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Deterministic Non-cooperative P Systems with
Strong Context Conditions

Artiom Alhazov!, Rudolf Freund?

! Institute of Mathematics and Computer Science, Academy of Sciences of Moldova

Academiei 5, Chiginau MD-2028 Moldova

E-mail: artiom@math.md

Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria

E-mail: rudi@emcc.at

Summary. We continue the line of research of deterministic parallel non-cooperative
multiset rewriting with control. We here generalize control, i.e., rule applicability context
conditions, from promoters and inhibitors checking presence or absence of certain object
up to some bound, to regular and even stronger predicates, focusing at predicates over
multiplicity of one symbol at a time.

1 Introduction

It is known, see [7], that non-cooperative P systems with atomic promoters or
atomic inhibitors characterize ET0L, while using either one catalyst, see [6], [3],
or promoters or inhibitors of weight 2, see [4], leads to the computational complete-
ness of non-cooperative P systems. A question about the power of deterministic
systems was posed in [5], inspired by the fact that all identical objects have the
same behavior in the same context. This question was answered in [1]: determinis-
tic non-cooperative P systems have weak behaviour, namely, only accepting finite
number sets and their complements, even using generalized context conditions
(except the sequential case, when they keep the computational completeness).
Generalized context conditions of rule applicability are defined as a list of
pairs (p;, F;), 1 < i < k, applicable to a rule if at least one condition applies,
in the following way: p;, called promoter, must be a submultiset of the current
configuration (or the contents of the current region), and none of the elements of
F;, called inhibitors, are allowed to be submultisets of the current configuration (or
the contents of the current region). A subsequent paper, [2], precisely characterized
the power of priorities alone, as well as established how much power of promoters
and inhibitors is actually needed to reach NFIN U coNFIN. Already in [1] it
has been shown that generalized context conditions are equivalent to arbitrary
predicates on boundings, i.e., all boolean combinations over conditions < m (and,
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hence, also > m, > m, < m, = m and # m) for multiplicities of symbols. In other
words, generalized context conditions are able to check exactly the multiplicities
of symbols up to an arbitrary fixed bound m. In this paper we consider stronger
context conditions.

2 Definitions

Let O be a finite alphabet. In this paper we will not distinguish between a mul-
tiset, its string representation (having as many occurrences of every symbol as its
multiplicity in the multiset, the order in the string being irrelevant), and a vector
of multiplicities (assuming that the order of enumeration of symbols from O is
fixed). By O° we denote the set of all multisets over O. By a strong context in this
paper we mean a language of multisets, i.e., a subset of O°.

Let a € O and u € O°, then a — u is a non-cooperative rule. The rules are
applied in the maximally parallel way, which in the case of our interest, i.e., for
deterministic non-cooperative P systems, correspond to replacing every occurrence
of each symbol a by the corresponding multiset u from the right side of the appli-
cable rule (if there is any; no competition between different rules can happen due
to the determinism). Let region j of a membrane system contain multiset w.

Then rule a — u with a strong context condition C' C O° (written a — u|C')
is applicable if and only if |w|, > 0 and w € C. Consider the following examples:

e a singleton atomic promoter s € O corresponds to the context +(s) = {w €
O° | |w|s > 0}; we denote this feature by proq 1;

e a singleton atomic inhibitor s € O corresponds to the complementary context
condition: —(s) = {w € O° | |w|, = 0};

e a singleton promoter s € O° of a higher weight corresponds to the context
+(s) ={w e 0°|s Cw};

e a singleton inhibitor s € O° of a higher weight corresponds to the complemen-
tary context condition: —(s) = {w € O° | s € w};

e a (finite) promoter-set S C O° corresponds to the context +(5) = U, g +(5),
i.e., at least one promoter must be satisfied;

e a (finite) inhibitor-set S C O° corresponds to the complementary —(S) =
Nscs —(8), i.e., any inhibitor can forbid the rule;

e a promoter-set P and an inhibitor-set @) together are called a simple context
condition, written (P, @Q); it corresponds to the strong context condition +(P)N
—(Q);

e context conditions as considered in [1] and [2] constitute a finite collection
of simple context conditions (Py,Q1), -+, (Pm,Qm), they correspond to the
strong context condition | J; <, ,,, (+(F;) N —(Q;)), and were shown to be equiv-
alent to predicates on boundings®;

3 the meaning of a promoter-set in [3] is different, but the computational power re-

sults are equivalent up to the descriptional complexity parameters such as number of
promoters/inhibitors and their weights
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e a bounding b is an operation on a multiset, for any symbol preserving its
multiplicity up to k, or “cropping” it down to k otherwise; a predicate on
bounding can be specified by a finite set M of multisets with multiplicities not
exceeding k; it corresponds to a strong context condition {w € O° | by(w) €
M}, and can express precisely all boolean combinations of conditions |w|, < 7,
ac€0,1<j<Ek;

e a regular strong context condition can be specified by a regular multiset lan-
guage, or as a Parikh image of a regular string language; e.g., Eq(a,b) = {w €
0° | |w|g = |wl|p} is an example; we denote the family of such conditions by
ctzt(REG);

e if a strong context condition only depends on the multiplicities of k£ symbols
from O (and all other symbols do not affect the applicability), we represent
this property by a superscript k of ctxt; for instance, if we denote the symbols
mentioned above by S = {s1,- -+, sk}, then ctzt!(REG) = {{uUv |u€ L, v €
(O\ S)°} | L € S°, L € PsREGY; hence Eq(a,b) € ctzt?>(REG); by ctxt(Eq)
we denote being able to compare the multiplicities of two symbols (for different
pairs of symbols separately) for being equal, together with the complementary
condition;

e to stay within Turing computability of the resulting P systems, in this paper
we only consider recursive context conditions, i.e., multiset languages with
decidable membership, denoted by ctzt(REC);

e if a one-symbol strong context condition only depends on the multiplicity of
one symbol, it can be specified by a predicate over N; e.g., Sq(a) = {w € O° |
|w|, = k%, k >0} and Sq'(a) = {w € O° | |w|, = k?, k > 1} are examples;
hence, Sq,Sq’ € ctzt! (REC); by ctxt(Sq) or ctxt(Sq') we denote being able to
test the multiplicities (of different symbols separately) for squares (including
zero or not, respectively), together with the complementary condition.

3 Regular conditions

Theorem 1. Ps,DOP;(ncoo,ctzt?>(REG)) =
Ps,DOP; (ncoo, ctxt(Eq)) = PsRE.

Proof. Consider an arbitrary register machine M with m registers. For each work-
ing register i, 1 < i < m, we represent its value by the difference of the multi-
plicities of associated objects a; and b;. Hence, increment can be performed by
producing one copy of a;, decrement can be performed by producing one copy of
b;, and zero can be distinguished from non-zero by the following regular conditions:

Zi ={w € 0° | |w|a, = |w|p,} = Eq(a;, b;), 1 <i<m,

P ={w e 0° | |w|a, # |wlp,} =0°\Eq(a;,b;), 1 <i<m,
We construct the following P system:

II'=(0,%p=[],,w=qo,R1), where
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O0=QUTU{a;b; |1<i<m},
Y C{a;|1<i<ml),
Ry ={q—aiq | q: (ADD(i),q) € P}
Ud{qg = bid|P, q—q"|Zi| q: (SUB(i),q',q") € P}.

O

If only regular conditions over ome symbol are allowed, then we expect the
power of such P systems to be much more limited.

4 Stronger Conditions

Consider one-symbol context conditions that are even stronger than regular.

It is expected that, with recursively enumerable conditions over one number
we get something like NRE U coNRE, so we look at intermediate cases. We look
at ways of obtaining RE by encoding a number by a multiplicity of one object,
say, a;, in such a way that increment and decrement are reasonably simple to
perform by non-removable objects. We propose the following encoding: “ignoring
the greatest square”, i.e., number n = k% 4+t encodes t if 0 < ¢t < 2k + 1. In this
way, zero-test becomes a test whether the encoding number is a perfect square.
Increment is performed as increment of the encoding number, followed by addition
of 2k + 1 if the next perfect square, i.e., (k + 1)2, is reached. Decrement can thus
be done by adding 2k to the encoding number. The value k can be stored as the
multiplicity of another non-removable object, say, b;, whose multiplicity should
be incremented each time the encoding number is increased by 2k or by 2k + 1.
Putting it all together, the following construction is obtained:

Zi={w € 0° | |wla, =k* k >0} =8q(a;), P, =0°\ Z;, 1 <i<m,
We construct the following P system:
II=(0,Y%,p= [ ], ,w1=qo, R1), where
O=QUTU{a;,b; |1 <i<m},
Y CHa; |1 <i<m},
Ry ={q—aiq, = P, ¢ {|Zi, ¢ — aibiq’, bi — azaibg
| ¢: (ADD(i),q') € P}
U{q—¢"|Zi, ¢ — 4|P;, ¢ — biq', b; — aa;bilg
| ¢: (SUB(i),q,q") € P}.

Yet there is a major drawback of this result established above in comparison
with the result from Theorem 1, as the input has to be encoded: given a number
n; for input register i, we have to compute numbers n; + k2 and k;, such that k2 <
n; < k? + 2k;. But this is an algorithm which is not difficult to be implemented;
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also our context condition for testing a number to be a perfect square does not
require a difficult algorithm.

Hence, we have just shown the following result, where the index wa instead of a
in PsyaDOP;(ncoo, proy 1, ctet(Sq)) indicates weak computational completeness
as for having to encode the input:

Theorem 2. Ps,,,DOP;(ncoo, ctxt*(REC)) =
PsPs,,,DOP;(ncoo, proy 1, ctxt(Sq)) = PsRE.

Adding rules a; — Alg,, by = Ay, and g — A for 1 <i < m, where gy is the
final state of the simulated register machines, we even obtain the clean result, i.e.,
halting without additional objects, still preserving determinism.

We can strengthen the claim of Theorem 2 by showing strong computational
completeness (in the sense of deterministic acceptance and even deterministic way
of computing functions). Without restricting the power of register machines, we
assume that in the simulated register machine, the output registers are never
decremented. Then, for the output registers, we replace the simulation of each
increment instructions with a single rule ¢ — a;¢’, where q : (ADD(7),q’') € P and
1 is an output register. In this way, the output will be produced without encoding.

It remains to show that P systems with strong context conditions over one
symbol can simulate register machines where also the input is not encoded. We
use the following idea. To represent the input N of a register in the way the P
system constructed in the proof of Theorem 2 needs it, we first describe how to get
two numbers zy and yy such that NV is a function of xx and yy, and, moreover,
by computing these two numbers from N, we get their representation in the form
we need them as for the P system constructed in Theorem 2.

First we explain the algorithm how to obtain xy and yy: Starting with IV
represented by N copies of an object ¢y, the multiplicity of these input objects
is incremented until it becomes a perfect square (counting the increments, thus
finally obtaining zy), and then incrementing it (again counting the increments,
thus finally obtaining yy) until it again becomes a perfect square. From these two
numbers xy and yywe can regain N by the formula computed in the following:

Given input N, the next perfect squares are k3 = N + zy (xy > 0) and
(ky +1)2 = N +ox +yn, then yy = 2ky + 1, s0 kxy = (yy — 1)/2, and N =
k% —xn = (yy —1)?/4—2zy. Of course, the function f(zn,yn) = (yy—1)%/4—zy
decoding N from zy and yy can be implemented by a register machine and
simulated by a P system as described in Theorem 2.

In the following example we specify more formally the precomputing block
mentioned above.

Ezample 1. Encoding the input number N.

Let the input N be given as a multiplicity of symbol ¢;, and we want to obtain
values z and yn described above in auxiliary registers j and [, respectively, but
represented already in the way we need their contents z and yy implemented
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with the corresponding number of symbols a; and b; as well as a; and b;. We also
use an additional starting object s; and in sum the following rules:

S; — ciaj§i|PZ-', S; — 8/|Pj, S; — §i|Zj, §1 — ajbjs’, bj — ajajbj

815
si — citi| 2L,

ti — ciait;|Pl, t; — ti| Py, & — 1, Z;, ti — aibit’, by, — aarby;,,

t; — q(()i)|Z£, where

Zl={we0°||w|, =k, k>0}=5q(c;), P/ =0°\ Z.

Essentially, the rules above are exactly like increment instructions from Theo-
rem 2, tracking how many times the multiplicity of the input object ¢; has to be
incremented to reach a perfect square and the next perfect square.

In the next phase of the encoding procedure, the P system should simulate a
register machine which starts in state q(()l) and computes the function f(zn,yn) =
(yv —1)?/4— 2, given z in register j and yy in register I, producing the result
(i.e., the value N of the input register ¢ to be represented) in register 7, represented
by symbols a; and b; and thus in a suitable way to be the input for the P system
constructed in Theorem 2.

Theorem 3. Ps,DOP;(ncoo, ctzt! (REC))
Ps,DOP;(ncoo, proi 1, ctzt(Sq)) = PsRE.

Proof. Clearly, any input vector can be processed accordingly in the way described
in Example 1, and then a simulation of the register machine on these inputs as
outlined in Theorem 2 completes the explanation of the following result. O

The construction in Theorem 3 may be adjusted so that we never rely on mul-
tiplicities of symbols a; being zero, i.e., when starting with a value 0 in a register,
we start with encoding it by 1. Moreover, testing for the appearance of a symbol
which never appears more than once (which we needed for the symbols correspond-
ing to the states of the simulated register machine) corresponds with testing for
a perfect square of positive integers. Hence, for each checking set from Sq’ (or its
complement) or each singleton promoter used in the previous construction we can
use a set from Sq’ (or its complement) only. In sum we get:

Corollary 1. Ps,DOP;(ncoo, ctxt(3q')) = PsRE.

5 Conclusions

It was known that generalized context conditions are equivalent to predicates
on boundings, and that using them in deterministic maximally parallel non-
cooperative P systems still leaves their accepting power as low as NFIN U
coNFIN. We have shown that regular context conditions yield computational
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completeness of deterministic maximally parallel non-cooperative P systems, ex-
pecting that the power of P systems with regular context conditions over one
symbol is still quite limited. However, we have shown computational completeness

using a simple stronger one-symbol context condition, namely, {w € O° | |w
k2, k> 0}.

a;

References

1. A. Alhazov, R. Freund: Asynchronous and Maximally Parallel Deterministic Con-
trolled Non-Cooperative P Systems Characterize NFIN and coNFIN. In: E.
Csuhaj-Varjd, M. Gheorghe, G. Rozenberg, A. Salomaa, Gy. Vaszil: Membrane Com-
puting — 18th International Conference, CMC13, Budapest, Revised Selected Papers,
Lecture Notes in Computer Science 7762, Springer, 2013, 101-111.

2. A. Alhazov, R. Freund: Priorities, Promoters and Inhibitors in Deterministic Non-
Cooperative P Systems. In: M. Gheorghe, G. Rozenberg, A. Salomaa, P. Sosik, C.
Zandron: Membrane Computing - 15th International Conference, CMC 2014, Prague,
Revised Selected Papers, Lecture Notes in Computer Science 8961, Springer, 2014,
86—98.

3. A. Alhazov, R. Freund, S. Verlan: Promoters and Inhibitors in Purely Catalytic P
Systems. In: M. Gheorghe, G. Rozenberg, A. Salomaa, P. Sosik, C. Zandron: Mem-
brane Computing - 15th International Conference, CMC 2014, Prague, Revised Se-
lected Papers, Lecture Notes in Computer Science 8961, Springer, 2014, 126-138.

4. A. Alhazov, D. Sburlan: Ultimately Confluent Rewriting Systems. Parallel Multiset-
Rewriting with Permitting or Forbidding Contexts. In: G. Mauri, Gh. Padun, M.J.
Pérez-Jiménez, G. Rozenberg, A. Salomaa: Membrane Computing, 5th International
Workshop, WMC 2004, Milan, Revised Selected and Invited Papers, Lecture Notes
in Computer Science 3365, Springer, 2005, 178—-189.

5. M. Gheorghe, Gh. Paun, M.J. Pérez-Jiménez, G. Rozenberg: Research Frontiers of
Membrane Computing: Open Problems and Research Topics. International Journal
of Foundations of Computer Science 24 (5), 2013, 547-624.

6. M. Ionescu, D. Sburlan: On P Systems with Promoters/Inhibitors. Journal of Uni-
versal Computer Science 10 (5), 2004, 581-599.

7. D. Sburlan: Further Results on P Systems with Promoters/Inhibitors. International
Journal of Foundations of Computer Science 17 (1), 2006, 205-221.






Polarizationless P Systems with One Active
Membrane

Artiom Alhazov!, Rudolf Freund?

! Institute of Mathematics and Computer Science, Academy of Sciences of Moldova

Academiei 5, Chiginau MD-2028 Moldova

E-mail: artiom@math.md

Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria

E-mail: rudi@emcc.at

Summary. The aim of this paper is to study the computational power of P systems with
one active membrane without polarizations. For P systems with active membranes, it is
known that computational completeness can be obtained with either of the following com-
binations of features: 1)two polarizations, 2)membrane creation and dissolution, 3)four
membranes with three labels, membrane division and dissolution, 4)seven membranes
with two labels, membrane division and dissolution.

Clearly, with one membrane only object evolution rules and send-out rules are per-
mitted. Two variants are considered: external output and internal output.

1 Introduction

Membrane computing is a theoretical framework of parallel distributed multiset process-
ing. It has been introduced by Gheorghe Paun in 1998, and has been an active research
area since then, see [10] for the comprehensive bibliography and [6],[8] for a systematic
survey. Membrane systems are also called P systems.

It has been shown in [4] (some results being improvements of the results from [1] and
[3]) that the following P systems with active membranes are computationally complete:
1) with one membrane and two polarizations, as acceptors, 2) polarizationless ones with
membrane creation and dissolution, 3) polarizationless ones starting with four membranes
and three labels, 4) polarizationless ones starting with seven membranes and two labels.

The object of study of this paper is the family of P systems with one active mem-
brane without polarizations. Similar questions for non-cooperative transitional P systems
without any additional features have been addressed in [2].
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2 Definitions

2.1 Formal Language Preliminaries

Consider a finite set V. The set of all words over V is denoted by V™, the concatenation
operation is denoted by e (which is written only when necessary) and the empty word
is denoted by A. Any set L C V™ is called a language. For a word w € V* and a sym-
bol a € V, the number of occurrences of a in w is written as |w|,. The permutations
of a word w € V* are Perm(w) = {z € V* | |z]a = |w|s for alla € V}. We denote
the set of all permutations of the words in L by Perm(L), and we extend this notation
to families of languages. We use FIN, REG, LIN, CF, MAT, CS, RE to denote fi-
nite, regular, linear, context-free, matrix without appearance checking and with erasing
rules, context-sensitive, and recursively enumerable families of languages, respectively.
The family of languages generated by extended (tabled) interactionless L systems is de-
noted by E(T")0L. The family of sets of numbers generated by forbidden random context
multiset grammars is denoted by N fRC. For more formal language preliminaries, we
refer the reader to [9)].

Throughout this paper we use string notation to denote the multisets. When speak-
ing about membrane systems, keep in mind that the order in which symbols are written
is irrelevant, unless we speak about the symbols sent to the environment. In particu-
lar, speaking about the contents of some membrane, when we write af* - --an (or any
permutation of it), we mean a multiset consisting of n; instances of symbol a;, 1 < i < m.

2.2 P systems with One (Active) Membrane

We present the definition of a P system with active membranes, simplified for studying
the generative power in case of one membrane.

II = (O,p=[],,w1, Ri,i0), where

O is a finite set of objects,

w1 is the initial multiset in region 1,

R1 is the set of rules associated to membrane 1,

ip  is the output region; when languages are considered, ip = 0 is assumed.

The rules of a membrane system have the forms (ao) [ @ — u ], (evolution of an
object), and (co) [ @], — [ ],b (sending an object out, possibly renaming it), where
a,b€ O and u € O™.

The rules are applied in maximally parallel way: no further rule should be applicable
to the idle objects, except rules of type (co) may be applied to at most one object at any
step.

A catalytic P system (with one membrane) is a construct

II =(0,C,u=1[],,ws, Ri,io), where

O is a finite set of objects,

1

C  is a special subset of Owhose elements are called catalysts,
w1 is the initial multiset in region 1,
R is the set of rules associated to membrane 1,

io is the output region; when languages are considered, ip = 0 is assumed.
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The rules in R are either non-cooperative rules of the form a — (b1,tar1) - (b, tary)
with @ and the b;, 1 < i < k, being from O \ C and the tar; € {here,out} be-
ing the targets for the corresponding symbols b;, or catalytic rules of the form ca —
c(bi,tary) - - - (bg, tary) with ¢ € C.

A configuration of a P system is a construct which contains the information about
the contents of the skin membrane as well as the sequence of objects sent out. A sequence
of transitions between the configurations is called a computation. The computation halts
when such a configuration is reached that no rules are applicable. In case of external
output (ig = 0), as the result of a (halting) computation we may consider the sequence of
objects sent to the environment; we denote it by L(IT). Both in case of internal output
(io = 1) and in case of external output, we may consider as the result the vector of
multiplicities of objects in region io, we denote it by Ps(II), or the total number of
objects in region ig, which we denote by N (II).

The family of P systems with one polarizationless active membrane may be denoted
by OP;i(ao,co). The class of sets of numbers/vectors/words generated by a family F of
P system is denoted by NF, PsF and LF, respectively. We use a superscript int or
ext when speaking about internal and external output, respectively, and we may omit
subscript ext in the case of generating languages, i.e., external output is assumed for LF'.

Moreover, we may use a subscript 7" to denote terminal filtering of the result; in this
case, a subset T' C O is additionally specified for IT, and the objects not belonging to T" are
not considered in the result. For example, the family of sets of vectors of non-negative
integers generated internally by P systems with one polarizationless active membrane
with terminal filtering are denoted by Psi"*OP;(ao, co).

Example 1. To illustrate generation, consider the following P system:

I = (O:{Svavbvc’daf}nu':[ }1,w1 :a’RlviO)a
Ry ={[S— Sabcd ],, [S— f],,

la], = e [0], =[]0 [e], = [ ]eh

Object S produces objects a, b, ¢, d in arbitrary but equal amounts. Objects a, b, ¢ are
sent out in arbitrary order. Hence, if 3o = 1 then N(II) = N; (i.e., the set of all positive
integers), and if io = 0 then L(II) = |J,,»,Perm(a"b"c") = {w € {a,b,c}" | |w|a =
lwly = |wle}. -

P systems can be also viewed as acceptors. In that case, an input subalphabet X' is
additionally specified in the tuple defining P system before u, and ip = 1 is the input
region. An input multiset over X' is additionally placed inside the membrane before the
computation starts, and it is accepted if and only if the computation halts. The result
Psacc(IT) is the set of all accepted inputs, and the family of vector sets accepted by P
systems with one active membrane is PsaccOP; (ao, o).

3 Comparison with a Transitional Model:
Catalytic P Systems with One Catalyst

The model of P systems with active membranes, for the case of one membrane, can
be compared to the following case of transitional P systems: non-distributed P systems
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with one catalyst. Indeed, for each P system with one active membrane, there exists a
1-catalytic non-distributed P system with the same behavior, as non-cooperative rules
work equivalently in both models: [ A — u ]h is equivalent to A — u, and sending out
corresponds to particular rules with one catalyst, i.e., [ A], — [ ], a corresponds with
cA — c(a,out), or, if without restricting generality we assume the set of symbols that
may appear inside the system to be disjoint from the set of symbols that may be sent to
the environment, simply with cA — ¢(a, here).

Notice that for P system with external output, we may ignore the objects remaining
inside the system when it halts (as explained in the next section), while for P systems
with internal output, we should ignore the objects sent out. In this way, for the case
of internal output, sending out corresponds to a catalytic erasing, while for the case
of external output sending out corresponds to a catalytic renaming of a non-terminal
symbol into a terminal symbol.

Hence, we can immediately conclude that

X5OPi(ag,co) C XgOPy(ncoo,caty) for X € {N, Ps,L}, a € {int,ext}, 8 € {—,T},

where § = — stands for not specifying a subscript.

One-catalytic P systems were investigated in [5], where some subclasses of P sys-
tems with one catalyst are defined and certain results on their generative power are
presented. In particular, it was shown in [5] that N_.OPi(wsepcat:) = NREG and
N_.OP;(complcati) € NfRC. Clearly, the corresponding restrictions might also be
considered for polarizationless P systems with one active membrane, and such results
can be claimed as upper bounds for the corresponding restrictions, e.g.,

NOP; (wsep(ao,co)) = NREG,

where the restriction of the weak separation can be reformulated for the model with active
membranes as follows: the set O of objects is divided into three disjoint subsets O’, O”
and 0", such that

e objects a € O have no associated rules (they cannot evolve or be sent out, so if they
are produced, they remain idle inside the system),
objects a € O” have associated send-out rules, but no evolution rules,
objects a € O"' have associated evolution rules, but no send-out rules.

It is worth mentioning that the additional requirement from [5] that the objects produced
by a catalytic rule cannot undergo a non-cooperative rule is automatically satisfied after
translation into the active membrane case, so the only restriction remaining in the case
of weak separation is that a rule of type (ag) and a rule of type (co) are not allowed to
compete for the same object. This restriction means, for instance, that all objects that
have associated send-out rules cannot evolve inside the system, they simply wait there
until they are chosen to be sent out.

A different restriction considered in [5] is complete P systems (mentioned above as
complcaty). It can be reformulated in the model of polarizationless P systems with active
membranes as follows: there is no object having associated rules of type (co) and no rules
of type (aop). This restriction means that no object is allowed to be temporarily idle;
if it is not sent out, then it either evolves immediately, or remains idle throughout the
computation. It follows that

NREG C NOP:(compl(ao,co)) € NfRC.



Polarizationless P Systems with One Active Membrane 13

It is interesting to note that weak separation and completeness are, in some sense, two
opposite requirements. While the latter one requires that all objects which can be sent
out must evolve if they are not chosen to be sent out, the first special case requires that
no objects which can be sent out are allowed to evolve. Of course, in the most general
case there can be both kinds of objects which can be sent out.

4 External output

The first goal of this section is to present a reduction of any P system with one active
membrane without polarizations and external output to an equivalent normal form. Then
we will use this normal form to prove an upper bound result. We require the normal form
mentioned above to satisfy the following conditions:

Every object appears on the left side of some rule.

The only erasing rule allowed is for the initial object; if so, the initial object does not
appear on the right side of any rule. (If we have an initial multiset w, then we add
the rule S — w where S is a new symbol now being the initial object.)

We approach this goal in a few stages. First, we remark that, without restricting gen-
erality, we may assume that no objects may remain inside the system when it halts.
Indeed, let O be the set of all objects that do not have associated rules. By adding rules
Ry ={[a — A], | a € Os}, we make sure that there are no objects that do not have
associated rules. On the other side, adding rules Ry does not affect the result of a P sys-
tem with external output, since preserving/erasing objects from Oy has no alternatives,
and it does not affect the environment.

Second, we remark that, without restricting generality, we may assume that the initial
multiset consists of only one object, say S, which does not appear in the right side of
any rule. Indeed, for a P system starting with a multiset (represented by) w, consider an
equivalent P system starting with a multiset consisting of a new object S, and adding
Rs={[S—w],}to R:.

Third, we claim that for any P system satisfying the assumptions mentioned above,
there exists a P system without erasing rules (except, possibly, for S).

Proof. Indeed, let us first add rules Ry = {[a = # ], | ([a = A ],) € R1 or a = #},
where # is a new symbol, shared for all such reductions, so if it appears in a configuration,
the system will never halt, and will therefore not produce any result. This transformation
will certainly not affect the result of the system, since every new computation branch will
not be productive, while the existing branches will not be affected (since by construction,
one can always apply some other rule to a instead of trapping).

Second, compute the set Oy of erasable objects as follows:

Set Oxto{a€O|[a— A], € Ry,
If [a—wu], isin Ry and u € O}, then add a to O,
Iterate the previous procedure until no more elements can be added to Oj.

Third, replace each rule [ @ — w ], by rules [ @ — v’ ], where the u’ are obtained
from u by removing (in all possible combinations) some objects from Oy. This will again
yield an equivalent system, because every symbol that could eventually be deleted does
not have to be produced in the first place.
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Fourth, remove all erasing rules. We claim that the resulting P system is still equiv-
alent to the original P system. Indeed, any object (other than S) that should be erased,
could be “pre-erased” by not producing it in the first place. However, any object that
should evolve can evolve by other rules, and any object that should be sent out can be
sent out (unless some competing object is sent out, in which case the simulation would
not be correct, so the computation is discarded by producing symbol #). O

Corollary 1. LOP;(ao,co) C CS.

Proof. Indeed, the total number of objects (inside and outside the membrane) never
decreases throughout the computation (except, possibly, for the empty word, generated
in one step), and the length of the result matches the total number of objects when the
system halts. O

We now proceed with the lower bound result.
Theorem 1. LOP;(ao,co) 2 REG e Perm(REG).

Proof. Consider an alphabet T and two arbitrary regular languages over T'. Then there
exist reduced regular grammars G1 = (N1,T, P1,51) and G2 = (N2, T, P>, S2) generating
them, such as N1 N Nz = (). We construct the following P system:

O=(0O=NUNUTUT ;pp=1[],,w1 =51, Ra),
T ={d |acT},
Ri={[A—=aB],|(A—=aB)e PA}JU{[A—= S ], [(A—=]X) € P}
u {[A%a'B]1 [(A—=aB) € RYU{[A—=X], | (A=) € P}
U{[a’%a']1 lacTyU{[a], = ],aq [a']lﬁ[ l,alaeT}.
The P system constructed above generates L(G1) @ L(G2), except the symbols generated
by the second grammars are produced in a primed form, and may undergo trivial rewriting

for an arbitrarily long time before they are sent out, which ensures that after generating
a word from L(G,), any permutation of a word from L(G2) may be generated. O

We now present a few closure properties.
Lemma 1. The family LOP:(ao,co) is closed under renaming morphisms.

Proof. The statement follows from applying the renaming morphism to the send-out
rules. (]

Theorem 2. LOP;(ao,co) is closed under union.

Proof. The closure under union follows from adding a new axiom and productions of
non-deterministic choice between multiple axioms. O
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5 Internal output

In this case the environment is no longer relevant: it does not matter which symbol is
written in the right side of a send-out rule. The object sent out no longer affects the
result, so sending out is equivalent to a sequential version of erasing.

Of course, we can generate PsREG with rules of type (ao) corresponding to the rules
of a reduced regular grammar. Hence,

Ps"™ 0P (ag,co) D PsREG.

Is it an open question whether non-semilinear number sets can be generated, see also
the partial results transferred from the one-catalytic model, recalled in Section 3.

6 P systems with input

In this section we show that, not very surprisingly, for P systems with one polarizationless
active membrane, their accepting power is even smaller than their generative power. More
exactly, unless such a P system accepts all allowed inputs, it only accepts specific finite
sets. We start by establishing some useful facts (we remind that we use C to denote the
submultiset relation, U to denote the union of multisets, and \ to denote the difference
of multisets).

Lemma 2. Let IT € OPi(ao,co) be a P system with alphabet O, let [u ], = [v ]«
in IT (a € OU{\}) Then for every multiset v’ C w, either [ u’ |, is already a halting
configuration, or there exists a multiset v’ C v and € OU{\} such that [u' |, = [v' ],
i I1.

Proof. In a transition [ u ]1 = [v]
of) object a in u:

L@, one of three possible cases happen for every (copy

e ¢ is rewritten by some rule of IT into a (possibly empty) multiset, contributing to v;
e ¢ is sent out by some rule of IT as «;
e @ remains idle, contributing to v.

Note that v consists exactly of the resulting objects from the first case and the objects
of the third case. More precisely, let the union of multisets of the right side rules for
all copies of rewritten objects be v,, and let the multiset of idle objects be v;; then,
v = v, Uv;. By definition of the model, the second case was applied to at most one (copy
of) an object in u. Also by definition of the model, for each object in the third case, there
exist no rules to evolve it, except, possibly, send-out rules, in which case o # .

We recall that v’ may be obtained from u by erasing some (copies) of objects. Fix
some correspondence of (copies of) objects in u’ to objects in u, and consider a transition
from u’ by the same behavior of objects in «’ as of objects in u:

e rewritten objects will yield some submultiset v,. of v,;
e [’ will be produced in the environment, 3’ = a or 8 = \;
e idle objects will yield some submultiset v, of v;.
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It is obvious that these rules are applicable, and that v,. Uv; C v. Maximality also holds,
except in one special situation: when « # A, but it was produced from a (copy of) an
object not in u’, while there exists at least one object b that was idle in a transition
[w], =[v]

In this situation, one object b, instead of being idle, should be sent out as (3, and the
resulting multiset in the skin is v' = v;. Uvj \ b (if this situation does not happen, we take
B =3 and v' = v. Uj).

Therefore, [u' |, = [v' ], in IT if at least one (copy) of object from u’ fell into the
first or the second case, and otherwise [ u’ |, is already a halting configuration. O

Lemma 3. If n € N(II), then also n’ € N(II) for any non-negative integer n’ < n.

Proof. Let the alphabet of IT be O, let the initial contents of the skin membrane of IT be
w1, and let the input subalphabet of IT be Y. By definition of acceptance, a number n
is accepted if there exists a halting computation in [T starting from configuration [ u |
for some u € w; X".

Consider the “sub-input” of only n’ objects, i.e., v’ € w1 X™ such that v’ C wu. If
[ ], is already halting, then so is [ u' ], so the statement of the lemma holds; now we
assume the contrary: [ w ], = [ v ], a. By the previous lemma, in one step, either the
computation with «’ in the skin will immediately halt (and the statement of the lemma
again holds), or there is a one-step transition [ '], = [v' ] 8 with v C v.

Iterating the application of the previous lemma, by induction, we conclude that there
exists a computation starting from [ u’ ], that will halt in at most as many step as the
halting computation starting from [ |, that we considered. Hence n' € N(I). O

17

It follows that the accepted set of numbers is either N, or empty, or it contains all
integers less than or equal to the maximal accepted number, so accepting P systems
with one polarizationless active membrane cannot be computationally complete, and P
systems with one polarizationless active membrane are obviously weaker as acceptors
than as generators:

NaceOP1 (a0, c0) € {0,N} U {{k |0 < k <n} |n e N}

In the rest of the section we show, by all necessary examples, that this inclusion is
an equality:

Iy = (O={a}, X ={a},p=[ ] wi=a,Ri={[a—a], },io=1).
IIy= (0 ={a}, ¥ ={a},p=[ ], wr=ANRi={[a—= ] }io=1).
I, = (0O={a; |0<i<n}, ¥ ={ao},u=[ ], w1 = A Ri,ip = 1), where
R1={[ai—>ai+1]l, [ai]1—>[ ]lao|0§i<n}U{[an—>an]1}.

Clearly, IIy accepts nothing, since with any input it starts with at least one object, and
carries out an infinite computation. On the other end of the spectrum, system IIy accepts
any input, by erasing it in one step and halting. Finally, we claim that system IT,, accepts
exactly set {k | 0 < k < n}. Indeed, any object increments its index every step, unless
the object is sent out, or the index reaches n (forcing an infinite computation). It is easy
to see that at most n input objects may be sent out in this way; the system with input
(a0)* has a halting computation if and only if k < n.
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Overall, we have established the following results:

REG e Perm(REG) C LOP; (ao,co) C
Ps"™OPy (ao, co) C PsREG
NaOP: (wsep(ao, o)) = NREG, « € {int,ext},
NREG C NaOP;(compl(ag, co)) C
)=

Naccopl (a07 Co

=

NfRC, «a € {int,ext},
{{k|0<k<n}|neN}u{d N}

7 Conclusions

In this paper we have considered the family of languages generated by polarizationless P
systems with one active membrane. A normal form was given for external output case. It
was than shown that the family of generated languages lies between REG e Perm(REG)
and C'S, and is closed under union and renaming morphisms. The exact characterization
is an open question, but polarizationless P systems with one active membrane can be
simulated by (and are, therefore, at most as powerful as) P systems with one catalyst,
transferring two results on the generative power of two restricted classes, independently
from the output region.

Then we also considered sets of vectors or numbers generated internally, as well as sets
of vectors or numbers accepted by polarizationless P systems with one active membrane.
Several questions about the families of these sets are still open, too.

Another possible generalization that can be considered is to also allow rules of type
(bo) to bring objects from the environment back to the skin. Note that such systems
would still correspond to a subclass of 1-catalytic P systems, but some definitions would
have to be revised, as well as all related results.

We have proved that accepting P systems with one polarizationless active membrane
are not computationally complete, unlike those with two polarizations or like those with
membrane creation and dissolution, or with multiple membranes and membrane dissolu-
tion.

The questions about the computational power of polarizationless P systems with
active membranes with 2 and 3 membranes in the initial configuration are still open, as
well as of polarizationless systems with less than 7 membranes and two labels, or of all
polarizationless systems with only one label.
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Summary. Toxic objects have been introduced to avoid trap rules, especially in (purely)
catalytic P systems. No toxic object is allowed to stay idle during a valid derivation in a
P system with toxic objects. In this paper we consider special variants of toxic P systems
where the set of toxic objects is predefined — either by requiring all objects to be toxic or
all catalysts to be toxic or all objects except the catalysts to be toxic. With all objects
staying inside and being toxic, purely catalytic P systems cannot go beyond the finite
sets, neither as generating nor as accepting systems. With allowing the output to be sent
to the environment, exactly the regular sets can be generated. With non-cooperative
systems with all objects being toxic we can generate exactly the Parikh sets of languages
generated by extended Lindenmayer systems. Catalytic P systems with all catalysts being
toxic can generate at least PsM AT.

1 Definitions

We assume the reader to be familiar with the underlying notions and concepts
From formal language theory, e.g., see [16], as well as from the area of P systems,
e.g., see [13, 14, 15]; we also refer the reader to [18] for actual news.

1.1 Prerequisites

The set of integers is denoted by Z, and the set of non-negative integers by N.
Given an alphabet V', a finite non-empty set of abstract symbols, the free monoid
generated by V under the operation of concatenation is denoted by V*. The ele-
ments of V* are called strings, the empty string is denoted by A, and V*\ {\} is
denoted by V. For any string w € V, by alph(w) we denote the set of symbols
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occurring in w; moreover, the set of all strings which are obtained by permut-
ing the symbols of w is denoted by Perm (w); for a set of stings L, we define
Perm (L) = {Perm (w) | w € L}.

For an arbitrary alphabet V = {a1,--- ,a,}, the number of occurrences of a
symbol a; in a string z is denoted by |z|4,, while the length of a string « is denoted
by |z] = >, cv |7]a,- A (finite) multiset over a (finite) alphabet V = {a1,--- ,a,}

fla) . gflem)

is a mapping f : V — N and can be represented by ( a > or by any

string « for which (|z|a,, -+, [%]a,) = (f(a1),- -, f(an)). We will denote the vector

(f(a1), -+, f(an)) by ¥(f)y. The families of regular and recursively enumerable
string languages are denoted by REG and RFE, respectively.

