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Summary. We consider (extended) spiking neural P systems with states, where the
applicability of rules in a neuron not only depends on the presence of sufficiently many
spikes (yet in contrast to the standard definition, no regular checking sets are used), but
also on the current state of the neuron. Moreover, a spiking rule not only sends spikes,
but also state information to the connected neurons. We prove that this variant of the
original model of extended spiking neural P systems can simulate register machines with
only two states, even in the basic non-extended variant.

1 Introduction

In the area of P systems, the model of spiking neural P systems was introduced
in [7]. Whereas the basic model of membrane systems, see [11], reflects hierarchical
membrane structures, in spiking neural P systems the cells are arranged in a tissue-
like manner, with the contents of a cell (neuron) consisting of a number of so-called
spikes, i.e., of a multiset over a single object. The rules assigned to a neuron allow
us to send information to other neurons in the form of electrical impulses (also
called spikes) which are summed up at the target neuron; the application of the
rules depends on the contents of the neuron and in the general case is described
by regular sets. As inspired from biology, the neuron sending out spikes may be
“closed” for a specific time period corresponding to the refraction period of a
neuron; during this refraction period, the neuron is closed for new input and cannot
get excited (“fire”) for spiking again.

The length of the axon may also cause a time delay before a spike arrives at
the target. Moreover, the spikes coming along different axons may cause effects
of different magnitude. All these biologically motivated features were included
in the model of extended spiking neural P systems considered in [3], the most
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important theoretical feature being that neurons can send spikes along the axons
with different magnitudes at different moments of time.

In this paper, we consider a variant of the model of extended spiking neural P
systems which not only uses spikes to be sent to other neurons when some neuron
spikes, but also allows for sending some additional information called “state” along
the axons. All these state informations arriving in a neuron then determine the
next state of the neuron. On the other hand, we do not use the regular checking
sets for the current number of spikes in the neuron any more, which decreases
the amount of information a spiking rule may use. Hence, the spiking rules now
depend on the current states of the neurons and the availability of sufficiently
many spikes. This variant of extended spiking neural P systems with states has
been inspired by the variant of spiking neural P systems with polarizations, see [16],
where the states are called polarizations, and the underlying model of extended
spiking neural P systems was the basic one with a fixed connection structure, only
extended by allowing more than one spike to be sent along the axons. There it
was shown that computational completeness (i.e., simulation of register machines)
can be obtained with only three polarizations. In this paper we now show that
computational completeness can already be obtained with only two states, i.e., with
two polarizations, even for the basic non-extended variant as considered in [16],
which solves an open problem raised at the Brainstorming Week on Membrane
Computing in Sevilla at the beginning of February 2016.

The rest of the paper is organized as follows: In the next section, we recall
some preliminary notions and definitions from formal language theory, especially
the definition and some well-known results for register machines. In Section 3
we recall the definitions of the extended model of spiking neural P systems as
considered in [3] and then define the model of spiking neural P systems with states
as considered in this paper. In Section 4, we prove our main result and show that
spiking neural P systems with only two states (0 and 1) can simulate register
machines; the complexity of the construction depends on the features we require
the spiking neural P systems to have, but the result even holds true for the basic
non-extended variant of spiking neural P systems with states, where the connection
structure between the neurons is fixed and does not depend on the spiking rules
applied in the neurons. Moreover, we can use a very simple global state composition
function computing the new state of a neuron from the state information having
arrived from the input neurons in the simplest way by going to the “activated state
1” if and only if at least one such activating signal 1 has come in the previous step.
In Section 5, we show how small universal spiking neural P systems with states
can be constructed based on the results obtained in this paper. A short summary
of the results we obtained concludes the paper.

2 Preliminaries

In this section we recall the basic elements of formal language theory and especially
the definitions and results for register machines; we also refer to the corresponding
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section from [3] and [2]. For the basic elements of formal language theory needed
in the following, we refer to any monograph in this area, in particular, to [14]. We
just list a few notions and notations:

V ∗ is the free monoid generated by the alphabet V under the operation of
concatenation and the empty string, denoted by λ, as unit element; for any w ∈ V ∗,
|w| denotes the number of symbols in w (the length of w). N+ denotes the set of
positive integers (natural numbers), N is the set of non-negative integers, i.e.,
N = N+ ∪ {0}.

