
Typed Membrane Systems

Bogdan Aman and Gabriel Ciobanu

1 Romanian Academy, Institute of Computer Science
2 A.I.Cuza University of Iaşi, Romania
baman@iit.tuiasi.ro, gabriel@info.uaic.ro

Summary. We introduce and study typing rules and a type inference algorithm for P
systems with symport/antiport evolution rules. The main results are given by a subject
reduction theorem and the completeness of type inference. We exemplify how the type
system is working by presenting a typed description of the sodium-potassium pump.

1 Introduction

Membrane systems (also called P systems) were introduced by Gh. Păun; several
variants of P systems are presented in the monograph [8]. P systems are parallel
and nondeterministic computing models inspired by the compartments of eukary-
otic cells and by their biochemical reactions. The structure of the cell is represented
by a set of hierarchically embedded regions, each one delimited by a surrounding
boundary (called membrane), and all of them contained inside an external special
membrane called skin. The molecular species (ions, proteins, etc.) floating inside
cellular compartments are represented by multisets of objects described by means
of symbols or strings over a given alphabet, objects which can be modified or com-
municated between adjacent compartments. Chemical reactions are represented by
evolution rules which operate on the objects, as well as on the compartmentalized
structure (by dissolving, dividing, creating, or moving membranes).

A P system can perform computations in the following way: starting from an
initial configuration which is defined by the multiset of objects initially placed
inside the membranes, the system evolves by applying the evolution rules of each
membrane in a nondeterministic and maximally parallel manner. A rule is applica-
ble when all the objects that appear in its left hand side are available in the region
where the rule is placed. The maximally parallel way of using the rules means
that in each step, in each region of the system, we apply a maximal multiset of
rules, namely a multiset of rules such that no further rule can be added to the
set. A halting configuration is reached when no rule is applicable. The result is
represented by the number of objects from a specified membrane.



Typed Membrane Systems 141

Several variants of P systems are inspired by different aspects of living cells
(symport and antiport-based communication through membranes, catalytic ob-
jects, membrane charge, etc.). Their computing power and efficiency have been
investigated using the approaches of formal languages and grammars, register ma-
chines and complexity theory. An updated bibliography can be found at the P
systems web page [10].

P systems are known to be Turing complete [8]. They are also used to model
biological systems and their evolution [5]. A type description of calculus of looping
sequences, along with a type inference algorithm can be found in [2]. Related static
techniques have been applied to biological systems, such as Control Flow Analysis
[7] and Abstract Interpretation [6]. In this paper we define a typing system and a
type inference algorithm for P systems with symport/antiport evolution rules. To
exemplify how the introduced type system works, we use types in the description
of the sodium-potassium pump.

The cells of the human body have different types depending on the morpho-
logical or functional form [1]. A complete list of distinct cell types in the adult
human body may include about 210 distinct types. The chemical reactions inside
cells are usually expressed by using types of the components; for instance, a reac-
tion between an acid and a carbonate forms salt, carbon dioxide and water as the
only products. In this paper we enrich the symport/antiport P systems with a type
discipline. The key technical tools are type inference and principal typing [9]; we
associate to each reduction rule a minimal set of conditions that must be satisfied
in order to assure that applying this rule to a correct P system, we get a correct
membrane system as well. The type system for P systems with symport/antiport
rules is (up to our knowledge) the first attempt to control the evolution of P sys-
tems using typing rules. The presentation of the typed sodium-potassium pump is
an example how to introduce and use types in P systems.

The structure of the paper is as follows. A type system for membranes with
symport/antiport rules is introduced in Section 2. Section 3 contains an extension
of the description of the sodium-potassium pump using P systems [3] with the
newly introduced type system. The section ends with an example of a rule that
would be considered ill-typed for the pump. Conclusion and references end the
paper.

2 Typed Discipline for Membrane Systems

A type system is used to prevent the occurrences of errors during the evolution
of a system. A type inference procedure determines the minimal requirements to
accept a system or a component as well-typed. These are important concepts and
methods of programming languages and software engineering. In this paper, we
investigate the application of these concepts to a biologically inspired formalism,
namely to membrane systems.

We use membrane systems with symport/antiport rules. From biological ob-
servations we know that there are many cases where two chemicals pass through a



142 B. Aman, G. Ciobanu

membrane at the same time, with the help of each other, either in the same direc-
tion, or in opposite directions; in the former case we say that we have a symport,
in the latter case we have an antiport. Symport is standardly described by rules
of the form (ab, in) and (ab, out) associated with a membrane, that state that the
objects a and b can enter, respectively, exit the membrane together; antiport is
described by rules of form (a, out; b, in) associated with a membrane, that state
that a exits at the same time when b enters the membrane. Inspired by the rules for
active membranes [8], and the notation used in [3], we denote the symport rules by
ab[l→ [lab or [lab→ ab[l, and the antiport rules by b[la→ a[lb. Generalizing such
kinds of rules, we can consider rules of the unrestricted forms x[l→ [lx or [ly → y[l
(generalized symport rules), and x[ly → y[lx (generalized antiport rules), where
x, y are strings representing multisets of objects (without any restriction on the
length), and l is the label of the membrane in which the rules are placed. It is
worth to note that an antiport rule with one of x, y empty is just a symport rule.