1.2 Finite Automata

The regular languages in REG are exactly the languages accepted by finite au-
tomata. A finite automaton is a quintuple M = (Q,T, 9, qo, F'), where @ is the
set of states, T is the input alphabet, 6 C (Q x T x @) is the transition function,
qo € Q is the initial state, and F' C @ is the set of final states. The language over
T accepted by M is denoted by L (M). A finite automaton is called deterministic,
if for every pair (¢,a) with ¢ € Q and a € P there exists exactly one state p € Q
such that (q,a,p) € 4.

A finite automaton with output, also called generalized sequential machine or
gsm for short, is a construct M = (Q, T, X, 9, qo, F'), where Q is the set of states,
T is the input alphabet, X is the output alphabet, 6 C (Q x T x Q x X*) is the
finite transition function, gy € @ is the initial state, and F C Q is the set of final
states. M called deterministic, if for every pair (¢,a) with ¢ € @ and a € P there
exists exactly one pair (¢, w) € @ x X* such that (¢q,a,p,w) € §. A (deterministic)
gsm defines a relation (function) T* — X*| called (deterministic) gsm mapping.
The sets of all relations (functions) defined by (deterministic) gsm mappings are
denoted by RelREG and FunREG, respectively.

We also consider a special variant of finite automata which resembles the idea
of input-driven push-down automata (for an overview, see [11]), also called visibly
push-down automata (for example, see [3]). Hence, we call this variant where the
next state only depends on the input symbol input-driven finite automata, i.e., for
any two triples (¢, a,p), (¢',a,p’) € 6 with ¢,p,¢',p’ € Q and a € T we have p = p'.
In the following, the subclass of regular languages accepted by input-driven finite
automata will be denoted by IDREG.

A gsm is called input-driven if for any two tuples (¢, a,p,w), (¢, a,p’,w’) € §
with ¢,p,¢’,p’ € Q and a € T we have p = p’ as in the case of finite automata; such
a gsm is called deterministic if we even have (p,w) = (p/,w’). The subclasses of
(deterministic) gsm mappings defined by input-driven finite automata with output
are denoted by Rell DREG and Funl DREG, respectively.
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1.3 ETOL Systems

An ETOL system is a construct G = (V,T, Py, , Pp,w) where m > 1, V is
an alphabet, T' C V is the terminal alphabet, the P;, 1 < i < m, are finite sets
(tables) of non-cooperative rules over V, and w € V* is the aziom. In a derivation
step in G, all the symbols present in the current sentential form are rewritten
using one table. The language generated by G, denoted by L(G), consists of all
terminal strings w € T™ which can be generated by a derivation in G starting from
the axiom w. The family of languages generated by ETOL systems and by EFT0OL
systems with at most k tables is denoted by ETOL and ET;0L, respectively. If
only one table is used, we omit the T'.

1.4 Register Machines

A register machine is a tuple M = (m, B, ly,l, P), where m is the number of
registers, B is a set of labels, [p € B is the initial label, I, € B is the final
label, and P is the set of instructions bijectively labeled by elements of B. The
instructions of M can be of the following forms:

o [1:(ADD(r),la,l3), with Iy € B\{lp}, l2,l3 € B, 1 < j <m.
Increases the value of register r by one, followed by a non-deterministic jump
to instruction Iy or 3. This instruction is usually called increment.

o [i: (SUB (’I“) 7[2,[3), with [; € B\ {lh}, l2,l3 eB, 1< ji<m.
If the value of register r is zero then jump to instruction l3; otherwise, the
value of register r is decreased by one, followed by a jump to instruction Is.
The two cases of this instruction are usually called zero-test and decrement,
respectively.

o [, : HALT. Stops the execution of the register machine.

A configuration of a register machine is described by the contents (i.e., by the
number stored in the register) of each register and by the current label, which
indicates the next instruction to be executed. Computations start by executing
the instruction Iy of P, and terminate with reaching the HALT-instruction [j,.

In order to deal with strings, this basic model of register machines can be
extended by instructions for reading from an input tape and writing to an output
tape containing strings over an input alphabet T;, and an output alphabet T,,;,
respectively:

o [;:(read(a),ls), with iy € B\ {lp}, l2 € B, a € Ty,

Reads the symbol a from the input tape and jumps to instruction ls.
o [y :(write(a),ls), with l; € B\ {ln}, ls € B, a € Tpu.

Writes the symbol a on the output tape and jumps to instruction I5.

Such a register machine working on strings we call a register machine with
input and output tape, and we write M = (m, B, lo,ln, P, Tin, Tout). If no output
is written, we omit T;.
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As is well known (e.g., see [10]), for any recursively enumerable set of natural
numbers there exists a register machine with (at most) three registers accepting
the numbers in this set. Register machines with an input tape, can simulate the
computations of Turing machines with two registers and thus characterize RE. All
these results are obtained with deterministic register machines, where the ADD-
instructions are of the form Iy : (ADD (r),ls), with iy € B\{lp},lo € B,1<j <
m.

Partially blind register machines with d registers use instructions g¢;
(ADD(r),q;,qx) and ¢; : (SUB(r),q;). Moreover, the result is produced in the
first m registers, while in a successful computation registers m + 1,--- ,d are re-
quired to be empty in the end (and we assume that the output registers are never
decremented).

2 P systems

The ingredients of the basic variants of (cell-like) P systems are the membrane
structure, the objects placed in the membrane regions, and the evolution rules.
The membrane structure is a hierarchical arrangement of membranes. Each mem-
brane defines a region/compartment, the space between the membrane and the
immediately inner membranes; the outermost membrane is called the skin mem-
brane, the region outside is the environment, also indicated by (the label) 0. Each
membrane can be labeled, and the label (from a set Lab) will identify both the
membrane and its region. The membrane structure can be represented by a rooted
tree (with the label of a membrane in each node and the skin in the root), but also
by an expression of correctly nested labeled parentheses. The objects (multisets)
are placed in the compartments of the membrane structure and usually repre-
sented by strings, with the multiplicity of a symbol corresponding to the number
of occurrences of that symbol in the string. The basic evolution rules are multiset
rewriting rules of the form uw — v, where u is a multiset of objects from a given
set O and v = (by,tary)--- (bg,tary) with b; € O and tar; € {here,out,in} or
tar; € {here,out} U {in; | j € Lab}, 1 < ¢ < k. Using such a rule means “con-
suming” the objects of u and “producing” the objects by,--- ,bx of v; the target
indications here, out, and in mean that an object with the target here remains
in the same region where the rule is applied, an object with the target out is sent
out of the respective membrane (in this way, objects can also be sent to the en-
vironment, when the rule is applied in the skin region), while an object with the
target in is sent to one of the immediately inner membranes, non-deterministically
chosen, whereas with in; this inner membrane can be specified directly. In general,
we may omit the target indication here.

Yet there are a lot of other variants of rules; for example, if on the right-
hand side of a rule we add the symbol §, the surrounding membrane is dissolved
whenever at least one such rule is applied, at the same moment all objects inside
this membrane (the objects of this membrane region together with the whole
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inner membrane structure) are released to the surrounding membrane, and the
rules assigned to the dissolved membrane region get lost.

Another option is to add promoters pi,---,pm € OT and inhibitors
¢, ,qn € O to a rule and write u — v|p, ... p,. g1, ,~gn,» Which rule then
is only applicable if the current contents of the membrane region includes any of
the promoter multisets, but none of the inhibitor multisets; in most cases promot-
ers and inhibitors are rather taken to be singleton objects than multisets.

For all these variants of P systems defined above, the variants of toxic objects
defined later in this paper can be defined, too. As this paper is just a starting point
of such investigations, in the following we shall restrict ourselves to P systems
containing only non-cooperative rules and/or catalytic rules (see definitions given
below).

Formally, a (cell-like) P system is a construct

7= (O,,LL,U)l,"‘ 7wmaR17"‘ 7R7Tmff7f0)

where O is the alphabet of objects, p is the membrane structure (with m mem-
branes), wy, - -, w,, are multisets of objects present in the m regions of p at the
beginning of a computation, Ry,--- , R, are finite sets of evolution rules, associ-
ated with the membrane regions of u, and fo/fr is the label of the membrane
region where the outputs are put in/from where the inputs are taken. (fo/fr=0
indicates that the output/input is taken sent to/taken from the environment).

If a rule w — v has at least two objects in w, then it is called cooperative,
otherwise it is called non-cooperative. In catalytic P systems we use non-cooperative
as well as catalytic rules which are of the form ca — cv, where c is a special object
which never evolves and never passes through a membrane (both these restrictions
can be relaxed), but it just assists object a to evolve to the multiset v. In a purely
catalytic P system we only allow catalytic rules. For a catalytic as well as for a
purely catalytic P system II, in the description of I we replace “O” by “O,C”
in order to specify those objects from O which are the catalysts in the set C. As
already explained above, cooperative and non-cooperative as well as catalytic rules
can be extended by adding promoters and/or inhibitors, thus yielding rules of the
form w = V|py.o pomgr e =g -

All the rules defined so far can be used in different derivation modes: in the
sequential mode (sequ), we apply exactly one rule in every derivation step; in the
asynchronous mode (asyn), an arbitrary number of rules is applied in parallel; in
the mazimally parallel (mazpar) derivation mode, in any computation step of IT
we choose a multiset of rules from the sets Ry, - , Ry, in a non-deterministic way
such that no further rule can be added to it so that the obtained multiset would
still be applicable to the existing objects in the membrane regions 1,--- ,m.

The membranes and the objects present in the compartments of a system at
a given time form a configuration; starting from a given initial configuration and
using the rules as explained above, we get transitions among configurations; a
sequence of transitions forms a computation (we often also say derivation). A
computation is halting if and only if it reaches a configuration where no rule can



24 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

be applied any more. With a halting computation we associate a result generated
by this computation, in the form of the number of objects present in membrane
fo in the halting configuration. The set of multisets obtained as results of halting
computations in IT working in the derivation mode § € {sequ, asyn, maxpar} is
denoted by mLgen,s (IT), the set of natural numbers obtained by just counting the
number of objects in the multisets of mLgen s (II) by Ngens (II), and the set of
(Parikh) vectors obtained from the multisets in mLgey, 5 (IT) by Psgen,s (II). If we
first project the results in mLge, 5 (II) to a terminal alphabet O, then we add
the superscript T to N and Ps.

Yet we may also start with some additional input multiset w;,p,: over an input
alphabet X in membrane f7, i.e., in total we there have wg wippy: in the initial
configuration, and accept this input wjnpy: if and only if there exists a halting
computation with this input; the set of multisets accepted by halting computations
in

I = (0727ﬂ7w17"' 7wmaR17"' 7Rm7f1)
working in the derivation mode ¢ is denoted by mLgcc,s (IT), the corresponding
sets of natural numbers and of (Parikh) vectors are denoted by Ngces (II) and
Psqce,s (IT), respectively.

For the input being taken from the environment, i.e., for f; = 0, we need
an additional target indication come as, for example, used in a special variant of
communication P systems introduced by Petr Sosik (e.g., see [17]) where no objects
are generated or deleted, but may only pass through membranes; (a, come) on the
right-hand side of a rule applied in the skin membrane means that the object a is
taken into the skin membrane from the environment (all objects there are assumed
to be available in an unbounded number). The multiset of all objects taken from
the environment during a halting computation then is the multiset accepted by
this accepting P system, which in this case we shall call a P automaton; the idea
of P automata was first published in [4] and considered at the same time under
the notion of analysing P systems in [8]. The set of non-negative integers and the
set of (Parikh) vectors of non-negative integers accepted by halting computations
in IT are denoted by Ngyt (IT) and Psgqt (IT), respectively.

The family of sets Y, s (IT), Y € {N, Ps}, v € {gen,acc,aut} computed by
P systems with at most m membranes working in the derivation mode ¢ and
with rules of type X is denoted by Y, sOP,, (X). If we first project the results in
MLgen,s (IT) to a terminal alphabet Or, then we add the superscript T' to N and
Ps.

A P system IT can also be considered as a system computing a partial recursive
function (in the deterministic case) or even a partial recursive relation (in the non-
deterministic case), with the input being given in a membrane region f; # 0 as
in the accepting case or being taken from the environment as in the automaton
case. The corresponding functions/relations computed by halting computations in
IT are denoted by ZY, (IT), Z € {Fun, Rel}, Y € {N, Ps}, a € {acc, aut}.
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For example, it is well known (for example, see [12]) that for any m > 1, for
the types of non-cooperative (ncoo) and cooperative (coo) rules we have

NREG = Nyen mawparOPum (nc00) C Ngen mazparOPum (coo) = NRE.

For v € {gen,acc,aut} and 6 € {sequ,asyn,maxpar}, the family of sets
Y,s(), Y € {N,Ps}, computed by (purely) catalytic P systems with at
most m membranes and at most k catalysts is denoted by Y, sOP,, (caty) and
Y, sOP,, (pcaty), respectively; from [5] we know that, with the results being sent
to the environment (which means taking fo = 0), we have

Ygen,maacparopl (Cat2) = Ygen,maxparOpl (pcat?)) =YRE.

Remark 1. Here we have to add a remark which is important for the rest of this
paper. Originally, Gheorghe Paun used an internal elementary membrane to obtain
clean results without having to count the catalysts. Hence, sending out the results
also uses a second membrane region, thus, from a topological point of view, there
in fact is no difference between using the outer region or an inner membrane region
without rules to be applied there. In sum, specifying the number of membranes is
not sufficient to capture all subtle features of complexity. Hence, in the following,
we will write P ¢,+ to indicate that, besides the single membrane, we also use the
environment as a second membrane region. Thus, the result for (purely) catalytic
P systems now will be written as

Ygen,mazparopl,ext (Cat2) = Ygen,maxparpl,eact (pcatii) =YRE.

In the general case, we will also use the notation P, c,: for P systems with m
membranes and external output, and to contrast this, we will use P, ;»: for systems
with internal output to make a clear difference to the normal notations P,, which
might mean both of these cases.

Finally we remark that P systems with internal output still could (mis)use the
environment to let objects vanish, yet we will assume that such symbols will be
erased instead of being sent out, so for such P systems, without loss of generality,
we can assume that there is no communication with the environment at all.

Remark 2. In order to avoid counting the catalysts in the results, we can
also make a projection erasing them. Whereas in general we would write
Ygen,mamparOPlT (cats), instead we now would write Ygen,mazparOPff,ff (cats). In
this case, we really use one membrane only, as only one membrane region itself is
needed to obtain the results.

Remark 3. Usually, catalytic P systems and many other variants of P systems can
be flattened to one membrane, see [6]. Yet in general, flattening means that we
have to make a terminal projection to get the results or to use external output
for that purpose, i.e., with catalytic P systems flattened to one membrane, clean
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results cannot be obtained without using external out or terminal extraction. In
fact, all results in the P systems area should be carefully inspected with respect
to these subtle details of complexity definitions.

As we shall see in the following sections, the way how to obtain the results in
many cases will have a significant influence on the computational power of several
variants of P systems with toxic objects.

Remark 4. As in this paper we will only consider P systems using the maximally
parallel derivation mode, in the following the subscript mazpar will be omitted.

Finally, P systems can also be considered as mechanisms for generating and
accepting string languages as well as for computing any partial recursive function
f X% — I' on strings. Here the input string consists of the sequence of symbols
taken in from the environment during a halting computation and the output string
is formed by the sequence of symbols sent out to the environment; hence, the P
system works like in the automaton style, but the input and output streams of
symbols are interpreted as strings. In general, any number of symbols can be
taken in and sent out in one computation step, and any possible sequence of those
symbols has to be taken into account as a substring to be concatenated with the
strings already computed by the preceding computation steps — thus, not only one
input and one output string may result from a successful halting computation.

The string relation computed by halting computations in a P system II is
denoted by Leom (IT). If we only consider the symbols taken in from the envi-
ronment, L., (IT) can be seen as an automaton accepting the strings computed
by the sequences of symbols taken in during halting computations and we also
write Lgy: (IT); if no symbols are taken from the environment, L., (IT) describes
a string language generated by II and we also write Ly, (IT). By LsOP,, (X),
§ € {gen,aut}, as well as by RelL.omnOPr, (X) and FunLeo, OP,, (X) we denote
the families of string languages generated and accepted as well as the families
of string relations and functions computed by P systems with at most m mem-
branes using rules of type X. With FunRE and RelRE denoting the class of
partial recursive string functions and relations, respectively, the following results
can be derived from the results proved in [5] (for the generating case, also see [15],
Theorem 4.17):

Theorem 1. For any 6 € {gen,aut}, Z € {Fun, Rel}
RE = LsOP; (caty) = LsOP; (pcats)

as well as
ZRE = ZLcomOPl (Catg) = ZLcomOPl (pcatg) .

3 Toxic Objects in P Systems

We specify a specific subset Oy, of O as toxic objects. Toxic objects must not
stay idle as otherwise the computation is abandoned without yielding a result.
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In a successful computation, in any computation step continuing a derivation, we
always have to apply multisets of rules evolving all toxic objects. On the other
hand, if no rule can be applied any more and thus the system halts, toxic objects
do no harm and we take out the results in the usual way depending on the specific
definition for the systems under consideration.

A P system with toxic objects is only allowed to continue a computation from
a configuration C by using an applicable multiset of rules covering all copies of
objects from Oy,, occurring in C; moreover, if every non-empty multiset of appli-
cable rules is not covering all toxic objects, the whole computation having yielded
the configuration C is abandoned, i.e., no results can be obtained from this com-
putation.

For any variant of P systems, we add the set of toxic objects Oy, and in the
specification of the families of sets of (vectors of ) numbers generated/accepted by P
systems with toxic objects using rules of type X we add the subscript tox to O, thus
obtaining the families Y., Oto5 P, (X), for any Y € {N, Ps, L}, v € {gen, acc, aut},
and m > 1.

3.1 Variants of P Systems with Toxic Objects

We may distinguish the following variants:

all symbols are toxic, i.e., we write Y5, Oyopq11Pm (X);

in catalytic P systems, exactly the catalysts are toxic, i.e., we write
Y'yOtomcath (X)7

at least the catalysts are toxic, i.e., we write YO0z 2catPm (X);

all except the catalysts are toxic, i.e., we write Y, Oyoq—cat P (X).

In all these notations, we may add the superscript 7' to indicate terminal
extraction or the superscript —cat to indicate that the catalysts are not taken
into account for the results; moreover, we replace Py, by Py, ezt OF Py ine in order
to explicitly specify that the system uses external or internal output, respectively.

Remark 5. The results established in the following implicitly may assume the P
system to be flattened to one membrane, but in the sense of the previous remarks,
we have to be very careful whether we have internal output, so that toxicity of
symbols matters, or else we have external output, in which case we assume that
the objects sent out do not affect the work of the system any more.

4 Purely Catalytic P Systems with All Objects Being Toxic

We first consider the specific variants of P systems which in any step only allow
for a bounded number k of rules to be applied, for example, purely catalytic P
systems. Obviously, in this case, as until the end of a computation every symbol
has to be affected by a rule, at most k£ symbols can evolve in any computation
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step, which of course bounds the number of possible configurations by a constant
number, too.

For the generative case with internal output, we show that we get precisely all
finite sets, while for the accepting case (i.e., internal input), the power is also quite
limited — everything which is not finite is arbitrary, and, moreover, only specific
finite sets are accepted.

Lemma 1. For allm >1 and all k > 1,

Psngt(,m”Pn:fi‘;ft (pcaty) = PsFIN.
Proof. For the forward inclusion, we notice that the initial configuration is fixed,
and the size of a vector we can generate by halting in any non-initial configuration
is bounded by the maximal sum of the right-hand sides of rules over different
catalysts.

For the converse inclusion, it is enough to mention that for any finite set F' of
d-dimensional vectors of non-negative integers, there exists a P system IT of type
OtowallPlfC“t (pcaty) such that

int

I=(0={c1,a}UT,C={c1},p= [ ], , w1 =cra,Ry,1),

1
where {c1,a} NT = 0, |T| = d with T being written (a1,---,aq) as an ordered
set, and Rj consists of precisely one rule cja — clolllCl ~--a§d for every element
(k1,--- ,kq) € F, so each element of F is generated in one step; for F' = (), we
simply take the rule cja — cya, which causes an infinite computation. For both
cases, we can define Ry as follows:

Rlz{cla%cla’f“uasd|(k1,~-~ ,kd)EF}U{cla%cla}.

Lemma 2. For allm >1 and all k > 1,

NaccOtoralle (pcatk) = {{d} | 0 S d S k— 1}
U{{0,k'} |0 <K <k}U{0D,N}.

Proof. We proceed with the forward inclusion. Take an arbitrary P system IT of
type Otozatt Pm (pcatk), where

H:(O,C:{Ch“- ,ck/},EQO\C,u,w17~-~ 7wm7R17"' 7Rma7;0)7

where k' < k. Before the computation starts, input wy € X* is added to w;,. Only
two cases are possible that do not lead to a computation which is not abandoned
immediately: either the P system halts immediately, or all objects from wq, - - - , wy,
as well as all the objects from wy € X* additionally placed in region iy participate
in catalytic rules in the first step, hence the number of catalysts must be equal to
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the number of non-catalysts. In the second case, it follows that the size |wg| of the
input wy must be equal to & — >°1" | |w;|. In the first case, it is easy to see that
if IT immediately halts on some non-empty input, then it must also immediately
halt on the empty input. If we have at least one rule for every input symbol in
X, then immediate halting happens only on the empty input. If, however, there
exists at least one symbol from X that does not appear in the left side of any rule
from R;,, then any number of these symbols (let us call them “passive”) would be
accepted.

We now put it all together. For the same system, having both immediate halting
case and later halting case is only possible if besides the input, the initial system
has only catalysts. This yields exactly {0, &'}, k' < k if there are no passive objects
in X, or the entire set N otherwise. Only immediate halting yields {0} and N,
depending on the presence of passive objects in Y. Finally, only later halting
yields {d} for 0 < d < k (the last inequality is strict since at least one non-catalyst
is needed besides the input to reject 0). And of course, we may have a P system
with no halting computations, accepting (). The family of all sets mentioned above
is{{d} |0<d<k—-1}U{{0,k'} | 0 <k < k}U{0,N}, which proves the forward
inclusion of the claim of the lemma.

For the converse inclusion, it is enough to exhibit P systems for each of these
sets; in every case, the input alphabet is X' = {a}.

H@:(O:{cl,a},C’:{cl},Z‘:{a},,u: [ ]1 awl:claleaiozl)v
Ry = {cia — c1a};

HN:(O:{Cl,a},C:{C]_},E:{a/},,U/: [ ]1 awlzcl7Rlai0:1)7
Ry =05

0
Hd70:(O:CU{CL},C:{Cl,-”,Cd},E:{a},,LL: [ ]1 awlaRlaiOZ]-)a
wlzcl"'cd’

Ri={ca—c¢|1<i<d}, 0<d<k
1= (

wq

OZCU{G},C:{Cl,-“ ,cd+1},E:{a},,u: [ ]1 ,wl,R17i0:1),
C1--Cd+1Q,
Rlz{cia—>ci|1§i§d}, OSdSk—l

Indeed, the only rule of I1j forces an infinite loop on the empty input, while for a
non-empty input the computation is blocked because more than one toxic object
a cannot be simultaneously taken by c¢;. On the other end of the spectrum, Iy
accepts any input by immediate halting, because the catalyst always stays idle
as there is no rule in the system. P system 11, either halts immediately with no
input, or halts after one step, erasing the input of exactly d objects, d < k. Finally,
the P system II; halts after one step, erasing the input of exactly d objects, d < k.

These observations conclude the proof. O
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Note 1. Of course, characterizing sets of vectors in the accepting case would be
more tedious for the following reason. Without passive objects, P system would
accept some subset of X<F~1 as well as a subset of X<F containing some vectors
of weight d < k and a vector of zeros, and the empty set. With passive objects, any
number of them is allowed for the case of immediate halting, while the projection
of the accepted vectors onto the non-passive objects should form a set containing
some vectors of weight d < k and a vector of zeros. The meaning of the word
some throughout this note can be made more precise by analyzing exactly which
multisets of weight d can be consumed by d catalysts, depending on the rules of
the system (whereas in the case of accepting numbers, only the total weight of
such multisets was taken into consideration).

While Lemma 1 characterized PsFIN by P systems with internal output, in
the case of external output their power becomes exactly PsREG, as the following
theorem shows:

Lemma 3. For allm > 1 and all k > 1,
P$genOrozati P eat (peaty) = PSREG.

Proof. Let M = (Q,T,0,qo, F) be a deterministic finite automaton. Then we
construct the P system II which generates Ps (L (M)):

II=(0=CUQUT,C={c},p=[],,w1=rciqo R1,io =0),

Rl = {Clp_> Clq(a70Ut) | (p,a7Q) € 6ap7q € Q7(Z € T}
U{eip— e |peF}.

We conclude that PsREG C PsgenOtozaiiP1 eat (Pcati).

The converse inclusion can be argued as follows: In any successful computation
step with k catalysts, there must be exactly k£ non-catalysts, and a computation
stops with having yielded a result if all objects inside the system including the cat-
alysts are idle; hence, this finite set of useful configurations is finite and constitutes
the set of states of a finite automaton simulating the computations of the P sys-
tem. Since every rule in such a system involves one catalyst and one non-catalyst,
for a configuration C to allow some derivation C' = C’ it is necessary (although
not sufficient) that the number of catalysts equals the number of non-catalysts
inside the system. Hence, for a P system

1= (Oacauawlf" awm’ley"'Rm’aiO)

having fixed the set of objects O, the membrane structure p of m’ < m membranes,
and the set of catalysts C, with the number k¥’ < k of catalysts, the set Q of
configurations containing a total of exactly k' objects from O \ C in m' regions
of the P system is bounded. Moreover, the set Q" of all configurations reachable
from @ in one step is also bounded. Finally, we define Q' = Q" U {qo} where ¢q is
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the initial configuration, as well as @), C Q' to be the set of halting configurations
(in which no rule can be applied any more).

Hence, a P system with external output generating vectors of natural numbers
can be modeled by a finite automaton M = (Q’,T,d,qo,Qp) having Q' as the
set of states, T contains d symbols for the generation of d-dimensional vectors,
0 contains the triple (p,v,q) for any transition from a configuration p € @’ to a
configuration g € @’ sending out v; the set of the final states is precisely Qp.

In sum, with all objects being toxic, purely catalytic P systems with external
output can exactly generate the regular sets of vectors. O

The statement of Lemma 3 can be generalized to languages, as well as to P
automata and P transducers. Indeed, in case of external input (P automaton case)
and/or external output, the finite number of different configurations can serve as
the finite state set of a finite automaton for the input specified by (a, come) in the
rules and/or for the output specified by (a, out) in the rules.

Lemma 4. For allm >1 and all k > 1,
LgenOtomalle (pcatk) - REG

Proof. Using similar arguments as already pointed out in the previous proof, we
can easily argue that purely catalytic P systems with all objects being toxic can
generate any regular language L; the only difference now is that any sequence of
symbols sent out during a successful computation is interpreted as string.

Now we consider the converse, i.e., as in the previous proof, a P system with
external output generating strings can be modeled by the finite automaton having
Q' as the set of states and @}, as the set of the final states as constructed there,
but now for any transition from a configuration p € Q' to a configuration q € Q'
sending out v, 4 contains the triple (p,v’, q) for all v € Perm(v). O

Lemma 5. For allm > 1 and k > 2,

LautOtozatr P (pcatk) = REG,
RezautOtoralle (pcatk) = RelREG.

Proof. For a P automaton or a P transducer I, again take Q' and Qj as con-
structed in the proof of Lemma 4.

A P automaton can be modeled by a finite automaton having Q' as the set
of states. A transition from configuration p € @’ to a configuration q € Q" while
having u brought from the environment is simulated by rules (p, v/, ¢) for all u’ €
Perm(u); clearly, |u| < k’. The set of the final states is precisely Qp,.

A P automaton with external output can be modeled by a finite transducer
having @)’ as the set of states. A transition from configuration p € Q' to a con-
figuration ¢ € Q" while having u brought in and v sent out is simulated by rules
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(p,u' /v, q), v € Perm(u), v' € Perm(v); clearly, |u| < k¥’ and |v| < k’. The set
of the final states is precisely Q.

For proving the converse inclusion, take an arbitrary finite automaton M =
(Q,T,0,q, F); without loss of generality, we assume that M has at least one
outgoing transition from any non-final state.

A P automaton

II=(0={c1,e2,b}UT,C={c1,0} , X=T,pn= [ ]

Rl = {Clp_> clq(a,come) | (p7a"q) € 57p7q € Q,G, S T}
Udcoax |z e {b}UT}U{cag > 2| q€ F}

1 , W1 = CICQbaR177;O = ]-)

can simulate M, using two catalysts ¢1,ce. Each transition (p,a,q) € ¢ can be
simulated by rule ¢1p — ci1q(a, come), but also rule the cpa — ¢ is needed to
erase the symbol previously brought in. The initial contents of a single membrane
is ¢1¢2q0b, where besides qg, one additional non-catalyst b ¢ {c1,c2} UT is used to
keep co busy in the first step. Halting can be simulated by rule c;qg — ¢; for each
final state ¢; in the same step cy deletes the last symbol brought in.

A P automaton with external output can simulate a finite transducer in the
same way as a P automaton without output simulates a finite automaton. The
only difference is that now the simulated transitions have the form (p,a/u, ¢q), and
the corresponding simulating rules are c1p — c1¢(a, come)(u, out), the rest of the
construction being exactly the same as in the previous paragraph. ]

Two catalysts are needed for simulating an arbitrary finite automaton by a
P automaton, since both the state symbol and the symbol brought in from the
environment have to be processed in parallel. For the case of only one catalyst, the
object brought in from the environment itself has to serve as a state. However, in
this way, the last object brought inside completely determines the set of possible
objects that can be brought inside in the next step, which considerably reduces the
generality of finite automata. Having this in mind, we characterize input-driven
finite automata:

Lemma 6. For allm > 1,

LautOtozatt P (pcatl) = IDREG,
Relautotozallpm (pcatl) = Rell DREG.

Proof. The inclusion that at most IDREG/Rell DREG is generated/computed
with one catalyst follows from the fact that exactly one non-catalyst may appear in
any non-halting non-blocking configuration, and, except the initial configuration,
this is precisely the symbol taken from the environment in the previous step. In
any successful computation, the only rules applied in any step, possibly except in
the last step, are erasing one non-catalyst while bringing in another one instead.

For the inclusion that we can generate/compute the entire families
IDREG/Rell DREG, we use a construction similar to that of the previous lemma,
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except instead of erasing the object a brought in the previous step by ¢, this ob-
ject is used instead of the state object: each transition (¢q, b, ¢) now is simulated
by the rule ¢cia — ¢1(b, come). The initial contents of a single membrane is ¢1qo,
where the initial state qg is an additional symbol not in the input alphabet. Halting
can be simulated by the rules cya — ¢; for all final states ¢,.

For the case of a P automaton with external output, the simulation is the
same as above, except that now we also have an output: the transitions to be
simulated have the form (gq,b/u, ¢ ), and the corresponding simulating rules are
cra — c1(b,come)(u,out); the rest of the construction is exactly the same as in
the previous paragraph. O

Finally, the domain of relations computed with internal input (with either
output region) corresponds to the sets accepted with internal input, see Lemma 2.
Similarly, the range of relations computed with internal output and with internal
input corresponds to the sets generated with internal output, see Lemma 1. The
nature of these relations always results from a finite-state behavior, but we are
not going into further details here; another question to be answered in the future
is the exact characterization of P automata with internal output.

5 Non-Cooperative P Systems with All Objects Being Toxic

In this section we consider P systems without catalysts and with only non-
cooperative rules, yet with all objects being toxic.

5.1 Connection to L Systems
Example 1. Take the following P system with all objects being toxic.

Iy = (0 ={a,b},p= [ ], ,w1 =a,R ={a—aa, a—b},ip=1).
In n computation steps we obtain 2" and in a final step »2". Only in this last

step we may apply the rule a — b introducing the toxic symbol b for which no rule
exists. Hence, the generated set is Nyep, (ine) = {2 | n > 0}.
Example 2. The same set is accepted by the P automaton I1,,; and generated by
the P system Il.,; with external output:
Naut (Haut) = Ngen (Hezt) = Ngen (Hint) = {2n ‘ n > 0} where

Iy = (O ={a,b},p= [ ], ;w1 =0a,R1 = {a — aa, a — (b,come)},ip = 1) ;
.. = (O ={a,bl,p= 1], ,w1=0a,R ={a— aa, a— b(b,out)} ,i0 = 0).
Indeed, the behavior of I1,,; and Il..; is the same as that of I1;,;, except produc-
ing b inside the membrane is replaced by bringing in b from the environment, or
accompanied by sending out b to the environment. Again, if both rules are simul-

taneously applied, then the toxic objects b will block the computation, but still we
will get a result if only symbols b are present in the final configuration.
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We now compare non-cooperative P systems with all objects being toxic to L
systems.

Lemma 7. For (v, a) € {(gen, int), (gen, ext), (aut, —)},
PsEOL C PsyOtopauiP1,a (ncoo) .

Proof. Let G = (V,T, P,w) be an EOL system. We recall that for each symbol
a € V, P has to contain some rule with a on the left side. For every a € T, we
replace a by N, throughout all the rules of P. Moreover, we take N, — a into
R for every a € T. These terminal rules are exactly applied in the last step of
a derivation in the P system II, whereas the other rules in R simulate the rules
from P. As the final step with using the rules N, — a is an additional derivation
step, instead of rules a — A erasing a symbol a we instead have to use the rules
N, — E and F — X\ where E is a new symbol representing the erased symbol for
one step.

Hence, we construct the corresponding non-cooperative P system II with all
symbols being toxic as follows (for the automaton case, we have to insert X = T'):

H:(O:VU{NG|(IET}U{E}7M: [ ]1 7w1:w7R13i0:1)7
Ry ={h(a) > h(u)|]a—=ueP, ac V}U{N, > E|a—=AXEP, acT}

U{N, 2 alacT}U{E — A},

where h : VU{E} - V\TU{N, | a € T}U{FE} is the morphism given by h(a) = a
for X e VAT U{E} and h(a) = N, fora € T.

By construction, every object from {N, | a € T}U{V \ T} can evolve by rules
from Ry, while objects in T cannot. If a computation in IT ends up with a config-
uration in which the skin contains both objects from T and objects not from T,
then the computation is blocked without yielding any result. Therefore, the only
derivations of II which will not be discarded are those in which IT simulates a
derivation of G up to some configuration h(w), w € (T'U{E})*, and then applies
the rules N, — a and eventually the rule E — A, and only those, to transform
h(w) into w.

To show the same result for external output, it suffices to set ig to 0 and
replace every rule N, — a by N, — a(a,out). Alternatively, to show the same
result for external input, it suffices to set iy to 0 and replace every rule N, — a
by N, — a(a,come). O

In the case of P systems with internal output (without terminal filtering) and
only one membrane, we can directly show the converse inclusion.
Lemma 8. PsgenOtogaii P int (ncoo) € PSEQL.

Proof. Let II = (O, = [ ], ,w1,R1,ip = 1) be a non-cooperative P system
with all objects being toxic. We construct the corresponding E0L system G as
follows:



Variants of P Systems with Toxic Objects 35

G=V=0U{#},T,P,w=w),
T = {a € O | there exists no rule a — u € R with u € O*},
P=RiU{a—=#|acTU{#}}.

We immediately observe that, whenever G introduces a terminal symbol, it
will be rewritten into a trap symbol in the next step. Thus, the only way for G to
produce a terminal string is to move from a string over V' \ T to a string over T in
a single step. But this exactly corresponds to the way in which I evolves, because
rewriting a terminal a into # in G corresponds to discarding the derivation of IT
in which a is produced alongside non-terminals. U

Corollary 1. PsgerOtozaii P1int (ncoo) = PsEOL.

Proof. The result follows from Lemma 8 in combination with Lemma 7 for the
case of P systems with internal output and only one membrane. O

In case of multiple membranes or terminal filtering or both, however, there is a
problem: symbols that represent objects in non-output regions do not contribute
to the output. Yet, since EFOL is known to be closed under arbitrary morphisms
(see, e.g., [16] volume 1 page 34), the result can be strengthened as follows:

Theorem 2. For allm > 1,

T
PsEOL = PsgenOtozai Py, iy (n€00)
= PsgenOtozalle,int (nCOO)
= P5genOtowatiPm,ext (ncoo)

= PsautOtoxalle (ncoo) .

Proof. We only have to show that any P system with internal output, eventually
even with terminal extraction, or else with external output (terminal extraction
need not be considered in this case, as any non-wanted symbol need not be sent
out) or external input can be simulated by an E0L-system.

First, we can flatten the given P system II with internal output to only one
membrane, yet keeping in mind that then we have to use terminal extraction to
obtain the results in a clean form. Hence, in this case, we simply apply the construc-
tion from Lemma 8 to the flattened P system IT’ thus obtaining an E0L-system G
generating a set of strings which exactly represent the multisets generated by the
P system II’. In order to obtain the original results, we have to apply a projec-
tion hp erasing all non-terminals only yielding strings/multisets over T'. As E0L is
closed under arbitrary morphisms (see, e.g., [16] volume 1 page 34), from G we can
construct an FOL-system G’ directly generating the desired results. If the original
P system II used terminal extraction to a terminal alphabet Y, we can to apply
another projection from T to X to obtain the desired results (by constructing a
corresponding FOL-system G”).
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If we have a P system II using external output, we instead first flatten the
system to an equivalent P system II’ with only one membrane, but still having
external output. Then, from this P system II’ with one membrane and external
output we construct an equivalent P system IT” with only one membrane region
having internal output in the skin membrane, but with terminal filtering. Instead
of sending a symbol a out by using (a,out) on the right side of a rule in IT, we
replace any occurrence of (a,out) by N, in the rules of the skin membrane in I7”.
In that way, the P system II” keeps each symbol a sent out by IT in the new
inner output membrane ig = 1 as N,. In the skin membrane, the rules N, — N,
keep these symbols alive until the application of the rules N, — a allows the
system to halt with yielding the desired result if exactly with the application of
these terminal rules no non-terminal afterwards remains in the whole system. As a
subtle detail we have to mention that we again, as in the proof of Lemma 7, have to
be careful with A-rules a — A (again we use the rules ¢ — E and E — X instead),
but now also with any other “passive” object b which cannot evolve any more -
such a symbol has to be treated like a terminal symbol, going to an intermediate
symbol N, before it finally goes to b, and then each of these symbols is projected
to A by using the terminal extraction.

Hence, we conclude that computations in I7” and in IT yield the same results.
According to the construction given above, we can obtain an F0L-system G” such
that Ps (L (G")) = Ps(IT") = Ps ().

In the automaton case, we can use similar ideas as in the previous case: instead
of (a,come) for terminal symbols from the input alphabet X on the right side
of rules of a P automaton IT we use N,N/ in a flattened P system IT"” with
internal output and terminal extraction. Then N/ is used instead of @ in the rules
of IT" used instead of the corresponding rules of IT, and we also add the rules
N, — N, and the terminal rules N, — a. Moreover, any “passive” object b which
cannot evolve any more has to be treated as already explained before; the same
holds for the dealing with A-rules a — A. Hence, finally projecting all terminal
symbols on themselves and all other symbols on A with the projection hy, we
have got a P system with internal input and terminal extraction IT"” such that
hs(Ps(II")) = Ps(II). O

5.2 Internal Input

However, the accepting power of P systems with internal input is much lower,
namely subregular.