2.1 Register Machines

The proofs of the results establishing computational completeness in the area of
P systems are often based on the simulation of register machines; we refer to [9]
for original definitions, and to [6] for the definitions we use in this paper:

An n-register machine is a tuple M = (n,B, l0, lh, P ), where n is the number
of registers, B is a set of labels, l0 ∈ B is the initial label, lh ∈ B is the final
label, and P is the set of instructions bijectively labeled by elements of B. The
instructions of M can be of the following forms:

• p : (ADD(r), q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ j ≤ n.
Increases the value of register r by one, followed by a non-deterministic jump
to instruction q or s. This instruction is usually called increment.

• p : (SUB(r), q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ j ≤ n.
If the value of register r is zero then jump to instruction s; otherwise, the value
of register r is decreased by one, followed by a jump to instruction q. The two
cases of this instruction are usually called zero-test and decrement, respectively.

– lh : halt (HALT instruction)
Stop the machine. The final label lh is only assigned to this instruction.

A (non-deterministic) register machine M is said to generate a vector
(s1, · · · , sβ) of natural numbers if, starting with the instruction with label l0 and
all registers containing the number 0, the machine stops (it reaches the instruction
lh : halt) with the first β registers containing the numbers s1, · · · , sβ (and all other
registers being empty).

The register machines are known to be computationally complete, equal in
power to (non-deterministic) Turing machines: they generate or accept exactly
the sets of vectors of non-negative integers which can be generated by Turing
machines.

3 Extended Spiking Neural P Systems

The reader is supposed to be familiar with basic elements of membrane computing,
e.g., from [10] and [12]; comprehensive information can be found on the P systems



46 A. Alhazov, R. Freund, and S. Ivanov

web page [15]. Moreover, for the motivation and the biological background of
spiking neural P systems we refer the reader to [7] as well as to the corresponding
Chapter 13 in the Handbook of Membrane Computing [12]. For the definition of
an extended spiking neural P system we refer to [3].

We now extend the model of extended spiking neural P systems to the new
model of extended spiking neural P systems with states, i.e., the neurons can be in
different states, and depending on the current state of a neuron, different spiking
rules may be applicable.

Definition 1. An extended spiking neural P system with states (of degree m ≥ 1)
(an ESNPS system for short) is a construct Π = (N,S, I,R, f) where

• N is the set of cells (or neurons); the neurons may be uniquely identified by a
number between 1 and m or by an alphabet of m symbols;

• S is the set of states;
• I describes the initial configuration by assigning an initial value (of spikes) and

an initial state to each neuron; for the sake of simplicity, we assume that at
the beginning of a computation we have no pending packages along the axons
between the neurons;

• R is a finite set of rules of the form
(
i, si : E/ak → P ; d

)
such that i ∈

{1, · · · ,m} (specifying that this rule is assigned to neuron i), si ∈ S is the
current state of neuron i, E ⊆ REG ({a}) is the checking set (the current
number of spikes in the neuron has to be from E if this rule shall be executed),
k ∈ N is the “number of spikes” (the energy) consumed by this rule, d is the
delay (the “refraction time” when neuron i performs this rule), and P is a (pos-
sibly empty) set of productions of the form (l, w, s, t) where l ∈ [1..m] (thus
specifying the target neuron), w ∈ {a}∗ is the weight of the energy sent along
the axon from neuron i to neuron l, s ∈ S is the state sent along the axon from
neuron i to neuron l, and t is the time needed before the information sent from
neuron i arrives at neuron l (i.e., the delay along the axon);

• f is the state composition function, which for each neuron allows for computing
the new state of a neuron from its current state and the state signals having
arrived in the neuron in the previous step.

Definition 2. A configuration of the ESNPS system is described as follows:

• for each neuron, the actual number of spikes in the neuron is specified;
• in each neuron i, we may find an “activated rule”

(
i, si, E/a

k → P ; d′
)

waiting
to be executed where d′ is the remaining time until the neuron spikes;

• in each axon to a neuron l, we may find pending packages of the form (l, w, s, t′)
where t′ is the remaining time until |w| spikes have to be added to neuron l
provided it is not closed for input at the time this package arrives.