Definition 1. A membrane system with symport/antiport rules is a construct
Π = (O,H, µ,w1, . . . , wn, E,R1, . . . , Rn, iO)

where:

• n ≥ 1 (the initial degree of the system);
• O is an alphabet (its elements are called objects);
• H is a finite set of labels for membranes;
• µ ⊂ H × H describes the membrane structure, such that (i, j) ∈ µ denotes

that the membrane labelled by j is contained in the membrane labelled by i; we
distinguish the external membrane (usually called the “skin” membrane) and
several internal membranes;

• w1, . . . , wn are strings over O, describing the multisets of objects placed in the
n regions of µ;

• E ⊆ O is the set of objects which are supposed to appear in the environment in
arbitrarily many copies;

• Ri, 1 ≤ i ≤ n is a finite set of symport and antiport rules over O associated
with the n membranes of µ;

• iO, 1 ≤ iO ≤ n is the output membrane.

Definition 2. The setM(Π) of membranes in a P system Π is inductively defined
as follows:

• if i is a label from H and w is a multiset over O then [w]i ∈ M(Π); [w]i is
called an elementary membrane;

• if i is a label from H, M1, . . . ,Mn ∈M(Π), n ≥ 1, and w is a multiset over O
then [w M1 . . .Mn]i ∈M(Π); [w M1 . . .Mn]i is called a composite membrane.

Definition 3. For a P system Π, if M and N are two membranes from M(Π),
we say that M reduces to N (M → N) if there exists a rule in a Ri, 1 ≤ i ≤ n,
applicable to membrane M such that we can obtain membrane N .

More details on membrane systems can be found in [8].



Typed Membrane Systems 143

2.1 Typed Membrane Systems

We introduce typing rules for the class of membrane systems with symport/ an-
tiport rules in Table 1 and Table 2. We use obj to denote objects, u and v to denote
multisets of objects, and mem to denote membranes. The main judgements nor-
mally take the form

Γ `M : T
indicating that a membrane denoted by M is a well-typed system having the type
T relative to a typing environment Γ .
The steps for defining a type system are as follows:

1. For each object obj we establish a certain type T .
2. A membrane mem has a type {S,D↑, D↓, L}, where:
• S is a set of object types representing the objects that are allowed to stay

in membrane mem during all the possible evolutions of the system;
• D↑ is a set of sets of object types representing the objects that are allowed

to be communicated up through membrane mem during all the possible
evolutions of the system;

• D↓ is a set of sets of object types representing the objects that are allowed
to be communicated down through membrane mem during all the possible
evolutions of the system;

• L is a set of labels denoting certain states of the membrane mem during
all the possible evolutions of the systems.

These steps are exemplified in Section 3 for a sodium-potassium pump.

Table 1: Typing Rules for Membrane Systems

obj : T ∈ Γ
Γ ` obj : T

(R1)

mem : {Smem, D
↑
mem, D

↓
mem, Lmem} ∈ Γ [u1 . . . ui mem1 . . .memj ]lmem

Γ ` u1 : T1 . . . Γ ` ui : Ti {T1, . . . , Ti} ⊆ Smem l ∈ Lmem

Γ ` mem1 : {S1, D
↑
1 , D

↓
1 , L1} . . . Γ ` memj : {Sj , D

↑
j , D

↓
j , Lj}

Γ ` mem : {Smem, D
↑
mem, D

↓
mem, Lmem}

(R2)

Rule (R1) states that an object is a well behaved object if it is typed in Γ . Rule
(R2) states that if we have some membranes (possibly none) and some objects ui

which together are well behaved in an environment Γ , and u1 . . . ui can stay in a
membrane mem which is also well formed in the environment Γ , and a label l can
be associated to the membrane mem, then also [u1 . . . ui mem1 . . .memj ]lmem is
well formed under the assumptions of Γ .

Lemma 1 (Generation Lemma).