Lemma 9. P$,ccO¢oraii Pm(ncoo) C PsREG.

Proof. First, if a P system IT accepts any non-empty input over the input alphabet
2, then also the empty input is accepted. Indeed, take an arbitrary P system IT
accepting some multiset w;,, € X*, say in m steps. Each of the objects, both initial
ones and input ones, initially being in the system, will produce some (possibly
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empty) multiset of objects which cannot further evolve by rules of IT. Clearly,
replacing w;,, by A and following exactly the same evolution of all initial objects,
we will get an accepting computation of at most m steps.

Second, for a similar reason, if w;, is accepted, than any submultiset of w;, is
accepted.

Third, if IT accepts some input wj;, containing at most one occurrence of any
symbol in X, then it also accepts every input w},, € (alph (w;y))", i.e., any multiset
over {a € X | |win|a > 0}. Indeed, consider the accepting computation of w;,, say
of m steps. In this computation, every input object a from w;,, is either erased in at
most m steps, or produces in exactly m steps some non-empty multiset of objects
that cannot evolve by rules of IT; let us call such symbols “passive”. Replacing each
input object by an arbitrary number of its copies, following the same evolution
as in the accepting computation before, we again get a computation where every
input object is either erased in at most m steps, or produces in exactly m steps
some non-empty multiset of passive objects. This computation will either erase
everything in at most m steps, or halt in exactly m steps.

Therefore, non-cooperative P systems with internal input with all symbols
being toxic can accept at most all possible unions of sets from {7 | T C ¥'}. O

It can be shown that last statement from the proof given above actually is an
equality.

Theorem 3. For allm > 1,
n

P5aceOtogait Pm(ncoo) = {PS (U Tf) | X alphabet, T; C X, 1 <i<n, n> O} .
i=1

Proof. The inclusion C follows from the proof of the previous theorem, so it suffices
to prove that all such sets can indeed be accepted. For n = 0, {) can be accepted
by the P system

H:(O:{a,b},Ez{a},uz [] wlzb,Rlz{b%b},iozl).

1
Take arbitrary numbers n > 0 and k > 0, an input alphabet Y =
{aj0]1<j<k}andsets T; C X, 1<i<n. We construct a P system accepting
precisely all inputs from (J;_, T}.
I = (0727M: [ ]1 , W1 = )\aRlviO = 1)3
O={a;; |0<i<n+1, 1<j<k}u{b},
Ri={aji —ajit110<i<n, 1<j <k}
U{aj7i—>b|1§i§n, 1§j§k7aj,oeTi}
Udajnt1 = ajnyr [ 1 <5 <k},

Indeed, every input object a; o either enters an infinite loop after n + 1 steps, or
evolves into b (that cannot further evolve by the rules of IT) after some number 4
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of steps if a;¢ € T;. The only way a non-empty input is accepted is if all objects
evolve into b in the same number 7 of steps, which is possible if and only if the
input is contained in (J;_, T}. O

5.3 Describing Languages

In the previous subsection we have studied numbers and vectors described by
non-cooperative P systems with all objects being toxic. We have shown that they
characterize very limited subregular behavior in the case of internal input, while
in the cases of external input, internal output or external output their power is
strongly related to that of FOL systems. A natural question arises — what can
we say about languages? We now illustrate the difficulty of this problem by a
few examples, generating non-context-free languages and illustrating the power of
synchronization emerging from halting with toxic objects.

Ezxample 3. Our first example shows how a simple non-context-free language can
be accepted using external input:

II = (O:{Saa7b7c}7/j/: [ ]1 , W1 :SaRlaiOZO)a
Ry ={S — S(a,come), S — a, a = a, a — (bc,come)} .

This P system accepts the language Loy = U,,~q {a”} Perm (b"c"), since the
multiplicities of symbols a, b and ¢ brought in are the same, and all objects b and
¢ must be brought inside in the same (i.e., in the last) step of the computation,
which must be after all objects a have been brought inside.

Note that, without toxicity, the result would still be some non-context-free
language consisting of the same number of symbols a, b and ¢, but it would also
contain strings which are not of the form {a}” {b,c}*.

It is no longer surprising that replacing (x,come) by x(z,out) for all z €
{a,b,c} in the system above, we get a P system with external output generating
the same language Lg(pc)-

Ezample 4. If, in the previous example, we replace each rule a — (bc, come) by
the two rules a — (b,come) and b — (¢, come), we get a P automaton accepting
language Lqp) ) = {a™b"c™ | n > 1}, because to halt without being blocked, all
objects ¢ must be brought inside in the same step, and therefore also all objects
b must have been brought inside just one step before that, and hence all objects
a must have already been brought in by then. Clearly, replacing (x,come) by
z(x,out) for all x € {a,b,c} throughout all the rules, we get a P system with
external output again generating the language Lqp)(c)-

In the rest of this section we show that non-cooperative P systems can generate
rather complicated languages even without making use of the synchronization
power of toxicity, and taking all objects to be toxic does not change the language.
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The following example of a difficult language generated by a non-cooperative
P system with external output is taken from [2]. This language is considerably
more “difficult” than languages in REG - Perm(REG), which informally can be
explained as follows: besides permutations of symbols sent out at the same time,
it exhibits another kind of non-context-freeness, although this second source of
“difficulty” alone, however, could be captured as the intersection of two linear
languages.

Ezample 5. Consider the non-cooperative P system with external output

HD = (O = {D,D/,a,b,c7a/7b/,cl},u = [ ]1 , W1 = D-DaRluiO = 0) )
Ry = {D — (a,out)(b,out)(c,out)D'D’, D — (a, out)(b, out)(c, out),
D" — (d',out)(V',out, (¢, out)DD, D" — (a', out) (¥, out)(c’, out) }.

The contents of region 1 is a population of objects D, initially 2, which are
primed if the step is odd. Assume that there are k objects inside the system.
In each step, every symbol D is either erased or doubled (and primed or de-
primed), so the next step the number of objects inside the system will be any
even number between 0 and 2k. In addition to that, the output during that step
is Perm ((abc)k), primed if the step is odd. Hence, the generated language can be
described as

L(Ilp) = Uko:l, 0<k;<2k;_1, 1<i<2t+1, >0
Perm ((abc)? ) Perm ((a'b//)?) - -
Perm ((abc)2k2‘) Perm ((a’b’c’)2k2t+1) )

To give an idea of how complex a language generated by a non-cooperative
membrane system can be, imagine that the skin may contain populations of mul-
tiple symbols that (like D in the example above) can be erased or multiplied (with
different periods), and also be rewritten into each other. The same, of course, hap-
pens in usual context-free grammars, but since the terminal symbols in P systems
with external output are collected from the derivation tree level by level instead
of from left to right as in context-free grammars, the effect is quite different.

We finally again mention that the generated language remains the same even
if all objects are toxic. Moreover, by replacing all outputs of the form (z, out) by
(z,come) and adding rules z — A we can convert this P system with external
output into a P automaton defining the same language.

6 Catalytic P Systems with Exactly the Catalysts being
Toxic Generate at Least PsM AT

In this section we investigate catalytic P systems where precisely the catalysts are
toxic, i.e., the computation is aborted if any of them is not used in some step
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before the computation halts. We prove that at least all Parikh sets of matrix
languages can be generated in this setting, using the fact that partially blind
register machines generate precisely PsM AT.

Theorem 4. For allm > 1,
Psgenotozcatpm,int(cat*) 2 PsMAT.

Proof. Let M = (d, B, lg, I, P) be a partially blind register machine, with the first
k registers being its output registers. Let e = fx11 - fq and let e(r) be e without
fr. Without loss of generality, we assume that the first instruction labeled by [y is
an ADD-instruction. We then construct the following P system.

II=(0,Cip= [ ], ,w1=loefas1,R1,ip = 1), where
C={c, |k+1<r<diU{c},
O=CUBU{fr|m+1<r<d+1}U{o, [1<r<d},
Ry = {cpli = cpljore, cpli = cplgore | ;- (ADD(7),1;,1;) € P}
U {epli = cplje(r) | 1; - (SUB(r),l;) € P}
U{cror = cr, Crfr = Cry Crfays = e# | k+1<r < d}
U{z > #|aze BU{#IU{f, |k+1<r<d}}
U {cpln, = cpe} U{cpfat1 — cp}.

The catalyst ¢, for the working register r, k + 1 < r < d, is kept busy by the
single copy of the symbol f,; only in the case of a SUB-instruction on r, in the next
step the rule ¢,.0. — ¢, should be applied, hence, e(r) is taken instead of e, thus
leaving the catalyst ¢, free for an object o,.. On the other hand, if such a symbol
o, in that case is not present, due to maximal parallelism the rule ¢, fg11 — ¢ #
introducing the trap symbol # has to be applied. The catalyst c, is used for
guiding the computation according to the program given by P. When M reaches
the final halting instruction labeled by I, then for a last time e is generated, but
no instruction label is generated any more, hence, in the last step of a successful
computation of II the rule c,fq+1 — ¢, will be applied together with the rules
e fr — ¢ for K+ 1 < r < d. The computation in II will then only stop with
yielding a result if no rule can be applied any more, i.e., if no trap symbol has
been introduced during the computation, and moreover, at the end no symbol o,
for k+ 1 <r < d is present, i.e., if all working registers are empty.

The lack of the symbol f, when a SUB-instruction on register r is carried out
guarantees that the computation is trapped if no register symbol o,., k+1 < r < d,
is present by the enforced application of the rule ¢, fg11 — ¢,#. If the final rule
cpfa+1 — ¢p is applied too early, i.e., as long as some I € B is present, then the
introduction of the trap symbol # by the rule [ — # is enforced by the maximal
parallelism.

We finally observe that only the catalysts are toxic here, so any number of
symbols o, with 1 < r < d can be generated during any successful computation.

O
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The preceding theorem shows that a partially blind register machine with m—1
working registers can be simulated by a P system with internal output in the single
membrane with at most m catalysts these being exactly the toxic objects.

7 Conclusion and Future Research

In this paper we have introduced multiple variants of P systems with toxic objects,
depending on which objects are toxic. It is important to note that so far in P
systems toxic objects and the concept of synchronized halting with toxic objects
has not been used in the literature, and thus toxic objects also have not been used
to change the computational power of P systems, but rather to decrease the rule
complexity of P systems (toxic objects in that case being equivalent to the usual
ones, additionally having rules rewriting them into a trap symbol thus forcing the
computation to never halt). In this paper, the results are quite different. The most
visible one is the non-cooperative case, where toxicity boosts the computational
power from PsREG to PsEOL. On the other side, requiring certain, or even
all, objects to be toxic can also bring limitations to the computational power.
The most dramatic limitation is the power of purely catalytic P systems, where
complete toxicity lowers the power of internal output from PsRE all the way down
to PsFIN, and the power of internal input from NRE down to either accepting
all numbers, or accepting very restricted finite sets.

Most results we have obtained here describe the computational power of P
systems with all objects being toxic or precisely all catalysts being toxic, depending
on the kinds of rules used (e.g., non-cooperative, purely catalytic or catalytic), the
number of membranes, the output region, in terms of number sets, vector sets or
languages, or even computing relations. We repeat the results we obtained in this
paper, for easier comparison.

For all m > 1, we have shown that

PsgenOtomalle,int (pcatk) = PSFINv k > ]-a
NaccOtoxalle (pcatk) = {{d} | 0 < d < k— 1}
U {0k} [0 < K < k}U{O,N}, k> 1,
REG, k> 1,
REG, k> 2,
RelREG, k > 2,

LgenOtozallP (pcatk)
LautOtozatt Pm (pcatk)
Relautotorallp (pcatk)
autOtoxallP (pcatl) DREG
autOtoxallP (pcat1) = RellDREQG,
P5genOtozatt Py int (ncoo) = PsEOL,
PsgenOtomalle int (TLCOO) PsEQL,
Psgenotoa:allpm ext (’I’LCOO) PsEOL,
PsautOtowallP ( )
P54ccOtorati Pm ( )
Psgenotomcatpm,lnt(Cat*)

PsEQL,
{P (UZ . T7) | X alphabet, T; C ¥, 1 <i<n, n>0},
PsMAT.
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Non-cooperative P systems with all objects being toxic have been shown to be

quite versatile, for example, we can easily generate {a"b"c" | n > 1}.

Multiple problems remain open. We find particularly interesting the following

ones:

Characterize PSgenOtogcat Prm,int(cat,) and all other possible variants of re-
stricting the set of toxic objects not yet covered by the results obtained in this
paper.

There still remains the open problem how to characterize the families of sets
of (vectors of ) natural numbers generated by [purely] catalytic P systems with
only one [two] catalyst[s].
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Summary. We consider extended spiking neural P systems with the additional possi-
bility of so-called “white hole rules”, which send the complete contents of a neuron to
other neurons, and we show how this extension of the original model allow for easy proofs
of the computational completeness of this variant of extended spiking neural P systems
using only one actor neuron. Using only such white hole rules, we can easily simulate
special variants of Lindenmayer systems.

1 Introduction

Based on the biological background of neurons sending electrical impulses along
axons to other neurons, several models were developed in the area of neural com-
putation, e.g., see [15], [16], and [10]. In the area of P systems, the model of spiking
neural P systems was introduced in [14]. Whereas the basic model of membrane
systems reflects hierarchical membrane structures, the model of tissue P systems
considers cells to be placed in the nodes of a graph. This variant was first consid-
ered in [23] and then further elaborated, for example, in [9] and [17]. In spiking
neural P systems, the cells are arranged as in tissue P systems, but the contents
of a cell (neuron) consists of a number of so-called spikes, i.e., of a multiset over
a single object. The rules assigned to a cell allow us to send information to other
neurons in the form of electrical impulses (also called spikes) which are summed up
at the target cell; the application of the rules depends on the contents of the neuron
and in the general case is described by regular sets. As inspired from biology, the
cell sending out spikes may be “closed” for a specific time period corresponding



46 A. Alhazov et al.

to the refraction period of a neuron; during this refraction period, the neuron is
closed for new input and cannot get excited (“fire”) for spiking again.

The length of the axon may cause a time delay before a spike arrives at the
target. Moreover, the spikes coming along different axons may cause effects of dif-
ferent magnitude. All these biologically motivated features were included in the
model of extended spiking neural P systems considered in [1], the most impor-
tant theoretical feature being that neurons can send spikes along the axons with
different magnitudes at different moments of time. In this paper, we will further
extend the model of extended spiking neural P systems by using so-called “white
hole rules”, which allow us to use the whole contents of a neuron and send it to
other cells, yet eventually multiplied by some constant rational number.

In the literature, several variants how to obtain results from the computations
of a spiking neural P system have been investigated. For example, in [14] the out-
put of a spiking neural P system was considered to be the time between two spikes
in a designated output cell. It was shown how spiking neural P systems in that
way can generate any recursively enumerable set of natural numbers. Moreover, a
characterization of semilinear sets was obtained by spiking neural P system with
a bounded number of spikes in the neurons. These results can also be obtained
with even more restricted forms of spiking neural P systems, e.g., no time delay
(refraction period) is needed, as it was shown in [13]. In [4], the generation of
strings (over the binary alphabet 0 and 1) by spiking neural P systems was inves-
tigated; due to the restrictions of the original model of spiking neural P systems,
even specific finite languages cannot be generated, but on the other hand, regular
languages can be represented as inverse-morphic images of languages generated by
finite spiking neural P systems, and even recursively enumerable languages can be
characterized as projections of inverse-morphic images of languages generated by
spiking neural P systems. The problems occurring in the proofs are also caused by
the quite restricted way the output is obtained from the output neuron as sequence
of symbols 0 and 1. The strings of a regular or recursively enumerable language
could be obtained directly by collecting the spikes sent by specific output neurons
for each symbol.

In the extended model considered in [1], a specific output neuron was used for
each symbol. Computational completeness could be obtained by simulating register
machines as in the proofs elaborated in the papers mentioned above, yet in an
easier way using only a bounded number of neurons. Moreover, regular languages
could be characterized by finite extended spiking neural P systems; again, only a
bounded number of neurons was needed.

In this paper, we now extend this model of extended spiking neural P systems
by also using so-called “white hole rules”, which may send the whole contents of a
neuron along its axons, eventually even multiplied by a (positive) rational number.
In that way, the whole contents of a neuron can be multiplied by a rational number,
in fact, multiplied with or divided by a natural number. Hence, even one single
neuron is able to simulate the computations of an arbitrary register machine.
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The idea of consuming the whole contents of a neuron by white hole rules is
closely related with concept of the exhaustive use of rules, i.e., an enabled rule is
applied in the maximal way possible in one step; P systems with the exhaustive
use of rules can be used in the usual maximally parallel way on the level of the
whole system or in the sequential way, for example, see [27] and [26]. Yet all the
approaches of spiking neural P systems with the exhaustive use of rules are mainly
based on the classic definitions of spiking neural P systems, whereas the spiking
neural P systems with white hole rules as investigated in this paper are based on
the extended model as introduced in [1].

The rest of the paper is organized as follows: In the next section, we recall some
preliminary notions and definitions from formal language theory, especially the
definition and some well-known results for register machines. In section 3 we recall
the definitions of the extended model of spiking neural P systems as considered
in [1] as well as the most important results established there. Moreover, we show
a new result for extended spiking neural P systems — such systems with only one
actor neuron have exactly the same computational power as register machines with
only one register that can be decremented.

In section 4, we define the model of extended spiking neural P systems extended
by the use of white hole rules. Besides giving some examples, for instance showing
how Lindenmayer systems can be simulated by extended spiking neural P systems
only using white hole rules, we prove that the computations of an arbitrary register
machine can be simulated by only one single neuron equipped with the most
powerful variant of white hole rules. In that way we can show that extended
spiking neural P systems equipped with white hole rules are even more powerful
than extended spiking neural P systems, which need (at least) two neurons to
be able to simulate the computations of an arbitrary register machine. Finally, in
section 5 we give a short summary of the results obtained in this paper and discuss
some future research topics for extended spiking neural P systems with white hole
rules, for example, variants with inhibiting neurons or axons.

2 Preliminaries

In this section we recall the basic elements of formal language theory and espe-
cially the definitions and results for register machines; we here mainly follow the
corresponding section from [1].

For the basic elements of formal language theory needed in the following, we
refer to any monograph in this area, in particular, to [5] and [25]. We just list a
few notions and notations: V* is the free monoid generated by the alphabet V'
under the operation of concatenation and the empty string, denoted by A, as unit
element; for any w € V*, |w| denotes the number of symbols in w (the length
of w). N1 denotes the set of positive integers (natural numbers), N is the set
of non-negative integers, i.e., N = Ny U {0}, and Z is the set of integers, i.e.,
Z = Ny U {0} U —Ny. The interval of non-negative integers between k and m is
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denoted by [k..m], and k - Ni denotes the set of positive multiples of k. Observe
that there is a one-to-one correspondence between a set M C N and the one-
letter language L (M) = {a™ | n € M}; e.g., M is a regular (semilinear) set of
non-negative integers if and only if L (M) is a regular language. By FIN (Nk),
REG (Nk), and RE (Nk), for any k € N, we denote the sets of subsets of N* that
are finite, regular, and recursively enumerable, respectively.

By REG (REG (V)) and RE (RE (V)) we denote the family of regular and
recursively enumerable languages (over the alphabet V', respectively). By ¥r (L)
we denote the Parikh image of the language L C T™, and by PsFL we denote the
set of Parikh images of languages from a given family F'L. In that sense, PsRE (V)
for a k-letter alphabet V corresponds with the family of recursively enumerable
sets of k-dimensional vectors of non-negative integers.

2.1 Register Machines

The proofs of the results establishing computational completeness in the area of
P systems often are based on the simulation of register machines; we refer to [18]
for original definitions, and to [7] for definitions like those we use in this paper:

An n-register machine is a construct M = (n, P,lo, ;) , where n is the number
of registers, P is a finite set of instructions injectively labelled with elements from
a given set Lab (M), Iy is the initial/start label, and I, is the final label.

The instructions are of the following forms:

— 11 : (ADD(r),ls,l3) (ADD instruction)
Add 1 to the contents of register r and proceed to one of the instructions
(labelled with) I and I3.

- 11 : (SUB(r),l2,l3) (SUB instruction)
If register r is not empty, then subtract 1 from its contents and go to instruction
lo, otherwise proceed to instruction ls.

— lp : halt (HALT instruction)
Stop the machine. The final label [;, is only assigned to this instruction.

A (non-deterministic) register machine M is said to generate a vector
(s1,---,sp) of natural numbers if, starting with the instruction with label Iy and
all registers containing the number 0, the machine stops (it reaches the instruction
Iy, : halt) with the first § registers containing the numbers s1, - - - , sg (and all other
registers being empty).

Without loss of generality, in the succeeding proofs we will assume that
in each ADD instruction l; : (ADD(r),ls,l3) and in each SUB instruction
ly : (SUB(r),ls,l3) the labels Iy,ls,l3 are mutually distinct (for a short proof
see [9]).

The register machines are known to be computationally complete, equal in
power to (non-deterministic) Turing machines: they generate exactly the sets of
vectors of non-negative integers which can be generated by Turing machines, i.e.,
the family PsRE.
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Based on the results established in [18], the results proved in [7] and [8] imme-
diately lead to the following result:

Proposition 1. For any recursively enumerable set L C NP of vectors of non-
negative integers there exists a non-deterministic (8 + 2)-register machine M gen-
erating L in such a way that, when starting with all registers 1 to f+2 being empty,
M non-deterministically computes and halts with n; in registers i, 1 <1 < 3, and
registers S+ 1 and B+ 2 being empty if and only if (n1,...,ng) € L. Moreover, the
registers 1 to 8 are never decremented.

When considering the generation of languages, we can use the model of a
register machine with output tape, which also uses a tape operation:

= Iy : (write (a), 12)
Write symbol a on the output tape and go to instruction Is.

We then also specify the output alphabet T in the description of the register
machine with output tape, i.e., we write M = (n, T, P,lo,1)-

The following result is folklore, too (e.g., see [18] and [6]):

Proposition 2. Let L CT* be a recursively enumerable language. Then L can be
generated by a register machine with output tape with 2 registers. Moreover, at the
beginning and at the end of a successful computation generating a string w € L
both registers are empty, and finally, only successful computations halt.

3 Extended Spiking Neural P Systems

The reader is supposed to be familiar with basic elements of membrane computing,
e.g., from [21] and [24]; comprehensive information can be found on the P systems
web page [28]. Moreover, for the motivation and the biological background of
spiking neural P systems we refer the reader to [14]. The definition of an extended
spiking neural P system is mainly taken from [1], with the number of spikes k still
be given in the “classical” way as a¥; later on, we simple will use the number k
itself only instead of a*.

3.1 The Definition of ESNP Systems
The definitions given in the following are taken from [1].

Definition 1. An extended spiking neural P system (of degree m > 1) (in the
following we shall simply speak of an ESNP system) is a construct

II=(m,S,R)

where



50

A. Alhazov et al.

m is the number of cells (or neurons); the neurons are uniquely identified by
a number between 1 and m (obviously, we could instead use an alphabet with
m symbols to identify the neurons);

S describes the initial configuration by assigning an initial value (of spikes) to
each neuron; for the sake of simplicity, we assume that at the beginning of a
computation we have no pending packages along the axons between the neurons;
R is a finite set of rules of the form (i,E/ak — P;d) such that i € [1..m)]
(specifying that this rule is assigned to cell i), E C REG ({a}) is the checking
set (the current number of spikes in the neuron has to be from E if this rule
shall be executed), k € N is the “number of spikes” (the energy) consumed
by this rule, d is the delay (the “refraction time” when neuron i performs this
rule), and P is a (possibly empty) set of productions of the form (I, w,t) where
[ € [1..m] (thus specifying the target cell), w € {a}” is the weight of the energy
sent along the axon from neuron i to neuron l, and t is the time needed before
the information sent from neuron i arrives at neuron [ (i.e., the delay along
the axon). If the checking sets in all rules are finite, then II is called o finite
ESNP system.

Definition 2. A configuration of the ESNP system is described as follows:

for each neuron, the actual number of spikes in the neuron is specified;

in each neuron i, we may find an “activated rule” (i, E/d* — P; d’) waiting to
be executed where d' is the remaining time until the neuron spikes;

in each axon to a neuron l, we may find pending packages of the form (I, w,t’)
where t' is the remaining time until |w| spikes have to be added to neuron l
provided it is not closed for input at the time this package arrives.

A transition from one configuration to another one now works as follows:

for each mneuron i, we first check whether we find an “activated rule”
(i, E/aF — P;d’) waiting to be executed; if d = 0, then neuron i “spikes”,
i.e., for every production (I, w,t) occurring in the set P we put the correspond-
ing package (I,w,t) on the azon from neuron i to neuron l, and after that, we
eliminate this “activated rule” (z', E/ad* — P; d’);

for each neuron I, we now consider all packages (I,w,t") on axons leading to
neuron l; provided the neuron is not closed, i.e., if it does not carry an activated
rule (i, E/a® — P;d') with d' > 0, we then sum up all weights w in such
packages where t' = 0 and add this sum of spikes to the corresponding number
of spikes in meuron l; in any case, the packages with t' = 0 are eliminated from
the azons, whereas for all packages with t' > 0, we decrement t' by one;

for each neuron i, we now again check whether we find an “activated rule”
(i, E/d* — P; d/) (with d’ > 0) or not; if we have not found an “activated rule”,
we now may apply any rule (z’, E/d* — P; d) from R for which the current num-
ber of spikes in the neuron is in E and then put a copy of this rule as “activated
rule” for this neuron into the description of the current configuration; on the
other hand, if there still has been an “activated rule” (i,E/ak — P; d’) in the
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neuron with d’ > 0, then we replace d’ by d' —1 and keep (i, E/d* — P;d — 1)
as the “activated rule” in neuron i in the description of the configuration for
the next step of the computation.

After having executed all the substeps described above in the correct sequence,
we obtain the description of the new configuration. A computation is a sequence of
configurations starting with the initial configuration given by S. A computation is
called successful if it halts, i.e., if no pending package can be found along any azxon,
no neuron contains an activated rule, and for no neuron, a rule can be activated.

In the original model introduced in [14], in the productions (I,w,t) of a rule
(i,E/a* — {(l,w,t)};d), only w = a (for spiking rules) or w = X (for forgetting
rules) as well as t = 0 was allowed (and for forgetting rules, the checking set E
had to be finite and disjoint from all other sets E in rules assigned to neuron i).
Moreover, reflexive axons, i.e., leading from neuron 7 to neuron ¢, were not al-
lowed, hence, for (I,w,t) being a production in a rule (i, E/a* — P; d) for neuron
i, | # i was required. Yet the most important extension is that different rules for
neuron ¢ may affect different axons leaving from it whereas in the original model
the structure of the axons (called synapses there) was fixed. In [1], the sequence
of substeps leading from one configuration to the next one together with the in-
terpretation of the rules from R was taken in such a way that the original model
can be interpreted in a consistent way within the extended model introduced in
that paper. As mentioned in [1], from a mathematical point of view, another inter-
pretation would have been even more suitable: whenever a rule (i, E/d* — P; d)
is activated, the packages induced by the productions (I,w,t) in the set P of a
rule (i, E/d* — P; d) activated in a computation step are immediately put on the
axon from neuron ¢ to neuron [, whereas the delay d only indicates the refraction
time for neuron ¢ itself, i.e., the time period this neuron will be closed. The delay ¢
in productions (I, w,t) can be used to replace the delay in the neurons themselves
in many of the constructions elaborated, for example, in [14], [23], and [4]. Yet as
in (the proofs of computational completeness given in) [1], we shall not need any
of the delay features in this paper, hence we need not go into the details of these
variants of interpreting the delays in more details.

Depending on the purpose the ESNP system is to be used, some more features
have to be specified: for generating k-dimensional vectors of non-negative integers,
we have to designate k neurons as output neurons; the other neurons then will also
be called actor neurons. There are several possibilities to define how the output
values are computed; according to [14], we can take the distance between the first
two spikes in an output neuron to define its value. As in [1], also in this paper, we
take the number of spikes at the end of a successful computation in the neuron
as the output value. For generating strings, we do not interpret the spike train
of a single output neuron as done, for example, in [4], but instead consider the
sequence of spikes in the output neurons each of them corresponding to a specific
terminal symbol; if more than one output neuron spikes, we take any permutation
of the corresponding symbols as the next substring of the string to be generated.
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Remark 1. As already mentioned, there is a one-to-one correspondence between
(sets of) strings a* over the one-letter alphabet {a} and the corresponding
non-negative integer k. Hence, in the following, we will consider the checking
sets E of a rule (i,E/a’C — P;d) to be sets of non-negative integers and write
k instead of a* for any w = @ in a production (I,w,t) of P. Moreover, if
no delays d or t are needed, we simply omit them. For example, instead of

(2,{a’} /o’ = {(1,a,0),(2,a?,0) } ;0) we write (2,{i} /i — {(1,1),(2,5)}).

3.2 ESNP Systems as Generating Devices

As in [1], we first consider extended spiking neural P systems as generating devices.
The following example gives a characterization of regular sets of non-negative
integers:

Ezxample 1. Any semilinear set of non-negative integers M can be generated by a
finite ESNP system with only two neurons.

Let M be a semilinear set of non-negative integers and consider a regular gram-
mar G generating the language L (G) C {a}" with N (L (G)) = M; without loss of
generality we assume the regular grammar to be of the form G = (N, {a}, A1, P)
with the set of non-terminal symbols N, N = {4, | 1 <4 < m}, the start symbol
Aq, and P the set of regular productions of the form B — aC with B,C € N and
A — X\. We now construct the finite ESNP system IT = (2,5, R) that generates
an element of M by the number of spikes contained in the output neuron 1 at the
end of a halting computation: we start with one spike in neuron 2 (representing
the start symbol A; and no spike in the output neuron 1, i.e., S = {(1,0),(2,1)}.
The production A; — aA; is simulated by the rule (2, {:} /i — {(1,1),(2,/)}) and
A; — X is simulated by the rule (2,{i} /i — @), i.e., in sum we obtain

2,5, R),
(1,0),(2,1)},
(2{@}/2—){(1,),( NH11<i,j<m,A; — ad; € P}
(2,{i} Ji—0) |1 §z<mA — A€ P}.

Neuron 2 keeps track of the actual non-terminal symbol and stops the derivation
as soon as it simulates a production A; — A, because finally neuron 2 is empty.
In order to guarantee that this is the only way how we can obtain a halting
computation in I7, without loss of generality we assume G to be reduced, i.e., for
every non-terminal symbol A from N there is a regular production with A on the
left-hand side. These observations prove that we have N (L (G)) = M.

The following results were proved in [1]:

Lemma 1. For any ESNP system where during any computation only a bounded
number of spikes occurs in the actor neurons, the generated language is reqular.
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Theorem 1. Any reqular language L with L CT* for a terminal alphabet T with
card (T) = n can be generated by a finite ESNP system with n + 1 neurons. On
the other hand, every language generated by a finite ESNP system is regular.

Corollary 1. Any semilinear set of n-dimensional vectors can be generated by
a finite ESNP system with n + 1 neurons. On the other hand, every set of n-
dimensional vectors generated by a finite ESNP system is semilinear.

Theorem 2. Any recursively enumerable language L with L C T* for a terminal
alphabet T with card (T) = n can be generated by an ESNP system with n + 2
NeuUTons.

Corollary 2. Any recursively enumerable set of n-dimensional vectors can be gen-
erated by an ESNP system with n + 2 neurons.

Besides these results already established in [1], we now prove a characterization
of languages and sets of (vectors of) natural numbers generated by ESNPS with
only one neuron. Roughly speaking, having only one actor neuron corresponds
with, besides output registers, having only one register which can be decremented.

Lemma 2. For any ESNP system with only one actor neuron we can effectively
construct a register machine with output tape and only one register that can be
decremented, generating the same language, respectively a register machine with
one register that can be decremented, generating the same set of (vectors of ) natural
numbers.

Proof. First we notice that the delays would not matter: the overall system is
sequential, and therefore it is always possible to pre-compute what happens until
the actor neuron re-opens; the weight of all pending packages is also bounded. All
the details of storing and managing all these features by the finite control of the
register machines are tedious, but very much straightforward. In the following, we
therefore assume that the ESNPS is given as:

I = (n+17S7R)7
S = {(1,7’)’11), e a(namn)a (Tl + lamn+1)}7
R = {(n+ 1uET/7;T — {(17p7‘,1)7 e 7(n7p7“,n)> (’I’L+ 1>pr,n+1)}) | 1 S r S C]}

Thus, given n, IT can be specified by the following non-negative integers: the num-
ber q of rules, initial spikes mq,- -, my, m,+1, and, for every rule r, the following
ingredients: the number ¢, of consumed spikes, the numbers p, 1, - , Py n41 of pro-
duced spikes, and the regular sets F, of numbers. Note that, as it will be obvious
later, it is enough to only consider the case m; = --- = m,, = 0, because other-
wise placing the initial spikes can be done by a 1-register machine in a preparatory
phase, before switching to the instruction corresponding to starting the simulation.

The main challenge of the construction is to remember the actual “status”
of the regular checking sets. It is known that every regular set E of numbers
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is semilinear, and it is possible to write E, = Ué;l(k,N +d, ;) UD,, ie., all
the linear sets constituting E, can be reduced to a common period k,, and an
additional finite set. Then, we can take a common multiple k of periods k,, and
represent each checking set as B, = (kNy +{d,.; | 1 <j <1}) U D), where D is
finite.

Finally, take a number M such that M is a multiple of k, that M is larger than
any element of D,, 1 <7 < g, that M is larger than any number d; ;, 1 <j <1,
1 <r < gq, that M is larger than any of i, and p,. 41, 1 <7 < ¢q. Then, if neuron
n + 1 has N spikes, the following properties hold:

e rule r is applicable if and only if N € E, in case when i,, < N < M, and if and
only if M + (Nmod M) € E; in case when N > M,

e the difference between the number of spikes in neuron n 4+ 1 in two successive
configurations is not larger than M.

For neuron n 4+ 1, Mk + j spikes (where 0 < j < M — 1) will be represented
by value k of register 1 and state j.

We simulate IT by a register machine R with one register and an output tape
of m symbols. Before we proceed, we need to remark that, without restricting the
generality, we may have an arbitrary set of “next instructions” instead of {ls, 3} in
l1 : (ADD(r),ls,13), and arbitrary sets of “next instructions” instead of {l5} and
{ls} in Iy : (SUB(r),l3,13). Indeed, non-determinism between choice of multiple
instructions can be implemented by an increment followed by a decrement in each
case, as many times as needed for the corresponding set of “next instructions”.
Clearly, l; : (ADD(r),{l2}) is just a shorter form of Iy : (ADD(r),ls,l2).

Finally, besides instructions ADD(r), SUB(r), write(a) and halt, we introduce
the notation of NOP, meaning only a switch to a different instruction without
modifying the register. This will greatly simplify the construction below, and such
a notation can be reduced to either compressing the rules (by substituting the
instruction label with the label of the next instruction in all other instructions),
or be simulated by an ADD(1) instruction, followed by a SUB(1) instruction.

We take b(my+1mod M) as the starting state of R, and the starting value of
register 1 is my,1div M.

For every class modulo M, 0 < j < M — 1, we define sets

Lio={lyo|1<r<gq, jeE,, i, >j},
Livw={l+|1<r<q, j+MEecE}
of applicable rules corresponding to remainder j, subscripts 0 and + represent
cases of having less than M spikes, and at least M spikes, respectively. Let us

redefine any of these sets to {l;,} if the expression above is empty.
We proceed with the actual simulation. A rule

(Tl + laEr/ir — {(Lpr,l)a Tty (napr,n)a (n + 17pr,n+1)})

can be simulated by the following rules of R:
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b(j) : (S(1), Lj+, Ljo), Iy € Ljo;

lyo -+, (asequence of p,, instructions write(ai), ---,)
-, (pr, instructions write(ay,)),

-l o, (and p,, ., instructions ADD(1)), o € {0,+};

T
I, - (NOP{b((j = ir + prny1)mod M)}), if j — iy + prug1 < 0;
L4t (ADD(1),{l7.0}), if j — i + Printr < M;

I s (NOP,{b((j — ir + prons1)mod M)}), if j — iy + prais < M;
Lot (ADD(1),{b((j — ir + prn+1)mod M)}), if j — iy + prnt1 = M;
Iy, : halt.

Indeed, instruction b(j) corresponds to checking whether neuron n+ 1 has at least
M spikes, transitioning into the halting instruction, or into the set of instructions
associated with the corresponding applicable rules, in the context of the result of
the checking mentioned above. Sending spikes to output neurons is simulated by
writing the corresponding symbols on the tape. This goal is obtained, knowing
values j, iy, Pr n+1, and whether neuron 1 had at least M spikes or not, by transi-
tioning to instruction b((j — 4, + Prn+1)mod M) after incrementing register 1 the
needed number of times (0, 1 or 2), which is equal to (j — i, + prn4+1div M) +d,
where d = 0 if neuron 1 had at least M spikes, and d = 1 otherwise (to com-
pensate for the subtraction done by instruction b(j) in the initial checking). The
simulation of instructions continues until we reach the situation where no rules of
the underlying spiking system are applicable, transitioning to some L; o = {I5}.

Finally, let us formally describe the instruction sequences from I, to I}, .
For the sake of simplicity of notation, we do not mention subscripts r, « in the
notation of the intermediate instructions, keeping in mind that these are different
instructions for different r, o. The difficulty for generating the string languages is
that, by the definition, all permutations are to be considered if spikes are sent to
multiple neurons 1,--- ,m.

lra s (NOP {s(pry;--+ ,pr,)});

s(i, -+ yin) : (NOP{s"(iy, -+ yin) | ix >0, 1 <k <n}),
0<ij <pr, 1<7<m,(in, - ,ip) # (0, ,0);

B iy, in) « (write(ag), {s(i}, - ,i')}),

iy =i —1, and i, =145, 1<j<n, j#k,

0<i; <pr, 1<j<n, (i1, - ,in) # (0,---,0);
5(0,++,0) : (NOP, {t(p,,..,)});

t(i) : (ADD(n+1),t(i — 1)), 1 <i < py s

t(0): (NOP,L. ).

s 'ra

The rules above describe precisely the following behavior: to produce any sequence
with the desired numbers of occurrences of symbols a1, - ,a,, a symbol is non-
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deterministically chosen (out of those, the current desired number of occurrences
of which is positive) and written, iterating until all desired symbols are written.

Next, the register is incremented the needed number of times. This finishes the
explanation of the instruction sequences from [, , to l;,ﬁa, as well as the explanation
of the simulation.

Therefore, the class of languages generated by ESNP systems with only one
neuron containing rules and n output neurons is included in the class of languages
generated by 1-register machines with an output tape of n symbols.

Applying Parikh mapping to both classes, just replacing write-instructions by
AD D-instructions on new registers associated with these symbols, it follows that
the class of sets of vectors generated by ESNP systems with only one neuron
containing rules and n output neurons is included in the class of sets of vectors
generated by n + 1-register machines where all registers except one are restricted
to be increment-only. These observations conclude the proof. 0O

The inclusions formulated at the end of the proof given above are actually
characterizations, as we can also prove the opposite inclusion.