A transition from one configuration to another one now works as follows:

• for each neuron i, we first check whether we find an “activated rule”(
i, si, E/a

k → P ; d′
)

waiting to be executed; if d′ = 0, then neuron i “spikes”,
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i.e., for every production (l, w, s, t) occurring in the set P we put the corre-
sponding package (l, w, s, t) on the axon from neuron i to neuron l, and after
that, we eliminate this “activated rule”

(
i, si, E/a

k → P ; 0
)
;

• for each neuron l, we now consider all packages (l, w, t′) on axons leading to
neuron l; provided the neuron is not closed, i.e., if it does not carry an activated
rule

(
i, si, E/a

k → P ; d′
)

with d′ > 0, we then sum up all weights w in such
packages where t′ = 0 and add this sum of spikes to the corresponding number
of spikes in neuron l as well as remember the corresponding state signals s for
eventually computing the next state of the neuron; in any case, the packages
with t′ = 0 are eliminated from the axons, whereas for all packages with t′ > 0,
we decrement t′ by one;

• for each neuron i, we now again check whether we find an “activated rule”(
i, si, E/a

k → P ; d′
)

(with d′ > 0) or not; if we have not found an “activated
rule”, we now compute the new state of the neuron by using the state com-
position function for the underlying neuron i. Then we may apply any rule(
i, si, E/a

k → P ; d
)

from R for which neuron i is in state si and the cur-
rent number of spikes in the neuron is in E, and then put a copy of this
rule as “activated rule” for this neuron into the description of the current
configuration; on the other hand, if there still has been an “activated rule”(
i, si, E/a

k → P ; d′
)

in the neuron with d′ > 0, then we replace d′ by d′ − 1

and keep
(
i, si, E/a

k → P ; d′ − 1
)

as the “activated rule” in neuron i in the
description of the configuration for the next step of the computation.

After having executed all the substeps described above in the correct sequence,
we obtain the description of the new configuration. A computation is a sequence
of configurations starting with the initial configuration given by I. A computation
is called successful if it halts, i.e., if no pending package can be found along any
axon, no neuron contains an activated rule, for no neuron, a rule can be activated,
and no neuron would change its state in the next step (thus making other spiking
rules applicable).

In the original model introduced in [7], we have only one state, so we can omit
the states in the description of spiking rules in this paragraph. In the productions
(l, w, t) of a rule

(
i, E/ak → {(j, wj , tj) | j ∈ J} ; d

)
, only w = a (for spiking rules)

or w = λ (for forgetting rules) as well as t = 0 was allowed (and for forgetting
rules, the checking set E had to be finite and disjoint from all other sets E in
rules assigned to neuron i). Moreover, reflexive axons, i.e., leading from neuron
i to neuron i, were not allowed, hence, for (l, w, t) being a production in a rule(
i, E/ak → P ; d

)
for neuron i, l 6= i was required. Yet the most important extension

was that different rules for neuron i may affect different axons leaving from it
whereas in the original model the structure of the axons (called synapses there)
was fixed. In [3], the sequence of substeps leading from one configuration to the next
one together with the interpretation of the rules from R was taken in such a way
that the original model can be interpreted in a consistent way within the extended
model introduced in that paper. As mentioned in [3], from a mathematical point



48 A. Alhazov, R. Freund, and S. Ivanov

of view, another interpretation would have been even more suitable: whenever
a rule

(
i, E/ak → P ; d

)
is activated, the packages induced by the productions

(l, w, t) in the set P of a rule
(
i, E/ak → P ; d

)
activated in a computation step are

immediately put on the axon from neuron i to neuron l, whereas the delay d only
indicates the refraction time for neuron i itself, i.e., the time period this neuron
will be closed. The delay t in productions (l, w, t) can be used to replace the delay
in the neurons themselves in many of the constructions elaborated, for example,
in [7], [13], and [4]. Yet as in (the proofs of computational completeness given in)
[3], we shall not need any of the delay features in this paper, hence we need not go
into the details of these variants of interpreting the delays in more details. Finally,
we mention that as in [5], the notion of extended spiking neural P systems often
is used only taking into account that more than one spike can be sent along all
axons with one spiking rule.

Depending on the purpose the ESNP(S) system is to be used, some more
features have to be specified: for generating k-dimensional vectors of non-negative
integers, we have to designate k neurons as output neurons; the other neurons then
will also be called actor neurons. As in [3], also in this paper, we take the number
of spikes at the end of a successful computation in the neuron as the output value.