1. If Γ ` obj : T , then obj : T ∈ Γ .



144 B. Aman, G. Ciobanu

2. If Γ ` mem : {Smem, D
↑
mem, D

↓
mem, Lmem}, then we have that mem is a

membrane [u1 . . . ui mem1 . . .memj ]lmem with Γ ` u1: T1 . . . Γ ` ui : Ti

Γ ` mem1 : {S1, D
↑
1 , D

↓
1 , L1} . . . Γ ` memj : {Sj , D

↑
j , D

↓
j , Lj}, {T1, . . . , Ti} ⊆

Smem, l ∈ Lmem, mem : {Smem, D
↑
mem, D

↓
mem, Lmem} ∈ Γ .

Proof. By induction on the depth of the membranes.

In Table 2 we describe the type conditions the rules from the class of membrane
systems with symport/antiport rules must fulfill such that the evolution takes
place as expected. Some notations are necessary: mem1 is the parent membrane
of mem2, and by Tu = {Tu1 , . . . , Tui

} we denote the set of types of a multiset of
objects u = u1, . . . , ui. In these rules, l′ can be the same l (meaning that the state
of the membrane does not change).

Table 2: Typed Evolution Rules for Membrane Systems

u[lmem2→ [l
′

mem2u Γ ` u : Tu Tu ⊆ D↓mem2

Tu ⊆ Smem1 Tu ⊆ Smem2 l′ ∈ Lmem2

mem1 : {Smem1, D
↑
mem1, D

↓
mem1, Lmem1} ∈ Γ

mem2 : {Smem2, D
↑
mem2, D

↓
mem2, Lmem2} ∈ Γ

Γ ` mem1 : {Smem1, D
↑
mem1, D

↓
mem1, Lmem1}

Γ ` mem2 : {Smem2, D
↑
mem2, D

↓
mem2, Lmem2}

(R3)

[lmem2u→ u[l
′

mem2 Γ ` u : Tu Tu ⊆ D↑mem2

Tu ⊆ Smem1 Tu ⊆ Smem2 l′ ∈ Lmem2

mem1 : {Smem1, D
↑
mem1, D

↓
mem1, Lmem1} ∈ Γ

mem2 : {Smem2, D
↑
mem2, D

↓
mem2, Lmem2} ∈ Γ

Γ ` mem1 : {Smem1, D
↑
mem1, D

↓
mem1, Lmem1}

Γ ` mem2 : {Smem2, D
↑
mem2, D

↓
mem2, Lmem2}

(R4)

v[lmem2u→ u[l
′

mem2v Γ ` u : Tu Γ ` v : Tv Tu ⊆ D↑mem2 Tv ⊆ D↓mem2

Tu ⊆ Smem1 Tu ⊆ Smem2 Tv ⊆ Smem1 Tv ⊆ Smem2 l′ ∈ Lmem2

mem1 : {Smem1, D
↑
mem1, D

↓
mem1, Lmem1} ∈ Γ

mem2 : {Smem2, D
↑
mem2, D

↓
mem2, Lmem2} ∈ Γ

Γ ` mem1 : {Smem1, D
↑
mem1, D

↓
mem1, Lmem1}

Γ ` mem2 : {Smem2, D
↑
mem2, D

↓
mem2, Lmem2}

(R5)

Denoting by M and N two membrane systems, we have the following result:

Theorem 1 (Subject Reduction).
If all the objects and membranes of M are well typed in an environment Γ , and
M → N by applying a rule of Table 2, then N is a membrane system such that all
its objects and membranes are well typed in the environment Γ .

Proof (Sketch). Case [ldepth2u → u[l
′

depth2. We consider depth1 to be the parent
membrane of depth2. If we apply this rule the only structure that changes is



Typed Membrane Systems 145

[[u . . .]ldepth2 . . .]depth1 which is transformed into [[. . .]l
′

depth2u . . .]depth1. If depth1 :
{Sdepth1, D↑depth1, D↓depth1, Ldepth1} then by Lemma 1 applied twice we have
depth1 : {Sdepth1, D↑depth1, D↓depth1, Ldepth1} ∈ Γ , depth2 : {Sdepth2, D↑depth2,
D↓depth2, Ldepth2} ∈ Γ , Γ ` u : Tu. Since the rule can be applied, then we get
Tu ⊆ Sdepth2, l′ ∈ Ldepth2 and Tu ⊆ Sdepth1. By applying (R4) we have that
Γ ` depth1 : {Sdepth1, D↑depth1, D↓depth1, Ldepth1} and Γ ` depth2 : {Sdepth2,
D↑depth2, D↓depth2, Ldepth2} which means that all the objects and membranes of N
are well typed in the environment Γ .

The other cases are treated similarly.

2.2 Type Inference Algorithm

Given a raw membrane system M , i.e., a well-formed membrane system in which
all type annotations have been erased, our type inference algorithm introduces the
needed type annotations and computes the environment satisfying the minimal
requirements on the typing of the objects and membranes occurring in M , thus
producing M ′ which is well typed with respect to such environment. The typing
given byM ′ is principal in the sense of [9], since all other possible typings which can
be given to membrane systems obtained from M by introducing type annotations
can be derived through a set of suitable operations from the inferred typing of M ′.
The inference algorithm is then proved to be sound and complete with respect to
the rules of Subsection 2.1.