Lemma 3. For any register machine with output tape with only one register that
can be decremented respectively for any register machine with only one register
that can be decremented we can effectively construct an ESNP system generating
the same language respectively the same set of (vectors of ) natural numbers.

Proof. By definition, output registers can only be incremented, so the main com-
putational power lies in the register which can also be decremented. The decre-
mentable register can be simulated together with storing the actual state by storing
the number dn + ¢; where: n is the actual contents of the register, ¢; is a number
encoding the i-th instruction of the register machine, and d is a number bigger than
all ¢;. Then incrementing this first register by an instruction ¢; and jumping to c;
means consuming ¢; and adding d + ¢; in the actor neuron, provided the checking
set guarantees that the actual contents is an element of dN + ¢;. Decrementing
means consuming d + ¢; and adding c; in the actor neuron, provided the checking
set guarantees that the actual contents is an element of dN, + ¢;; if n = 0, then ¢;
is consumed and c;, is added in the actor neuron with c¢; being the instruction to
continue in the zero case. At the same time, with each of these simulation steps,
the output neurons can be incremented in the exact way as the output registers;
in the case of register machines with output tape, a spike is sent to the output
neuron representing the symbol to be written. Further details of this construction
are left to the reader. 0O

4 ESNP Systems with White Hole Rules

In this section, we extend the model of extended spiking neural P systems, in-
troduced in [1] and described in the previous section, by white hole rules. We
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will show that with this new variant of extended spiking neural P systems, com-
putational completeness can already be obtained with only one actor neuron, by
proving that the computations of any register machines can already be simulated
in only one neuron equipped with the most general variant of white hole rules.
Using this single actor neuron to also extract the final result of a computation, we
even obtain weak universality with only one neuron.

As already mentioned in Remark 1, we are going to describe the checking sets
and the number of spikes by non-negative integers. The following definition is an
extension of Definition 1:

Definition 3. An extended spiking neural P system with white hole rules (of
degree m > 1) (in the following we shall simply speak of an EESNP system) is a
construct

II =(m,S,R)

where

o m is the number of cells (or neurons); the neurons are uniquely identified by
a number between 1 and m;

e S describes the initial configuration by assigning an initial value (of spikes) to
each neuron;

e R is a finite set of rules either being a white hole rule or a rule of the form as
already described in Definition 3 (i, E/k — P;d) such thati € [1..m] (specifying
that this rule is assigned to cell i), E C REG (N) is the checking set (the
current number of spikes in the neuron has to be from E if this rule shall be
executed), k € N is the “number of spikes” (the energy) consumed by this rule, d
is the delay (the “refraction time” when neuron i performs this rule), and P is
a (possibly empty) set of productions of the form (I, w,t) wherel € [1..m] (thus
specifying the target cell), w € N is the weight of the energy sent along the azon
from neuron i to neuron l, and t is the time needed before the information sent
from neuron i arrives at neuronl (i.e., the delay along the axon). A white hole
rule is of the form (i, E/all — P;d) where all means that the whole contents of
the neuron is taken out of the neuron; in the productions (I, w,t), either w € N
as before or else w = (all + p)-q+2z with p,q, z € Q; provided (¢ + p)-q+z, where
¢ denotes the contents of the neuron, is non-negative, then |(c+p)-q+ z] is
the number of spikes put on the axon to neuron l.

If the checking sets in all rules are finite, then II is called a finite EESNP
system.

Allowing the white hole rules having productions being of the form w =
(all +p)-q+ 2z with p,q, z € Q is a very general variant, which can be restricted in
many ways, for example, by taking z € Z or omitting any of the rational numbers
D,q, 2 € Q or demanding them to be in N etc.

Obviously, every ESNPS also is an EESNPS, but without white hole rules, and
a finite EESNPS also is a finite ESNPS, as in this case the effect of white hole rules
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is also bounded, i.e., even with allowing the use of white hole rules, the following
lemma as a counterpart of Lemma 1 is still valid:

Lemma 4. For any EESNP system where during any computation only a bounded
number of spikes occurs in the actor neurons, the generated language is reqular.

Hence, in the following our main interest is in EESNPS which really make use
of the whole power of white hole rules.

4.1 Examples for EESNPS

EESNPS can also be used for computing functions, not only for generating sets
of (vectors of) integer numbers. As a simple example, we show how the function
n +— 2" can be computed by a deterministic EESPNS, which only has exactly
one rule in each of its two neurons; the output neuron 2 in this case is not free of
rules.

Ezample 2. Computing n s 2711

1 2
((1,N+/1 —{(2, 1)})H(2, 2Ny +1/all — {(2, (all — 1) - 2)})):)

Initial value = n Initial value = 2

The rule (2,2-Ni +1/all = {(2,(all —1)-2)}) could also be written as
(2,2 N +1/all = {(2,(all) -2 —2)}). In both cases, starting with the input
number n (of spikes) in neuron 1, with each decrement in neuron 1, the con-
tents of neuron 2 (not taking into account the enabling spike from neuron 1) is
doubled. The computation stops with 2"+ in neuron 1, as with 0 in neuron 1
no enabling spike is sent to neuron 2 any more, hence, the firing condition is not
fulfilled any more. We finally remark that with the initial value 1 in neuron 2 we
can compute the function n +— 27,

Example 3. Pure White Hole Model of EESNPS for DTOL Systems

Let G = ({a}, P,a®) be a Lindenmayer system with the axiom a°® and the
finite set of tables P each containing a finite set of parallel productions of the
form a — a¥. Such a system is called a tabled Lindenmayer system, abbreviated
TOL system, and it is called deterministic, abbreviated DTOL system, if each
table contains exactly one rule. Now let G = ({a}, P,a®) be a DTOL system with
P = {{a — a’“} [1<i< n} Then the following EESNPS using only white hole
rules computes the same set of natural numbers as are represented by the language
generated by G, with the results being taken with unconditional halting, i.e., taking
a result at every moment (see [2]).

1
[{(1,N+/all S {(Lall - k)}) | 1<i < n});)

Initial value = s
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If we want to generate with normal halting, we have to add an additional output
neuron 2 and an additional rule {(1,Ny /all — {(2,all -1)})} in neuron 1 which
at the end moves the contents of neuron 1 to neuron 2.

4.2 Universality with EESNPS

Lemma 5. The computation of any register machine can be simulated in only one
single actor neuron of an EESPNS.

Proof. Let M = (n, P,lg, 1) be an n-register machine, where n is the number of
registers, P is a finite set of instructions injectively labelled with elements from a
set of labels Lab (M), ly is the initial label, and I}, is the final label.

Then we can effectively construct an EESNPS IT = (m, .S, R) simulating the
computations of M by encoding the contents n; of each register i, 1 < i < n, as
p;* for different prime numbers p;. Moreover, for each instruction (label) j we take
a prime number g;, of course, also each of them being different from each other
and from the p;.

The instructions are simulated as follows:

— 11 : (ADD(r),ls,l3) (ADD instruction)
This instruction can be simulated by the rules
{(Lq, - Ny fall = {(1,all - qpr/q1,)}) |2 <@ < 3}
in neuron 1.

— 11 : (SUB(r),l2,l3) (SUB instruction)
This instruction can be simulated by the rules

(L, @i pr - Ny Jall = {(1,all - g1, / (q1,pr)) })
and

(La, - Ny \aqiypr - Ny Jall = {(1,all - qu, /1) })
in neuron 1; the first rule simulates the decrement case, the second one the
zero test.

— Iy :halt (HALT instruction)
This instruction can be simulated by the rule
(L qu, - Ny/all = {(1,all - 1/q1,)})
in neuron 1.
In fact, after the application of the last rule, we end up with pi™ ---pl"» in
neuron 1, where (my,---,my) is the vector computed by M and now, in the
prime number encoding, by I as well.

All the checking sets we use are regular, and the productions in all the white
hole rules even again yield integer numbers. O

Remark 2. As the productions in all the white hole rules of the EESNPS con-
structed in the preceding proof even again yield integer numbers, we could also
interpret this EESNPS as an ESPNS with exhaustive use of rules:

The white hole rules in the EESNPS constructed in the previous proof are of
the general form
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(1,q-Ny/all = {(1,all - p/q)})
with p and ¢ being natural numbers. Each of these rules can be simulated in a

one-to-one manner by the rule
(1,¢-Ny/q = p)
used in an ESNPS with one neuron in the exhaustive way.

Theorem 3. Any recursively enumerable set of n-dimensional vectors can be gen-
erated by an ESNP system with n + 1 neurons.

Proof. We only have to show how to extract the results into the additional output
neurons from the single actor neuron which can do the whole computational task
as exhibited in Lemma 5. Yet this is pretty easy:

When the actor neuron reaches the halting state, the desired result m,; for
output neuron ¢ + 1 is stored as factor in this one number stored in the actor
neuron within the prime number encoding, i.e., as ¢;"*, for 1 < i < n. Instead of
using the final rule (1,q, - Ny/all = {(1,all - 1/q, )}) in neuron 1 we now take
the rule (1, ¢, - Ny /all = {(1,all -1 /q,)})-

With the rules (1,7;¢;Ny/all — {(1,all - 1/k;), (i + 1,1)}), we can decode the
factor ¢;"* to m; into output neuron ¢ + 1, with the instruction code (prime
number) r; for 1 < ¢ < n. If the contents of the actor neuron is not divid-
able by ¢; any more, we switch to the next instruction code r;y; by the rule
(L Ny \ g - Ny /all = {(1,all - 7341/75)}). At the end, we can end up with 0
in the actor neuron after having used the rule (1,7; - Ny \ r;q; - Ny /all — () and
then stop with m; in output neuron i+ 1,1 <¢<n. 0O

Theorem 4. Any recursively enumerable language L with L C T* for a terminal
alphabet T with card (T) = n can be generated by an ESNP system with n + 1
neurons.

Proof. In the case of generating strings, we have to simulate a register ma-
chine with output tape; hence, in addition to the simulating rules already de-
scribed in Lemma 5, we have to simulate the tape rule Iy : (write(a),ls),
which in the EESNPS means sending one spike to the output neuron
N (a) representing the symbol a. This task is accomplished by the rule
(1,l; - Ny /all — {(1,all - 13/11) , (N (a),1)}). The rest of the construction and of
the proof is similar to that what we have done in the proof of Lemma 5. 0O

5 Summary and Further Variants

In this paper, we have extended the model of extended spiking neural P systems
from [1] by white hole rules. With this new variant of extended spiking neural P
systems, computational completeness can already be obtained with only one actor
neuron, as the computations of any register machine can already be simulated in
only one neuron equipped with the most general variant of white hole rules. Using
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this single actor neuron to also extract the final result of a computation, we even
obtain weak universality with only one neuron.

A quite natural feature found in biology and also already used in the area of

spiking neural P systems is that of inhibiting neurons or axons between neurons,
i.e., certain connections from one neuron to another one can be specified as in-
hibiting ones — the spikes coming along such inhibiting axons then close the target
neuron for a time period given by the sum of all inhibiting spikes, e.g., see [3].
Such variants can also be considered for extended spiking neural P systems with
white hole rules.
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Summary. We present a transformation of membrane systems, possibly with pro-
moter/inhibitor rules, priority relations, and membrane dissolution, into formulas of
the chemical calculus such that terminating computations of membranes correspond to
terminating reduction sequences of formulas and vice versa. In the end, the same result
can be extracted from the underlying computation of the membrane system as from the
reduction sequence of the chemical term. The simulation takes place in a typed chemical
calculus, but we also give a short account of the untyped case.

1 Introduction

In the present paper we continue the investigations started in [2, 3] concerning
the possibility of defining the semantics of membrane systems with rewriting logic
[1, 2] in order to obtain a logical description of membrane system computations.

The direct precedent of our work is [7] where a logical description of simple
membrane systems was given using the -calculus of Banatre and Le Métayer
from [6] (see also [4] for more details). Their aim was to free the expression of
algorithms from the sequentiality which is not inherently present in the problem
to be solved, that is, the sequentiality which is implied by the structure of the
computational model on which the given algorithm is to be performed. They called
their calculus chemical calculus, and the underlying computational paradigm the
chemical paradigm of computation while the execution model behind them closely
resembles the way chemical reactions take place in chemical solutions. A chemical
“machine” can be thought of as a symbolic chemical solution where data can be
seen as molecules and operations as chemical reactions. If some molecules satisfy a
reaction condition, they are replaced by the result of the reaction. If no reaction is
possible, the program terminates. Chemical solutions are represented by multisets.
Molecules interact freely according to reaction rules which results in an implicitly
parallel, non-deterministic, distributed model.

In what follows, using a slightly modified variant of the operational semantics of
membrane systems presented in [3], we show how to transform a membrane system
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with rules using promoters/inhibitors (see [8]), priorities, and also the possibility
of membrane dissolution (introduced already in [9]), into formulas of the chemical
calculus, such that terminating computations of the membrane system correspond
to terminating reduction sequences of formulas and vice versa.

2 Preliminaries

In this section we present the basic notions and notations we are going to use.
For a comprehensive treatment of membrane systems ranging from the basic def-
initions to their computational power, see the the monographs [10, 11], for more
information on the chemical calculus, we refer to [4, 5].

A finite multiset over an alphabet V is a mapping m : V' — N where N denotes
the set of non-negative integers, and m(a) for a € V' is said to be the multiplicity
of a in V. We say that m; C mg if for all a € V, my(a) < mgy(a). The union
or sum of two multisets over V is defined as (my + mz)(a) = my(a) + ma(a),
the difference is defined for ma C my as (m; — ma)(a) = mi(a) — ma(a) for
all @ € V. The multiset m can also be represented by any permutation of a
string w = a;"(al) a;"('“) ..a®) ¢ V* where if m(z) # 0, then there exists j,
1 < j < n, such that x = a;. The set of all finite multisets over an alphabet V is
denoted by M(V), the empty multiset is denoted by @) as in the case of the empty
set.

2.1 Membrane systems

A membrane system, or P system is a structure of hierarchically embedded mem-
branes, each having a label and enclosing a region containing a multiset of objects
and possibly other membranes. The unique out-most membrane is called the skin
membrane. The membrane structure is denoted by a sequence of matching paren-
theses where the matching pairs have the same label as the membranes they rep-
resent. We assume the membranes are labelled by natural numbers {1,...,n}, and
we use the notation m; for the membrane with label i. Each membrane m;, except
for the skin membrane, has its parent membrane, which we denote by u(m;). As an
abuse of notation p stands for both the membrane structure and both for the func-
tion determining the parent membrane of a membrane. To facilitate presentation
we assume that p(m;) = m; implies i < j.

The evolution of the contents of the regions of a P system is described by rules
associated to the regions. The system performs a computation by passing from one
configuration to another one, applying the rules synchronously in each region. In
the variant we consider in this paper, the rules are multiset rewriting rules given
in the form of u — v where u, v are multisets, and they are applied in the maximal
parallel manner, that is, as many rules are applied in each region as possible. The
end of the computation is defined by the following halting condition: A P system
halts when no more rules can be applied in any of the regions; the result is a
number, the number of objects in a membrane labelled as output.

A P system of degree n > 1 is a construct

I = (Oa,u7w17"'7wn7R17‘-~7Rn7p17"'7pn)

where
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- O is an alphabet of objects,

- p is a membrane structure of n membranes,

- w; € M(0), 1 <i<n, are the initial contents of the n regions,

- R;, 1 <1i < n, are the sets of evolution rules associated to the regions; they
are of the form v — v where v € M(O) and v € M(O x tar) where tar =
{here,out} U{in; | 1 < j <n}, and

- p1,...,pn are the priority rules associated with membranes my, ..., my,.

The evolution rules of the system are applied in the non-deterministic, max-
imally parallel manner to the n-tuple of multisets of objects constituting the
configuration of the system. A configuration is the sequence C = (vy,...vn, pc)
where v; € O*, 1 < ¢ < n are the contents of the membranes, and pc is the
current membrane structure. For two configurations Cy = (uq,...,un, o, ) and
Cy = (v1,...,Un, 4o, ), We can obtain Cy from C4, denoted as C7 = Cs, by apply-
ing the rules of Ry,...,R,. Let R = R{URoU---UR,,, where R; = {ri1,..., 7, }
is the set of rules corresponding to membrane m;. The application of u — v € R;
in the region ¢ means to remove the objects of u from u; and add the new objects
specified by v to the system. The rule application in each region takes place in a
non-deterministic and maximally parallel manner. This means that the rule appli-
cation phase finishes, if no rule can be applied anymore in either region. As a result,
each region where rule application took place, is possibly supplied with elements
of the set O x tar. We call a configuration which is a multiset over O U O X tar
an intermediate configuration. If we want to emphasize that C = (w1, ..., wy, 1)
consists of multisets over O, we say that C' is a proper configuration. Rule ap-
plications can be preceded by priority check, if priority relations are present. Let
pi C R; x R; 1 <i<n be the (possibly empty) priority relations. Then r € R; is
applicable only if no 7 € R; can be applied with (+,r) € p;. We may also denote
the relation (/,7) € p; by r' > r.

In the next phase the objects coming from v should be added to the regions as
specified by the target indicators associated to them. If v contains a pair (a, here) €
O X tar, then a is placed in region ¢, the region where the rule is applied. If v
contains (a,out) € O X tar, then a is added to the contents of the parent region
of region i; if v contains (a,in;) € O X tar for some region j which is contained
inside the region i (so region 7 is the parent region of region 7), then a is added to
the contents of region j.

The symbol § marks a region for dissolution. When it is introduced in the
membrane by a rule, after having finished the maximal parallel and communication
steps, the actual membrane disappears. Its objects move to the parent membrane
and its rules can not be applied anymore.

We can render promoter/inhibitor sets, prom/inhib, to each rule r = (u —
v) € R;. The promoter/inhibitor sets belonging to r are subsets of O. When r
is going to be applied they act as follows: r can be applied to the content w; of
membrane m; only if every element of prom is present in w and no element of
inhib can be found in w.

2.2 The chemical calculus

We give a brief summary of the chemical calculus following the presentation in [4]
and [5]. Chemical programming is the formal equivalent of Gamma programming,
which is a higher order multiset manipulating program language. Like Gamma
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programming, the chemical calculus is also based on the chemical metaphor: data
are represented by ~-terms, which are called molecules, and reactions between
them are represented by rewrite rules. We begin with the basic definitions. The
syntactical elements of molecules, reaction conditions, and patterns, denoted by
M, C and P, respectively, are defined as follows.

M := x| (My, My) [ (M) | (P)[C].M

where z is a variable standing for any molecule, (M7, M>) is a compound molecule
built with the commutative and associative “;” constructor operator, (M) is called
a solution, and v(P)[C].M is called a y-abstraction with pattern P, reaction con-
dition C, result M. The y-abstraction encodes a rewriting rule: when the pattern
P is respected and the condition C' is met, a substituted variant of M is created

as a result. A pattern is
Pi=a| (P, )| (P),

where © matches any molecule, (P;, P») matches a compound molecule, and (P)
matches an inert solution, that is, a solution where no reaction can occur: it consists
entirely of solutions or entirely of y-abstractions. (The contained solutions can still
be active, however.)

The solution (M) encapsulates the molecule M which is inside the solution,
and thus, insulated from molecules outside the solution. The contents of solutions
can only be changed by reactions which occur inside the solution.

Now we define how patterns are matched, which requires the notion of sub-
stitution. A substitution is a mapping ¢ from the set of variables to the set of
molecules. We can define the application of a substitution to as follows:

dr = P(x)
(M, Ma) = oMy, pMo
¢(M) = (pM)

¢(v(P)[C].M) = (P)[C].¢'M,

where ¢’ is obtained from ¢ by removing from the domain all the variables which
occur in P.

The result of a match is an assignment of molecules to variables. The first argu-
ment of match is a pattern, the second one is a molecule, its value is a substitution.
Let x denote a variable, P a pattern, and M a molecule. Then we define

match(z, M) = {x — M}
match((Py, Py), (M1, M3)) = match(Py, My) o match( Py, Ms)
match({P), (M)) = match(P, M) provided inert(M)
match(P, M) = fail in every other case,

where o denotes the operation of function composition.
The reaction rule is defined as

~(P)[C].M,N — ¢M,

where match(P, N) = ¢ assigns values to variables in such a way that ¢(C') holds
in the typed case or reduces to true in the untyped case. In this case true can be
a special constant defined in advance, for example, true = v(x)[z].z.



Simulating P Systems and Dissolution in a Typed Chemical Calculus 67

We can define an operator replace (cf. [5]) which does not vanish in the course
of the reduction:

replace Pby M if C = let rec f = ~v(P)[C].M, f in f.
Then the new operator obeys the following reduction rule:
replace P by M if C,N — replace P by M if C,$(M),

where match(P, N) = ¢ and either ¢(C) is true or it reduces to true.

At this point we should mention that the simulation takes place in the typed -
calculus ([5]), because it is more convenient to talk about equality and comparison
of integer values, than to check whether the conditional part of an untyped ~-
expression reduces to true (which is, in fact, undecidable in the general case). We
could, however, restrict the y-expressions taking part in the simulation in such a
way that their conditional parts form a fragment of the y-calculus that is decidable
with respect to equality. (We can take, e. g., the v-calculus equivalents of Church
numerals and define Boolean operations on them.)

3 Results

First we introduce molecules for the description of membrane system configura-
tions.

Notation 1 Let [z,y] = ((z),y), and [x1,...,Zn, Tnt1] = [[T1,- .-, Tn], Tnt1]-

Remark 1. Let P = [x1,%2,...,2;] be a pattern in the sense of the previous sec-
tion, and M = [sq, s2,..., ], where s1,..., s; are arithmetical expressions, i.e.
expressions composed of natural numbers, variables and arithmetical operations.
If we assume that none of the x; appears among the free variables of sq,..., s,
then match(P, M) = @ # fail implies & = [x1/81,22/82,...,2;/8]], where & is
the simultaneous substitution formed by the substitutions [z1/s1],...,[z;/si]. In
other words, in this special case, the molecule [x7, xo, ..., x;] behaves as an ordered
tuple.

If we use a, b as variables for elements of O and r as a rule variable, respectively,
then we say that a rule r = u — v € R; is valid with respect to the configuration
(w1, ..., wy, ) if the following conditions hold:

1. membrane structure y contains membrane m;,

. (Va € prom,.) (w;(a) > 1),

. (Va € inhib,) (w;(a) =0), and

. (Va € O)(¥1 < j <n) (via,inj) > 1) implies that p contains the mem-
brane m; (m; is not dissolved) and p(m;) = m,, namely m; is the parent
membrane of m;.

=0 N

where prom, C O and inhib, C O denotes the set of promoters and inhibitors
associated to rule r, respectively.

A description of a membrane system configuration as above is a molecule of
the form
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Descr = [C11, -y Clky s Cnly- -+ Crks
6117"'761197"'767117"')6’”](77
d17 N '7dna

P11y Plkys-sPnly- - 7pnkn]a

where ¢;; and ¢; are natural numbers (1 < i < n,1 < j < k), d; € {0,1}
(1<i<n)and pi; € {0,1} (1 <4, <n). If N is a description we denote by c;;,
C;j, etc. the respective parts of N.

Let C = (p,wy,...,w,) be an (intermediate) configuration. A description
Descr(C) corresponding to C' is a description, where ¢;; = w;(a;) and ¢; =
w;(aj, here) + Zp#’#(mi):mp wp(aj, ;) + 30, )= Wplaj, out) with (1 <4,p < n)
and (1 < j < k). Here p(p) denotes the parent membrane of m,, and recall that
w(a) denotes the number of elements @ in the multiset w. Intuitively, ¢;; stands
for the number of occurrences of a; in m;, and ¢;; denotes the location of the
targeted elements of O. Moreover, d; = 1 iff m; is dissolved or under dissolution
and p;i,; describes the validity of rules: rule 7, is valid iff p;, = 1, if C is a proper
configuration. If C' —* C’, and C’ is an intermediate configuration and there are
no proper configurations in the reduction sequence other than C, then p’ikj =1lin
the description of C” iff p;,; = 1 in the description of C. Observe that if C is a
proper configuration then ¢;; = 0 for every possible 7 and j. When a configuration
is proper, d; = 1 implies w; = 0.

A pattern for a description is a tuple of the form

S:[xmlap'--7xm1aka"'axmna17'"axmnak7 (1)
-Tmlal,---7-Tm1ak7~-~733mna13--~7xmnaka
Tadys ey Tdps Trogy s s Trp, )

Let IT = (O, pp, w1, ..., Wy, R1,..., Ry, p1,-..,pn) be a P system, and let C’ =
(wy, .- ,w;j , ') be a proper configuration obtained from the initial configuration
in a finite number of computational steps, where 1 < k; < ... < k; < n. Then the
description of C’ relative to p is the description obtained from Descr(C’) when
we set d; = 1 for ¢ ¢ {k1,...,k;} and ¢;; =0 (1 < j < k) and p;; = 0 for every
rule r; € R;. That is, we supplement Descr(C”) as if it were a description of an
n-ary membrane system by treating the missing membranes as empty membranes.
We denote the description of a configuration C” relative to u by Descr,(C").

Because a description should also contain information about the structure of
the original P system itself, we append a representation of the function p at the
end of each description. Let IT be a P system of order n as before. Then a tuple
[p2, ..., pn] of length n— 1 is appended to every description in the simulation with
the following meaning: if membrane m; has membrane m; as its parent, then p; =
i. Since the Skin has no parent membrane, numbering begins with 2. Likewise, a
description pattern is expanded with the tuple [z,, ..., Zp,]. Since the structure
of the original P system remains the same in the course of the simulation process,
we do not indicate the appended values for p, they are implicitly understood to
be there.

With this in hand we are able to define the molecule in charge for deciding rule
validity. Let r = u — v € R;, and S be a description pattern . Then let
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Cond(r) = (zqg, =0 A (2)
/\ (a; € promy D Ty, > 1) A
1<5<k
/\ (aj € inhib, > zp,a, = 0)) A
1<j<k

/\ /\ abm] >1Dxq, =0A

1<iISk 1<j<n

( \/ ( /\ Tp, =lez1 A /\ x4, =1)))

lo=i>1>.. >l _1>j=l, 1<t<s 1<g<s—1

The last row expresses the fact that either m; is the parent of m;, or m; is an
ancestor of m; and all the intermediate parent membranes have been dissolved in
the construction.

Now rule validity can be expressed as

Val(r) = replace [S,0] by [S[z,/1],0] if Cond(r)

where the value 0 plays a role of synchronization to be specified later on. We
remark that if a rule r is determined to be valid in this phase of the simulation,
then r remains valid in the course of the simulation of a maximal parallel step.

Discussion 1 At this point, we can also incorporate in the simulation of a mem-
brane system the priority rules, if present. Let (p1,. .., pn) be the tuple prescribing
the priority relations in the membranes of the given P system. We define molecules
determining the validity of rules when priority is present. Assume r € R;. We dis-
tinguish two cases:

- There does not exist v’ € R; such that r' > r. Then Val,(r) is defined as
Val(r) above.

- There are rules ri,...,7; € R; such thatr; > r (1 <1 < j). Let S be a de-
scription pattern and denote by Cond(r) the conditional part of Val(r) defined
in Equation (2). Then

Val,(r) = (replace [S 0] by [S[x-/1],0]
if (Cond(r /\ xr, = 0),

1<I<;
replace [S, 0] by [S[x,/0],0]
if (we=1A(\ 2z, =1)).

1<I<)

Now we can turn to the main part of the simulation. The conditions of rule
application must reflect now the fact that the rule is executable together with the
conditions that make it valid.

Definition 1. Let r = u — v € R;, and let S be a description pattern. Then the
molecule describing the effect of an execution of r is defined as

App(r) = replace [S,1] by [apply(S,r),1] if

xr—l/\ /\ u(a;) < T, a;),
1<5<k
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where

T, — u(at) if s = 7;’
apply(S,r)(Tm,a,) = {IZ Zt otherwise
st ’

Tm,a, + V(ag, here) if s =1,
apply(S, 1) (Fm,a,) = § Tmoa, +v(ar,ing) it s=j#1i,
Ty, + 0(ag, out)  if s = p(i),
1 ifw(d) =1,
xq; otherwise ,

apply(S,7)(wa;) = {

apply(S,r)(z,) = x,.

Here we made use of the implicit stipulation that S is of the form as in Equation
(1), which is indeed the case if we ignore variable renaming.

The next group of rules is the set of communication rules. In what follows, we
define the chemical calculus equivalents of communication steps.

Definition 2.

Msg = replace [S, 2] by [msg(S),2] if

(V V Zma, 21),

1<i<n 1<)<k
where
msg(S)(Tmia;) = Tmia; + Tmia,y for 1<i<mnand1 <5<k

and
msg(S)(Tmia;) =0, for 1 <i<mand 1 <j <k,

At this point, we simulate the effects of membrane dissolving. We have to drive
the elements leaving the actual membranes by applications of in; or out rules
or elements of membranes freshly dissolved into membranes remaining existent
after performing of the maximal parallel step. To this end, we define the following
molecule.

Definition 3.
Dis; = replace [S, 3] by [dis;(S),3] if

(.Z‘dl. =1A
( \/ -rnuaj Z 1))7
1<j<k
where o .
Lmja + ZTmja lf] = ,LL(Z)»
disi(S)(xmjal) =<0 if j =14,
T ja otherwise.

We also need some auxiliary molecules to set the values indicating the validity
of rules to zero, in order to start a new maximal parallel step. Thus

Definition 4.

RemVal(r) = replace [S,4] by [S[z,/0],4] if z, = 1.
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Now we are in a position to determine the molecule leading us through the
simulation process. Let

Val, = | J{Val,(r) | r € R},

App = J{App(r) | r € R},

Dis = | [{Dis; | i €{1,...,n}},
RemVal = | J{RemVal(r) | r € R},

Sync = replace ([S, Tsync|, Val,, App, M sg, Dis, RemV al) by
([S, Tsyne + 1 mod 5], Val,, App, M sg, Dis, RemVal) i f

\/ Ty, = 1,

1<i<n
where S is a description pattern.

Notation 2 Let N be a molecule and let
M(N) = ((N,Val,, App, M sg, Dis), Sync).

If C is a configuration of II such that C =* C’ for some C' and i € {0, 1,2}, then
we write
M(C’,i) = M([Descr,(C"),i]).

The terms of the chemical calculus, and also the configurations of membrane
systems can be considered as rewriting systems. A rewriting system, as used in
this paper, is a pair A = {¥, (—;),c;}, where ¥ is a set and (—),; is a set of
binary relations defined on X'. The relations (—;),; are called reduction relations.
It is supposed that a reduction relation —; is compatible with the term forma-
tion rules. Moreover, if —; is a reduction relation, we denote by — its reflexive,
transitive closure. We may use the notation —= U;ecr(—;), too. In the following,
the set X' is the set of configurations of a P system or, in the case of the chemical
formalism, the set of y-terms, and —; are the binary relations rendering config-
urations to configurations or terms to terms, respectively. We say that m € X' is
in normal form, if there is no n € X, such that m — n. Moreover, an m € X
is strongly normalizable, if every reduction sequence starting from m is finite, or
weakly normalizable, if there exists a finite reduction sequence starting from m.
We say that a molecule or a membrane M is —;-irreducible, if there is no M’
such that M —; M’. In what follows, to conform to the usual membrane system
notation, we use = to denote — when we speak of a rewriting step in a membrane
computation.

Theorem 1. (1) Let IT = (O, p, w1, ..., Wy, R1,..., Ry, p1,...,pn) be a P system
of order n with membrane dissolving, promoter/inhibitor sets for rules and priority
relations. Assume

Co = (pywi,...,wy,) =" Cy = (W, wy, ... w,),
where 1 <n; <...<n; <n. Then

M(CQ,O) —* M(Cl,O).
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If the computation starting from Cy contains at least one step, then the reduction
sequence starting from M(Cy,0) is non-empty either.
(2) Let IT be a P system as above. Assume

M(Cy,0) —* M([N,0)), and

assume that ¢;; = 0 for (1 < i <n) and (1 < j < k) in N and [N,0] is Val,
irreducible. Then there exists a configuration Cy = (p',w;, ..., wy,.) of II such
that M([N,0]) = M(C4,0) and

Cy =% Cy.

Moreover, if the length of M, (Co) —* M([N,0]) is at least one, then the length of
the computation starting from Cy is non-zero.

We work our way to the proof of the theorem by stating several auxiliary
lemmas.

As formulated in [2], a computational step starting from a configuration Cj of
IT consists of a maximal parallel step (mpr), a step for removing the directions from
the targeted elements (tar) and a step for accomplishing membrane dissolution ().
In notation, if Cy is a configuration of IT and Cy = C1, then there are C{j and, if
d is present, C{/ such that

Co é:npr C1(/) tar C(/), =5 C1.

In the present paper, instead of =, we choose a sequential relation (msg) de-
fined in Definition 5 for removing messages instead of parallel communication
rules, which equally suffices for our purposes. In what follows, if C' =, C’ by an
intermediate step, we denote by s € mpr (s € msg, s € ) the fact whether s is a
maximal parallel, message removing, or membrane dissolving step, respectively.

We verify the lemmas simultaneously by induction on the number of intermedi-
ate steps in a computational step of the P system and on the number of reductions
in the chemical calculus.

Notation 3 Let C’ be an (intermediate) configuration, where C =* C'. Let
Descr,,(C") be the description of C' relative to . Then we use the notation below
to extract the corresponding values from M(C'1):

[ M(C",1)]c,; = Descry(C)ikj 0<i<n-1,1<j<k),
[M(C",1)]e,; = Descru(C!) (ntiy-ktj (1<i<n,1<j<k),
[M(C",1)|a, = Descrp(C")an.iti (1<i<n),

[M(C",1)]r,; = Descrp(C7) @1y mtky otk 145 (LS J < ki, 1<i<n)

The following claims can be verified easily. Below, let D denote a description.

Claim. Let M([D,0]) =%, M'. Then M' = M([D’,0]), where D' is a description.

Claim. Let M([D,1]) =%, M'. Then M’ = M([D’, 1]), where D' is a description.

(D, 1))
Claim. Let M([D,2]) =34, M'. Then M’ = M([D’,2]), where D' is a description.
([D,3])

Claim. Let M([D,3]) —7};, M'. Then M’ = M([D’, 3]), where D’ is a description.
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In the following, we assume that every possible configuration is the result of
some computational sequence starting from a fixed configuration C of the P system
II=0,pw,...,wn,R1,...,Rp,p1,...,pn) of order n with membrane dissolv-
ing, promoter/inhibitor sets for rules, and priority relations.

We prove the two parts of the theorem by simultaneous induction on the num-
ber of reduction steps in the chemical calculus and computational steps in the P
system, respectively.

Lemma 1. (1) If C" =7, C", then M(C',1) =%, M(C",1), and conversely,

(2) if we assume M(C',1) =%, M", then there is C" such that C" =7, C"
and M" = M(C",1).

Proof. We prove the lemma by simultaneous induction on the lengths of the re-
duction sequences. Assume we know the result for reduction sequences of lengths
at most s.

(1) Let C =* C', assume C' = (p',wy, ..., wy,). Suppose C' =7, C"" =, C",
C" = (W, ), ¢ o= (W wl .o w!) and r = u — v € R;. Since
r is applicable to C"”, we have |[M(C",1)|, = 1 and u(a;) < w;(a;), which
means u(a;) < [M(C",1)],;. These together imply that App(r) can be applied
to M(C",1) yielding M ([apply(Descr,(C""),r),1]).

- Let [M([apply(Descr, (C"),r),1])]¢,, = si;. Then s;; = [M(C",1)]c, —
u(aj) = wi’(a;) — u(a;), if | = i, and s;; = [M(C",1)]., = wi’(a;) oth-
erwise.

- Let [M(lapply(Descry(C™), ), 1])}e, = t;. Then ty; = [M(C™,1)]s, +
v(az, here), if | =i, tj; = |[M(C"",1) ]z, +v(a;,ing), if | = h # i and p(my) =
m;, and t; = |[M(C", 1)), +v(aj,out), if | = p"'(i). Taking all these into
account, ti; = wj(a;, here) + 32 i miymm, Wp (@55 0) + 32, )= wy (a;, out)
remains valid.

- Ifw(d) =1, then [ M(C",i)]q, is set to 1.

(2) Let C =* C", and M(C',1) =7, M". It is enough to prove the result for
the case M(C’,1) = app(ry M", where r = u — v. By Claim 3, M" = M([D",1]).
Since r is applicable to M(C”,1), we have, by |[M(C’",1)], =1, that r=u — v €
R; is valid for some fixed i depending on r. Moreover, u(a;) < |[M(C', 1)/, =
wi(aj), for every 1 < j < k, which makes r applicable to C’. From this point on, we
can show by a reasoning similar to that of the previous point that D" = M (C”, 1),
where C' =, C”. We omit the details. O

Instead of parallel communication as defined in [2] we choose the simpler way
which is equally suitable to our present purposes and we define =, as the
following set of sequential multiset transformations.

Definition 5. Let C' = (w1, ..., wp, 1) and C' = (wh,...,wh, p,). Then C =5,
C" holds iff one of the following cases is valid.

1. Assume that w;(aj, here) > 0. Then wi(a;) = w;(a;) + w;(a;, here) and
wi(aj, here) = 0. All the other values remain unchanged.

2. Assume w;(a;,in;) > 0. Then wj(a;) = wi(a;)+w;(a;,in;) and wi(a;,ing) = 0.
All the other values remain unchanged.

3. Assume w;(aj,out) > 0 and | = pu(i) is defined. Then wj(a;) = wi(a;) +
w;(aj,out) and wi(a;,out) = 0. If i = Skin, then wj(a;,out) = 0. All the
other values remain unchanged.
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Lemma 2. (1) Let C" =7, C", and assume that C" is msg-irreducible. Then
M(C",2) = psg M(C”,2).
(2) Conversely, assume M(C',2) —nsq M". Then there is C" such that

C" = msg C", C" is msg-irreducible, and M" = M(C",1).

Proof. We prove by induction on the number of steps in C' =,5, C’ that, for
every 1 <i¢<nand1<j<Ek,
Descr,(C)

+ Descr,,(C)g,, = Descr,(C')e,, + Descr,(C')e,,- (3)

Cij Cij

To this end, we show that, if C —,,54 C' and C = (p,w1,...,wy,) and C =
(u,wh, ..., wl)), then

w;(a;) + w;(a;, here) + pr(aj, in;) + Z wp(aj,out) = (4)
pFi w(p)=i

wi(a;) + wi(a;, here) + Z wy,(aj,in;) + Z wy,(aj, out).
p#i w(p)=i

We treat Point 2 of Definition 5, the remaining cases can be handled similarly. Let
C =sg C' by Point 2 of Definition 5. Assume w;(a;,in;) > 0. Let us consider
only the case ¢ = [ in Equation 4, since for all the other cases the equation trivially
holds. But in this case the left hand side contains w;(a;)+w;(a;, in;), and the right
hand side contains the corresponding wj(a;) +w}(a;,in;), which, by definition, are
equal.

(=Let C =59 €', assume that C’ is msg-irreducible. A msg-irreducible P system
with the Skin membrane as the outermost membrane contains no messages,
thus, by Equation 3, M(C,2) —asg M(C’,2).