Definition 3. Obviously, extending an already very powerful model with an addi-
tional feature (states) yields a model which is at least as powerful, even with respect
to descriptional complexity. Hence, besides completely omitting delays, as in [16]
we also omit the checking sets (in fact, this means taking all checking sets to be
{a}+). Thus, for a spiking rule

(
i, si : E/ak → P ; d

)
we write i :

(
si, a

k
)
→ P .

Moreover, the set P will not be written as a set, but just by concatenating its el-
ements of the form (l, w, s), where l is the target neuron, w describes the number
of spikes sent to l and s is the state signal sent to l.

The following example illustrates the computational power of ESNPS systems
with two states by showing how exponential number languages can be generated.

Example 1. We will construct the ESNPS system

Π4n = ({σ1, σ′1, σ2, σ′2 }, {0, 1}, I, R, f)

generating the multiset language
{
a4

n | n > 1
}

in the output neuron σ1. Initially,
σ1 and σ′1 are in state 1 and contain one and two spikes, respectively. On the other
hand, neurons σ2 and σ′2 initially are in state 0 and are empty.

The state composition function f , for every neuron, is given as follows: If any
state signal 1 has arrived in the previous step, the state of the neuron is 1, and 0
otherwise.

To illustrate the rules in the ESNPS system, we use the following graphical
notation: Each rule is represented by an arrow with a single tail but with multiple
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heads; the branching point is highlighted by a black bullet. The left-hand side of
the rule is written on the segment preceding the bullet and each right-hand side
on the corresponding arrow head. When writing the right-hand sides, we omit the
names of the target neurons (because they are pointed at by the arrow heads).

Π4n works in a two-phase cycle. In the first phase, all the spikes from σ1 are
transferred in two copies into σ2; this phase is controlled by σ′1. The second phase
is symmetric: the spikes from σ2 are doubled and moved into σ1, under the control
of σ′2.

The first phase is governed by the following rules in neurons σ1 and σ′1:

σ1 : (1, a) →
(
σ2, a

2, 0
)

(σ′1, a, 1) ,

σ′1 : (1, a) → (σ1, λ, 1) ,
σ′1 : (0, a) → (σ2, λ, 1)

(
σ′2, a

2, 1
)
.

The graphical representation of these rules is given in Figure 1.

σ1

σ′1

σ2

σ′2

(1, a)
(a

2 , 0)

(a, 1)
(1, a)

(λ, 1)

(0, a)

(λ, 1)

(a 2
, 1)

Fig. 1. Multiplication by 2 in ESNPS with two states.

The loop between σ1 and σ′1 ensures that, while there are still spikes in σ1, both
neurons stay in state 1. When there are no more spikes in σ1, σ′1 must pass into
state 0 and will have to use its last spike (of the two it normally contains) to apply
the rule (0, a) → (σ2, λ, 1)

(
σ′2, a

2, 1
)
. This rule puts two spikes into the control

neuron σ′2 and switches both neurons σ2 and σ′2 to state 1, thereby starting the
second phase of the cycle. The second phase is totally symmetric and is governed
by the following rules in neurons σ2 and σ′2:

σ2 : (1, a)→
(
σ1, a

2, 0
)

(σ′2, a, 1) ,

σ′2 : (1, a)→ (σ2, λ, 1) ,
σ′2 : (0, a)→ (σ1, λ, 1)

(
σ′1, a

2, 1
)
.

Finally, to ensure that the system halts after the second phase of the cycle, we
add the following rule to the control neuron σ′2:

σ′2 : (0, a)→ (σ1, λ, 0) .
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Thus, σ′2 may choose between restarting the loop by switching the state of σ1 and
σ′1, or just forgetting the last control spike, thus effectively bringing the system to
a halt, with 4n copies of a in σ1, where n is the number of times the cycle has run.

4 Simulating Register Machines with Extended Spiking
Neural P Systems with only Two States

We now consider an arbitrary n-register machine M = (n,B, l0, lh, P ) and provide
a first simple proof how to simulate the computations of such a register machine
by an extended spiking neural P system with only two states:

For all neurons, we use one global state composition function, as in the example,
i.e., if any state signal 1 has arrived in the previous step, the state of the neuron
is 1, and 0 otherwise.

p : (ADD(r), q, s) is simulated by neuron p with the rules

p: (0, a)→ (q, a, 0)(r, a, 0) and
p: (0, a)→ (s, a, 0)(r, a, 0).

meaning that neuron p (always staying in state 0) consumes one spike and sends
one spike and state 0 to neuron q or neuron s and to neuron r (the neuron repre-
senting register r). Figure 2 illustrates these rules graphically.

p r

q

s

(0
, a

)

(a, 0)

(a, 0)

(0, a)

(a, 0)

(a, 0)

Fig. 2. Simulation of ADD relying on a flexible connection structure and on sending
zero spikes.