Types and type environments of the algorithm are related to the structure of
the system; it has therefore to put together distinct environments whenever the
system has more than one parallel structure.

The type reconstruction procedure is represented by a judgement
`I M : 〈W,Γ 〉,

where M is a membrane structure, W is the type inferred for M from the environ-
ment Γ , and I represents the fact that this judgement results from the inference
algorithm. As before, we consider that mem1 is the parent membrane of mem2.
We define the domain of a set of typed names Γ as

dom(Γ ) = {n | n : t ∈ Γ}.
where t is the name of an object or membrane.

We say that two typed sets of names Γ and Γ ′ are compatible (written Γ ./ Γ ′)
if and only if n : t ∈ Γ and n : t′ ∈ Γ ′, then it holds t = t′. The disjoint union of
Γ and Γ ′ is defined as

Γ ] Γ ′ = {n : t ∈ Γ ∧ n 6∈ dom(Γ ′)} ∪ {n : t′ ∈ Γ ′ ∧ n 6∈ dom(Γ )}.
We also define a function that returns the type of an object or a membrane

with respect to a type environment Γ :
type(n, Γ ) = {n : t | n : t ∈ Γ}

The inference procedure is defined in a natural semantic style. In all the type
inference rules, the objects and membrane types which appear in conclusions are
derived from those appearing in premises.



146 B. Aman, G. Ciobanu

Table 3: Type reconstruction

`I obj : 〈Obj, obj : Obj〉 (I1)

[u1 . . . ui mem1 . . .memj ]lmem Γs ./ Γt, s 6= t, 1 ≤ s, t ≤ i+ j
`I u1 : 〈Tu1 , Γ1〉 . . . `I ui : 〈Tui , Γi〉

`I mem : 〈T, Γ 〉 `I mem1 : 〈T1, Γi+1〉 . . . `I memj : 〈Tj , Γi+j〉
`I mem : 〈T ′, Γ ′〉

where T ′ = {Smem ∪ {Tu1 , . . . , Tui}, D↑mem, D
↓
mem, Lmem ∪ {l}}

if T = {Smem, D
↑
mem, D

↓
mem, Lmem}

and Γ ′ = Γ ∪ (
⊎i+j

k=1 Γk\type(mem,
⊎i+j

k=1 Γk)) ∪ {mem : T ′}

(I2)

u[lmem2→ [l
′

mem2u Γ ./ Γ2 Γ ./ Γ1

`I u : 〈Tu, Γ 〉 `I mem1 : 〈{Smem1, D
↑
mem1, D

↓
mem1, Lmem1}, Γ1〉

`I mem2 : 〈{Smem2, D
↑
mem2, D

↓
mem2, Lmem2}, Γ2〉

`I mem1 : 〈{Smem1 ∪ Tu, D
↑
mem1, D

↓
mem1, Lmem1}, Γ ′1〉

where Γ ′1 = ((Γ1 ] Γ )\type(mem1, Γ ] Γ1))∪
{mem1 : {Smem1 ∪ Tu, D

↑
mem1, D

↓
mem1, Lmem1}}

`I mem2 : 〈{Smem2 ∪ Tu, D
↑
mem2, D

↓
mem2 ∪ Tu, Lmem2 ∪ {l′}}, Γ ′2〉

where Γ ′2 = ((Γ2 ] Γ )\type(mem2, Γ2 ] Γ ))∪
{mem2 : {Smem2 ∪ Tu, D

↑
mem2, D

↓
mem2 ∪ Tu, Lmem2 ∪ {l′}}}

(I3)

[lmem2u→ u[l
′

mem2 Γ1 ./ Γ2 Γ ./ Γ1 Γ ./ Γ2}
`I u : 〈Tu, Γ 〉; ∅ `I mem1 : 〈{Smem1, D

↑
mem1, D

↓
mem1, Lmem1}, Γ1〉

`I mem2 : 〈{Smem2, D
↑
mem2, D

↓
mem2, Lmem2}, Γ2〉

`I mem1 : 〈{Smem1 ∪ Tu, D
↑
mem1, D

↓
mem1, Lmem1}, Γ ′1〉

where Γ ′1 = ((Γ ] Γ1 ] Γ2)\type(mem1, Γ ] Γ1 ] Γ2))∪
{mem1 : {Smem1 ∪ Tu, D

↑
mem1, D

↓
mem1, Lmem1}}

`I mem2 : 〈{Smem2 ∪ Tu, D
↑
mem2 ∪ Tu, D

↓
mem2, Lmem2 ∪ {l′}}, Γ ′2〉

where Γ ′2 = ((Γ ] Γ1 ] Γ2)\type(mem2, Γ ] Γ1 ] Γ2))∪
{mem2 : {Smem2 ∪ Tu, D

↑
mem2 ∪ Tu, D

↓
mem2, Lmem2 ∪ {l′}}}

(I4)