(<Let M(C,2) —sg N'. Then, by Claim 3, N’ = M (D’,2) for some description
D'. Let C =54 C'" such that C’ is msg-irreducible. Then C’ is message free,
which, by Equation 4, entails D' = Descr,(C").

O
Now, following [1], we define the skeleton of a configuration (u,ws,...,w,) as
U’ = (ul,...,u)), where u} = *, if membrane 7 is dissolved or under dissolution
(that is, u;(6) = 1 and ¢ # Skin) and u} = 0 otherwise. Let
,U'O(i) =1,

W (i) = p( =1 (i) for j > 0.

Let py: (i) = min{j | pk(i) = jAuf # « Au/(p'(i) = «for 0 < I < k -1}
That is, uy-(7) is the smallest membrane containing membrane ¢ which exists or
does not disappear. Let C' =5 C”, assume wj(d) = 1 for at least one membrane
my. We define the effect of the dissolution rule as follows: (u/,wf,...,w),) =5
(W’ wf,...,w)), where w) = x provided w, = *, and w(a;) = wj(a;) +

2 {wi(ay) | po (1) = 4, wy (8) = 1}, if w/(é) = 0.

Lemma 3. (1) If C' =5 C”, then M(C',3) =%, M(C",3).
(2) Conversely, assume that M(C',3) —%,s M", and M" is Dis-irreducible.
Then there exists a proper configuration C" with C' =5 C" and M" = M(C"”,3).
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Proof. (1) Let C" = (u,wy,...,w),) =5 C”, and assume that w}(§) = 1. Then
[M(C,3)]q; = 1. Let | M(C",3)].,, > 1forsome 1 < j < k. Then M(C’,3) = pis,
M ([dis;(Descr,(C")),3]). Let p = py (i), where U’ is the skeleton of C’. Let D’ =
Descr,,(C") and D" = dis;(Descr,(C")). Let us denote by Dy, and Dy, the values
of the descriptions pertaining to the coordinates (i, j). It follows 1mmed1ately, by
Definition 3, that

LAY ADL (1) =p, Dy =1} = (5)
Dé'm + > ADL | por (1) = p, D =1},

In other words, for every 1 < j < k, the sums of the occurrences of elements a;
in the dissolved or to be dissolved descendants of membrane m,, plus the multi-
plicity of a; in m, remain the same at a dissolution step in the chemical calcu-
lus. Let M(C",3) —p;s M([D,3]) such that M([D, 3]) is irreducible with respect
to Dis. Then Dy, = 1 implies D, = 0, which, by Equation 5, involves that
D = Descr,(C").

(2) Let M(C",3) —7,;, M". By Claim 3, there exists a description D" such
that M" = M([D",3]). Since M" is Dis irreducible, D}j = 1 implies D;’ = 0. This
means, there is a proper configuration C” such that DescrH(C” ) = D” Assume
w,(6) = 1 holds in C’. Let D’ = Descr,(C"). Let U’ be the skeleton of D’ and
p = py(s). Since M" is Dis irreducible, Equation 5 simplifies to

D, +> AD., | p (1) =p, Dy, =1} =D .
Taking the corresponding configurations, this amounts to C' =5 C”. O

Proof of Theorem 1.

(=Let II = (O, p,wy,..., Wy, R1,...,Rp,p1,...,pn) be a P system of order n
with membrane dissolving, promoter/inhibitor sets for rules and priority re-
lations. Assume Cy =! C;. We prove by induction on t that M (C’O, 0) —*

(Cl, ) Let C =t-1 Cy = (C. Assume Cy = (,u wn17..., ) Ch, =
(W, wy ..., wy, ). Assume there exists N” such that M(C” 0) —>Val 'N”. But
Val,y(r) is apphcable iff r is valid and no rule " with (+/,r) € p is valid, this
means N = M(C"”,0) and M(C"”,0) is Val, irreducible. In this case

M(C",0) = gync M(C",1).

Putting Lemmas 1, 2 and 3 together, taking into account the fact that
M(E,i) —sync M(E,i+ 1 mod 5) whenever M(E,i) is irreducible for the
corresponding reduction, we obtain that there exists a configuration C and a
description D such that

M(C",0) = kemvar M([D,4]) = syne M([D,0]),

where D is the description Descr,, (6‘) except for the values D, = 0. A transi-
tion in Val,(r) is applicable at most twice for every rule r. This means there
is a description D’ such that

M([D,0]) =¥, M([D',0])

and M([D’,0]) is Val, irreducible. But then D’ = Descm(é).
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(«<=Follows in a way similar to the above part from Lemmas 1, 2 and 3, but this
time applying the other directions of the lemmas.

Corollary 1. Let IT = (O,p,w1,..., W, R1,...,Ru,p1,-.-,pn) and let C =
(s wi,...,wy). Then II is strongly (resp. weakly) normalizing iff M(C,0) is
strongly (resp. weakly) normalizing. Moreover, the halting computations starting
from C provide the same results as those supplied by the terminating reduction

sequences of M(C,0).
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Summary. Spiking neural P systems (in short, SNP systems) are membrane computing
models inspired by the pulse coding of information in biological neurons. SNP systems
with standard rules have neurons that emit at most one spike (the pulse) each step, and
have either an input or output neuron connected to the environment. SNP transducers
were introduced, where both input and output neurons were used. More recently, SNP
modules were introduced which generalize SNP transducers: extended rules are used
(more than one spike can be emitted each step) and a set of input and output neurons can
be used. In this work we continue relating SNP modules and finite automata: (i) we amend
previous constructions for DFA and DFST simulations, (ii) improve the construction
from three neurons down to one neuron, (iii) DFA with output are simulated, and (iv)
we generate automatic sequences using results from (iii).

Key words: Membrane computing, Spiking neural P systems, Finite automata,
Automatic sequences

1 Introduction

Spiking neural P systems (in short, SNP systems) introduced in [7], incorporated
into membrane computing the idea of pulse coding of information in computations
using spiking neurons (see for example [10][11] and references therein for more
information). In pulse coding from neuroscience, pulses known as spikes are not
distinct, so information is instead encoded in their multiplicity or the time they
are emitted.

On the computing side, SNP systems have neurons processing only one object
(the spike symbol a), and neurons are placed on nodes of a directed graph. Arcs
between neurons are called synapses. SNP systems are known to be universal in
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both generative (an output is given, but not an input) and accepting (an input
is given, but not an output) modes. SNP systems can also solve hard problems
in feasible (polynomial to constant) time. We do not go into such details, and we
refer to [7][8][9][16] and references therein.

SNP systems with standard rules (as introduced in their seminal paper) have
neurons that can emit at most one pulse (the spike) each step, and either an
input or output neuron connected to the environment, but not both. In [15], SNP
systems were equipped with both an input and output neuron, and were known
as SNP transducers. Furthermore, extended rules were introduced in [3] and [14],
so that a neuron can produce more than one spike each step. The introduced SNP
modules in [6] can then be seen as generalizations of SNP transducers: more than
one spike can enter or leave the system, and more than one neuron can function
as input or output neuron.

In this work we continue investigations on SNP modules. In particular we
amend the problem introduced in the construction of [6], where SNP modules
were used to simulate deterministic finite automata and state transducers. Our
constructions also reduce the neurons for such SNP modules: from three neurons
down to one. Our reduction relies on more involved superscripts, similar to some
of the constructions in [12].

We also provide constructions for SNP modules simulating DFA with output.
Establishing simulations between DFA with output and SNP modules, we are then
able to generate automatic sequences. Such class of sequences contain, for example,
a common and useful automatic sequence known as the Thue-Morse sequence.
The Thue-Morse sequence, among others, play important roles in many areas of
mathematics (e.g. number theory) and computer science (e.g. automata theory).
Aside from DFA with output, another way to generate automatic sequences is by
iterating morphisms. We invite the interested reader to [1] for further theories and
applications related to automatic sequences.

This paper is organized as follows: Section 2 provides our preliminaries. Section
3 provides our results. Finally, section 4 provides our final remarks.

2 Preliminaries

It is assumed that the readers are familiar with the basics of membrane computing
(a good introduction is [13] with recent results and information in the P systems
webpage! and a recent handbook [17] ) and formal language theory (available in
many monographs). We only briefly mention notions and notations which will be
useful throughout the paper.

2.1 Language theory and string notations

We denote the set of natural (counting) numbers as N = {0,1,2,...}. Let V be an
alphabet, V* is the set of all finite strings over V' with respect to concatenation and

! nttp://ppage.psystems.eu/
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the identity element A (the empty string). The set of all non-empty strings over V
is denoted as V1 so V' = V* — {A}. We call V a singleton if V' = {a} and simply
write a* and a* instead of {a}* and {a}*. If a is a symbol in V, then a® = ),
A regular expression over an alphabet V is constructed starting from A and the
symbols of V using the operations union, concatenation, and +. Specifically, (i) A
and each a € V are regular expressions, (i7) if F1 and Es are regular expressions
over V then (F; U F»), E1FEs, and Ei” are regular expressions over V', and (ii7)
nothing else is a regular expression over V. The length of a string w € V* is denoted
by |w|. Unnecessary parentheses are omitted when writing regular expressions, and
EtTU{\} is written as E*. We write the language generated by a regular expression
E as L(E). If V has k symbols, then [w]; = n is the base-k representation of n € N.

2.2 Deterministic finite automata

Definition 1. A deterministic finite automaton (in short, a DFA) D, is defined
by the 5-tuple D = (Q, X, q1, 6, F'), where:

Q={q1,---,qn} is a finite set of states,
Y ={b,...,by} is the input alphabet,
6:Q x X — Q is the transition function,
q1 € Q is the initial state,

F C Q is a set of final states.

Definition 2. A deterministic finite state transducer (in short, a DFST) with
accepting states T, is defined by the 6-tuple T = (Q, X, A, q1,0", F), where:

Q={q1,---,qn} is a finite set of states,

Y ={b1,...,b;m} is the input alphabet,
A={c1,...,ct} is the outputl alphabet,

0 Q x X — Qx A is the transition function,
q1 € Q is the initial state,

F C Q is a set of final states.

Definition 3. A deterministic finite automaton with output (in short, a DFAQ)
M, is defined by the 6-tuple M = (Q, X,8",q1, A, T), where:

Q={q1,-..,qn} is a finite set of states,
Y ={b1,...,b;m} is the input alphabet,

0" Q x X — Q is the transition function,
q1 € Q is the initial state,
A={cy,...,ct} is the output alphabet,
T:Q — A is the output function.

A given DFAO M defines a function from X* to A, denoted as fu(w) =
7(6" (g1, w)) for w e X*. If ¥ = {1,...,k}, denoted as X}, then M is a k-DFAO.
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Definition 4. A sequence, denoted as a = (an)n>0, is k-automatic if there exists
a k-DFAO, M, such that given w € X, a, = 7(6" (q1,w)), where [w]y = n.

Ezample 1. (Thue-Morse sequence) The Thue-Morse sequence t = (¢,,),>0 counts
the number of 1’s (mod 2) in the base-2 representation of n. The 2-DFAO for t
is given in Fig. 1. In order to generate t, the 2-DFAOQO is in state g; with output
0, if the input bits seen so far sum to 0 (mod 2). In state g2 with output 1, the
2-DFAOQ has so far seen input bits that sum to 1 (mod 2). For example, we have
tOZO, t1:t2:1, andtg,:O.

i
i

0
1//\
/ / \
1
start 4—6/?\ } N/ 2/1\\
K/\_/—\J/

1

Fig. 1. 2-DFAO generating the Thue-Morse sequence.

2.3 Spiking neural P systems

Definition 5. A spiking neural P system (in short, an SNP system) of degree
m > 1, is a construct of the form I = ({a},01,...,0m, syn, in, out)

where:

{a} is the singleton alphabet (a is called spike);

O1,...,0m are neurons of the form o; = (n;, R;),1 < i < m, where:
n; > 0 is the initial number of spikes inside o;;

— R; is a finite set of rules of the general form: E/a® — aP;d, where F is a
regular expression over {a}, ¢ > 1, with p,d > 0, and ¢ > p; if p = 0, then
d=0and L(E) = {a°};

e syn C{1,...,m} x{1,...,m}, with (i,7) ¢ syn for 1 <i < m (synapses);
e in,out € {1,...,m} indicate the input and output neurons, respectively.

A rule E/a® — aP;d in neuron o; (we also say neuron i or simply o; if there is no
confusion) is called a spiking rule if p > 1. If p = 0, then d = 0 and L(E) = {a°}, so
that the rule is written simply as a® — A, known as a forgetting rule. If a spiking
rule has L(E) = {a°}, we simply write it as a® — a;d. The systems from the
original paper [7], with rules of the form FE/a® — a;d and a® — A, are referred to
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as standard systems with standard rules. The extended rules (i.e. p > 1) used in
this work are referred to as SNP systems with extended rules in other literature,
e.. [6], [14], [16].

The rules are applied as follows: If o; contains k spikes, a* € L(E) and k > c,
then the rule E/a® — aP;d € R; with p > 1, is enabled and can be applied.
Rule application means consuming c spikes, so only k — ¢ spikes remain in o;.
The neuron produces p spikes (also referred to as spiking) after d time units, to
every o; where (i,7) € syn. If d = 0 then the p spikes arrive at the same time as
rule application. If d > 1 and the time of rule application is ¢, then during the
time sequence t,t + 1,...,t 4+ d — 1 the neuron is closed. If a neuron is closed, it
cannot receive spikes, and all spikes sent to it are lost. Starting at times ¢ + d and
t 4+ d + 1, the neuron becomes open (i.e., can receive spikes), and can apply rules
again, respectively. Applying a forgetting rule means producing no spikes. Note
that a forgetting rule is never delayed since d = 0.

SNP systems operate under a global clock, i.e. they are synchronous. At every
step, every neuron that can apply a rule must do so. It is possible that at least
two rules E;/a® — aP';d; and Es/a®® — aP?;dy, with L(E;) N L(Es) # 0, can
be applied at the same step. The system nondeterministically chooses exactly one
rule to apply. The system is globally parallel (each neuron can apply a rule) but is
locally sequential (a neuron can apply at most one rule).

A configuration or state of the system at time ¢ can be described by C; =

(ri/ti, ..., rm/tm) for 1 < i < m: Neuron ¢ contains r; > 0 spikes and it will open
after ¢; > 0 time steps. The initial configuration of the system is therefore Cy =
(n1/0,...,n4,/0), where all neurons are initially open. Rule application provides

us a transition from one configuration to another. A computation is any (finite
or infinite) sequence of transitions, starting from a Cy. A halting computation is
reached when all neurons are open and no rule can be applied.

If 04yt produces 7 spikes in a step, we associate the symbol b; to that step.
In particular, the system (using rules in its output neuron) generates strings over
X ={p1,...,pm}, for every rule r, = E;/a’* — aP*;dy,1 < £ < m, in 0yy. From
[3] we can have two cases: associating by (when no spikes are produced) with a
symbol, or as A. In this work and as in [6], we only consider the latter.

Definition 6. A spiking neural P module (in short, an SNP module) of degree
m > 1, is a construct of the form Il = ({a}, o1, ..., Om, SYn, Nin, Nout)

where

e {a} is the singleton alphabet (a is called spike);
e 01,...,04, are neurons of the form o; = (n;, R;),1 < i < m, where:
— mn; > 0 is the initial number of spikes inside oy;
— R; is a finite set of rules of the general form: E/a® — aP, where E is a
regular expression over {a}, ¢ > 1, and p > 0, with ¢ > p; if p = 0, then
L(E) = {a}
e syn C{1,...,m} x{1,...,m}, with (¢,7) ¢ syn for 1 <i < m (synapses);
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o Nin, Nowt(C {1,2,...,m}) indicate the sets of input and output neurons, re-
spectively.

In [15], SNP transducers operated on strings over a binary alphabet as well con-
sidering by as a symbol. SNP modules, first introduced in [6], are a special type of
SNP systems with extended rules, and generalize SNP transducers.

SNP modules behave in the usual way as SNP systems, except that spiking
and forgetting rules now both contain no delays. In contrast to SNP systems,
SNP modules have the following distinguishing feature: at each step, each input
neuron o;,i € N;y,, takes as input multiple copies of a from the environment (in
short, Env); Each output neuron o,,0 € Ny, produces p spikes to Env, if a rule
E/a® — a? is applied in o,; Note that N, N Ny is not necessarily empty.

3 Main results

In this section we amend and improve constructions given in [6] to simulate DFA
and DFST using SNP modules. Then, k-DFAQ are also simulated with SNP mod-
ules. Lastly, SNP modules are related to k-automatic sequences.

3.1 DFA and DFST simulations

We briefly recall the constructions from theorem 8 and 9 of [6] for SNP modules
simulating DFAs and DFSTs. The constructions for both DFAs and DFSTs have
a similar structure, which is shown in Fig. 2. For neurons 1 and 2 in Fig. 2, the
spikes and rules for DFA and DFST simulation are equal, so the constructions
only differ for the contents of neuron 3. Let D = (Q, X, d, q1, F') be a DFA, where
Y ={b1,...,bm}, @ ={aq1,-..,qn} The construction for theorem 8 of [6] for an
SNP Module IIp simulating D is as follows:

HD = ({a’}7 Ul) 027 O’3a Sym {3}, {3})7
where

® 01 =02= (na {an - a’n})v
o3 = (n, {a?"FHF [a®" RS = ad|6(g;, bi) = ¢)),
syn = {(L 2)7 (27 1)’ (1’ 3)}

The structure for I p is shown in Fig. 2. Note that n, m € N, are fixed numbers,
and each state ¢; € Q is represented as a’ spikes in o3, for 1 < i < n. For each
symbol by, € X, the representation is a”**. The operation of IIp is as follows: o,
and oy interchange a™ spikes at every step, while o1 also sends a™ spikes to o3.

Suppose that D is in state g; and will receive input by, so that o3 of I has a
spikes and will receive a™t* spikes. In the next step, o3 will collect a™ spikes from
o1, a"t* spikes from Env, so that the total spikes in o3 is a?”Tt*. A rule in o3
with L(E) = {a®"*i**} is applied, and the rule consumes 2n + i + k — j spikes,



Notes on Spiking Neural P Systems and Finite Automata 83

therefore leaving only a’ spikes. A single state transition §(g;, b) = ¢; is therefore
simulated.

With a 1-step delay, IIp receives a given input w = b;,,...,b; in X* and
produces a sequence of states z = ¢;,,...,q;, (represented by a’,... a’) such
that §(q;,,bi,) = ¢i,,,, for each £ = 1,...,r where ¢;; = ¢1. Then, w is accepted
by D (i.e. §(q1,w) € F) iff z = lIp(w) ends with a state in F (i.e. ¢;, € F). Let
the language accepted by IIp be defined as:

L(llp) = {w € X*[lp(w) € Q"F}.
Then, the following is theorem 8 from [6]

Theorem 1. (Ibarra et al [6]) Any regular language L can be expressed as L =
L(IIp) for some SNP module Tlp.

Fig. 2. Structure of SNP modules from [6] simulating DFAs and DFSTs.

The simulation of DFSTs requires a slight modification of the DFA con-
struction. Let T = (Q,X,A,0',¢1,F) be a DFST, where ¥ = {b1,...,b},
A={er,...,e}, @ ={q,...,qn}. We construct the following SNP module sim-
ulating T":

7 = ({a}, 01,02, 03, syn, {3}, {3}),
where:

o o01=02=(n,{a" = a"}),
o o5 = (n, {a2n+z‘+k+t/a2n+z‘+k+t—j — an+s|5l(%‘a bk) — (Qj, Cs)}),
o syn={(1,2),(2,1),(1,3)}.

The structure for I is shown in Fig. 2. Note that n, m, ¢ € N are fixed numbers.
For 1 <i<n,1 <s<t1< k< m: each state ¢; € @, each input symbol
br € X, and each output symbol ¢, € A, is represented by a, a”t*+*, and a"**,
respectively.

The operation of I1; given an input w € X* is in parallel to the operation of
IIp; the difference is that the former produces a ¢s € A, while the latter produces
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a ¢; € Q. From the construction of II7 and the claim in Theorem 1, the following
is Theorem 9 from [6]:

Theorem 2. (Ibarra et al[6]) Any finite transducer T can be simulated by some
SNP module I1r.

The previous constructions from [6] on simulating DFAs and DFSTs have how-
ever, the following technical problem:

Suppose we are to simulate DFA D with at least two transitions, (1) d(g;, bx) =
¢;, and (2) 6(qy,br) = gjr. Let j # j',i = k', and k = i’. The SNP module IIp
simulating D then has at least two rules in o3: r; = 2"tk /g2ntith=i 5 ¢J
(simulating (1)) and ry = @27+ ++ /g2n ' +F =i" _y 07" (simulating (2)).

Observe that 2n+1i+ k = 2n+14' + &/, so that in o3, the regular expression for
r1 is exactly the regular expression for ro. We therefore have a nondeterministic
rule selection in o3. However, D being a DFA, transitions to two different states
g; and g;-. Therefore, IIp is a nondeterministic SNP module that can, at certain
steps, incorrectly simulate the DFA D. This nondeterminism also occurs in the
DFST simulation. An illustration of the problem is given in example 2.

Ezample 2. We modify the 2-DFAO in Fig. 1 into a DFA in Fig. 3 as follows:
Instead of X' = {0,1}, we have X' = {1,2}; We maintain n = m = 2, however,
the transitions are swapped, so in Fig. 3 we have the following two (among four)
transitions: §(q1,2) = ¢a, and §(g2, 1) = ¢1. These two transitions cause the nonde-
terministic problem for the SNP module given in Fig. 4. The problem concerns the
simulation of the two previous transitions using rules a”/a® — a? and a”/a% — a
in o3, which can be nondeterministically applied: if o3 contains a? spikes and re-
ceives a® from Env (representing input 1 for the DFA), at the next step o3 will
have a” spikes, allowing the possibility of an incorrect simulation.

A

1

Fig. 3. DFA with incorrect simulation by the SNP module in Fig. 4.

Next, we amend the problem and modify the constructions for simulating DFAs
and DFSTs in SNP modules. Given a DFA D, we construct an SNP module II,
simulating D as follows:
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2 1

Fig. 4. SNP module with incorrect simulation of the DFA in Fig. 3.

p = ({a}, 00, 5yn, {1}, {1}),

where
o1 = (1, {aFCr+D+i jgk@ril)ti=i  47|5(q;, by) = g }),
syn = 0.

We have IIp containing only 1 neuron, which is both the input and output neuron.
Again, n,m € N are fixed numbers. Each state ¢; is again represented as a’ spikes,
for 1 < ¢ < n. Each symbol b, € X is now represented as ak@n+1) spikes. The
operation of II’; is as follows: neuron 1 starts with a' spike, representing ¢; in D.
Suppose that D is in some state g;, receives input by, and transitions to ¢; in the
next step. We then have II%, combining a*n+1) gpikes from Env with a’ spikes,
so that a rule with regular expression a***+1+% is applied, producing a’ spikes to
Env. After applying such rule, a’ spikes remain in oy, and a single transition of D
is simulated.

Note that the construction for I, does not involve nondeterminism, and hence
the previous technical problem: Let D have at least two transitions, (1) 6(g;, bg) =
g¢;, and (2) 0(qgir, br) = qj». We again let j # j',i = k’, and k = ¢’. Note that being
a DFA, we have i # k. Observe that k(2n + 1) + 4 # k'(2n + 1) + i’. Therefore,
IT’, is deterministic, and has two rules m and 72 correctly simulating (1) and (2),
respectively. We now have the following result.

Theorem 3. Any regular language L can be expressed as L = L(II'y) for some
1-neuron SNP module II',

For a given DFST T', we construct an SNP module II. simulating T as follows:
1_'[IT = ({a}7 01, 5Yn, {1}7 {1})7

where

¢ o= (1’ {ak:(2n+1)+i+t/ak(2n+1)+i+t—j N an-ﬁ-s‘(s/(qi’bk) _ (ngcs)});
o syn=10.
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We also have I, as a 1-neuron SNP module similar to IT;. Again, n,m,t € N
are fixed numbers, and for each 1 <i <n,1 <k <m, and 1 < s < t: each state
¢; € @, each input symbol b, € X', and each output symbol ¢s € A, is represented
as a’, a4t and " spikes, respectively. The functioning of IT%. is in parallel
to II'y. Unlike IIp, II7. is deterministic and correctly simulates T. We now have
the next result.

Theorem 4. Any finite transducer T can be simulated by some I1-neuron SNP
module I17..

3.2 k-DFAO simulation and generating automatic sequences

Next, we modify the construction from Theorem 4 specifically for k-DFAOQOs by:
(a) adding a second neuron oo to handle the spikes from oy until end of input is
reached, and (b) using o2 to output a symbol once the end of input is reached.
Also note that in k&-DFAOs we have ¢t < n, since each state must have exactly
one output symbol associated with it. Observing k-DFAOs from Definition 3 and
DFSTs from Definition 2, we find a subtle but interesting distinction as follows:

The output of the state after reading the last symbol in the input is the re-
quirement from a k-DFAOQ, i.e. for every w over some X}, the k-DFAO produces
only one ¢ € A (recall the output function 7); In contrast, the output of DFSTs
is a sequence of @ x A (states and symbols), since 6" (¢;, by) = (g;, ¢s). Therefore,
if we use the construction in Theorem 4 for DFST in order to simulate k-DFAOs,
we must ignore the first |w| — 1 symbols in the output of the system in order to
obtain the single symbol we require.

For a given &-DFAO M = (Q, X, A, 8", ¢1,7), we have 1 < i,j <mn, 1 < s <,
and 1 < k < m. Construction of an SNP module II,; simulating M, is as follows:

I = ({a}, 01,09, syn, {1},{2}),

where

® 01 = (1,R1),0’2 = (0,R2>7
e R = {ak(2n+1)+i+t/dk(2n+1)+i+t—j N a”“lé”(qi,bk) _ q]‘,T(Qj) _ Cs}

U{am(2n+1)+n+t+i _ am(2n+1)+n+t+i‘1 S i S nl,

Ry = {a™* 5 Ar(gy) = e} U {amCr bt grbsir(q) = o),

syn = {(1,2)}.

We have II; as a 2-neuron SNP module, and n,m,t € N are fixed numbers.
Each state ¢; € @, each input symbol by € X', and each output symbol ¢, € A, is
represented as a’, a*?? D+t and a"** spikes, respectively. In this case however,
we add an end-of-input symbol $ (represented as a™(??+D+7+¢ gpikes) to the input
string, i.e. if w € X*, the input for I, is w$.

For any b, € X, o1 of Il functions in parallel to o7 of I, and II/, i.e.
every transition 6”(g;,bx) = ¢; is correctly simulated by o1. The difference how-
ever lies during the step when $ enters o1, indicating the end of the input. Sup-
pose during this step o1 has a’ spikes, then those spikes are combined with the
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am™@nt1)+n+t gpikes from Env. Then, one of the n rules in o7 with regular expres-

sion @M@t +n+t+ s applied, sending a™(2r D+t gpikes to .

The first function of oy is to erase, using forgetting rules, all a™** spikes it
receives from ;. Once oy receives a”(2nTD+n+t+i gpikes from oy, this means that
the end of the input has been reached. The second function of o5 is to produce
a™* spikes exactly once, by using one rule of the form @m@ntD+ntt+i _y gnts,
The output function 7(6”(q1,w$)) is therefore correctly simulated. We can then
have the following result.

Theorem 5. Any k-DFAO M can be simulated by some 2-neuron SNP module
Iy

Next, we establish the relationship of SNP modules and automatic sequences.

Theorem 6. Let a sequence a = (ay)n>0 be k-automatic, then it can be generated
by a 2-neuron SNP module 1I.

k-automatic sequences have several interesting robustness properties. One
property is the capability to produce the same output sequence given that the
input string is read in reverse, i.e. for some finite string w = ajas ... a,, we have
wf = aya,_1...a2a;. It is known (e.g. [1]) that if (an)n>0 is a k-automatic se-
quence, then there exists a k-DFAO M such that a,, = 7(6" (qo, w')) for all n > 0,
and all w € X, where [w], = n. Since the construction of Theorem 5 simulates

both ¢’ and 7, we can include robustness properties as the following result shows.

Theorem 7. Let a = (an)n>0 be a k-automatic sequence. Then, there is some
2-neuron SNP module II where I(w*$) = a,,, w € X%, [w]x, =n, and n > 0.

An illustration of the construction for Theorem 5 is given in example 3.

Ezample 8. (SNP module simulating the 2-DFAO generating the Thue-Morse se-
quence) The SNP module is given in Fig. 5, and we have n = m = t = 2. Based
on the construction for Theorem 5, we associate symbols 0 and 1 with a” and a'?
spikes, respectively. The end-of-input symbol $, ¢1, and ¢ are associated with a'4,
a, and a? spikes, respectively (with @ and a? appearing only inside o).

The 2-DFAO in Fig. 1 has four transitions, and rules r; to r4 simulate the four
transitions. Rules 5 and rg are only applied when $ enters the system. Rules 77
and rg are applied to “clean” the spikes from o1 while $ is not yet encountered by
the system. Rules rg and rg9 produce the correct output, simulating 7.

4 Final Remarks

In [3], strict inclusions for the types of languages characterized by SNP systems
with extended rules having one, two, and three neurons were given. Then in [15],
it was shown that there is no SNP transducer that can compute nonerasing and
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1 a
r:a®/a” = a®  racat?/a'® = d®
ro:a®/a't — a* rs:a'® = a'®
r3:a’/a’” — a* re :a'® — a'®

Fig. 5. SNP module simulating the 2-DFAO in Fig. 1.

nonlength preserving morphisms: for all @ € X' the former is a morphism h such
that h(a) # A, while the latter is a morphism A where |h(a)| > 2. It is known (e.g.
in [1]) that the Thue-Morse morphism is given by p(0) = 01 and (1) = 10. It
is interesting to further investigate SNP modules with respect to other classes of
sequences, morphisms, and finite transition systems. Another technical note is that
in [15] a time step without a spike entering or leaving the system was considered
as a symbol of the alphabet, while in [6] (and in this work) it was considered as A.

We also leave as an open problem a more systematic analysis of input/output
encoding size and system complexity: in the constructions for Theorems 3 to 4,
SNP modules consist of only one neuron for each module, compared to three
neurons in the constructions of [6]. However, the encoding used in our Theorems
is more involved, i.e. with multiplication and addition of indices (instead of simply
addition of indices in [6]). On the practical side, SNP modules might also be
used for computing functions, as well as other tasks involving (streams of) input-
output transformations. Practical applications might include image modification
or recognition, sequence analyses, online algorithms, et al.

Some preliminary work on SNP modules and morphisms was given in [2]. From
finite sequences, it is interesting to extend SNP modules to infinite sequences. In
[4], extended SNP systems? were used as acceptors in relation to w-languages.
SNP modules could also be a way to “go beyond Turing” by way of interactive
computations, as in interactive components or transducers given in [5]. While the
syntax of SNP modules may prove sufficient for these “interactive tasks”, or at
least only minor modifications, a (major) change in the semantics is probably
necessary.
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Summary. Spiking neural P (in short, SNP) systems are computing devices inspired
by biological spiking neurons. In this work we consider SNP systems with structural
plasticity (in short, SNPSP systems) working in the asynchronous (in short, asyn mode).
SNPSP systems represent a class of SNP systems that have dynamic synapses, i.e. neurons
can use plasticity rules to create or remove synapses. We prove that for asyn mode,
bounded SNPSP systems (where any neuron produces at most one spike each step)
are not universal, while unbounded SNPSP systems with weighted synapses (a weight
associated with each synapse allows a neuron to produce more than one spike each step)
are universal. The latter systems are similar to SNP systems with extended rules in
asyn mode (known to be universal) while the former are similar to SNP systems with
standard rules only in asyn mode (conjectured not to be universal). Our results thus
provide support to the conjecture of the still open problem.

Key words: Membrane computing, Spiking neural P systems, Structural plastic-
ity, Asynchronous systems, Turing universality

1 Introduction

Spiking neural P systems (in short, SNP systems) are parallel, distributed, and
nondeterministic devices introduced into the are of membrane computing in [7].
Neurons are often drawn as ovals, and they process only one type of object, the
spike signal represented by a. Synapses between neurons are the arcs between ovals:
neurons are then placed on the vertices of a directed graph. Since their introduc-
tion, several lines of investigations have been produced, e.g. (non)deterministic

* An improved version of this article will appear at the 14th Unconventional Computa-
tion and Natural Computation (2015), Auckland, New Zealand.
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computing power in [7][14]; language generation in [4]; function computing de-
vices in [11]; solving computationally hard problems in [9]. Many neuroscience
inspirations have also been included for computing use, producing several variants
(to which the previous investigation lines are also applied), e.g. use of weighted
synapses [16], neuron division and budding [9], the use of astrocytes [10]. Further-
more, many restrictions have been applied to SNP systems (and variants), e.g.
asynchronous SNP systems as in [6], [3], and [15], and sequential SNP systems as
in [6].

In this work the variant we consider are SNP systems with structural plasticity,
in short, SNPSP systems. SNPSP systems were first introduced in [1], then ex-
tended and improved in [2]. The biological motivation for SNPSP systems is struc-
tural plasticity, one form of neural plasticity, and distinct from the more common
functional (Hebbian) plasticity. SNPSP systems represent a class of SNP systems
using plasticity rules: synapses can be created or deleted so the synapse graph is
dynamic. The restriction we apply to SNPSP systems is asynchronous operation:
imposing synchronization on biological functions is sometimes “too much”, i.e. not
alway realistic. Hence, the asynchronous mode of operation is interesting to con-
sider. Such restriction is also interesting mathematically, and we refer the readers
again to [6], [3], and [15] for further details.

In this work we prove that (i) asynchronous bounded (i.e. there exists a bound
on the number of stored spikes in any neuron) SNPSP systems are not universal,
(#4) asynchronous weighted (i.e. a positive integer weight is associated with each
synapse) SNPSP systems, even under a normal form (provided below), are univer-
sal. The open problem in [3] whether asynchronous bounded SNP systems with
standard rules are universal is conjectured to be false. Also, asynchronous SNP
systems with extended rules are known to be universal [5]. Our results provide
some support to the conjecture, since neurons in SNPSP systems produce at most
one spike each step (similar to standard rules) while synapses with weights function
similar to extended rules (more than one spike can be produced each step). This
work is organized as follows: Section 2 provides preliminaries for our results; syntax
and semantics of SNPSP systems are given in Section 3; our (non)universality re-
sults are given in Section 4. Lastly, we provide final remarks and further directions
in Section 5.

2 Preliminaries

It is assumed that the readers are familiar with the basics of membrane computing
(a good introduction is [13] with recent results and information in the P systems
webpage (http://ppage.psystems.eu/) and a recent handbook [14] ) and formal
language theory (available in many monographs). We only briefly mention notions
and notations which will be useful throughout the paper.

We denote the set of positive integers as N = {1,2,...}. Let V be an alphabet,
V* is the set of all finite strings over V with respect to concatenation and the
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identity element A (the empty string). The set of all non-empty strings over V' is
denoted as VT so VT =V* —{A}. If V = {a}, we simply write a* and a* instead
of {a}* and {a}*. If a is a symbol in V', we write a® = X and we write the language
generated by a regular expression F over V as L(E).

In proving computational universality, we use the notion of register machines.
A register machine is a construct M = (m,I,lo,l, R), where m is the number
of registers, I is the set of instruction labels, [y is the start label, [ is the halt
label, and R is the set of instructions. Every label [; € I uniquely labels only one
instruction in R. Register machine instructions have the following forms:

l; : (ADD(7),1;,1x), increase n by 1, then nondeterministically go to I; or ly;
l; - (SUB(r),l;,1k), if n > 1, then subtract 1 from n and go to [;, otherwise
perform no operation on r and go to lg;

e [; : HALT, the halt instruction.

Given a register machine M, we say M computes or generates a number n as
follows: M starts with all its registers empty. The register machine then applies its
instructions starting with the instruction labeled ly. Without loss of generality, we
assume that [y labels an ADD instruction, and that the content of the output register
is never decremented, only added to during computation, i.e. no SUB instruction
is applied to it. If M reaches the halt instruction [, then the number n stored
during this time in the first (also the output) register is said to be computed by M.
We denote the set of all numbers computed by M as N(M). It was proven that
register machines compute all sets of numbers computed by a Turing machine,
therefore characterizing NRE [8]. A strongly monotonic register machine is one
restricted variant: it has only one register which is also the output register. The
register initially stores zero, and can only be incremented by 1 at each step. Once
the machine halts, the value stored in the register is said to be computed. It is
known that strongly monotonic register machines characterize SLIN, the family
of length sets of regular languages.

3 Spiking neural P systems with structural plasticity

In this section we define SNP systems with structural plasticity. Initial motivations
and results for SNP systems are included in the seminal paper in [7]. A spiking
neural P system with structural plasticity (SNPSP system) of degree m > 1 is a
construct of the form IT = (O, 01, . ..,0m, syn, out), where:

e O = {a} is the singleton alphabet (a is called spike);
e 01,...,0., are neurons of the form (n;, R;),1 < i < m; n; > 0 indicates the
initial number of spikes in o;; R; is a finite rule set of o; with two forms:
1. Spiking rule: E/a® — a, where F is a regular expression over O, ¢ > 1;
2. Plasticity rule: E/a® — ak(i, N), where E is a regular expression over O,
c>l,ae{+,—, £, FhL k>1,and N C{1,...,m} — {i};
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o syn C {1,...,m} x {1,...,m}, with (i,7) ¢ syn for 1 < i < m (synapses
between neurons);
e out € {l,...,m} indicate the output neuron.

Given neuron o; (we also say neuron ¢ or simply o;) we denote the set of
neuron labels with o; as their presynaptic (postsynaptic, resp.) neuron as pres(i),
ie. pres(i) = {j|(i,4) € syn} (as pos(i) = {j|(j,i) € syn}, resp.). Spiking rule
semantics in SNPSP systems are similar with SNP systems in [7]. In this work we
do not use forgetting rules (rules of the form a® — A) or rules with delays of the
form F/a® — a;d for some d > 1. Spiking rules are applied as follows: If neuron
o; contains b spikes and a® € L(F), with b > ¢, then a rule E/a® — a € R; can be
applied. Applying such a rule means consuming c¢ spikes from o;, thus only b — ¢
spikes remain in o;. Neuron i sends one spike to every neuron with label in pres(i)
at the same step as rule application. A nonzero delay d means that if o; spikes at
step t, then neurons receive the spike at ¢ + d. Spikes sent to o; from ¢t tot+d—1
are lost (i.e. o; is closed), and o; can receive spikes (i.e. o; is open) and apply a
rule again at ¢ +d and t+d + 1, respectively. If a rule E/a® — a has L(E) = {a*},
we simply write this as a® — a.