The rule in register r allowing for simulating SUB-instructions is:
r: (1, a)→

∏
l∈SUB(r) (l′′, λ, 1)

In case the register is non-empty, in the activated state 1 one spike is eliminated
and state 1 is sent to every neuron l′′ for every label l of a SUB-instruction, yet
no spike a is sent.

p : (SUB(r), q, s) is simulated by neurons p, p′, p′′ with the rules

p: (0, a)→ (p′, a, 1) (r, λ, 1),
p′: (1, a)→ (p′′, a, 0), as well as
p′′: (0, a)→ (s, a, 0) and
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p′′: (1, a)→ (q, a, 0).

The rules are illustrated in Figure 3. The dashed arrow represents the family of
right-hand sides broadcasting spikes from neuron r to neurons l′′, l ∈ SUB(r).

p p′

r

p′′

q

s

(0, a)

(a, 1)

(λ, 1)

(1, a)

(a, 0)

(0, a)

(a,
0)

(1, a)

(a, 0)

(1, a) (λ, 1)

Fig. 3. Simulation of SUB relying on a flexible connection structure and on sending zero
spikes.

The simple construction described above obeys to the following features:

• We only need two states!
• We do not use self-loops.
• We send the same state to all neurons in each rule!
• Exactly one spike is consumed by each rule!
• Wo do not use forgetting rules!
• But on the other hand, we allow to also send zero spikes to a neuron!
• The connection structure only depends on the state in case of deterministic

register machines! Yet by using a more complicated construction for the simu-
lation of non-deterministic ADD-instructions we can even obtain that feature
in general:
p : (ADD(r), q, s) is simulated by neurons p, p′, p′′ with the rules

p: (0, a)→ (p′, a, 0) (r, a, 0),
p′: (0, a)→ (p′′, a, 0) and
p′: (0, a)→ (p′′, a, 1), as well as
p′′: (0, a)→ (q, a, 0) and
p′′: (1, a)→ (s, a, 0).
See Figure 4 for a graphical illustration of these rules.

For comparison with the model considered in [16] (where states are called
polarizations) we have to ask the following question: Can we have a completely
static connection structure even not depending on the state of the neuron?

We first show that a non-deterministic ADD-instruction can be simulated
within a fixed connection structure, now using forgetting rules, yet also using
the initial neuron p in the activated state 1:

p : (ADD(r), q, s) is simulated by neurons p, p′ with the rules

p: (1, a)→ (p′, a, 0) (r, a, 0),
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p p′

r

p′′

q

s

(0, a)

(a, 0)

(a, 0)

(0, a
) (a, 0)

(0, a) (a, 1
)

(0, a)

(a,
0)

(1, a)

(a, 0)

Fig. 4. Simulation of ADD using a connection structure which only depends on states.

p′: (0, a)→
(
0′′q , a, 0

)
(1′′s , a, 0) and

p′: (0, a)→
(
0′′q , a, 1

)
(1′′s , a, 1),

together with the following rules in the neurons 0′′l , 1
′′
l , for every label l ∈ B:

0′′l : (0, a)→ (l, a, 1) and
0′′l : (1, a)→ λ,

1′′l : (1, a)→ (l, a, 1) and
1′′l : (0, a)→ λ.

Figure 5 gives a graphical illustration of these rules. Forgetting rules which
only consume spikes without sending anything anywhere are depicted as dangling
arrows.

p p′

r

0′′q

1′′s

q

s

(1, a)

(a, 0)

(a, 0)

(0
, a

)
(a, 0)

(a, 0)(0, a)
(a, 1)

(a, 1)

(0, a)
(a, 1)

(1, a)

(a, 1)

(1
, a

)

(0, a)

Fig. 5. Simulation of ADD using a fixed connection structure.