v[lmem2u→ u[l
′

mem2v Γi ./ Γj , i 6= j `I u : 〈Tu, Γ3〉 `I v : 〈Tv, Γ4〉
`I mem1 : 〈{Smem1, D

↑
mem1, D

↓
mem1, Lmem1}, Γ1〉

`I mem2 : 〈{Smem2, D
↑
mem2, D

↓
mem2, Lmem2}, Γ2〉

`I mem1 : 〈{Smem1 ∪ Tu, D
↑
mem1, D

↓
mem1, Lmem1}, Γ ′1〉

where Γ ′1 = ((

4⊎
i=1;i 6=2

Γi)\type(mem1,

4⊎
i=1;i 6=2

Γi))∪

{mem1 : {Smem1 ∪ Tu, D
↑
mem1, D

↓
mem1, Lmem1}}

`I mem2 : 〈{Smem2 ∪ Tv, D
↑
mem2 ∪ Tu, D

↓
mem2 ∪ Tv, Lmem2 ∪ {l′}}, Γ ′2

whereΓ ′2 = ((

4⊎
i=2

Γi)\type(mem2,

4⊎
i=2

Γi))∪

{mem2 : {Smem2 ∪ Tv, D
↑
mem2 ∪ Tu, D

↓
mem2 ∪ Tv, Lmem2 ∪ {l′}}}

(I5)



Typed Membrane Systems 147

Using rules of the form (I1) to each object obj of a given membrane system,
we attach a fresh type Obj. If we add two different types Obj1 and Obj2 to the
same object obj when constructing the type of the whole membrane system using
rules of Table 3, by using the relation ./ we get Obj1 = Obj2. Rules (I3), (I4) and
(I5) are used to construct the types of the membranes with conditions given by
symport and antiport rules that can be applied, while rule (I2) is used to update
the type of membranes.

A subtyping relation ≤ is introduced to compare the environments. If we take
two type environments Γ = {a : K, b : Na} and ∆ = {a : K}, then Γ ≤ ∆.

Theorem 2 (Soundness of the Type Inference).
If `I M : 〈W,Γ 〉, then Γ `M : W .

Proof. By induction on the structure of deductions in `I .

• Case (I1): We have `I obj : 〈Obj, obj : Obj〉, from where it results that obj :
Obj ∈ Γ . Applying rule (R1) it results that Γ ` obj : Obj.

• Case (I2): We have
(i) the membrane structure [u1 . . . uimem1 . . .memj ]lmem;
(ii) from `I u1 : 〈Tu1 , Γ1〉 . . . `I ui : 〈Tui , Γi〉; Γk ./ Γt, 1 ≤ k, t ≤ i; Γ ≤ Γk,

1 ≤ k ≤ i applying the induction we have that Γ ` u1 : Tu1 . . . Γ ` ui : Tui
;

(iii) from `I mem : 〈T, Γi〉 `I mem1 : 〈T1, Γi+1〉 . . . `I memj : 〈Tj , Γi+j〉;
Γk ./ Γt, i+1 ≤ k, t ≤ i+j; Γ ≤ Γk, i+1 ≤ k ≤ i+j applying the induction
we have that Γ ` mem1 : {S1, D

↑
1 , D

↓
1 , L1} . . . Γ ` memj : {Sj , D

↑
j , D

↓
j , Lj};

(iv) mem : {Smem, D
↑
mem, D

↓
mem, Lmem} ∈ Γ ;

(v) {Tu1 , . . . , Tui
} ⊆ Smem, l ∈ Lmem.

Using (i), (ii), (iii), (iv), and (v), we can apply rule (R2), and so obtaining
Γ ` mem : {Smem, D

↑
mem, D

↓
mem, Lmem}.

• Case (I3): For membrane mem2 we have
(i) the rule u[lmem2→ [l

′

mem2u;
(ii) from `I u : 〈Tu, Γ 〉, Γ ./ Γ ′2, Γ ′2 ≤ Γ applying the induction we have that

Γ ′2 ` u : Tu;
(iii) mem2 : {Smem2, D

↑
mem2, D

↓
mem2, Lmem2} ∈ Γ ′2;

(iv) Tu ⊆ D↓mem2, Tu ⊆ Smem2, l′ ∈ Lmem2.
Using (i), (ii), (iii) and (iv), we can apply rule (R3) and obtain Γ ` mem2 :
{Smem2, D

↑
mem2, D

↓
mem2, Lmem2}.