Plasticity rules are applied as follows. If at step ¢ we have that o; has b > ¢
spikes and a® € L(E), a rule E/a® — ak(i, N) € R; can be applied. The set N is
a collection of neurons to which o; can connect to or disconnect from using the
applied plasticity rule. The rule application consumes ¢ spikes and performs one
of the following, depending on «:

o If a:=+ and N —pres(i) = 0, or if @ := — and pres(i) = 0, then there is
nothing more to do, i.e. ¢ spikes are consumed but no synapses are created or
removed. Notice that with these semantics, a plasticity rule functions similar
to a forgetting rule, i.e. the former can be used to consume spikes without
producing any spike.

o for a:=+, if |[N —pres(i)| < k, deterministically create a synapse to every oy,
l € N; — pres(i). If however |N — pres(i)| > k, nondeterministically select k
neurons in N — pres(i), and create one synapse to each selected neuron.

o for a := —, if |pres(i)| < k, deterministically delete all synapses in pres(i).
If however |pres(i)| > k, nondeterministically select k neurons in pres(i), and
delete each synapse to the selected neurons.

If « € {£,F} : create (respectively, delete) synapses at step ¢ and then delete
(respectively, create) synapses at step ¢ + 1. Only the priority of application of
synapse creation or deletion is changed, but the application is similar to a €
{+, —}. Neuron i is always open from ¢ until ¢ + 1, but o; can only apply another
rule at time ¢ 4 2.

An important note is that for o; applying a rule with o € {4, £, F}, creating
a synapse always involves an embedded sending of one spike when o; connects to
a neuron. This single spike is sent at the time the synapse creation is applied, i.e.
whenever o; attaches to o; using a synapse during synapse creation, we have o;
immediately transferring one spike to o;.
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Let ¢t be a step during a computation: we say a o; is activated at step t if
there is at least one r € R; that can be applied; o; is simple if |R;| = 1, with
a nice biological and computing interpretation, i.e. some neurons do not need to
be complex, but merely act as spike repositories or relays. We have the following
nondeterminism levels: rule-level, if at least one neuron has at least two rules with
regular expressions Fy and Es such that £y # Fs and L(E,)NL(Es) # 0; synapse-
level, if initially IT has at least one o; with a plasticity rule where k < |N —pres(i)|;
neuron-level, if at least one activated neuron with rule r can choose to apply its
rule r or not (i.e. asynchronous).

By default SNP and SNPSP systems are locally sequential (at most one rule is
applied per neuron) but globally parallel (all activated neurons must apply a rule).
The application of rules in neurons are usually synchronized, i.e. a global clock
is assumed. However, in the asynchronous (asyn, in short) mode we release this
synchronization so that neuron-level nondeterminism is implied. A configuration of
an SNPSP system is based on (a) distribution of spikes in neurons, and (b) neuron
connections based on syn. For some step ¢, we can represent: (a) as (S1,...,Sm)
where s;,1 <14 < m, is the number of spikes contained in ¢;; for (b) we can derive
pres(i) and pos(i) from syn, for a given o;. The initial configuration therefore
is represented as (ni, ..., N, ), with the possibility of a disconnected graph, or
syn = (. A computation is defined as a sequence of configuration transitions, from
an initial configuration, and following rule application semantics. A computation
halts if the system reaches a halting configuration, i.e. no rules can be applied and
all neurons are open.

A result of a computation can be defined in several ways in SNP systems
literature. For SNP systems in asyn mode however, and as in [3] [5] [15], the output
is obtained by counting the total spikes sent out by o,y to the environment (in
short, Env) upon reaching a halting configuration. We refer to IT as generator, if
IT computes in this asynchronous manner. II can also work as an acceptor but
this is not given in this work.

For our universality results, the following simplifying features are used in our
systems as the normal form: (7) plasticity rules can only be found in purely plas-
tic neurons (i.e. neurons with plasticity rules only), (i4) neurons with standard
rules are simple, and (i%i) we do not use forgetting rules or rules with delays. We
denote the family of sets computed by asynchronous SNPSP systems (under the
mentioned normal form) as generators as Ny, SN PSP*¥™: subscript tot indicates
the total number of spikes sent to Env as the result; Other parameters are as fol-
lows: +syny, (—syn;, respectively) where at most k (j, resp.) synapses are created
(deleted, resp.) each step; ndg, 8 € {syn,rule,neur} indicate additional levels of
nondeterminism source; rule,, indicates at most m rules (either standard or plas-
ticity) per neuron; Since our results for k and j for +syn; and —syn; are equal,
we write them instead in the compressed form +synjg, where 4 in this sense is
not the same as when « := 4. A bound p on the number of spikes stored in any
neuron of the system is denoted as bound,. We omit ndye,, from writing since it
is implied in asyn mode.
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L k J i a
a—a a—a a—)il(l,{j,k})

Fig. 1. An SNPSP system I1;.

To illustrate the notions and semantics in SNPSP systems, we take as an ex-
ample the SNPSP system I1.; of degree 4 in Fig. 1, and describe its computations.
The initial configuration is as follows: spike distribution is (1,0,0,1) for the neu-
ron order o;, 0j, ok, 0y, respectively; syn = {(j, k), (k,1)}; output neuron is oy,
indicated by the outgoing synapse to Env.

Given the initial configuration, o; and oy can become activated. Due to asyn
mode however, they can decide to apply their rules at a later step. If o; applies
its rule before it receives a spike from o;, then it will spike to Env twice so that
Niot(II.;) = {2}. Since k = 1 < |{j, k}| and pres(i) = 0, o; nondeterministically
selects whether to create synapse (i, 7) or (¢,k); if (¢,7) ((¢, k), resp.) is created; a
spike is sent from o; to o; (o, resp.) due to the embedded sending of a spike during
synapse creation. Let this be step t. If (¢, 5) is created then syn’ := syn U {(3, )},
otherwise syn” := syn U {(i,k)}. At t + 1, o; deletes the created synapse at ¢
(since « := =), and we have syn again. Note that if o; does not apply its rule and
collects two spikes (one spike from o;), the computation is aborted or blocked, i.e.
no output is produced since a® ¢ L(a).

4 Main results

In this section we use at most two nondeterminism sources: ndy ey, (in asyn mode),
and ndgyn. Recall that in asyn mode, if o; is activated at step ¢ so that an r € R;
can be applied, o; can choose to apply r or not. If o; did not choose to apply r,
o; can continue to receive spikes so that for some ¢’ > ¢, it is possible that: r can
never be applied again, or some 7’ € R;,r’ # r, is applied.

For the next result, each neuron can store only a bounded number of spikes
(see for example [3][6][7] and references therein). In [6], it is known that bounded
SNP systems with extended rules in asyn mode characterize SLIN, but it is
open whether such result holds for systems with standard rules only. In [3], a
negative answer was conjectured for the following open problem: are asynchronous
SNP systems with standard rules universal? First, we prove that bounded SNPSP
systems in asyn mode characterize SLIN, hence they are not universal.

Lemma 1 Ny, SNPSP*Y"(boundy,ndsy,) C SLIN,p > 1.

Proof. Taking any asynchronous SNPSP system II with a given bound p on the
number of spikes stored in any neuron, we observe that the number of possible
configurations is finite: IT has a constant number of neurons, and that the number
of spikes stored in each neuron are bounded. We then construct a right-linear
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grammar G, such that IT generates the length set of the regular language L(G).
Let us denote by C the set of all possible configurations of II, with Cy being
the initial configuration. The right-linear grammar G = (C, {a}, Co, P), where the
production rules in P are as follows:

(1)C — ', for C,C" € C if IT has a transition C' = C” in which the output
neuron does not spike;

(2) C — aC’, for C,C" € C if II has a transition C' = C’ in which the output
neuron spikes;

(3) C — A, for any C € C in which IT halts.

Due to the construction of G, IT generates the length set of L(G), hence the
set is semilinear. O

Lemma 2 SLIN C Nyt SNPSP*V" (boundy, ndgsyn),p > 1.

The proof is based on the following observation: A set @ is semilinear if and only if
(@ is generated by a strongly monotonic register machine M. It suffices to construct
an SNPSP system I with restrictions given in the theorem statement, such that
IT simulates M. Recall that M has precisely register 1 only (it is also the output
register) and addition instructions of the form /; : (ADD(1),1;, ;). The ADD module
for IT is given in Fig. 2. Next, we describe the computations in II.

1} -
(O Commmm) ==,

Fig. 2. Module ADD simulating I; : (ADD(1) : I;,x) in the proof of Lemma 2.

Once ADD instruction [; of M is applied, oy, is activated and it sends one spike
each to o7 and o At this point we have two possible cases due to asyn mode, i.e.
either oy spikes to Env before oy spikes, or after. If o1 spikes before o, then the
number of spikes in Env is 1mmed1ately incremented by 1. After some time, the
computation will proceed if o1 applies its only (plasticity) rule. Once o1 applies
its rule, either o;, or oy, becomes nondeterministically activated. '

However, if o spikes after o1 spikes, then the number of spikes in Env is not
immediately incremented by 1 since o1 does not consume a spike and fire to Env.
The next instruction, either [; or I, is then simulated by II. Furthermore, due
to asyn mode, the following “worst case” computation is possible: o, becomes
activated (correspondlng to I, in M being applied, thus halting M) before oy
spikes. In this computation, M has halted and has applied an m number of ADD
instructions since the application of [;. Without loss of generality we can have the
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arbitrary bound p > m, for some positive integer p. We then have the output
neuron o; storing m spikes. Since the rules in oy are of the form a?/a — a,
1 < q < p, o1 consumes one spike at each step it decides to apply a rule, starting
with rule a™/a — a, until rule a — a. Thus, IT will only halt once o7 has emptied
all spikes it stores, sending m spikes to Env in the process.

The FIN module is not necessary, and we add o;, without any rule (or maintain
pres(lp) = 0). Once M halts by reaching instruction I, a spike in IT is sent to
neuron ly. II is clearly bounded: every neuron in I can only store at most p spikes,
at any step. We then have IT correctly simulating the strongly monotonic register
machine M. This completes the proof. O

From Lemma 1 and 2, we can have the next result.

Theorem 1 SLIN = Nyt SN PSP*Y"(boundy,, ndsyn),p > 1.

Next, in order to achieve universality, we add an additional ingredient to asyn-
chronous SNPSP systems: weighted synapses. The ingredient of weighted synapses
has already been introduced in SNP systems literature, and we refer the reader to
[16] (and references therein) for computing and biological motivations. In partic-
ular, if o; applies a rule E/a® — aP, and the weighted synapse (i, j, ) exists (i.e.
the weight of synapse (¢, j) is r) then o; receives p x r spikes.

It seems natural to consider weighted synapses for asynchronous SNPSP sys-
tems: since asynchronous SNPSP systems are not universal, we look for other ways
to improve their power. SNPSP systems with weighted synapses (in short, WS-
NPSP systems) are defined in a similar way as SNPSP systems, except for the
plasticity rules and the synapse set. Plasticity rules in o; are now of the form

E/a® — ak(i, N,r),

where r > 1, and E, ¢, a, k, N are as previously defined. Every synapse created by
o; using a plasticity rule with weight r receives the weight r. Instead of one spike
sent from o; to a o; during synapse creation, j € N, r spikes are sent to o;. The
synapse set is now of the form

syn € {1,2,...,m} x {1,2,...,m} x N.

We note that SNPSP systems are special cases of SNPSP systems with weighted
synapses where r = 1, and when r = 1 we omit it from writing. In weighted
SNP systems with standard rules, the weights can allow neurons to produce more
than one spike each step, similar to having extended rules. In this way, our next
result parallels the result that asynchronous SNP systems with extended rules are
universal in [5]. However, our next result uses ndsy, with asyn mode, while in [5]
their systems use nd,,. with asyn mode. We also add the additional parameter
! in our universality result, where the synapse weight in the system is at most [.
Our universality result also makes use of the normal form given in Section 3.

Theorem 2 Ny, WSNPSP*Y"(ruley,, £syny, weight;,ndsy,) = NRE,m > 9,k >
1,0> 3.
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Proof. We construct an asynchronous SNPSP system with weighted synapses 11,
with restrictions given in the theorem statement, to simulate a register machine
M. The general description of the simulation is as follows: each register r of M cor-
responds to o, in I1. If register r stores the value n, o, stores 2n spikes. Simulating
instruction I; : (OP(r) : I;,1;) of M in II corresponds to o;, becoming activated.
After 0y, is activated, the operation OP is performed on o, and o;; or oy, becomes
activated. We make use of modules in II to perform addition, subtraction, and
halting of the computation.

Module ADD: The module is shown in Fig. 3. At some step ¢, o;, sends a
spike to o;1. At some ¢’ > t, o1 sends a spike: the spike sent to ¢, is multiplied by
two, while 1 spike is received By o;2. For now we omit further details for o, since
it is never activated with an even number of spikes.

At some t” > t', 0j2 nondeterministically creates (then deletes) either (12,1;) or
(12,1;). The chosen synapse then allows either oy, or oy, to become activated. The
ADD module thus increments the contents of o, by 2, simulating the increment
by 1 of register r. Next, only one among o, or 0;, becomes nondeterministically
activated. The addition operation is correctly simulated.

li 1 r

(a — 1012, {1, 1x},1) ) i
O ()

Fig. 3. Module ADD simulating I; : (ADD(r) : l;, 1) in the proof of Theorem 2.

Module SUB: The module is shown in Fig. 4. Let |S,| be the number of
instructions with form I; : (SUB(r),;,1x), and 1 < s < |S,|. |S;| is the number of
SUB instructions operating on register r, and we explain in a moment why we use
a size of a set for this number. Clearly, when no SUB operation is performed on
r, then |S,.| = 0, as in the case of register 1. At some step ¢, o, spikes, sending 1
spike to o,, and 4|S,.| — s spikes to o (the weight of synapse (I;,1})).

oy has rules of the form a? — —1(I},{r}, 1), for 3|S,| < p < 8|S,|. When
one of these rules is applied, it performs similar to a forgetting rule: p spikes are
consumed and deletes a nonexisting synapse (I},7). Since o1 received 4[S,| — s
spikes from oy,, and 3|S,| < 4|S,| — s < 8|S,|, then one of these rules can be
applied. If o;1 applies one of these rules at ¢’ > ¢, no spike remains. Otherwise, the
418, — s spillces can combine with the spikes from o, at a later step.

In the case where register r stores n = 0 (respectively, n > 1), then instruction
I (vespectively, [;) is applied next. This case corresponds to o, applying the
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l; I

4|Sy|—s
ﬁ
a—a a? = —1(7,{r},1)
.
for 3|5, < p < 8|S
a(@®)* /a® — £|5,|(r, Sr. 450 + 5)
a8t 21011, {11, 1)
a — £|S:|(r, Sr, 5|S-| + 5)
a9l — 21318, {1k}, 1)
l; lk

o )

Fig. 4. Module SUB simulating I; : (SUB(r) : I;, i) in the proof of Theorem 2.

rule with E = a (respectively, E = a(a®)"), which at some later step allows o7,
(respectively, oy,) to be activated.

For the moment let us simply define S, = {I}}. For case n = 0 (respectively,
n > 1), o, stores 0 spikes (respectively, at least 2 spikes), so that at some t” > ¢ the
synapse (r,1},5|S,| + s) (respectively, (r,1},4|S,|+s)) is created and then deleted.
o1 then receives 5|5, |+ s spikes (respectively, 4|S,| + s spikes) from o,. Note that
we can have ¢/ >t or t” < t/, due to asyn mode, where ¢’ is again the step that
o1 applies a rule. If o1 previously removed all of its spikes using its rules with
E'= aP, then it again removes all spikes from o, because 3|S,| < z < 8|S, |, where
x € {4]Sy| + s,5|Sr| + s}. At this point, no further rules can be applied, and the
computation aborts, i.e. no output is produced. If however o;1 did not remove its
spikes previously, then it collects a total of either 8|S, or 9]9,| spikes. Either oy,
or oy, is then activated by o1 at a step after ¢”.

To remove the possibilityl of “wrong” simulations when at least two SUB in-
structions operate on register r, we give the general definition of S,: S, =
{I}]l, is a SUB instruction on register 7}. In the SUB module, a rule application
in o, creates (and then deletes) an |S,| number of synapses: one synapse from o,
to all neurons with label Il € S,. Again, each neuron with label [} can receive
either 4|S,| + s, or 5|S,| + s spikes from o, and 4|S,| — s spikes from oy, .

Let [; be the SUB instruction that is currently being simulated in I7. In order for
the correct computation to continue, only ¢;: must not apply a rule with £ = aP,
i.e. it must not remove any spikes from o, or o1,. The remaining |S,| — 1 neurons
of the form I} must apply their rules with £ = a” and remove the spikes from
o,. Due to asyn mode, the |S,| — 1 neurons can choose not to remove the spikes
from o,.: these neurons can then receive further spikes from o, in future steps, in
particular they receive either 4|S,.| + s" or 5|S,.| + s’ spikes, for 1 < s’ < S,.; these
neurons then accumulate a number of spikes greater than 8|S,| (hence, no rule
with E = aP can be applied), but not equal to 8|S, | or 9|5, | (hence, no plasticity
rule can be applied). Similarly, if these spikes are not removed, and spikes from
oy,, are received, v # v" and [, € S, no rule can again be applied: if /,+ is the s'th
SUB instruction operating on register r, then s # s” and o , accumulates a number
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of spikes greater than 8|S,| (the synapse weight of (L,/,1},) is 4|S,| — s’), but not
equal to 8|S,| or 9|S,|. No computation can continue if the |S,| — 1 neurons do not
remove their spikes from o,., so computation aborts and no output is produced.
This means that only the computations in I7 that are allowed to continue are the
computations that correctly simulate a SUB instruction in M.

The SUB module correctly simulates a SUB instruction: instruction I; is sim-
ulated only if 7 stores a positive value (after decrementing by 1 the value of r),
otherwise instruction i is simulated (the value of r is not decremented).

Module FIN: The module FIN for halting the computation of I is shown in
Fig. 5. The operation of the module is clear: once M reaches instruction [, and
halts, 0y, becomes activated. Neuron I;, sends a spike to oj, the neuron corre-
sponding to register 1 of M. Once the number of spikes in o1 become odd (of the
form 2n + 1, where n is the value stored in register 1), o1 keeps applying its only
rule: at every step, 2 spikes are consumed, and 1 spike is sent to Env. In this way,
the number n is computed since o1 will send precisely n spikes to Env.

The ADD module has ndsy,: initially it has pres(i?) = 0, and its k = 1 < |N|.
We also observe the parameter values: m is at least 9 by setting |S,| = 1, then
adding the two additional rules in o;1; k is clearly at least 1; lastly, the synapse
weight [ is at least 3 by again settingl|ST\ = 1. This completes the proof. O

Caama ()
1 I

Fig. 5. Module FIN in the proof of Theorem 2.

5 Conclusions and final remarks

In [5] it is known that asynchronous SNP systems with extended rules are universal,
while the conjecture is that asynchronous SNP systems with standard rules are not
[3]. In Theorem 1, we showed that asynchronous bounded SNPSP systems are not
universal where, similar to standard rules, each neuron can only produce at most
one spike each step. In Theorem 2, asynchronous WSNPSP systems are shown to
be universal. In WSNPSP systems, the synapse weights perform a function similar
to extended rules in the sense that a neuron can produce more than one spike each
step. Our results thus provide support to the conjecture about the nonuniversality
of asynchronous SNP systems with standard rules. It is also interesting to realize
the computing power of asynchronous unbounded (in spikes) SNPSP systems.

It can be argued that when o € {4, F}, the synapse creation (resp., deletion)
immediately followed by a synapse deletion (resp., creation) is another form of
synchronization. Can asynchronous WSNPSP systems maintain their computing
power, if we further restrict them by removing such semantic? Another interesting
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question is as follows: in the ADD module in Theorem 2, we have ndgy,. Can we
still maintain universality if we remove this level, so that nd, ey, in asyn mode
is the only source of nondeterminism? In [5] for example, the modules used asyn
mode and nd,,., while in [15], only asyn mode was used (but with the use of a
new ingredient called local synchronization).

In Theorem 2, the construction is based on the value |S,|. Can we have a
uniform construction while maintaining universality? i.e. can we construct a II
such that N(IT) = NRE, but is independent on the number of SUB instructions
of M? Then perhaps parameters m and [ in Theorem 2 can be reduced.
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Summary. In this paper we study P colonies where the environment is given as a string.
These variants, called automaton-like P systems or

APCol systems, behave like automata: during functioning, the agents change their own
states and process the symbols of the string. We develop the concept of APCol systems
by introducing the notion of their generating working mode. We then compare the power
of APCol systems working in the generating mode and that of register machines and
context-free matrix grammars with and without appearance checking.

Key words: String processing; P Colonies; computational power

1 Introduction

P colonies are formal models of a computing device combining properties of mem-
brane systems and distributed systems of formal grammars called colonies [16].

In the basic model, the cells or agents are represented by a finite collection of
objects and rules for processing these objects. The agents are restricted in their
capabilities, i.e., only a limited number of objects, say, k objects, are allowed to be
inside any cell during the functioning of the system. These objects represent the
current state (contents) of the agents. The rules of the cells are either of the form
a — b, specifying that an internal object a is transformed into an internal object
b, or of the form ¢ <> d, specifying that an internal object ¢ is exchanged by an
object d in the environment. After applying these rules in parallel, the state of the
agent will consist of objects b, d. Each agent is associated with a set of programs
composed of such rules.

The agents of a P colony perform a computation by synchronously applying
their programs to the objects representing the state of the agents and objects in the
environment. These systems have been extensively investigated during the years;
for example, it was shown that they are computationally complete computing
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devices even with very restricted size parameters and with other (syntactic or
functioning) restrictions [1, 3, 5, 6, 7, 8, 11, 12].

According to the the basic model, the impact of the environment on the be-
haviour of the P colony is indirect. To describe the situation when the behaviour
of the components of the P colony is influenced by direct impulses coming from the
environment step-by-step, the model was augmented with a string put on an input
tape to be processed by the P colony [4]. These strings correspond to the impulse
sequence coming from the environment. In addition to their rewriting rules and
the rules for communicating with the environment, the agents have so-called tape
rules which are used for reading the next symbol on the input tape. The model,
called a P colony automaton or a PCol automaton, combines properties of stan-
dard finite automata and standard P colonies. It was shown that these variants
of P colonies are able to describe the class of recursively enumerable languages,
taking various working mode into account.

In [2] one step further was made in combining properties of P colonies and
automata. While in the case of PCol automata the behaviour of the system is
influenced both by the string to be processed and the environment consisting of
multisets of symbols, in the case of automaton-like P colonies or APCol systems
the environment is given as a string. The interaction between the agents in the
P colony and the environment is realized by exchanging symbols between the
objects of the agents and the environment (communication rules), and the states
of the agents may change both via communication and evolution; the latter one
is an application of a rewriting rule to an object. The distinguished symbol, e (in
the previous models the environmental symbol) has a special role: whenever it
is introduced in the string by communication, the corresponding input symbol is
erased.

The computation in APCol systems starts with an input string, representing
the environment, and with each agent having only symbols e in its state. Every
computational step means a maximally parallel action of the active agents: an
agent is active if it is able to perform at least one of its programs, and the joint
action of the agents is maximally parallel if no more active agent can be added
to the synchronously acting agents. The computation ends if the input string is
reduced to the empty word, there are no more applicable programs in the system,
and meantime at least one of the agents is in so-called final state.

In this paper, after recalling the model and its accepting working mode, we
introduce its generating working mode. The result of computation depends on the
mode in which the APCol system works.

In the case of accepting mode, a computation is called accepting if and only if
at least one agent is in final state and the string obtained after the computation
is €, the empty word.

When the APCol system works in the generating mode, then a computation
is called successful if only if it is halting and at least one agent is in final state.
A string w is generated by the APCol system if starting with the empty string



Automaton-like P Colonies 107

in the environment, after finishing the computation the obtained string is w, the
computation is halting and at least one agent is in final state.

After introducing the notion of the generating working mode, we compared
the power of APCol systems working in the generating mode and that of reg-
ister machines and context-free matrix grammars with and without appearance
checking.

2 Definitions

Throughout the paper the reader is assumed to be familiar with the basics of
formal language theory and membrane computing. For further details we refer to
[14] and [20].

For an alphabet X, the set of all words over X' (including the empty word, ¢),
is denoted by X*. We denote the length of a word w € X* by |w| and the number
of occurrences of the symbol @ € X in w by |w]|,. For a language L C X*, the set
length(L) = {|w| | w € L} is called the length set of L. For a family of languages
FL, the family of length sets of languages in FL is denoted by NFL.

A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : V — N; f assigns to each
object in V its multiplicity in M. The set of all multisets with the set of objects V'
is denoted by V°. The set V' is called the support of M and denoted by supp(M).
The cardinality of M, denoted by [M], is defined by [M| = > .y f(a). Any
multiset of objects M with the set of objects V' = {a1,...a,} can be represented
as a string w over alphabet V' with |wl|, = f(a;); 1 <14 <n. Obviously, all words
obtained from w by permuting the letters can also represent the same multiset M,
and e represents the empty multiset.

2.1 Register machines and matrix grammars
Definition 1. [19] A register machine is the construct M = (m, H,lo, I, P) where:

m is the number of registers,

H is the set of instruction labels,

lo is the start label,

Iy, is the final label,

P is a finite set of instructions injectively labelled with the elements from the set
H.

The instructions of the register machine are of the following forms:
Iy : (ADD(r),l2,13) Add 1 to the content of the register  and proceed to the in-
struction (labelled with) Is or I3.
Iy : (SUB(r),la,13) If the register r stores a value different from zero, then sub-
tract 1 from its content and go to instruction ls, otherwise

proceed to instruction /3.
lp: HALT Halt the machine. The final label [}, is only assigned to this
instruction.
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Without loss of generality, we may assume that in each ADD-instruction I; :
(ADD(r),ls,13) and in each SUB-instruction Iy : (SUB(r),ls,l3) the labels Iy, 2,13
are pairwise different.

The register machine M computes a set N (M) of numbers in the following
way: it starts with all registers empty (hence storing the number zero) with the in-
struction labelled by [y and it proceeds to apply the instructions as indicated by
the labels (and made possible by the contents of registers). If it reaches the halt
instruction, then the number stored at that time in the register 1 is said to be com-
puted by M and hence it is introduced in N (M ). (Because of the non-determinism
in choosing the continuation of the computation in the case of ADD-instructions,
N (M) can be an infinite set.) It is known (see e.g.[19]) that in this way we compute
all Turing computable sets.

Moreover, we call a register machine partially blind [13], if we interpret a sub-
tract instruction in the following way: 1 : (SUB(r);l2;13) - if in register r there
is value different from zero, then subtract one from its contents and go to instruc-
tion ls or to instruction I3; if in register r there is stored zero when attempting to
decrement register r, then the program ends without yielding a result.

When the partially blind register machine reaches the final state, the result ob-
tained in the first register is only taken into account if the remaining registers store
value zero. The family of sets of non-negative integers generated by partially blind
register machines is denoted by NRM,,. Partially blind register machines accept
a proper subset of NRE, the family of recursively enumerable sets of numbers.

Definition 2. A context-free matriz grammar is a construct
G = (N,T,S,M,F), where

o N and T are sets of non-terminal and terminal symbols, respectively, with
NNT =0,
S € N s the start symbol,
M is a finite set of matrices, M = {m; | 1 <i < n}, where matrices m; are
sequences of the form m; = (M 1,...,Myn,),ni > 1, 1 <i<n, andm;;, 1<
Jj <mny, 1<i<n, are context-free rules over (N UT),

e F is a subset of all productions occurring in the elements of M,
ie. Fre{m;, | 1<i<n,1<j<n}.

We say that © € (N UT)" directly derives y € (N UT)* in the appearance
checking mode by application of m; ; = A — w € m; — denoted by z = y, — if
one of the following conditions hold:

r =x1Aze and y = xywze  or A does not appear in x,m;; € F and x = y.

For m; = (m;1,...,myy,) and v,w € (NUT)* we define v =,, w if and only
if there are wg, wy,...,wy,, € (N UT)* such that

_ ac ac ac ac _
U= wo :>mi,1 w1 :miﬂ w2 :>mi,3 Mim; i w
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The language generated by G is

LG)={weT" [S=m, wi - =m, wg, wp=uw,
w; € (NUT)*, my, € Mfor 1 <j<k, k>1, 1<i<n}

The family of languages generated by matrix grammars with appearance check-
ing is denoted by MAT;‘C. The superscript A indicates that erasing rules (A-rules)
are allowed.

We say that M is a matrix grammar without appearance checking if and only if
F = (). The family of languages generated by matrix grammars without appearance
checking is denoted by MAT>.

The following results are known about matrix languages:

CF C MAT C MAT* C RE
MAT C MAT,. C CS
MAT* C MAT;‘C = CS, where CF, CS, RE are the context-free, context-
sensitive, and recursively enumerable language classes, respectively

o NRMy, = NMAT”, where NMAT” is class of the length sets associated with
matrix languages without appearance checking (in [11]).

Further details about matrix grammars can be found in [9].

2.2 Automaton-like P colony

In the following we recall the concept of an automaton-like P colony (an APCol
system, for short) where the environment of the agents is given in the form of a
string [2].

As in the case of standard P colonies, agents of APCol systems contain objects,
each being an element of a finite alphabet. With every agent, a set of programs
is associated. There are two types of rules in the programs. The first one, called
an evolution rule, is of the form a — b. It means that object a inside of the
agent is rewritten (evolved) to the object b. The second type of rules, called a
communication rule, is in the form ¢ <> d. When this rule is performed, the object
c inside the agent and a symbol d in the string are exchanged, so, we can say that
the agent rewrites symbol d to symbol ¢ in the input string. If ¢ = e, then the
agent erases d from the input string and if d = e, symbol c¢ is inserted into the
string.

An automaton-like P colony works successfully, if it is able to reduce the given
string to ¢, i.e., to enter a configuration where at least one agent is in accepting
state and the processed string is the empty word.
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Definition 3. [2] An automaton-like P colony (an APCol system, for short) is a
construct

II=(0,e,Aq,..., A,), where

e O is an alphabet; its elements are called the objects,
e ¢ € O, called the basic object,
o A;, 1<i<nmn, are agents. Each agent is a triplet A; = (w;, Py, F;), where

- w; 18 a multiset over O, describing the initial state (content) of the agent,
|wi| =2,

- P =A{pi1,---,pik} s a finite set of programs associated with the agent,
where each program is a pair of rules. Each rule is in one of the following
forms:

a — b, where a,b € O, called an evolution rule,
c <> d, where ¢,d € O, called a communication rule,
F; C O* is a finite set of final states (contents) of agent A;.

During the work of the APCol system, the agents perform programs. Since
both rules in a program can be communication rules, an agent can work with
two objects in the string in one step of the computation. In the case of program
(a < b;c <> d), a sub-string bd of the input string is replaced by string ac. If the
program is of the form (c <> d;a <> b), then a sub-string db of the input string is
replaced by string ca. That is, the agent can act only in one place in a computation
step and the change of the string depends both on the order of the rules in the
program and on the interacting objects. In particular, we have the following types
of programs with two communication rules:

(a > b;c <> e) - b in the string is replaced by ac,

(c <> e;a > b) - b in the string is replaced by ca,

(a <> e;c 4> e) - ac is inserted in a non-deterministically chosen place in the
string,

(e <> bye <> d) - bd is erased from the string,

(e +» d;e <> b) - db is erased from the string,

(e = e;e > d); (e > e;c<>d), ...~ these programs can be replaced by pro-
grams of type (e — e;c <> d).

The program is said to be restricted if it is formed from one rewriting and one
communication rule. The APCol system is restricted if all the programs the agents
have are restricted.

At the beginning of the work of the APCol system (at the beginning of the
computation), there is an input string placed in the environment, more precisely,
the environment is given by a string w of objects which are different from e.
This string represents the initial state of the environment. Consequently, an initial
configuration of the automaton-like P colony is an (n+1)-tuple ¢ = (w; w1, ..., wy)
where w is the initial state of the environment and the other n components are
multisets of strings of objects, given in the form of strings, the initial states of the
agents.
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A configuration of an APCoL system IT is given by (w;wi,...,w,), where
|w;| =2, 1 <4< n, w; represents all the objects placed inside the i-th agent and
w € (O — {e})* is the string to be processed.

At each step of the computation every agent attempts to find one of its pro-
grams to use. If the number of applicable programs is higher than one, the agent
non-deterministically chooses one of them. At every step of computation, the max-
imal possible number of agents have to perform a program.

By applying programs, the automaton-like P colony passes from one config-
uration to another configuration. A sequence of configurations starting from the
initial configuration is called a computation. A configuration is halting if the AP-
Col system has no applicable program.

3 Accepting and generating mode of computation

The result of a computation depends on the mode in which the APCol system
works. In the case of accepting mode, a computation is called accepting if and only
if at least one agent is in final state and the string obtained is €. Hence, the string
w is accepted by the automaton-like P colony I7 if there exists a computation by IT

such that it starts in the initial configuration (w;ws,...,w,) and the computation
ends by halting in the configuration (&; w1, ..., w,), where at least one of w; € F;
for 1 <i<n.

The situation is different when the APCol system works in the generating mode.
A computation is called successful if only if it is halting and at least one agent is in
final state. The string wp is generated by II iff there exists computation starting
in an initial configuration (g;w1,...,w,) and the computation ends by halting in
the configuration (wg;ws,...,wy), where at least one of w; € F; for 1 <i <n.

We denote by APColy..R(n) (or APColy..(n)) the family of languages ac-
cepted by APCol system having at most n agents with restricted programs only
(or without this restriction). Similarly we denote by APColyen, R(n) the family of
languages generated by APCol systems having at most n agents with restricted
programs only.

APCol system II can generate or accept a set of numbers |L(IT)|.

By NAPCol,R(n),x € {acc,gen}, is denoted the family of sets of natural
numbers accepted or generated by APCol systems with at most n agents.

In [2] the authors proved that the family of languages accepted by jumping
finite automata (introduced in [18]) is properly included in the family of languages
accepted by APCol systems with one agent, and it is proved that any recursively
enumerable language can be obtained as a projection of a language accepted by
an automaton-like P colony with two agents.

Theorem 1. [2] The family of languages accepted by automaton-like P colonies
with one agent properly includes the family of languages accepted by jumping finite
automata.
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Theorem 2. [2] Any recursively enumerable language can be obtained as a pro-
jection of a language accepted by an automaton-like P colony with two agents.

4 The power of restricted generating APCol systems

In this section we compare the computational power of automaton-like P colonies
working in generating mode with one and two agents and that of register machine
and matrix grammars with erasing rules. We start with the comparison of APCol
systems and register machines.

Theorem 3. NAPCol,.,R(2) = NRE

Proof. Let us consider a register machine M with m registers. We construct an
APCol system IT = (O, e, A1, As) simulating the computations of register machine
M. To help the easier understanding of the simulation, we provide the components
together with some explanations of their role. Let

-0 ={GYu{l, il v oY Y, L, Ly, Ly LY Fy | L € HPU

U{r|1l<r<m}, B

- Ay = (ee, P1,{eG})

- Ay = (ee, Py, {ee})
At the beginning of the computation the first agent generates object Iy (the label
of starting instruction of M). Then it starts to simulate instruction labelled by
lp and it generates the label of the next instruction. The number stored at the
register r corresponds to the number of symbols 7 placed on the input string. The
set of programs is as follows:

(1) For initializing the simulation there is one program in P;:
Py
1: (e = lp;e+e)

The initial configuration of IT is (g; ee, ee). After the first step of computation
(only the program 1 is applicable) the system enters configuration (g;lpe, e€).
(2) For every ADD-instruction l; : (ADD(r),ls,13) we add to P; the next programs:
Py
2:{e—=rilieey, 3:le—arel),
4:(lh = ly;are), 5:(1 —lza<e)

When there is object /1 inside the agent, it generates one copy of 7, puts it to the en-
vironment and generates the label of the next instruction (it non-deterministically
chooses one of the last two programs 4 and 5)

configuration of I7 labels of applicable programs
Al AQ StI‘iIlg P1 PQ
1.| Le ee rT 2
2. re ee l1r® 3 —
3. aly ee =t |4 or5 —
4.0 lge ee rotlg




(3) For every SUB-instruction I :

sets P; and Ps:
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(SUB(r),l2,13), the next programs are added to

Pli PZ.
6:(l1 > l;ere) 12: (YT > lyse<» LY)  19: (e — Lise < 1)
7:<e%l{1;l{<—>e> 13: (LY = losls > €) 20: (If = L Ly < 1)
8 =W ey 14 (Y —wlgieer L)y 21: ({! - L L) < r)
ZIII—>ZIVeHe> 15:(Ly — Fy;l3 v e)  22: (r —e; LY < Ly)
10.<Z{V—>ll,e<—>e> 16: (e —l3;F3 < I3 23: (L1 »e;e > e)
1:(l >l heore)  17:(l3— Filsore 24 : (I{T — e; LY > F3)
18 : (Fi — l3;e <> €) 25: (F3 = e;e <> e)

At the first phase of the simulation of the SUB instruction the first agent generates
object 11, which is consumed by the second agent. The agent As generates symbol
L, and tries to consume one copy of symbol r. If there is any r, the agent sends
to the environment object L] and consumes L;. After this step the first agent
consumes L{ or Ly and rewrites it to Iy or I3.

Instruction Iy : (SUB(r),l2,13) is simulated by the following sequence of steps.

If the register r stores non-zero value: If the register r stores value zero :

labels of labels of
configuration of IT applicable configuration of IT applicable
programs programs
Ay Aq string |P; P A Ay string |P; P
1.| Le ee r® 6 — 1.| Le ee 6 —
2.| e ee T 7 — 2.| e ee 7 —
3. Ule  ee Ur 8 19 3. Ule  ee A 8 19
4. e Lyf iy |9 20 4. | e Ly 11 9 20
5./UVe LY Lir® |10 21 5. tIVe Lyt Ly 10 —
6. e Lir LLir*=t{11 22 6. e LT L, 1nmn -
7. 1e eLy Lir*~! (12 23 7.\ We Lyit Ly |13 —
8.|LL ee r*=1 |14 — 8. |lsLy Lyt 15 —
9. e ee Tl 9.| Fye Lyl I3 16 -
10.| I3 13 Lyl F3 17 24
11.| Fje Fze 3L} |18 25
12.| Ize  ee 3L,

(4) For halting instruction [, there are programs belonging to the sets P; and
P,. After that agent A; generates the object Iy, it writes the symbol G to the
tape. After consuming it, the second agent erases all the symbols from the tape
except these ones which correspond to the first register of the register machine.
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Pll PQZ

26: (e > Gilp <€) 2T: (e > e;e ) 28: (e = el & X)
29: (X = ee < )
X efa} U{L,, ;1 | 0<i<p, where |[H|=p}U{r|1<r<m}

The APCol system IT starts computation in the initial configuration with
empty tape. It starts the simulation of register machine M with instruction la-
belled by Iy and it proceeds the simulation according to the instructions of the
register machine. After M reaches the halting instruction, then agent Ay in the
APCol system II erases from the tape all the symbols except symbols 1 and then
APCol systems halts. So the length of the word placed on the tape in the last
configuration corresponds to the number stored in the first register of M at the
end of its computation.

We proved that the family of length sets of languages generated by restricted
APCol systems with two agents equals to NRE. If the APCol system is formed from
only one agent, there are some limitation for generated languages. In the following
we show the limits of the computational power of restricted APCol systems with
only one agent.