Instead of showing how SUB-instructions can also be simulated within a fixed
connection structure, we also attack the last remaining non-standard feature at
the same time, i.e.: Can we avoid sending zero spikes?

p : (SUB(r), q, s) is simulated by the neurons p, p̃, p̃′, p̂, p̂′, p̂′′, p̄, p̄′ with the rules

p: (1, a)→ (p̃, a, 1) (p̂, a, 1) (r, a, 1),
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p̃: (1, a)→ (p̃′, a, 0),

p̃′:
(
1, a2

)
→ (q, a, 1)

∏
l∈SUB(r)\{p}

(
l̂′′, a, 1

)
,

p̃′: (0, a)→ λ as well as

p̂: (1, a)→ (p̂′, a, 1),
p̂′: (1, a)→ (p̂′′, a, 0),
p̂′′: (0, a)→ (r, a, 1) (p̄, a, 1),
p̂′′:

(
1, a2

)
→ λ,

p̄: (1, a)→ (p̄′, a, 1), and

p̄′: (1, a)→ (s, a, 1)
∏
l∈SUB(r)

(
l̂′′, a, 1

)
together with the following rules for the register neuron r and for the additional
neuron r′:

r:
(
1, a2

)
→ (r′, a, 1)

∏
l∈SUB(r)

(
l̃′, a, 1

)
and

r′: (1, a)→
∏
l∈SUB(r)

(
l̂′′, a, 1

)
.

The rules are graphically illustrated in Figure 6. As before, dangling arrows
represent rules sending nothing, while dashed arrows correspond to families of
right-hand sides. For readability, we highlight neurons p, q, and s, which repre-
sent the states of the simulated machine. The dotted line going into neuron p̂′′

represents the family of right-hand sides which broadcast spikes and states to all
neurons l̂′′, except neuron p̂′′ (l ∈ SUB(r) \ {p}). Finally, to avoid line intersec-
tions, the picture uses a “clone” of neuron r (the small grey r between p̂′′ and p̄),
which represents the same neuron r.

The main idea of this construction is to start both decrement and zero-check
case in parallel and then, depending on the signal from r and r′ take the necessary
action, including to reset register r to the 0 if the additional spike sent there did
not lead to a spiking action of neuron r in case the value stored in the register was
zero. Moreover, all actor neurons affected by signals from neuron r not belonging to
the current label p have to be reset without allowing them to act in a non-desired
way:

For the neurons p̃′ this happens automatically as with only one spike a they
cannot spike in state 1, yet after one step the state goes back to 0 and then allows
the spike to be forgotten.

For the neurons p̂′′ this happens if the state signal 1 and the spike from neuron
r′ are accompanied by a second spike which allows for resetting the neuron by
using the forgetting rule

(
1, a2

)
→ λ.

5 Universal (Extended) Spiking Neural P Systems with
Two States

We simulate the strongly universal register machine U22 of Korec, see [8]. Rather
than performing a direct simulation which would yield 9× 1 + 8× 1 + 13× 4 = 69
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p r

p̃

p̂

r′

p̃′

p̂′

q

p̂′′ p̄ p̄′ s

(1, a)

(a, 1)

(a, 1)

(a, 1)

(1, a)

(a, 0)

(1, a2)

(a, 1)

(a, 1)

(0
, a

)

(1, a)

(a, 0)

(0, a)

(a, 0)

(0, a)

(a, 1)

r

(a, 1)

(1, a 2
)

(1, a)

(a, 1)

(1, a)

(a, 1)
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(1, a)

(a, 1)

Fig. 6. Simulating SUB using a fixed connection structure and without sending zero
spikes.

rules, we notice that simulation of ADD-instructions does not require separate
rules, because it can be done as a part of the simulation of SUB-instructions. More
exactly, increments are built into the transitions to q and s of p : (SUB(r), q, s).
This has been formalized as generalized register machine (GRM for short), see [1].
The rules of U22 in the GRM form are given below.

q1 : (SUB(1), ADD(7)q1, ADD(6)q4) ,
q4 : (SUB(5), ADD(6)q4, q7) ,
q7 : (SUB(6), ADD(5)q10, q4) ,
q10 : (SUB(7), ADD(1)q7, q13) ,
q13 : (SUB(6), ADD(6)q14, q1) ,
q14 : (SUB(4), q1, q16) ,
q16 : (SUB(5), q18, q23) ,
q18 : (SUB(5), q20, q27) ,
q20 : (SUB(5), ADD(4)q16, ADD(2)ADD(3)q32) ,
q23 : (SUB(2), q32, q25) ,
q25 : (SUB(0), q1, q32) ,
q27 : (SUB(3), q32, ADD(0)q1) ,
q32 : (SUB(4), q1, qh) .