For membrane mem1 we have
(i) the rule u[lmem2→ [l

′

mem2u;
(ii) from `I u : 〈Tu, Γ 〉, Γ ./ Γ ′1, Γ ′1 ≤ Γ applying the induction we have that

Γ ′1 ` u : Tu;
(iii) mem1 : {Smem1, D

↑
mem1, D

↓
mem1, Lmem1} ∈ Γ ′1;

(iv) Tu ⊆ Smem1.
Using (i), (ii), (iii) and (iv), we can apply rule (R3) and obtain Γ ` mem1 :
{Smem1, D

↑
mem1, D

↓
mem1, Lmem1}.

The other cases are treated in a similar manner.



148 B. Aman, G. Ciobanu

Theorem 3 (Completeness of the Type Inference).
If Γ ` M : W , then `I M : 〈W ′, Γ ′〉, and there is a a renaming function σ such
that:

1. σ(W ′) = W ;
2. σ(Γ ′) ≤ Γ .

Proof. By induction on the structure of deductions in `.

• Case (R1): From (R1) we have that Γ ` obj : Obj, while from (I1) we have
that `I obj : 〈Obj′, obj : Obj′〉. If we consider σ(Obj′) = Obj, σ(obj : Obj′) =
obj : Obj we get that `I obj : 〈Obj, obj : Obj〉.

• Case (R2): We have
(i) the membrane structure [u1 . . . uimem1 . . .memj ]lmem;
(ii) from Γ ` u1 : Tu1 . . . Γ ` ui : Tui

applying the induction we have that
`I u1 : 〈Tu1 , Γ1〉 . . . `I ui : 〈Tui

, Γi〉; σ(Γk) ≤ Γ , 1 ≤ k ≤ i;
(iii) from Γ ` mem1 : {S1, D

↑
1 , D

↓
1 , L1} . . . Γ ` memj : {Sj , D

↑
j , D

↓
j , Lj}

applying the induction we have that `I mem : 〈T, Γi〉 `I mem1 :
〈T1, Γi+1〉 . . . `I memj : 〈Tj , Γi+j〉; σ(Γk) ≤ Γ , i+ 1 ≤ k ≤ i+ j;

(iv) mem : T ∈ Γ , where T = {Smem, D
↑
mem, D

↓
mem, Lmem};

(v) {Tu1 , . . . , Tui
} ⊆ Smem, l ∈ Lmem.

Using (i), (ii), (iii), (iv) and (v), we can apply rule (I2) and obtain `I mem :
〈T ′, Γ ′〉, where T ′ = {Smem, D

↑
mem, D

↓
mem, Lmem} and Γ ′ = Γ ∪

⊎i+j
k=1 Γk. We

have that T ′ = T and σ(Γ ′) ≤ Γ .

The other cases are treated in a similar manner.

3 Na-K Pump Modelled by Typed Membranes

The sodium-potassium pump is a primary active transport system driven by a cell
membrane ATPase carrying sodium ions out and potassium ions in. The descrip-
tion given in Table 4; it is known as the Albers-Post model. According to this
mechanism:

1. Na+ and K+ transport is similar to a ping-pong mechanism, meaning that
the two ions species are transported sequentially;

2. Na-K pump essentially exists in two conformations, E1 and E2, which may be
phosphorylated or dephosphorylated.

These conformations correspond to two mutually exclusive states in which the
pump exposes ion binding sites alternatively on the cytoplasmic (E1) and ex-
tracellular (E2) sides of the membrane. Ion transport is mediated by transitions
between these conformations. In Table 4 we use the following notations:

• A+B means that A and B are present together and could react;
• A ·B means that A and B are bound to each other non-covalently;



Typed Membrane Systems 149

• E2 ∼ P indicates that the phosphoryl group P is covalently bound to E2;
• Pi is the inorganic phosphate group;
• 
 indicates that the process can also proceed in a reversible way.

Table 4: The Albers-Post Model

E1 +Na+
in 
 Na+ · E1 (1)

Na+ · E1 +ATP 
 Na+ · E1 ∼ P +ADP (2)
Na+ · E1 ∼ P 
 Na+ · E2 ∼ P (3)
Na+ · E2 ∼ P 
 E2 ∼ P +Na+

out (4)
E2 ∼ P +K+

in 
 K+ · E2 ∼ P (5)
K+ · E2 ∼ P 
 K+ · E2 + Pi (6)

K+ · E2 
 K+ · E1 (7)
K+ · E1 
 K+

in + E1 (8)

3.1 The Membrane Systems Model of the Pump

The environment and the inner region are characterized by multisets of symbols
over the alphabet V = {Na,K,ATP,ADP,P}, representing the substances float-
ing inside them. The conformations of the pump are described by means of labels
attached to the membrane, that is [|l with l ∈ L, L = {E1, E2, E

P
1 , E

P
2 }. The la-

bels E1, E2 correspond to the dephosphorylated conformations of the pump, while
EP

1 , E
P
2 correspond to the phosphorylated conformations. Note an important as-

pect of this system: the object P now becomes part of the membrane label, hence
it undergoes a structural modification by passing from being an element of the
alphabet V to being a component of the membrane labels in the set L.