Theorem 4. NRMpg C NAPColyen, R(1)

Proof. Let us consider a partially blind register machine M with m registers. We
construct an APCol system IT = (O, e, A) simulating the computations of register
machine M with:

-0 ={GYU{l;, i v oy v 1, Ly, LY LY Fy | 1 € HYU

U{r|l<r<m}, B

- A = (ee, P,{eG})

The functioning of the constructed APCol system is very similar to the one
from the proof of previous theorem. At the beginning of the computation, the agent
generates the object Iy (the label of starting instruction of M). Then it starts to
simulate instruction labelled by Iy and generates the label of the next instruction.
The number stored at register r corresponds to the number of symbols r placed
on the input string. The set of programs is given as follows:

(1) For initializing the simulation there is one program in P;:
P:
1:{e—=lp;e<re)

The initial configuration of IT is (g;ee). After the first step of computation
(only the program 1 is applicable) the system enters configuration (g;lge).
(2) For every ADD-instruction l; : (ADD(r),l2,13) we add to P the next programs:

P

(e = rily & e,

2 (e = a;r e 1y),
4:(h = lya <€),

3:
5:(h = ls;a<e)
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When there is object /1 inside the agent, it generates one copy of , puts it to the en-
vironment and generates the label of the next instruction (it non-deterministically
chooses one of two programs 4 and 5)

configuration of IT |labels of applicable programs
A string P
1.| lie r¥ 2
2. re Iir® 3
3.0 aly retl 4or5
4.] lse r*tlg

(3) For every SUB-instruction [y : (SUB(r), l2,3), the next programs are added to
set P:
P

6:<ll—>l{;e<—>r>7:<r—>l2;l{<—>e>8:<r—>l3;l{<—>e>

The agent generates object I] even if there is at least one object r in the envi-
ronment. Then it rewrites r to Iy or l3. If there is no r in the environment, the
computation halts and the agent is in non-final state.
(4) For halting instruction [, there are programs belonging to the set P:

P

9:(lph=>Gevre)10: (e—e;G X) 11: (X > eee G)
Xe{a}u{ll |0<i<p, where |[H| =p}U{r|1<r<m}

After the object [;, appears inside agent A, it generates the symbol G. Using G,
the agent erases all the symbols from the tape except those ones which correspond
to the first register of the register machine.

The APCol system II starts computation in the initial configuration with
empty tape. It starts the simulation of the partially blind register machine M
with instruction labelled by /y and it proceeds the simulation according to the in-
structions of register machine. After M reaches the halting instruction, the agent
A in the APCol system II erases from the tape all the symbols except symbols 1
and then the APCol system halts. So the length of the word placed on the tape in
the last configuration corresponds to the number stored in the first register of M
at the end of its computation.

In the following we will examine the language generating power of restricted
APCoL systems.

Theorem 5. APColy.,R(1) € MAT

Proof. Let IT = (O, e, A) be a restricted APCol system with one agent. We con-
struct a matrix grammar G = (N, T, S, M) simulating IT as follows:

The symbol on the tape a # e is represented by € N and at the end of
simulation it can be rewritten to a € T. The content of the agent is represented
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by a non-terminal symbol € N, where a,b € O are objects placed inside the
agent. As in the previous cases, we provide only the necessary details.

The first applied matrix is (S - C ), representing the initial content of
the agent.

For every program of type (@ — b;c <> d), ¢,d # e there is a matrix in M:

(€= Clac] =[] [d] =)

For every program of type (a — b;e <> d), d # e there is a matrix in M:

(€= Clac]—[sp][d]—=¢)

For every program of type (a — b;e <> e) there is a matrix in M:

(¢~ ¢.[2z] - [5E)

For every program of the type (a — b;c > €), ¢ # e there is a matrix in M:

(€~ ¢.[38]  [22]©)

and a set of matrices generating [¢| somewhere in the string and deleting @:

Cc-ocm-mE©—e,

Cc—-ocm-EEO—e),

for all [=] such that z € T.

When the APCol system reaches the halting configuration, the matrix grammar
generates the corresponding string. The string is formed from only non-terminals.
The matrix grammar has to rewrite the rammed terminal symbols to terminals and
to delete non-terminal representing the content of the agent and the non-terminal
C'. The halting configuration can be presented by a string AB - w, where |w|, =1
for all @ € T such that a is present in this halting configuration and AB is content
of the agent such that ab € F. The set of such a representations is finite.

For each representation AB-ajas...ap, p < |T|, we add the following matrices
to the matrix grammar:

(C = [[4Blarasz ... ap))
([alag...aq} - [alag...aq],%aq),
({[ABJaraz .. .ag) = [[ABlasas ... ag-1]) 1 < q < p,

(1)) = [ABJa) o] = @), (1[ABJn] > [ [4B]])

([[aB]] = &,[aB] = ¢)

In this way all non-terminal symbols are rewritten to the corresponding terminals
and the non-terminal symbol corresponding to the contents of the agent is deleted.
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If the restricted APCol system IT generates a string w, then the matrix gram-
mar is able to generate it, too. If the APCol system halts and the agent is not in
final state, then the matrix grammar cannot generate a string consisting only of
terminals.

The last theorem is devoted to the relationship of MAT?, to restricted APCol
systems with two agents.

Theorem 6. APCol,.,,R(2) C MAT,

Proof. Let II = (O, e, A1, A3) be the restricted APCol system with two agents.
We construct a matrix grammar G = (N, T, S, M) simulating IT as follows:

The symbol on the tape a # e is represented by [o] € N and at the end of the
simulation it is rewritten to a € T. The contents of the agent A; is represented by
a non-terminal symbol € N, where a,b € O are the objects placed inside the
first agent. The contents of the agent A, is represented by a non-terminal symbol
€ N, where a,b € O are the objects placed inside the second agent.

We add label p; from the set of labels P to every program associated with both
agents. Let PN (N UT) = (. We add a set of new non-terminals {P; | p; € P} to
the set N . To control the derivation, we add non-terminals S, C', C'p and #.

The first applied matrix is (S — C[EE](£E)), representing the initial states of
the agents.

For every possible pair of states of agents, we add the following types of matrices
to M. Let ab be a state of the agent A;. In this state there are three applicable types
of programs: (a — ¢;b <> d) — (A), (a — ¢;b <> e) — (B). The first type includes
the case where b = e and (@ — c;e > d) — (A”).

We divide the execution of such a program into three phases. The first phase
is to choose two programs to apply. The corresponding matrices (forming the set
My C M) are of the form

(€~ C.[38] - [38], ) — (72). (1)

where v and z depend on the type of the used programs. If the program is of the
type (@ = ¢;b > d) or {(a = ¢;e <> d), v (or z) is d and it means that d will be
erased in following derivation steps. If the program is of the type (@ — ¢;b <> e),
v (or z) is U and it means that there is nothing to erase from string.

Because of maximal parallelism in the computation, an agent can be in a state
when there is no program to use. For this situation, we construct another set of
matrices. We choose from the set M; all matrices corresponding to the application
of a program of the type (a — ¢;b <> d) by the “sleeping agent”. We need not to
include matrices for the programs of type (@ — ¢;b <> €) because these programs
in state ab are always applicable. To the selected matrices of the type (1), we add
the following matrices:

(€~ Cp,[38] — (A58 ]P. G) — 572) @

for the first agent with no applicable program and
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(€~ Cp.[48) ~ [450)GD) » GTDP). Q

for the second agent with no applicable program and p; € P,resp. p; € P is the
label of program corresponding to triplet resp. to .

To check whether in the given state the agent has no applicable program, we
perform the following construction. Let P/ be the set of all applicable programs of
the type (A) in the state ab of the agent. Then matrices

(Cp = C, P, = e,dy — #,do — #,...,dp — #), (4)

are for checking the inactivity of the agent. di,...,dr € N,k = |P/| are non-
terminals corresponding to the objects that the agent needs to consume from the
string applying any program from P/. All the rules of the type dj — #,1 <1<k
are in the set F. If # appears in the string, then the derivation cannot end with
a terminal word.

The last phase of the simulation of execution of programs in the APCol system
IT corresponds to the change of the state of the agents and to the changes changes
in the string. We add to M the following matrices: For the pair of programs
({a = b d), (= uy © 2))

(¢—clsd=[l[d-ED-E~F) - 6)

For the pair of programs ({(a — ¢;e <> d), (x — u;y + 2))

(¢— ¢,[aBa] - [cp][d] = &, Gv2) ~ @2 [F ~ [v)) (6)

For the pair of programs ({a — ¢;b <> ), (x = u;y <> 2))

(¢ - ¢,[aB2] = [ep)®,GvD) » @2~ [1]) (7)

For the remaining program combinations we add another six types of matrices.
We also add the set of matrices for generating [¢| somewhere in the string and
for deleting @:

(R B nnJORDE
(C’—)C’,—>,@—>e), for allg,[=] such that z € T.

When the APCol system reaches the halting configuration, the matrix grammar
generates the corresponding string. The string is formed from non-terminals only.
The matrix grammar has to rewrite the rammed terminal symbols to terminals
and to delete the non-terminals representing the contents of the agents and non-
terminal C. The halting configuration can be represented by a string AB- XY -w,
where |w|, = 1 for all @ € T such that a is present in this halting configuration
and AB, XY are the contents of the agents such that ab € F; and zy € Fy. The
set of such a representations is finite.
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For each representation AB - XY - ajas...ap, p < |T|, we add the following
matrices to the matrix grammar:

(C = [[AB [ )aras . . ap))

([[AB1E 00z .. a)) = [AB) X 010z ... ag) [a] = ag)
([[aB[xY)aras...aq] = [[aB[XY)aras...ag-1]), 1 <q<p
(IEE ] — (A [a] = @), ([[FEEDa] — | )
([l = e [aB] 2 e,(0) — ¢)

In this way all non-terminal symbols are rewritten to the corresponding terminals
and the non-terminals corresponding to the contents of the agents are deleted.

If the restricted APCol system II generates the string w, then the matrix
grammar can generate it, too. If the APCol system halts and the agent is not in
final state, then the matrix grammar cannot generate a string consisting of only
terminals.

5 Conclusions

We developed the concept of automaton-like P colonies (APCol systems) - vari-
ants of P colonies that work on a string. We introduced the generating mode
of computation of these systems and compared the generative and computational
power of automaton-like P colonies and the generative power of context-free matrix
grammars with and without appearance checking and the computational power of
variants of register machines. The results of this paper can be summarized as
follows:

NRMPB g NAPCOlgenR(l)
APColye, R(1) € MAT?
NAPColy., R(2) = NRE
APColye, R(2) C MAT,

Remark 1. This work was partially supported by the European Regional Develop-
ment Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/-
02.0070), by SGS/24/2013 and by project OPVK no. CZ.1.07/2.2.00/28.0014.
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Summary. The set of NP-complete problems is split into weakly and strongly NP-
complete ones. The difference consists in the influence of the encoding scheme of the
input. In the case of weakly NP-complete problems, the intractability depends on the
encoding scheme, whereas in the case of strongly NP-complete problems the problem
is intractable even if all data are encoded in a unary way. The reference for strongly
NP-complete problems is the Satisfiability Problem (the SAT problem). In this paper,
we provide a uniform family of P systems with active membranes which solves SAT —
without polarizations, without dissolution, with division for elementary membranes and
with matter/antimatter annihilation. To the best of our knowledge, it is the first solution
to a strongly NP-complete problem in this P system model.

1 Introduction

In [7], a solution of the Subset Sum problem in the polynomial complexity class
of recognizer P systems with active membranes without polarizations, without
dissolution and with division for elementary membranes endowed with antimatter
and matter/antimatter annihilation rules was provided. In this way, antimatter
was shown to be a frontier of tractability in Membrane Computing, since the
P systems class without antimatter and matter/antimatter annihilation rules is
exactly the complexity class P (see [10]).
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The Subset Sum problem belongs to the so-called weakly NP-complete prob-
lems, since its intractability strongly depends on the fact that extremely large
input numbers are allowed [8]. The reason for this weakness is based on the en-
coding scheme of the input, since every integer in the input denoting a weight w;
should be encoded by a string of length only O(log w;).

On the other hand, strongly NP-complete problems are those which remain
NP-complete even if the data are encoded in a unary way. The best-known one
of these problems is the satisfiability problem (SAT for short). SAT was the first
problem shown to be NP-complete, as proved by Stephen Cook at the University of
Toronto in 1971 [5], and it has been widely used in Membrane Computing to prove
the ability of a P system model to solve NP-problems (e.g. [9, 11, 12, 14, 16, 17]).

In this paper, we provide a solution to the SAT problem in the polynomial com-
plexity class of recognizer P systems with active membranes without polarizations,
without dissolution and with division for elementary membranes endowed with an-
timatter and matter/antimatter annihilation rules. To the best of our knowledge,
this is the first time that a strongly NP-complete problem is solved in this P system
model. The details of the implementation can provide new tools for a better un-
derstanding of the problem of searching new frontiers of tractability in Membrane
Computing.

The paper is organized as follows. In Section 2, we present a general discussion
about the relationship of model ingredients used in different solutions for solving
computationally difficult problems by P systems with active membranes, and the
emerging computational power. In Section 3, we recall the P systems model used
in this paper. The main novelty is the use of antimatter and matter/antimatter
annihilation rules as well as their semantics. In Section 4, some basics on recognizer
P systems are recalled, and in Section 5 our solution for the SAT problem is
provided. The paper finishes with some conclusions and hints for future work.

2 Computation Theory Remarks

A configuration consists of symbols (which, in the general sense, may include
instances of objects, instances of membranes, or any other entities bearing in-
formation). A computation consists of transformations of symbols. Clearly, the
computations without cooperation of symbols are quite limited in power (e.g., it
is known that E0L-behavior with standard halting yields PsREG, and accepting
P systems are considerably more degenerate).

In this sense, interaction of symbols is a fundamental part of Membrane Com-
puting, or of Theoretical Computer Science in general. Various ways of interaction
of symbols have been studied in membrane computing. For the models with active
membranes, the most commonly studied ways are various rules changing polariza-
tions (or even sometimes labels), and membrane dissolution rules. One object may
engage such a rule, which would affect the context (polarization or label) of other
objects in the same membrane, thus affecting the behavior of the latter, e.g., in
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case of dissolution, such objects find themselves in the parent membrane, which
usually has a different label.

In the literature on P systems with active membranes, normally only the rules
with at most one object on the left side were studied. Since recently, the model with
matter/antimatter annihilation rules, e.g. see [1] and [2], attracted the attention
of researchers. Clearly, it provides a form of direct object-object interaction, albeit
in a rather restricted way (i.e., by erasing a pair of objects that are in a bijective
relation). Although it is known that non-cooperative P systems with antimatter
are already universal, studying their efficiency turned out to be an interesting line
of research. So how does matter/antimatter annihilation compare to other ways
of organizing interaction of objects?

First, all known solutions of NP-complete (or more difficult) problems in mem-
brane computing rely on the possibility of P systems to obtain exponential space
in polynomial time (note that object replication alone does not count as building
exponential space, since an exponential number can be written, e.g. in binary, in
polynomial space). Such possibility is provided by either of membrane division
rules, membrane separation rules, membrane creation rules (or string replication
rules, but string-objects lie outside of the scope of the current paper); in tissue P
systems, one could apply similar approach to cells instead of membranes.

Note that in case of cell-like P systems, membrane creation alone (unlike the
other types of rules mentioned above) makes it also possible to construct a hierar-
chy of membranes, let us refer to it as structured workspace, which is used to solve
PSPACE-complete problems. The structured workspace can be alternatively cre-
ated by elementary membrane division plus non-elementary membrane division
(plus membrane dissolution if we have no polarizations).

Besides creating workspace, to solve NP-complete problems, we need to be
able to effectively use that workspace, by making objects interact. For instance, it
is known that, even with membrane division, without polarizations and without
dissolution only problems in P may be solved. However, already with two polar-
izations (the smallest non-degenerate value) P systems can solve NP-complete
problems. What can be done without polarizations?

One solution is to use the power of switching the context by membrane dis-
solution. Coupled with non-elementary division, a suitable membrane structure
can be constructed so that the needed interactions can be performed solving NP-
complete or even PSPACE-complete problems, [4]. It is not difficult to realize
that elementary and non-elementary division rules can be replaced by membrane
creation rules, or elementary division rules can be replaced by separation rules.

Finally, an alternative way of interaction of objects considered in this paper
following [7] is matter/antimatter annihilation. What are the strengths and the
weaknesses of these three possibilities (the weaker is an ingredient, the stronger is
the result, while sometimes a weaker ingredient does not let us do what a stronger
one can)?

The power of matter/antimatter annihilation makes it possible to carry out
multiple simultaneous interactions (for example, the checking phase is constant-
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time instead of linear with respect to the number of clauses), and it is a direct
object-object interaction.

The power of polarizations is the possibility of mass action (not critical
for studying computational efficiency within PSPACE as all multiplicities are
bounded with respect to the problem size) by changing context.

The power of non-elementary division lets us build structured workspace (prob-
ably necessary for PSPACE if membrane creation is not used instead of membrane
division, unless PPP=PSPACE), see [13], and change non-local context (e.g., the
label of the parent membrane).

The power of dissolution provides mass action (not critical for studying compu-
tational efficiency within PSPACE as all multiplicities are bounded with respect
to the problem size) by changing context.

3 The P System Model

In this paper, we use the common rules of evolution, communication and division
of elementary membranes which are usual in P systems with active membranes.
The main novelty in the model is the use of antimatter and matter/antimatter
annihilation rules. The concept of antimatter was introduced in the framework of
Membrane Computing as a control tool for the flow of spikes in spiking neural
P systems [15, 18, 22, 23]. In this context, when one spike and one anti-spike
appear in the same neuron, the annihilation occurs and both, spike and anti-
spike, disappear. Antimatter and matter/antimatter annihilation rules later were
adapted to other contexts in Membrane Computing, and currently this an active
research area [1, 2, 7.

Inspired by physics, we consider the annihilation of two objects a and b from
the alphabet I in a membrane with label h, with the annihilation rule for a and
b written as [ ab — X\ |, . The meaning of the rule follows the idea of annihilation:
If a and b occur simultaneously in the same membrane, then both are consumed
(disappear) and nothing is produced (denoted by the empty string A). The object
b is called the antiparticle of a and it is usually written @ instead of b.

With respect to the semantics, let us recall that this rule must be applied as
many times as possible in each membrane, according to the maximal parallelism.
Following the intuition from physics, if @ and @ occur simultaneously in the same
membrane h and the annihilation rule [ a@ — A ], is defined, then it has to
be applied, regardless any other option. In this sense, any annihilation rule has
priority over all rules of the other types of rules (see [7]).

A P system with active membranes without polarizations, without dissolution
and with division of elementary membranes and with annihilation rules is a cell-
like P system with rules of the following kinds (following [3], we use subscript
0 for the rule type to represent a restriction that such rule does not depend on
polarization and is now allowed to change it; if all rules have this subscript, this
is equivalent to saying that the P system is without polarizations):
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(@) [@ = u], for h € H, a € I', u € I'*. This is an object evolution rule,
associated with a membrane labeled by h: an object a € I" belonging to that
membrane evolves to a string u € I'*.

(bo) a[ ], = [D], for h € H, a,b € I'. An object from the region immediately
outside a membrane labeled by A is taken into this membrane, possibly being
transformed into another object.

(co) [a], — 0] ], for h € H, a,b € I'. An object is sent out from a membrane
labeled by h to the region immediately outside, possibly being transformed
into another object.

(eo) [a], = [0],[c], for h € H, a,b,c € I'. An elementary membrane can be
divided into two membranes with the same label, possibly transforming one
original object into a different one in each of the new membranes.

(90) [a@a — X ], for h € H, a,@ € O. This is an annihilation rule, associated with a
membrane labeled by h: the pair of objects a,a@ € O belonging simultaneously
to this membrane disappears.

Let us remark that dissolution rules - type (dp) - and rules for non-elementary
division - type (fo) - are not considered in this model.

These rules are applied according to the following principles (with the special
restrictions for annihilation rules specified above):

e All the rules are applied in parallel and in a maximal manner. In one step,
one object of a membrane can be used by at most one rule (chosen in a non—
deterministic way), and each membrane can be the subject of at most one rule
of types (bo), (co) and (eo).

e If at the same time a membrane labeled with A is divided by a rule of type
(eo) triggered by some object a and there are other objects in this membrane
to which rules of type (ag) or (go) can be applied, then we suppose that first
the rules of type (go) and only then those of type (ag) are used, before finally
the division is executed. Of course, this process in total takes only one step.

e The rules associated with membranes labeled by h are used for all copies of
membranes with label h.

4 Recognizer P Systems

Recognizer P systems are a well-known model of P systems which are basic for the
study of complexity aspects in Membrane Computing. Next, we briefly recall some
basic ideas related to them. For a detailed description, for example, see [19, 20].
In recognizer P systems all computations halt; there are two distinguished objects
traditionally called yes and no (used to signal the result of the computation),
and exactly one of these objects is sent out to the environment (only) in the last
computation step.

Let us recall that a decision problem X is a pair (Ix,0x) where Ix is a language
over a finite alphabet (the elements are called instances) and Ox is a predicate
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(a total Boolean function) over Ix. Let X = (Ix,0x) be a decision problem. A
polynomial encoding of X is a pair (cod, s) of polynomial time computable functions
over Iy such that for each instance w € Iy, s(w) is a natural number representing
the size of the instance and cod(w) is a multiset representing an encoding of the
instance. Polynomial encodings are stable under polynomial time reductions.

Let R be a class of recognizer P systems with input membrane. A decision
problem X = (Ix,0x) is solvable in a uniform way and polynomial time by a
family IT = (II(n))nen of P systems from R — we denote this by X € PMCgr
— if the family IT is polynomially uniform by Turing machines, i.e., there exists a
polynomial encoding (cod, s) from Ix to I such that the family IT is polynomially
bounded with regard to (X, cod,s); this means that there exists a polynomial
function p such that for each u € Ix every computation of IT(s(u)) with input
cod(u) is halting and, moreover, it performs at most p(|u|) steps; the family IT is
sound and complete with regard to (X, cod, s).

5 Solving SAT

Propositional Satisfiability is the problem of determining, for a formula of the
propositional calculus, if there is an assignment of truth values to its variables for
which that formula evaluates to true. By SAT we mean the problem of proposi-
tional satisfiability for formulas in conjunctive normal form (CNF). In this section
we describe a family of P systems which solves it. As usual, we will address the
resolution via a brute force algorithm, which consists of the following stages (some
of the ideas for the design are taken from [6] and [21]):

e (Generation and Evaluation Stage: All possible assignments associated with
the formula are created and evaluated (in this paper we have subdivided this
group into Generation and Input processing groups of rules, which take place
in parallel).

e Checking Stage: In each membrane we check whether or not the formula eval-
uates to true for the assignment associated with it.

o Output Stage: The systems sends out the correct answer to the environment.

Let us consider the pair function (, ) defined by (n,m) = ((n +m)(n +m +
1)/2) 4+ n. This function is polynomial-time computable (it is primitive recursive
and bijective from N2 onto N). For any given formula in CNF, ¢ = C; A -+ A Cp,
with m clauses and n variables Var(p) = {z1,...,2,} we construct a P system
II({n,m)) solving it, where the multiset encoding of the problem to be the input
of IT({n,m)) (for the sake of simplicity, in the following we will omit m and n) is

cod(p) ={z;; : z; € Ci}U{yi;: —x; € Ci}.

For solving SAT by a uniform family of deterministic recognizer P systems
with active membranes, without polarizations, without non-elementary membrane
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division and without dissolution, yet with matter/antimatter annihilation rules,
we now construct the members of this family as follows:

II=(0,%H={0,1},u=1[] ], ], w1, w2, R,isn = 2), where

Y={z;,yi; |1 <i<m, 1<j<n},

O ={d,t, f,F,F,T, %n_,_5,Fn+5,Wn+6,yesn+6,non,+6,yes,n0}
Udzijyijl1<i<m, -1<j<n}U{Z;-1,7;,111<i<m}
U{e,G|1<i<m}uU{e;|1<j<n+3}

U {yes;,no;, F; |1 < j <n+5},

wy = nog yeso Fy, wa = d" ey,

and the rules of set R are given below, presented in groups Generation, Input
processing, Checking and Output, together with explanations how the rules in the
groups work.

Generation
Gl'[d}zﬁ[t]z[f]z;
G2. [t%yl,—l"'ym,—l ]2;
G3. [f‘)fl,—l"'fm,—l ]2;
G4. [Ti7,1—>)\]2,1§i§m;
Gb5. [?i’71—>)\]2,1§i§m.

In each step j, 1 < j < n, every elementary membrane is divided, one child
membrane corresponding with assigning true to variable j and the other one with
assigning false to it. One step later, proper objects are produced to annihilate the
input objects associated to variable j: in the true case, we introduce the antimatter
object for the negated variable, i.e., it will annihilate the corresponding negated
variable, and in the false case, we introduce the antimatter object for the variable
itself, i.e., it will annihilate the corresponding variable. Remaining barred (anti-
matter) objects not having been annihilated with the input objects, are erased in
the next step.

Input processing
I1. [mi’j%xi’j,l]2,1§i§m,0§j§n;
12, [9ij = ¥ij-1]y 1<i<m, 0< 5 <n;
13. [ Ti—1 Tj—1 — A ]2, 1< <m;
14. [yi,—l yi7—1 —))\]2, 1 <1< m;
15. [ziv_lﬁci]wlgigm;
16. [yi,,1—>ci]271§i§m.

Input objects associated with variable j decrement their second subscript during
7+ 1 steps to —1. The variables not representing the desired truth value are elim-
inated by the corresponding antimatter object generated by the rules G2 and G3,
whereas any of the input variables not annihilated then, shows that the associated
clause i is satisfied, which situation is represented by the introduction of the object
Ci.
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Checking
Cl. [ej—ejq1]y 1<i<nt 1
C2. [ €n+2 —> C1*** Cm€nt3 ]2;
C3[CZEZ—>)\]2,1§Z§WL,
C4 [ —=F,, 1<i<m;
C5. [ents — F o
C6. [FF—A],, 1<i<m
cr. [Fl,—1],T

It took n+2 steps to produce objects ¢; for every satisfied clause, possibly multiple
times. Starting from object e1, we have obtained the object e, 42 until then; from
this object e, 12, at step n + 2 one anti-object is produced for each clause. Any of
these clause anti-objects that is not annihilated, is transformed into F', showing
that the chosen variable assignment did not satisfy the corresponding clause. It
remains to notice that object T is sent to the skin (at step n + 4) if and only if an
object F did not get annihilated, i.e., no clause failed to be satisfied.

Output

Ol. [yes; —wyesji1 ], 1 <j<n+5;
02. [noj = noji1],, 1 <j<n+5;
03. [Fj = Fji1]y, 1<j<n+4;
Oo4. [T — n0n+5Fn+5 ]

05. [ nopss MOpts — A ]

O7. [ Fuys Frys = Xy
08. [ Frys = 65,6 ]
09. [yesni6 V€S, g — )\

[
[
[
[
[
06. [noni¢], = [ |,no;
[ F
[ B
[
[

010. yesn+6] _>[ ]1y€5

If no object T has been sent to the skin, then the initial no-object can count up
to n 4+ 6 and then sends out the negative answer no, while the initial F-object
counts up to n + 5, generates the antimatter object for the yes-object at stage
n + 6 and annihilates with the corresponding yes-object at stage n + 6. On the
other hand, if (at least one) object T arrives in the skin, then the no-object is
annihilated at stage n + 5 before it would be sent out in the next step, and the
F-object is annihilated before it could annihilate with the yes-object, so that the
positive answer yes can be sent out in step n + 6.

Finally, we notice that the solution is uniform, deterministic, and uses only
rules of types (ag), (co), (eg) as well as matter/antimatter annihilation rules. The
result is produced in n + 6 steps.

6 Conclusions

Although the ability of the model for solving NP problems was proved in [7], to the
best of our knowledge, this is the first solution to a strongly NP problem by using
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annihilation rules in Membrane Computing. Let us remark the important role of
the definition for recognizer P systems we have used in this paper. This definition
is quite restrictive, since only one object yes or no is sent to the environment in
any computation. In the literature one can find other definitions of recognizer P
systems and therefore other definitions of what it means to solve a problem in
the framework of Membrane Computing. The study of the complexity classes in
Membrane Computing deserves a deep revision under these new definitions.
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Summary. It is well known that polarizationless recognizer P systems with active mem-
branes, without dissolution, with division of elementary and non-elementary membranes,
with antimatter and matter/antimatter annihilation rules can solve all problems in NP
when the annihilation rules have (weak) priority over all the other rules. Until now, it was
an open problem whether these systems can still solve all NP problems if the priority of
the matter/antimatter annihilation rules is removed.

In this paper we provide a negative answer to this question: we prove that the class of
problems solvable by this model of P systems without priority of the matter/antimatter
annihilation rules is exactly P. To the best of our knowledge, this is the first paper in the
literature of P systems where the semantics of applying the rules constitutes a frontier
of tractability.

1 Introduction

The concept of antimatter was first introduced in the framework of membrane
computing as a control tool for the flow of spikes in spiking neural P systems
[6, 5, 10, 11]). In this context, when one spike and one anti-spike appear in the
same neuron, the annihilation occurs and both, spike and anti-spike, disappear.
The concept of antimatter and matter/antimatter annihilation rules later was
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adapted to other contexts in membrane computing, and currently it is an active
research area [1, 2, 3].

In [3], the authors show that antimatter and matter/antimatter annihilation
rules are a frontier of tractability. The starting point is a well-known result in the
complexity theory of membrane computing: the decision problems which can be
solved by polarizationless recognizer P systems with active membranes, without
dissolution and with division of elementary and non-elementary membranes (de-
noted by AMEd, tne) are exactly those in the complexity class P (see [4], Th. 2).
The main result in [3] is that systems from AM9d7+ne endowed with antimat-
ter and matter/antimatter annihilation rules (denoted by AMO,d7+ne, Lant) Can
solve all problems in NP and, hence, annihilation rules constitute a frontier of
tractability.

In this paper, we revisit the question of determining the computational
complexity of the problems which can be solved by P systems with the mat-
ter /antimatter annihilation rules not having priority over all the other rules. As
previously pointed out (see [3, 9]), the solution presented in [3] to an NP-complete
problem, namely Subset Sum, uses this weak priority of the annihilation rules, and
until now it has been an open problem if the model AM" d,+ne,+ant 15 still capable
to solve NP-complete problems without this priority. In this paper we show that
the answer to this open question is negative. We prove that the complexity class
of decision problems solvable by .AM(ld’Jrne’ Lant Systems is exactly equal to P if
the priority relation is removed from the semantics for the annihilation rules.

In this way, we propose a new kind of frontier of tractability. Up to now, these
frontiers were based on syntactic ingredients of the P systems, that is, the type of
rules and not the way in which such rules are applied. In this paper, the frontier
of tractability is based on the semantics of the P system, i.e., on the way the rules
are applied.

The paper is organised as follows. First, we recall some concepts about recog-
nizer P systems, antimatter, matter/antimatter annihilation rules and the model
A./\/l(id&m’ +ant- Next, we prove our main result of computational complexity. The
paper ends with some final considerations.

2 Recognizer P Systems

First of all, we recall the main notions related to recognizer P systems and com-
putational complexity in membrane computing. For a detailed description see, for
example, [7, 8].

The main syntactic ingredients of a cell-like P system are the membrane struc-
ture, the multisets, and the evolution rules. A membrane structure consists of sev-
eral membranes arranged hierarchically inside a main membrane, called the skin.
Each membrane identifies a region inside the system. When a membrane has no
membrane inside, it is called elementary. The objects are instances of symbols from
a finite alphabet, and multisets of objects are placed in the regions determined by
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the membrane structure. The objects can evolve according to given evolution rules,
associated with the regions.

The semantics of cell-like P systems is defined through a non-deterministic and
synchronous model. A configuration of a cell-like P system consists of a membrane
structure and a sequence of multisets of objects, each associated with one region
of the structure. At the beginning of the computation, the system is in the initial
configuration, which possibly comprises an input multiset. In each time step the
system transforms its current configuration into another configuration by applying
the evolution rules to the objects placed inside the regions of the system, in a
non-deterministic and maximally parallel manner (the precise semantics will be
described later). In this way, we get transitions from one configuration of the
system to the next one. A computation of the system is a (finite or infinite) sequence
of configurations such that each configuration —except the initial one— is obtained
from the previous one by a transition. A computation which reaches a configuration
where no more rules can be applied to the existing objects and membranes, is called
a halting computation. The result of a halting computation is usually defined by
the multiset associated with a specific output membrane (or the environment) in
the final configuration.

In this paper we deal with recognizer P systems, where all computations halt
and exactly one of the distinguished objects yes and no is sent to the environ-
ment, and only in the last step of any computation, in order to signal acceptance
or rejection, respectively. All recognizer P systems considered in this paper are
confluent, meaning that if computations start from the same initial configuration
then either all are accepting or all are rejecting.

Recognizer P systems can thus be used to recognize formal languages (equiva-
lently, solve decision problems). Let us recall that a decision problem X is a pair
(Ix,0x) where Ix is a language over a finite alphabet and fx is a predicate (a
total Boolean function) over Ix. The elements of Iy are called instances of the
problem, and those for which predicate x is true (respectively false) are called
positive (respectively negative) instances. A polynomial encoding of a decision prob-
lem X is a pair (cod, s) of functions over Ix, computable in polynomial time by a
deterministic Turing machine, such that for each instance u € Ix, s(u) is a natural
number representing the size of the instance and cod(u) is a multiset representing
an encoding of the instance. Polynomial encodings are stable under polynomial
time reductions.

2.1 The Class AM(ld,_,_ne

A P system with active membranes without polarizations, without dissolution and
with division of elementary and non-elementary membranes is a P system with I
as the alphabet of symbols, with H as the finite set of labels for membranes, and
where the rules are of the following forms:

(ap) [a = u]p for h € H,a € I',u € I'*. This is an object evolution rule, associated
with the membrane labelled with h. When the rule is applied, an object a € I’
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inside that membrane is rewritten into the multiset v € I'*. (Note that here
and in the rest of the paper, we write © € I'* to indicate both the multiset u
of objects from the alphabet I" and one of the possible strings which represent
it.)

al Jn = [b]n for h € H, a,b € I" (send-in rules). An object from the region
immediately outside a membrane labelled with h is sent into this membrane,
possibly transformed into another object.

[a]lp = b ]nfor h€ H, a,b € I' (send-out rules). An object is sent out from
the membrane labelled with h to the region immediately outside, possibly
transformed into another object.

[a]ln = [b]n [¢]n for h € H, a,b,c € ' (division rules for elementary mem-
branes). An elementary membrane can be divided into two membranes with
the same label; object a in the original membrane is rewritten to b (respectively
to ¢) in the first (respectively second) generated membrane.

([ Tral Jre Te = [ 101 lho [ 10 lne, for ho,hi, he € H (division rules for non-
elementary membranes). If the membrane with label hy contains other mem-
branes than those with labels hq, ho, then such membranes and their contents
are duplicated and placed in both new copies of the membrane hg; all mem-
branes and objects placed inside membranes h, ho, as well as the objects from
membrane hg placed outside membranes h; and hs, are reproduced in the new
copies of membrane hg.

These rules are applied according to the following principles:

All the rules are applied in parallel and in a maximal manner. In one step,
one object of a membrane can be used by at most one rule (chosen in a non—
deterministic way), and each membrane can be the subject of at most one rule
of types (bo), (co), (do), and (ep).

If at the same time a membrane labelled with h is divided by a rule of type
(do) or (eg) and there are objects in this membrane which evolve by means of
rules of type (ap), then we suppose that first the evolution rules of type (ag)
are used, and then the division is produced. Of course, this process takes only
one step.

The rules associated with membranes labelled with h are used for all copies of
this membrane with label h.

The class of all polarizationless recognizer P systems with active membranes,

without dissolution and with division of elementary and non-elementary mem-
branes is denoted by AMO,d,Jme.

2.2 Polynomial Complexity Classes in Recognizer P Systems

Let R be a class of recognizer P systems. A decision problem X = (Ix,0x) is
solvable in a semi-uniform way and in polynomial time by a family of recognizer P
systems IT = {IT(w) }ye1, of type R, denoted by X € PMCY%, if I is polynomially
uniform by Turing machines, that is, there exists a deterministic Turing machine
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working in polynomial time which constructs the system IT(w) from the instance
w € Ix, and II is polynomially bounded, that is, there exists a polynomial function
p(n) such that for each w € I'x, all computations of IT(w) halt in at most p(|w|)
steps. It is said that IT is sound with regard to X if for each instance of the problem
w € Ix, if there exists an accepting computation of IT(w) then 0x (w) is true, and
IT is complete with regard to X if for each instance of the problem w € [, if
Ox (w) is true then every computation of IT(w) is an accepting computation.

Let R be a class of recognizer P systems with a distinguished input membrane,
and let II = {II(n) },en be a family of recognizer P systems of type R. A decision
problem X = (Ix,fx) is solvable in a uniform way and polynomial time by II,
denoted by X € PMCy, if IT is polynomially uniform by Turing machines, i.e.,
there exists a polynomial encoding! (cod, s) such that the family IT is polynomially
bounded with regard to (X, cod, s); that is, there exists a polynomial function p(n)
such that for each u € Ix, every computation of I7(s(u)) with input cod(u) —
denoted by II(s(u)) + cod(u), for short— is halting and, moreover, it performs
at most p(|u|) steps, and the family IT is sound and complete with regard to
(X, cod, s). It is easy to see that the classes PMC%, and PMCy are closed under
polynomial-time reduction and complement. Moreover, since uniformity can be
considered to be a special case of semi-uniformity, the inclusion PMCr C PMC}L
holds.

According to these formal definitions, in [4] it is proved that the complexity
class of decision problems solved by uniform or semi-uniform families of polar-
izationless recognizer P systems with active membranes, without dissolution and
with division of elementary and non-elementary membranes, is exactly P. With
the standard notation, P = PMC qpp0 = PMC’ 0

7d,+ne.

2.3 Antimatter

Antimatter and matter/antimatter annihilation rules have been introduced in the
framework of cell-like P systems in [2]. Given two objects a and b from the alphabet
I' in a membrane labeled by h, an annihilation rule of a and b is written as
[ab — A]n. The meaning of the rule follows the physical idea of annihilation:
If @ and b occur simultaneously in the same region with label h, then both are
consumed (disappear) and nothing is produced (denoted by the empty string A).
Let us remark that both objects a and b are ordinary elements from I" and they can
trigger any other rule of type (ag) to (dp) described above, not only annihilation
rules. Nonetheless, in order to improve the readability, if b annihilates the object
a then b will be called the antiparticle of a and we will write @ instead of b.

! See [7, 8] for the details. Informally, given an instance u € Ix, s(u) is a natural number
which identifies a P system I7(s(u)) in the family. When fed with the multiset cod(u)
as input, this P system computes the value of predicate 0x (u). In uniform families of
P systems, the structure and definition of I7(s(u)) is the same for all instances u € Ix
having the same size s(u).
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With respect to the semantics, let us recall that the rule [a@ — A]p, provided
that annihilation rules have priority over all other rules, must be applied as many
times as possible in every membrane labeled by h, according to the maximal paral-
lelism, i.e., if m copies of a and n copies of @ occur simultaneously in a membrane
of label h, with m > n (respectively m < n), then the rule is applied n times
(respectively m times), n (respectively m) copies of a and @ are consumed and
m — n copies of a (respectively n — m copies of @) are not affected by this rule.