We note that also the first step of the simulation of a generalized SUB-
instruction can be embedded into the last step of the preceding simulation. More-
over, note that in this case we may start with one spike in neuron q′′13. It is easy
to see that it suffices to have 3 rules per each of the 13 generalized conditional
decrement instructions and 1 rule per each of the 8 registers, yielding a total
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of only 47 rules, associated to register neurons, primed instruction neurons and
double-primed instruction neurons.

Register neurons

0 : (1, a)→ (q′′25, λ, 1) ,
1 : (1, a)→ (q′′1 , λ, 1) ,
2 : (1, a)→ (q′′23, λ, 1) ,
3 : (1, a)→ (q′′27, λ, 1) ,
4 : (1, a)→ (q′′14, λ, 1) (q′′32, λ, 1) ,
5 : (1, a)→ (q′′4 , λ, 1) (q′′16, λ, 1) (q′′18, λ, 1) (q′′20, λ, 1) ,
6 : (1, a)→ (q′′7 , λ, 1) (q′′13, λ, 1) ,
7 : (1, a)→ (q′′10, λ, 1) .

The primed instruction neurons have the rules

q′i : (1, a)→ (q′′i , a, 0) for i ∈ {1, 4, 7, 10, 13, 14, 16, 18, 20, 23, 25, 27, 32}.

We give the rules of double-primed instruction neurons in the table below,
the row representing the neuron, the column representing the left side of a rule,
and their intersection containing the right side of that rule.

(0, a) (1, a)
q′′1 (q′4, a, 1) (5, λ, 1)(6, a, 0) (q′1, a, 1) (1, λ, 1)(7, a, 0),
q′′4 (q′7, a, 1) (6, λ, 1) (q′4, a, 1) (5, λ, 1)(6, a, 0),
q′′7 (q′4, a, 1) (5, λ, 1) (q′10, a, 1) (7, λ, 1)(5, a, 0),
q′′10 (q′13, a, 1) (6, λ, 1) (q′7, a, 1) (6, λ, 1)(1, a, 0),
q′′13 (q′1, a, 1) (1, λ, 1) (q′14, a, 1) (4, λ, 1)(6, a, 0),
q′′14 (q′16, a, 1) (5, λ, 1) (q′1, a, 1) (1, λ, 1),
q′′16 (q′23, a, 1) (2, λ, 1) (q′18, a, 1) (5, λ, 1),
q′′18 (q′27, a, 1) (3, λ, 1) (q′20, a, 1) (5, λ, 1),
q′′20 (q′32, a, 1) (4, λ, 1)(2, a, 0)(3, a, 0) (q′16, a, 1) (5, λ, 1)(4, a, 0),
q′′23 (q′25, a, 1) (0, λ, 1) (q′32, a, 1) (4, λ, 1),
q′′25 (q′32, a, 1) (4, λ, 1) (q′1, a, 1) (1, λ, 1),
q′′27 (q′1, a, 1) (1, λ, 1)(0, a, 0) (q′32, a, 1) (4, λ, 1),
q′′32 (qh, a, 0) (q′1, a, 1) (1, λ, 1).

This construction uses a total of 8 + 2 × 13 + 1 = 35 neurons. The halting
neuron qh can be avoided, e.g., by changing the right side of the rule with q′′32 :
(0, a) to, e.g., (4, λ, 1). Indeed, the register machine halts with register 4 being
empty, so the P system will halt after neuron 4 has reset its state to 0. We also
remark that this construction does not respect the requirement of all states on
the right side being equal. This requirement can be fulfilled by replacing (r, a, 0)
by (r′, a, 1) for r ∈ {0, 1, 4, 5, 6, 7} and (2, a, 0)(3, a, 0) by (〈2, 3〉′, a, 1) in the right
sides of the rules above, and adding 7 additional neurons, each having one rule:
r′ : (1, a) → (r, a, 0) for r ∈ {0, 1, 4, 5, 6, 7} and the neuron 〈2, 3〉 with the rule
〈2, 3〉′ : (1, a)→ (2, a, 0)(3, a, 0), yielding a total of 54 rules.
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If we consider the most restricted variant of spiking neural P systems with
states elaborated at the end of Section 4, which is comparable with the model con-
sidered in [16] using the notion of polarizations instead of the notion states, when
again embedding the first step of the simulation of a generalized SUB-instruction
into the last step of the preceding simulation, a straight-forward calculation yields
two neurons and two rules per register as well as 7 neurons and 9 rules per gener-
alized conditional decrement instruction, which yields a total of 16 + 7×13 = 107
neurons as well as 16 + 9× 13 = 133 rules.