Initially, the multiset inside the region consists of n sodium symbols, m symbols
of potassium and s symbols of ATP ; the multiset from the environment consists
of n′ sodium symbols and m′ symbols of potassium, while the bilayer does not
contain any symbols.

Denoting by RNa =
n′

n
, RK =

m′

m
the ratios of occurrences of sodium and

potassium ions outside and inside the membrane at any given step, we use this
values to describe the starting time for the functioning of the pump. We assume
that the activation of the pump is triggered by a change in the values of the ratios
evaluated at the current step. Once the following two conditions RNa > k1 and
RK > k2 (for some fixed k1, k2 ∈ R) are satisfied the pump is activated. In [3] a
description of the pump using membrane systems is as follows:



150 B. Aman, G. Ciobanu

Table 5: The Membrane Systems Model

Env[Bilayer | Reg | Bilayer] Env
r1 : [|E1Na

3 (RNa>k1)∧(RK>k2)→ [Na3|E1

r2 : [Na3|E1ATP → [Na3|EP
1
ADP

r3 : [Na3|EP
1
→ Na3[|EP

2

r4 : K2[|EP
2
→ [K2|EP

2

r5 : [K2|EP
2
→ [K2|E1P

r6 : [K2|E1 → [|E1K
2

3.2 Modelling the Pump with Typed Membrane Systems

The motivation for introducing a type system for membrane systems with sym-
port/antiport rules, namely the class used to model the sodium-potassium pump,
comes from the fact that we would like to increase the control in the evolution
of the pump. This would mean that if we had a larger set of rules used in the
description of the pump, only the ones assuring a correct evolution with respect
to the restrictions imposed by the environment would be applied. In this way we
increase the control over the evolution of the membrane system.

For the case of the pump we consider the following typing type environment:
Γ = Na : Na,K : K, P : P, ATP : ATP, ADP : ADP,

skin : {{Na,K}, ∅, ∅, ∅}, depth1 : {{Na,K}, {Na,Na,Na}, {K,K}, ∅},
depth2 : {{Na,K,P,ATP,ADP}, {Na,Na,Na}, {K,K}, {E1, E2, E

P
1 , E

P
2 }}

For the membrane configuration:
[K . . .Na . . . [[K . . .Na . . . ATP ]E1

depth2]depth1]skin

and the environment Γ defined above, we have that

Lemma 2. Γ ` skin : {Sskin, D
↑
skin, D

↓
skin, Lskin}.

Proof.

K : K ∈ Γ
Γ ` K : K

Na : Na ∈ Γ
Γ ` Na : Na

depth2 : {Sdepth2, D
↑
depth2, D

↓
depth2, Ldepth2} ∈ Γ

{K,Na} ⊆ Sdepth2 E1 ∈ Ldepth2 [K . . .Na . . .]E1
depth2

Γ ` depth2 : {Sdepth2, D
↑
depth2, D

↓
depth2, Ldepth2}

Γ ` depth2 : {Sdepth2, D
↑
depth2, D

↓
depth2, Ldepth2}

depth1 : {Sdepth1, D
↑
depth1, D

↓
depth1, Ldepth1} ∈ Γ [[K . . .Na . . .]E1

depth2]depth1

Γ ` depth1 : {Sdepth1, D
↑
depth1, D

↓
depth1, Ldepth1}

K : K ∈ Γ
Γ ` K : K

Na : Na ∈ Γ
Γ ` Na : Na

skin : {Sskin, D
↑
skin, D

↓
skin, Lskin} ∈ Γ

{K,Na} ⊆ Sskin Γ ` depth1 : {Sdepth1, D
↑
depth1, D

↓
depth1, Ldepth1}

[K . . .Na . . . [[K . . .Na . . . ATP ]E1
depth2]depth1]skin

Γ ` skin : {Sskin, D
↑
skin, D

↓
skin, Lskin}



Typed Membrane Systems 151

The evolution rules from Table 6 state the conditions which must be satisfied
for a rule that describes the evolution of the pump to be applied correctly.

