as more intermediate products are generated, more reagents begin to evolve in each
computation step, so after a given number of time steps several products of the
decay chain will be evolving at the same time (modeled as discrete clock steps in
the computation). In this manner, the dependence of the decay in the abundances
of each reactive has been roughly simulated in a first approximation. Moreover,
the problem of the first model, when a reactive couldn’t begin to evolve until all
reagents of the previous decay have been consumed has been solved. It’s necessary
to notice that although this model approximates better the decay as a continuous
process, the steps of time are still discrete, represented by each computation step.

5 Code

@model<probabilistic>

def main()

{

@mu=[]’1;

@ms(1) = a*500000;

[a]’1 --> [a]’1 :: 0.968;

[a]’1 --> x[b]’1 :: 0.032;

[b]’1 --> [b]’1 :: 0.467 ;

[b]’1 --> z[c]’1 :: 0.533 ;
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[c]’1 --> [c]’1 :: 0.378 ;

[c]’1 --> z[d]’1 :: 0.622 ;

[d]’1 --> [d]’1 :: 0.771;

[d]’1 --> x[e]’1 :: 0.229;

[e]’1 --> [e]’1 :: 0.747;

[e]’1 --> x[f]’1 :: 0.253;

[f]’1 --> [f]’1 :: 0.67;

[f]’1 --> x[g]’1 :: 0.33;

[g]’1 --> [g]’1 :: 0.43;

[g]’1 --> x[h]’1 :: 0.57;

[h]’1 --> [h]’1 :: 0.28;

[h]’1 --> x[v]’1 :: 0.71856;

[h]’1 --> z[j]’1 :: 0.00144;

[v]’1 --> [v]’1 :: 0.323;

[v]’1 --> z[k]’1 :: 0.677;

[j]’1 --> [j]’1 :: 0.183;

[j]’1 --> x[k]’1 :: 0.816183;

[j]’1 --> z[l]’1 :: 0.000817;

[k]’1 --> [k]’1 :: 0.317;

[k]’1 --> x[n]’1 :: 0.68285657;

[k]’1 --> z[m]’1 :: 0.00014343;

[l]’1 --> [l]’1 :: 0.108;

[l]’1 --> x[m]’1 :: 0.892;

[n]’1 --> [n]’1 :: 0.262 ;

[n]’1 --> z[p]’1 :: 0.738;

[m]’1 --> [m]’1 :: 0.0;

[m]’1 --> x[p]’1 :: 1.0;

[p]’1 --> [p]’1 :: 0.584;

[p]’1 --> x[o]’1 :: 0.4159999921;

[p]’1 --> z[q]’1 :: 0.000000007904;

[o]’1 --> [o]’1 :: 0.30;

[o]’1 --> z[s]’1 :: 0.70;

[q]’1 --> [q]’1 :: 0.436;

[q]’1 --> x[s]’1 :: 0.563999255;

[q]’1 --> z[r]’1 :: 0.000000745;

[s]’1 --> [s]’1 :: 0.286 ;

[s]’1 --> z[t]’1 :: 0.714;
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[r]’1 --> [r]’1 :: 0.502;

[r]’1 --> x[t]’1 :: 0.498;

}

6 Results

The results obtained when running the P-lingua code with a = 5 · 105 are shown in
Figure 4 and Figure 5.

Fig. 4: Number of particles emitted through the different reactions, in logarithmic
scale. It can be seen how both particles, α and the ones emitted through β−

reactions (named as β) reach an almost stationary value, with a larger final number
of α particles, since α reactions take place more frequently. As reactions begin, a
lot of the initial particles evolve giving their products but, as more reactions get
to the final product, lead, less reactions take place at each step, so the number of
particles emitted at each step reduces considerably, changing only one particle per
step so, given the scale of the figure, this becomes imperceptible.

Both figures show the expected behavior of the Uranium decay chain, as they
satisfy that
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• after a large enough number of computation steps, all the emmited particles in
the reaction (α and β− particles) have reached a stable state.

• the decay chain takes place in a staggered way (we cannot see the discrete
increments), as was sought in this second model.

• the slope of the evolution of each product matches the λ coefficients we imple-
mented, showing a correct relationship between the probability functions and
λ.

• the process is faster at generating particles in the beginning and at the end of
the reaction, whereas the middle products last for a while.

Fig. 5: Nuclei population. It is represented the number of particles at each step
of time, in logarithmic scale. It can be seen that the number of initial particles
(Uranium-238) decreases whereas the final product increses until it reaches an
stationary value, the same as the initial number of particles, as expected. As
reactions take place, the new elements are created, showing an impressive increase
that slowly decreases then as reactions continue. As we reach more advanced stages
(Steps of time ≈ 250 and more) a noise in the number of elements appears: this
is because less reactions of the same elements take place simultaneously and so
the number of particles changes sharply at each step, depending on if the reaction
involving that specific element has taken place or not.
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The fluctuations, which can be appreciated in the last steps of time in Figure 5,
are probably due to the overlapping of different reactions in the advanced steps of
the uranium chain which simultaneously produce and consume a certain nucleus,
i.e., as the products evolve, more reactives are generated at the same time that
they are evolving to the next product. That way, a dependence on the decay rate
on the relative abundances of each reactive is appreciated.

7 Conclusions

Decay chains are based in a system of differential equations that once solved allow
to obtain the products at each time, t. However, the solution is reached after
solving a coupled system of numerous differential first order equations, which is
computationally costly. The MC tools allow to reproduce the process and to obtain
the expected final products just by making some slight approximations.

This means that competition rules which appear naturally in MC can assume the
role of the bounds between differential equations almost trivially, so the mentioned
system of differential equations does not need to be solved in order to simulate the
real situation.

In addition, this article attempts different ways of implementing time in a decay
process. Instead of modeling time as an independent parameter, which would be
the model where indexes are used (considering steps of computation as time), it
has finally been introduced as a part of the probability, given by the decay constant
λ. The first method is really unefficient because the system wastes a lot of time
just skipping processes (while indexes change) and so by this time, the program is
not really working on the chain reaction itself.
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