It only remains to argue the correctness of the construction. As before, embed-
ded ADD-instructions translate exactly into sending additional spikes to register
neurons by existing rules simulating the SUB-instructions. Hence, we only explain
the latter, i.e., the decrement case and the zero-test case.

Suppose we simulate a rule p : (SUB(r), q, s), and the next instruction performs
the SUB (rq) or the SUB (rs) command, respectively. The configuration of the P
system consists of the description of (the state of and the number of spikes in)
each of its neurons. Clearly, the neurons in state 0 and without spikes present no
interest; we also omit the register neurons different from r. By l we denote any
element of SUBr other than r.

Furthermore, we underline the spikes which are to be removed from the firing
neuron, and we will highlight in bold the neurons which are idle and whose state
switches from 1 to 0.

Step p p̃ p̃′ p̂ p̂′ p̂′′ r r′ l̃′ l̂′′

1 (1, a) (0, anr )

2 (1, a) (1, a) (1, anr−1+2)
3 (1, a2) (1, a) (0, anr−1) (1, a) (1,a)

4 (1, a2) (0, anr−1) (0, a) (1, a2)
5 (0, anr−1)

Fig. 7. The trace of the decrement case.

The trace of the decrement case is presented in Figure 7. What is not reflected
on this figure is that line 4 of the trace of instruction p is superposed with line 2
of instruction q. However, since the neurons are disjoint, no interference happens.
Indeed, the last step of simulation of instruction p removes the spikes from neurons
p̂′′, l̂′′, and l̃′, while the simulation of instruction q acts upon neurons q̃, q̂ and rq.
We observe that (if p 6= q) a spike is removed from q̃′ simultaneously with a spike
being sent to q̃′, which of course causes no interference, since the spikes do not
meet. As mentioned before, the first step is omitted (by embedding it into the
initial configuration and into every preceding step), so the simulation starts at line
2, taking just 2 steps to produce line 2 for the next instruction, and one more step
to remove the superfluous spikes.
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Step p p̃ p̃′ p̂ p̂′ p̂′′ p̄ p̄′ r r′ l̃′ l̂′′

1 (1, a)

2 (1, a) (1, a) (1,a)
3 (1,a) (1, a) (0, a)
4 (0, a) (0, a) (0, a)
5 (1, a) (1, a2)
6 (1,a) (1, a) (1, a) (1,a)

7 (0, a) (1, a2) (0, a) (1, a2)
8

Fig. 8. The trace of the zero-test case.

The trace of the zero-test case is presented in Figure 8. Similarly to the decre-
ment case, it does not reflect that line 7 of the trace of instruction p is superposed
with line 2 of instruction s. Hence, the arguments about the correctness of the
decrement case also hold for the zero-test case, with the following differences. The
last step of simulation of instruction p also removes two spikes from neuron p̃′.
As mentioned before, the first step is omitted, so the simulation starts at line 2,
taking 5 steps to produce line 2 for the next instruction, and one more step to
remove the superfluous spikes. This completes the explanation of the correctness.

It is easy to see that forgetting rules may be replaced by sending a spike to one
additional dummy neuron.

6 Conclusion

We have shown that only two states (or polarizations as they are called in [16]) are
needed for obtaining computational completeness with (extended) spiking neural
P systems with states, thus solving an open problem raised at the Brainstorming
Week on Membrane Computing in Sevilla at the beginning of February 2016.
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and L. Valencia-Cabrera, editors, Proceedings of the 13th Brainstorming Week on
Membrane Computing, pages 45–62. Fénix Editora, Sevilla, 2015.

3. A. Alhazov, R. Freund, M. Oswald, and M. Slavkovik. Extended spiking neural P
systems. In Workshop on Membrane Computing, volume 4361 of Lecture Notes in
Computer Science, pages 123–134. Springer, 2006.



58 A. Alhazov, R. Freund, and S. Ivanov

4. H. Chen, R. Freund, M. Ionescu, Gh. Păun, and M. Pérez-Jiménez. On string lan-
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