Table 6: Typed Evolution Rules for Pump

Na ∈ Sdepth1 {Na,Na,Na} ∈ D↑depth2

[E1
depth2Na3 → Na3[E1

depth2

(T1)

ADP ∈ Sdepth2 EP
1 ∈ Ldepth2

Na3[E1
depth2ATP→ Na3[E

P
1

depth2ADP
(T2)

Na ∈ Sskin EP
2 ∈ Ldepth2 {Na,Na,Na} ∈ D↑depth1

[depth1Na3[E
P
1

depth2→ Na3[depth1[E
P
2

depth2

(T3)

K ∈ Sdepth1 {K,K} ∈ D↓depth1

K2[depth1[E
P
2

depth2→ [depth1K2[E
P
2

depth2

(T4)

P ∈ Sdepth2 E1 ∈ Ldepth2

K2[E
P
2

depth2→ K2[E1
depth2P

(T5)

K ∈ Sdepth2 {K,K} ∈ D↓depth2

K2[E1
depth2→ [E1

depth2K
2

(T6)

In (T1), writing the rule using types, namely [E1
depth2Na3 → Na3[E1

depth2 we
indicate that any three objects of type Na can pass through membrane depth2.

Remark 1. Types are used to eliminate (statically) programs in which problems
could appear during execution. In the framework of P systems types are used to
increase the control, and in this way assuring that no typing problem appears
during the evolution of the membrane system. As a consequence, all the ill-typed
rules could be eliminated, and the description of the system could be simplified.
For example, let us consider the membrane depth2 which appears in the typed
description of the pump with the type

depth2 : {Sdepth2, D
↑
depth2, D

↓
depth2, Ldepth2}

where Sdepth2 = {Na,K,P,ATP,ADP}, D↑depth2 = {Na,Na,Na}, D↓depth2 =
{K,K} and Ldepth2 = {E1, E2, E

P
1 , E

P
2 }.

Using this typing for depth2 membrane, a rule of the form:
K[E1

depth2→ [E1
depth2K

would be rejected as ill typed since membrane depth2 contains in D↓depth2 only
tuples of two elements of type K, so it does not allow single elements of type K
to be sent inside it. In a similar manner, all the rules which do not satisfy the
requirements of the environment are rejected as ill-typed.



152 B. Aman, G. Ciobanu

4 Conclusion and Future Work

The novelty of this paper is that we introduce types over P systems. In fact we
enrich the symport/antiport P systems with typing rules that help to control
the evolution of P systems. According to these typing rules, for the typed sym-
port/antiport P systems we prove that if a system is well-typed and an evolution
rule is applied, then the obtained system is also well-typed. Another contribution
of the paper is the introduction of a type inference algorithm for symport/antiport
P systems for which soundness and completeness are proved. We use types in the
description of the sodium-potassium pump. This pump was modelled previously
using untyped π-calculus [4] and untyped P systems [3].

Our attempt to define a type system for P systems is the first of this kind, and
aims to control the evolution of P systems by using types. The type systems can be
used in defining generalized rules for P system. For example, by considering a set
of typed objects V = {X1 : N1, X2 : N1, X3 : N1, A : N2} where N1 and N2 are
some basic types, the evolution rules of the form Xi → Xj , Xj → A, 1 ≤ i, j ≤ 3
can be replaced by rules of a more general form:

1. N1 → N1 (any object of type N1 can evolve in any object of type N1);
2. N1 → N2 (any object of type N1 can evolve in any object of type N2).

References

1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter. Molecular Biology
of the Cell, 5th Edition. Garland Science, Taylor & Francis Group, 2008.

2. B. Aman, M. Dezani-Ciancaglini, A. Troina. Type Disciplines for Analysing Biolog-
ically Relevant Properties. Electronic Notes in Theoretical Computer Science, vol.
227, 97–111, 2009.

3. D. Besozzi, G. Ciobanu. A P System Description of the Sodium-Potassium Pump.
Lecture Notes in Computer Science, vol. 3365, Springer, 210–223, 2005.

4. G. Ciobanu, V. Ciubotariu, B. Tanasa. A π-Calculus Model of the Na-K Pump.
Genome Informatics, 469–472, Universal Academy Press, Tokyo, 2002.

5. G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez. Application of Membrane Computing.
Springer, 2006.

6. F. Fages, S. Soliman. Abstract Interpretation and Types for Systems Biology. The-
oretical Computer Science, vol. 403, 52–70, 2008.

7. F. Nielson, H. Riis-Nielson, C. Priami, D. Rosa. Control Flow Analysis for Bio-
Ambients. Electronic Notes in Theoretical Computer Science, vol. 180, 65–79, 2007.

8. Gh. Păun. Membrane Computing. An Introduction. Springer, 2002.
9. J. Wells. The Essence of Principal Typings. Lecture Notes in Computer Science, vol.

2380, Springer, 913–925, 2002.
10. Web page of the P systems: http://ppage.psystems.eu.