The key point in the use of the semantics of the annihilation rules in this paper
is related to the priority of this type of rules with respect to the other types. In [3],
according to the non-determinism, if an object a can trigger more than one rule of
types (ag) to (dp), then one rule among the applicable ones is non-deterministically
chosen. Nonetheless, if a and @ occur simultaneously in the same membrane h and
the annihilation rule [a@ — A];, is defined, then it is applied, regardless of other
options. In this sense, any annihilation rule had priority over the other types of
rules.

In this paper, we consider the case that the annihilation does not have priority
over the other rules. If an object a can trigger more than one rule, then one rule
among the applicable ones is non-deterministically chosen regardless of its type
(obviously, for annihilation rules object @ has also to occur in the same region).

Formally, a polarizationless P system with active membranes, without dis-
solution, with division of elementary and non-elementary membranes and with
annihilation rules is a construct of the form IT = (I', H, i, w1, . . . , Wy, R), where:

1. m > 1 is the initial degree of the system;

2. I' is the alphabet of objects;

3. H is a finite set of labels for membranes;

4. p is a membrane structure consisting of m membranes labelled in a one-to-one
way with elements of H;

5. wi,..., Wy, are strings over I', describing the multisets of objects placed in the
m regions of u;

6. R is a finite set of rules of the types (ap) to (eg) described in Section 2.1, and
the following type of rules:

(fo) [a@ — X]p for h € H, a,a € I' (annihilation rules). The pair of objects
a,a € I' occurring simultaneously inside membrane h disappears.

As stated above, in this paper rules of type (fo) have no priority over the other
types of rules. If at the same time a membrane labelled with h is divided by a
rule of type (do) or (eg) and there are objects in this membrane which are chosen
to be annihilated by means of rules of type (fy), then we assume that first the
annihilation is performed and then the division is produced. Of course, this process
takes only one step.

By following the standard notation, in [3] the authors denote the class of po-
larizationless recognizer P systems with active membranes without dissolution,
with division of elementary and non-elementary membranes, and with antimatter
and matter/antimatter annihilation rules by A/\/l(id, tne +ant- They do not include
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any symbol in the name to specify the priority, because they assume it as being
part of the model definition. In this paper, we will consider a class of P systems
which uses the same model of P systems AM" d,+ne,+ant> DUt without priority for
the application of the annihilation rules; in order to stress this difference, we will
denote this class of P systems by AMEMWMMNO%.

3 Removing Priority for Annihilation Rules

The main contribution of this paper is the proof of the following claim.

Theorem 1. PMC 4,0 =P

d,+ne,+ant_NoPri

Proof. It is well known (e.g., see [4]) that PMC 40 | = PMCZ\/\AO_d = P.
On the other hand, the following inclusion obviously holds: 7

)

PMC o, . C PMCpo

d,+ne,+ant-NoPri

therefore P € PMC 40 . Thus it only remains to prove that also

—d,+ne,+ant_-NoPri
the converse inclusion holds:

—d,+ne,+ant_-NoPri ~—

Since PMC;VVIOd+ = P, in order to prove (1) it suffices to prove that
PMC 00 C PMC’ 0

—d,+ne,+ant_NoPri Zd,fne

Hence, let X € PMC 40 be a decision problem. By definition,

—d,+ne,+ant_NoPri
there exist a polynomial encoding (cod, s) and a family of P systems {I1(7)};en in

AMO_d#ne’_s_anLNopri such that for each instance u of the problem X:

e all computations of IT(s(u)) + cod(u) halt;

e in all computations, the system sends out either one copy of the object yes
or one copy of the object no (but not both), and only in the last step of
computation.

Let us first provide an informal idea of the proof. Given an instance u € Iy,
we know that all computations of IT(s(u)) + cod(u) halt, and that they all answer

yes or all answer no. Let C = {Cy,...,C,} be one of these halting computations,
and let us assume that the answer is yes (the other case is analogous). Then there
exists an object a; and a rule r; = [aq |skin — ves []skin Which has been applied

in the last step of the computation. There are two possibilities: either object a;
is in the skin membrane since the beginning of the computation, or there exists a
rule 75 which must have produced it inside or moved it into the skin membrane.
Rule 75 is triggered by the occurrence of an object as in a membrane with label
ho. Obviously, 7o cannot be an annihilation rule, since no object is produced by
such rules, then rule ro must belong to types (ag) to (dp). Going back with the
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reasoning, either as appears in the membrane with label hs since the beginning of
the computation, or it is produced or moved there by the application of a rule r3,
and so on.

Finally we have a chain

(yes, env) P (a1, skin) &2 (az, h2) RS (ak, hi)

where £ < n and aj appears in a membrane with label Ay in the initial configura-
tion (possibly as part of the input multiset). The key idea here is two-folded. On
the one hand, annihilation rules do not produce any object; the objects that trigger
an annihilation rule disappear and nothing is produced. On the other hand, for any
halting configuration there must exist a finite sequence of rules (g, rg—1,...,72,71)
where 7y, is triggered by an object from the initial configuration, r; produces yes
and each r; produces an object that triggers r;_;. Therefore, none of rules r1, ..., 7%
is an annihilation rule.

To formally prove the result we have to check that the amount of resources for
finding the sequence of rules is polynomially bounded. With this aim, we will start
by considering the dependency graph associated with IT(s(u)) , but considering
only evolution, communication and division rules? (i.e., only rules which can pro-
duce new occurrences of objects). Namely, if R is the set of rules associated with
II(s(u)), we will consider the corresponding directed graph G = (V, E) defined as
follows, where the function f : H — H returns the label of the parent membrane:

V =VLUVR,

VL=A{(a,h) e I'xH: Juel™* (Ja > ulp€R)V
el ([ap > [|lnbeER) V
dbel'3n € H (h=f(M)ANa[]pw — [blw € R) V
Ib,c € I' ([a]p — [blnlc)n € R)},

VR={(bh)eI'xH: Jac I FJuel™* ([a—ulp € RAbEu)V
Sael 3 e H (h=f()Aalw — [Iwbe R) v
Jael (a[]p —[b]h €R)V
da,c € I" ([aln = [Blnlcn € R)},

E={((a,h),0,1)):Fuel* ([a—ulpe RAbEUANh=R)V

(laln = [Inb € R A h' = f(h)) v
(@[ Jw = Bl € R AR = f()) v
de e I' ([aln — [Blnlcln € RAR=1)}.

Such a dependency graph can be constructed by a Turing machine working in
polynomial time with respect to the instance size. Finally, let us consider the set

% See [4] for the details about polynomial resources.
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A ={(a,h) € I' x H : there exists a path (within the dependency graph)
from (a, h) to (yes,env)}.

It has also been proved that there exists a Turing machine that constructs Ay
in polynomial time; the proof uses the Reachability Problem in order to prove the
polynomially bounded construction.

From this construction we directly obtain that the set of rules used in the chain

(yes, env) <= (a1, skin) <2 (ag, hy) <2 - < (ax, hy)

described above can be found in polynomial time.

Finally, for the instance u € Ix, let us consider the P system I7(u') with only
one membrane with label s and only one object (ag, hy) in the initial configuration.
The set of rules is

o [(ai,hi) = (aj—1,hi—1)]s foreach i € {3,...,k — 1}
o [(as, ha) — (a1, skin)],
° [(al, skm)}s — yes Hs

The system II(u') can be built in polynomial time by a deterministic Turing
machine. A direct inspection of the rules shows that IT(u') € AM(id, +ne- The
behavior of the system is deterministic, and it computes the correct answer for the
instance u € Ix, sending out the object yes to the environment in the last step of
computation.

We finally observe that a similar construction can be carried out for the answer
no. Hence, we conclude that X € PMC? 0 =P. O

—d,+ne

Remark 1. Let us finally explain the idea how to even get a uniform family of
recognizer P systems from the family constructed in the preceding proof by making
some preprocessing: For any input of length n, we include all possible input symbols
in the dependency graph. If there is a path from some symbol to yes and from
another symbol to no, then by the definition of confluence, an input containing
both of these symbols simultaneously cannot be a valid input. So, once we get
an input of length n, we first check if it has symbols deriving yes and symbols
deriving no. This certainly is possible within polynomial time.

4 Conclusions

We have proved that by removing priority in polarizationless recognizer P systems
with antimatter and annihilation rules, without dissolution, and with division of
elementary and non-elementary membranes, we obtain a new characterization of
the standard complexity class P. Since it was previously known that the same
model of P systems can solve the NP-complete problem Subset Sum when the
priority of annihilation rules is used [3], we have shown that this priority plays an
important role in the computational power of these P systems.
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Indeed, the most interesting aspect of our result is the fact that if the rules
of these P systems are applied in different ways, a different computational power
is obtained. We have thus proved that the semantics of a model can be a useful
tool for studying problems of tractability. To the best of our knowledge, this is the
first time where it is proved that two models of P systems syntactically identical
correspond to two (presumably) different complexity classes simply because they
use different semantics.

This opens a new research area in the study of tractability in membrane com-
puting. Not only new ingredients or new models must be studied in order to find
new frontiers: classical results can also be revisited in order to explore the conse-
quences of considering alternative semantics.
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Summary. In this paper we investigate several variants of P automata having infinite
runs on finite inputs. By imposing specific conditions on the infinite evolution of the
systems, it is easy to find ways for going beyond Turing if we are watching the behavior
of the systems on infinite runs. As specific variants we introduce a new halting variant for
P automata which we call partial adult halting with the meaning that a specific predefined
part of the P automaton does not change any more from some moment on during the
infinite run. In a more general way, we can assign w-languages as observer languages
to the infinite runs of a P automaton. Specific variants of regular w-languages then, for
example, characterize the red-green P automata.

1 Introduction

Various possibilities how one can “go beyond Turing” are discussed in [11], for
example, the definitions and results for red-green Turing machines can be found
there. In [2] the notion of red-green automata for register machines with input
strings given on an input tape (often also called counter automata) was introduced
and the concept of red-green P automata for several specific models of membrane
systems was explained. Via red-green counter automata, the results for acceptance
and recognizability of finite strings by red-green Turing machines were carried over
to red-green P automata. The basic idea of red-green automata is to distinguish
between two different sets of states (red and green states) and to consider infinite
runs of the automaton on finite input objects (strings, multisets); allowed to change
between red and green states more than once, red-green automata can recognize
more than the recursively enumerable sets (of strings, multisets), i.e., in that way
we can “go beyond Turing”. In the area of P systems, first attempts to do that can



144 R. Freund, S. Ivanov, L. Staiger

be found in [4] and [18]. Computations with infinite words by P automata were
investigated in [9].

In this paper, we also consider infinite runs of P automata, but in a more
general way take into account the existence/non-existence of a recursive feature of
the current sequence of configurations. In that way, we obtain infinite sequences
over {0, 1} which we call “observer languages” where 1 indicates that the specific
feature is fulfilled by the current configuration and 0 indicates that this specific
feature is not fulfilled. The recognizing runs of red-green automata then correspond
with w-regular languages over {0,1} of a specific form ending with 1“ as observer
languages. A very special observer language is {0, 1}" {1}* which corresponds with
a very special acceptance condition for P automata which we call “partial adult
halting”. This special acceptance variant for P automata with infinite runs on
finite multisets is motivated by an observation we make for the evolution of time
lines described by P systems — at some moment, a specific part of the evolving
time lines, for example, the part describing time 0, shall not change any more.

2 Definitions

We assume the reader to be familiar with the underlying notions and concepts
from formal language theory, e.g., see [17], as well as from the area of P systems,
e.g., see [13, 14, 15]; we also refer the reader to [25] for actual news.

2.1 Prerequisites

The set of integers is denoted by Z, and the set of non-negative integers by N. Given
an alphabet V| a finite non-empty set of abstract symbols, the free monoid gener-
ated by V under the operation of concatenation is denoted by V*. The elements of
V* are called strings, the empty string is denoted by A, and V*\ {\} is denoted by
V*. For an arbitrary alphabet V = {aq,...,a,}, the number of occurrences of a
symbol a; in a string z is denoted by |z|4,, while the length of a string « is denoted
by |z] =3, cv [7a;- A (finite) multiset over a (finite) alphabet V' = {a1,...,an}

f) | gl

is a mapping f : V — N and can be represented by <a > or by

any string x for which (|z|a,, ..., |2|a,) = (f(a1),..., f(a,)). The families of reg-
ular and recursively enumerable string languages are denoted by REG and RE,
respectively.

2.2 Register Machines

A register machine is a tuple M = (m, B, ly,l, P), where m is the number of
registers, B is a set of labels, [p € B is the initial label, I, € B is the final
label, and P is the set of instructions bijectively labeled by elements of B. The
instructions of M can be of the following forms:
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o [i: (ADD (7‘) ,12,13), with [y € B \ {lh}, lo,l3€ B, 1<j<m.
Increases the value of register r by one, followed by a non-deterministic jump
to instruction Iy or 3. This instruction is usually called increment.

o [i: (SUB (7‘) 7[2,13)7 with [ € B \ {lh}, ls,l3€ B, 1 <j<m.
If the value of register r is zero then jump to instruction l3; otherwise, the
value of register r is decreased by one, followed by a jump to instruction [s.
The two cases of this instruction are usually called zero-test and decrement,
respectively.

o [, : HALT. Stops the execution of the register machine.

A configuration of a register machine is described by the contents (i.e., by the
number stored in the register) of each register and by the current label, which
indicates the next instruction to be executed. Computations start by executing
the instruction Iy of P, and terminate with reaching the HALT-instruction [j,.

In order to deal with strings, this basic model of register machines can be
extended by instructions for reading from an input tape and writing to an output
tape containing strings over an input alphabet T;, and an output alphabet T,,;,
respectively:

o [i: (read (a),lz)7 with [ € B \ {lh}, ly € B, a€T;,.

Reads the symbol a from the input tape and jumps to instruction ls.
o [y : (write(a),ls), with Iy € B\ {ln}, l2 € B, a € Tous.

Writes the symbol a on the output tape and jumps to instruction Is.

Such a register machine working on strings often is also called a counter au-
tomaton, and we write M = (m, B,lo, lp, P, Tin, Touz). If n0 output is written, we
omit Tyyy.

As is well known (e.g., see [12]), for any recursively enumerable set of natural
numbers there exists a register machine with (at most) three registers accepting
the numbers in this set. Counter automata, i.e., register machines with an input
tape, with two registers can simulate the computations of Turing machines and
thus characterize RE. All these results are obtained with deterministic register
machines, where the ADD-instructions are of the form I, : (ADD (r),ls), with
11€B\{lh}, loeB, 1<j5<m.

2.3 The Arithmetical Hierarchy

The Arithmetical Hierarchy (e.g., see [3]) is usually developed with the universal
(V) and existential (3) quantifiers restricted to the integers. Levels in the Arith-
metical Hierarchy are labeled as X, if they can be defined by expressions beginning
with a sequence of n alternating quantifiers starting with 3; levels are labeled as
II,, if they can be defined by such expressions of n alternating quantifiers that
start with V. Xy and Ily are defined as having no quantifiers and are equivalent.
)1 and II; only have the single quantifier 3 and V, respectively. We only need to
consider alternating pairs of the quantifiers V and 3 because two quantifiers of the
same type occurring together are equivalent to a single quantifier.
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3 Time Travel P Systems

In the most general case, we can think of P systems as devices manipulating mul-
tisets in a hierarchical membrane structure. The membranes can have labels and
polarizations both eventually changing with the application of rules. Membranes
may be divided, generated or deleted. Together with the division or the generation
of a new membrane the whole contents of another membrane may be copied. For
a general framework of P systems we refer to [7].

Usually, configurations in P systems (and other systems like Turing machines)
evolve step by step through time, see Figure 1.

Time configurations

0o 0o Oo Oo R
00 00 00 00
0 1 2 3 Tlme axis

Fig. 1. Standard time line evolution.

Without time travel option, we need only consider the evolution of the system
on one time axis from time n to time n + 1. The situation becomes more difficult
if we follow the idea of parallel worlds (time azes), which means that we have
another time dimension, described by the vertical evolution in Figure 2, i.e., the
time configurations at time n may be altered depending on future evolutions.

Time configurations

oo oo oo oo
00 00 00 00
Time axis -1 0 1 2
\U, Evolution
of time axes
Oo Oo Oo Oo
00 00 o0 00
-1 0 1 2

4

Fig. 2. Time lines evolution.
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l@ve

1 =

Fig. 3. Sending back an answer from time n to time 0.

For example, we can consider membrane systems with polarizations assigned
to the membranes. The usual polarization of the whole time configuration in the
normal case is +1, indicating that the evolution of the membrane(s) goes from time
configuration n to time configuration n+ 1. Now assume we allow polarization —1
indicating that the corresponding membrane evolves from time configuration n to
time configuration n — 1. Having kept trace of the number of computation steps,
e.g., by the multiplicity of a specific object a, we are able to send back information
— like the answer yes to a question we have posed at time 0 which then is sent back
to time configuration 0, i.e., to the time we have posed the question. In that way,
on a specific time line we can have answers to questions in zero time, see Figure 3.

During its travel through the time back, the time capsule with polarization —1
can be assumed not to be affected by the other membranes in the intermediate
time configurations. Obviously, this restriction can be alleviated for even more
complex systems.

Putting a new skin membrane around all the current time configurations of one
time axis, we again obtain a conventional evolution model, yet now with a vertical
time evolution as depicted in Figure 4. The only assumption we have to do for
making this variant possible is that at the beginning only a finite number of time
configurations exists (in fact, we usually will start with the time configuration at
time 0).

3.1 Partial Adult Halting

Going back to the time travel model of Figure 2 the question that arises is what
kind of results we may obtain and how. For example, given a specific input in time
configuration 0, we may request that from some moment on this time configuration
becomes stable, i.e., it is not changed any more (by time capsules arriving there).
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0:
1: .

Time levels
2:

Fig. 4. Conventional Evolution Model.

So the specific feature an external observer would see is that the time configu-
ration at time 0 is not changing any more starting from some specific time line at
level tly on, i.e., for all time levels tl > tly the time configuration at time 0 stays
stable.

With respect to the situation described in Figure 4 this means that one specific
part (one membrane and all its contents) does not change any more.

In that way we obtain a new variant of a halting condition in P systems which
we call partial adult halting:

adult halting:

means that the configuration does not change any more

partial:

we only look at some part of the configuration

3.2 Partial Adult Halting for Turing Machines

The idea of partial adult halting can also be applied to Turing machines:

Tape : | 20 Z1 <2 z3

Jd vVn>t tape(1) does not change

On tape cell 1 we want to obtain an “answer” whether the given input word
is accepted — 1 — or not — 0. We first put 0 there, and if the computation ends
saying “accept” we go back to tape cell 1 and write 1 there. Hence, with looking
to infinity in that way we obtain a “decider” for recursively enumerable languages.



How to Go Beyond Turing with P Automata

Generation of Complements of Recursively Enumerable Languages

Another example based on a similar idea as described above shows how to

generate the complement of an arbitrary recursively enumerable language L.

In this case, we use the model of a generating Turing machine with output
tape, and a string is said to be generated by the Turing machine M if from some

moment of the computation the output tape is not changed anymore.

on the output tape
and a copy of the string w
on the work tape of M;

on the work tape

start simulating
Deterministic Acceptor
(DTM) M’ for L;

only if M’ accepts w,
go back and forever
change output tape

generate an arbitrary string w

~N

Fig. 5. Generation of the complements of a recursively enumerable language L.

4 Variants of P Automata

DTM M’

Yes

No =
never change
output again

In this section, we shortly describe some variants of P automata.
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4.1 The Basic Model of P Automata with Antiport Rules

The basic model of P automata as introduced in [6] and in a similar way in [8]
is based on antiport rules, i.e., on rules of the form u/v, which means that the
multiset u goes out through the membrane and v comes in instead.

A P automaton (with antiport rules) is a construct

n=(0,T,pwy,...,wn,R1,...,Ry) where

O is the alphabet of objects;

T C O is the alphabet of terminal objects;

1 is the hierarchical membrane structure, with the membranes uniquely labeled
by the numbers from 1 to m;

w; € (O\T)*, 1 <i < m, is the initial multiset in membrane i

R;, 1 <i<m, is a finite set of antiport rules assigned to membrane .

Given a multiset of terminal symbols in the skin membrane 1, it is usually
accepted by IT via a halting computation.
Now consider the situation of partial adult halting for a P automaton

I = (O,T, [1[2 ]2]1,QO,TL,R1,R2)

which — with the input multiset in addition given in the skin membrane — simulates,
in a deterministic way, a register machine defining a recursively enumerable set L
of multisets (see [12]), by the rules in R;. If the computation stops in the final state
gh, i.e., the multiset is accepted, we add the rules ¢, /y and n/n in Ry. Ry only
contains the rule n/y. In case the multiset is accepted, n in the second membrane
is replaced by y, while the rule n/n in R; guarantees an infinite computation. In
case the input multiset is not accepted, the register machine already guarantees
an infinite computation by the simulating P automaton, too. Hence, as in the case
of the Turing machine with partial adult halting we get a “decider” for L, with
the result from some moment on to be found in membrane 2.

4.2 P Automata with Anti-Matter

In P automata with anti-matter, for each object a we may have its anti-matter
object a~. If an object a meets its anti-matter object a~, then these two objects
annihilate each other, which corresponds to the application of the cooperative
erasing rule aa~ — A. In the following, we shall only consider the variant where
these annihilation rules have weak priority over all other rules, which allows for a
deterministic simulation of deterministic register machines, see [1].

A P automaton with anti-matter is a construct
= (0,T,pwy,...,wn,R1,...,Ry) where

e O is the alphabet of objects;
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T C O is the alphabet of terminal objects;

 is the hierarchical membrane structure, with the membranes uniquely labeled

by the numbers from 1 to m;

w; € (O\T)", 1 <i < m, is the initial multiset in membrane i;

R;, 1 <i<m,is a finite set of

non-cooperative rules: are rules of the form v — v where v € O and v €
(O x {here,in,out})";

matter/anti-matter annihilation rules: are cooperative rules of the form
aa” — A, i.e., the matter object ¢ and its anti-matter object a~ anni-
hilate each other, and these annihilation rules have weak priority over all
other rules.

With the target indications {here, in, out} we can leave an object in the current
membrane (here), whereas with {in} we send it into an inner membrane and with
{out} we send it into the surrounding membrane region.

In a similar way as in the preceding subsection we may consider the situation
of partial adult halting for a P automaton

II =(0,T,1[2 |2]1,90,m, R1, R2)

where following the proof from [1] the register machine actions are simulated in
the skin membrane; if the input multiset is accepted, by using the rules ¢, —
(f, here)(n—,in), f — f, we obtain an infinite computation with the contents of
membrane 2 being empty indicating the acceptance, as by the annihilation rule
nn~ — A the original object n is annihilated.

5 Red-Green Automata

In general, a red-green automaton M is an automaton whose set of internal states Q)
is partitioned into two subsets, Qreq and Qgreen, and M operates without halting.
Qreq is called the set of “red states”, Qgreen the set of “green states”. Moreover,
we shall assume M to be deterministic, i.e., for each configuration there exists
exactly one transition to the next one.

5.1 Red-Green Turing Machines

Red-green Turing machines, see [11], can be seen as a type of w-Turing machines
on finite inputs with a recognition criterion based on some property of the set(s)
of states visited (in)finitely often, in the tradition of w-automata (see [9]), i.e., we
call an infinite run of the Turing machine M on input w recognizing if and only if

e 1o red state is visited infinitely often and
e some green states (one or more) are visited infinitely often.
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A set of strings L C X* is said to be accepted by M if and only if the following
two conditions are satisfied:

(a) L ={w |w is recognized by M}.
(b) For every string w ¢ L, the computation of M on input w eventually stabilizes
in red; in this case w is said to be rejected.

The phrase “mind change” is used in the sense of changing the color, i.e.,
changing from red to green or vice versa.
The following results were established in [11]:

Theorem 1. A set of strings L is recognized by a red-green Turing machine with
one mind change if and only if L € X1, i.e., if L is recursively enumerable.

Theorem 2. (Computational power of red-green Turing machines)

(a) Red-green Turing machines recognize exactly the Xs-sets of the Arithmetical
Hierarchy.

(b) Red-green Turing machines accept exactly those sets which simultaneously are
Yo and Ily-sets of the Arithmetical Hierarchy.

5.2 Red—Green Register Machines

In [2], similar results as for red-green Turing machines were shown for red-green
counter automata and register machines, respectively.

As it is well-known folklore, e.g., see [12], the computations of a Turing machine
can be simulated by a counter automaton with (only two) counters; in this paper,
we will rather speak of a register machine with (two) registers and with string
input. As for red-green Turing machines, we can also color the “states”, i.e., the
labels, of a register machine M = (m, B, lo,l, P,T;,) by the two colors red and
green, i.e., partition its set of labels B into two disjoint sets B4 (red “states”) and
Bgreen (green “states”), and we then write RM = (m, B, Bred, Bgreens lo, Py Tin),
as we can omit the halting label .

The following two lemmas were proved in [2]; the step from red-green Turing
machines to red-green register machines is important for the succeeding sections,
as usually register machines are simulated when proving a model of P systems to
be computationally complete. Therefore, in the following we always have in mind
this specific relation between red-green Turing machines and red-green register
machines when investigating the infinite behavior of specific models of P automata,
as we will only have to argue how red-green register machines can be simulated.

Lemma 1. The computations of a red-green Turing machine T M can be simulated
by a red-green register machine RM with two registers and with string input in such
a way that during the simulation of a transition of T M leading from a state p with
color ¢ to a state p’ with color ' the simulating register machine uses instructions
with labels (“states”) of color ¢ and only in the last step of the simulation changes
to a label (“state”) of color ¢'.
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Lemma 2. The computations of a red-green register machine RM with an ar-
bitrary number of registers and with string input can be simulated by a red-green
Turing machine TM in such a way that during the simulation of a computation
step of RM leading from an instruction with label (“state”) p with color ¢ to an in-
struction with label (“state”) p' with color ¢’ the simulating Turing machine stays
in states of color ¢ and only in the last step of the simulation changes to a state
of color c.

As an immediate consequence, the preceding two lemmas yield the charac-
terization of Xy and IT» by red-green register machines as Theorem 2 does for
red-green Turing machines, see [2]:

Theorem 3. (Computational power of red-green register machines)

(i) A set of strings L is recognized by a red-green register machine with one mind
change if and only if L € X1, i.e., if L is recursively enumerable.

(i) Red-green register machines recognize exactly the Xo-sets of the Arithmetical
Hierarchy.

(iii) Red-green register machines accept exactly those sets which simultaneously
are Xo- and Ily-sets of the Arithmetical Hierarchy.

5.3 Red-Green P Automata

As it was shown in [2], P automata with antiport rules and with anti-matter can
simulate the infinite computations of any red-green register machine, even with a
clearly specified finite set of “states” having the same color as the corresponding
labels (“states”) of the instructions of the red-green register machine.

Hence, as a consequence, similar results as for red-green Turing machines also
hold for red-green P automata with antiport rules and with anti-matter. From the
results shown in [2] we therefore infer:

Theorem 4. (Computational power of red-green P automata)

(i) A set of multisets L is recognized by a red-green P automaton (with antiport
rules, with anti-matter) with one mind change if and only if L is recursively
enumerable.

(ii) Red-green P automata (with antiport rules, with anti-matter) recognize exactly
the Xo-sets.

(iii) Red-green P automata (with antiport rules, with anti-matter) accept exactly
those sets which simultaneously are Xo- and Ils-sets of the Arithmetical Hier-
archy.
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6 Observer Languages

An observer language for infinite computations is an w-language over {0, 1} where
1 indicates that a specific feature of the current configuration in the infinite com-
putation sequence is fulfilled and 0 indicates that this specific feature of the current
configuration is not fulfilled.

6.1 Expressing Partial Adult Halting as Observer Language

If we define the specific feature to be that no rule is applicable in the specified
“observed” membrane, then acceptance by partial adult halting can be described
by the (regular) w-language {0, 1}*{1}*.

6.2 Expressing Recognition by Red-Green P Automata Using
Observer Languages

As observer languages for infinite computations in red-green P automata we again
use w-languages over {0,1} where now 1 indicates that we will have to apply a
green multiset of rules to the current configuration in the infinite computation
sequence and 0 indicates that we will have to apply a red multiset of rules to the
current configuration.

So for recognizing a language from RE we use the the w-language {0} {1},
for a language from co-RE we use the the w-language {0}{1}*.

The corresponding regular w-languages for the recognition by red-green au-
tomata (Turing machines, P automata) with multiple mind-changes are described
as follows:

exactly 2k + 1 mind-changes, k& > 0: {O}*({l}*{O}*)k{l}“
at most 2k 4+ 1 mind-changes, k& > 0: Uf:O{O}+ ({1}+{O}+)i{1}°’

The upper bound for languages recognized by red-green P automata (with
antiport rules, with anti-matter) with k¥ mind-changes for some k > 0 is X5, see
[2].

These results will be refined in the next section.

7 Recognition Using Regular Observer Languages

In this section we investigate which languages are recognized by red-green P
automata using observer languages defined by finite automata. This class of w-
languages defined by finite automata is well-understood and has widely been in-
vestigated (see [16, 21, 23, 24]). We follow the line of [20] where for Turing machines
infinite computations accepting finite words were investigated in detail (see also
[5]). In this paper a word w was accepted by a Turing machine when the sequence
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(si)ien of states the machine runs through during its accepting process fulfills
certain simple conditions known from the acceptance of w-languages. This can
be seen as w to be accepted if the observed state sequence (s;);en belongs to a
certain (regular) observer language. We have to point out that usually the notion
acceptance is used here instead of the notion recognition as used by van Leeuwen
and Wiedermann for the red-green Turing machines.

7.1 Observer Languages of the form W - {1}* with W € REG

The observer languages in Section 6 all were of the form W-{1}* where W C {0,1}*
is a regular language. In this section we investigate which languages can be ac-
cepted by red-green P automata using observer languages of this form. Here we
follow the line of the papers [20] and [11] where the influence of regular observer
languages on the acceptance and recognition, respectively, behavior of Turing ma-
chines was investigated.

To this end we use the following theorem which follows from a general classifi-
cation of regular w-languages (see [19, 22] and also the survey [21]).

Theorem 5. If F C {0, 1}* is a regular w-language, then

1. F is in the Boolean closure of X5, and
2.if F € Xy N1ly, then F is in the Boolean closure of Xy .

Since every regular F' C {0,1}*-{1}* as a countable set is in X, we immediately
obtain the following.

Corollary 1. If W C {0,1}* is a regular language then W - {1}* satisfies one of
the following conditions:

1. W- {l}w S EQ\HQ, or
2. W - {1}¥ is a Boolean combination of w-languages in X .

Remark 1. In the second case we can obtain an even sharper result:

k
Wy = Wi {0, 13\ Vi - {0,1}*)
for suitable k € N and regular languages W;, V; C {0,1}*, 0 <4 < k. In particular,

this is true for the w-languages representing a bounded number of mind-changes
from Subsection 6.2:

U {0} ({1} {o}) {1} =
Uo ({03 ({11 {01) {1} - {0, 11\ {01+ ({1} {03 ) {131+ {0} - {0,1}*)

From Corollary 1 we immediately infer:
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Theorem 6. Let L be recognized by a red-green P automaton (with antiport rules,
with anti-matter) using an observer language W - {1}¥ where W C {0,1}* is
reqular.

1. Then L € X5.
2. IfW-{1}¥ = U?:o(Fi \ E;) is a Boolean combination of w-languages F;, E; €
1, 0<i <k, then L =¥ (K;\ L;) where K;,L; € RE, 0 <i < k.

The converse of Theorem 6 is also true. In particular, it shows that we can
restrict ourselves to the observer languages of Subsections 6.1 and 6.2.

Theorem 7. Let L € X5.

1. Then L is recognized by a red-green P automaton II using the observer language
{0,1}* - {1}¥, i.e., L is accepted by II by partial adult halting.

2. Let L = Uf:o(Ki \ L;) where K;,L; € RE, 0 < i < k. Then there exists a
red-green P automaton which recognizes L using an observer language with a
bounded number of mind-changes.

7.2 Regular Observer Languages

Admitting all regular w-languages as observer languages extends the range of rec-
ognizable languages. In view of Theorem 5 we obtain a result extending what was
shown in Theorem 6.

Theorem 8. Let L be recognized by a red-green P automaton using an observer
language F C {0,1}*. Then

1. if F is a Boolean combination of w-languages F;, E; € Yo, 0 < i < k, then
L= (K \ L;) where K;,L; € £5, 0 <i <k,

2.if F € Xy, then L € X,

3. if F € Iy, then L € II5, and

4. if F is reqular and F € Xy NI, then L = Uf:o(Ki \ L;) where K;,L; € RE,
0<i<k.

The converse of Theorem 8 is also true:

Theorem 9. Let L be a Boolean combination of languages in X5. Then L is recog-
nized by a red-green P automaton using a regular observer language F C {0,1}*.
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Conclusion

this paper we have investigated the computational power of P automata work-

ing with infinite runs on finite input multisets. With regular observer languages
W - {1}*¥, W € REG, we obtain the Xy-sets, the same as with red-green P au-
tomata. Moreover, the X5-sets are already obtained by the special observer lan-
guage {0,1}* - {1}*, which corresponds to the special acceptance condition of
partial adult halting.
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Summary. The use of negative information provides a new tool for exploring the limits
of P systems as computational devices. In this paper we prove that the combination of
antimatter and annihilation rules (based on the annihilation of physical particles and
antiparticles) and membrane creation (based on autopoiesis) provides a P system model
able to solve PSPACE-complete problems. Namely, we provide a uniform family of
P system in such P system model which solves the satisfiability problem for quantified
Boolean formulas (QSAT). In the second part of the paper, we prove that all the decision
problems which can be solved with this P system model belong to the complexity class
PSPACE, so this P system model characterises PSPACE.

1 Introduction

The use of negative information provides a new challenge in the development of
theoretical aspects in Membrane Computing (see [20]). Such negative information
can be considered by extending the definition of a multiset f on a set X from
f:X —>Nto f:X — Z (ie., admitting negative multiplicity of the elements
of the multiset [4, 13]) or even considering negative time and the possibility of
travelling in time [7].

One of the most extended uses of negative information in Membrane Comput-
ing is considering anti-spikes in the framework of Spiking Neural P systems. In
such model when one spike and one anti-spike appear in the same neuron, the
annihilation occurs and both, spike and anti-spike, disappear [15, 17, 22, 24]. The
use of antimatter, as an extension of the concept of anti-spikes, is being explored
in other P system models [1, 2, 5].
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Recently, it has been proved that antimatter and annihilation rules are a fron-
tier of tractability in Membrane Computing [5]. The starting point for the study
was a well-known result in the complexity theory of Membrane Computing: P sys-
tems with active membranes without polarizations, without dissolution and with
division of elementary and non-elementary membranes (denoted by AM , tne)
can solve exactly problems in the complexity class P (see [8], Th. 2). The main
result in [5] is that A./\/l(im tne endowed with antimatter and annihilation rules

(denoted by AM" d+ne,+ant) can solve NP-complete problems.

In a certain sense, such results show that if the number of membranes of the
P system can be increased by membrane division, then endowing the model with
dissolution or annihilation rules, then the model is capable to solve NP-complete
problems.

Similar results hold in the case of P systems with membrane creation. In [9] it is
shown that these P systems when dissolution rules are allowed can solve PSPACE-
complete problems (i.e, they can solve all the decision problems which can be solved
by Turing machines, deterministic or non-deterministic, in polynomial space). In
this paper, we show that using annihilation rules instead of dissolution rules, P
systems with membrane creation are not only able to solve NP-complete problems,
but PSPACE-complete problems too. By taking [23] as starting point, in the
second part of the paper, we prove that all the decision problems which can be
solved with this P system model belong to the complexity class PSPACE, so this
P system model characterises PSPACE.

The paper is organized as follows. In the next section, the notion of P systems
with membrane creation and annihilation rules is introduced. Then recognizer P
systems are briefly described. In Section 4 we show that the well known QSAT
problem (i.e., the problem of deciding if a fully quantified Boolean formula is
true or not) can be solved in linear time by P systems with membrane creation,
with annihilation rules and without dissolution rules. In Section 5, we prove that
PSPACE is an upper bound for the set of decision problems which can be solved
with this model. Finally, some conclusions are given in the last section.

2 The P System Model

The basis of the model is two types of rules which are not so common on complexity
studies in Membrane Computing. The first type, rules of membrane creation, is
based on the biological process of autopoiesis [14]. It creates a membrane from a
single object in a similar way to the creation of a vesicle in a cell by a metabolite.
This type of rule was first considered in [12, 16] and it has been proved that
P systems with membrane creation and dissolution rules can solve NP-complete
problems (see [10, 11]) or even PSPACE-complete problems (see [9]).

The idea of using antimatter as a generalization of the anti-spikes used in
Spiking Neural P Systems was firstly proposed in [21]. Based on the physical
inspiration of particles and antiparticles, if an object a and its opposite one @
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appears simultaneously in the same membrane, they are annihilated by application
of the corresponding rule aa — X. As pointed above, several authors have started
to explore the possibilities of using antimatter in Membrane Computing [1, 2, 5].

Formally, a P system with membrane creation and annihilation rules is a con-

struct of the form IT = (O, H, pi, w1, . .., Wn, R), where:

1.

2.

m > 1 is the initial degree of the system; O is the alphabet of objects and H
is a finite set of labels for membranes;

w is a membrane structure consisting of m membranes labelled (not necessarily
in a one-to-one manner) with elements of H and wy,...,w,, are strings over
O, describing the multisets of objects placed in the m regions of u;

. R is a finite set of rules, of the following forms:

(a) [a — v]p where h € H, a € O, and v is a string over O describing a multiset
of objects. These are object evolution rules associated with membranes and
depending only on the label of the membrane.

(b) a[]n — [b]n where h € H, a,b € O. These are send-in communication rules.
An object is introduced in the membrane possibly modified.

(¢) [a]ln — []nb where h € H, a,b € O. These are send-out communication
rules. An object is sent out of the membrane possibly modified.

(d) [@ — [v]py]n, Where hy,he € H, a € O, and v is a string over O describing
a multiset of objects. These are creation rules. In reaction with an object,
a new membrane is created. This new membrane is placed inside of the
membrane of the object which triggers the rule and has associated an
initial multiset and a label.

(e) [a@ — A]p for h € H, a,a € O. This is an annihilation rule, associated
with a membrane labelled by h: the pair of objects a,a € O belonging
simultaneously to this membrane disappears.

Rules are applied according to the following principles:

Rules of type (a) - (d) are applied in parallel and in a maximal manner. In
one step, one object of a membrane can be used by only one rule (chosen in
a non—deterministic way), but any object which can evolve by one rule of any
form, must evolve.

If an object can trigger two or more rules, one of such rules is non-
deterministically chosen, except for annihilation rules (type (e)). Any anni-
hilation rule has priority over all rules of the other types of rules. This fact
has a clear physical inspiration. If a particle and its antiparticle meet, they do
disappear and no other option is possible. This semantics was also used in [5].
All the elements which are not involved in any of the operations to be applied
remain unchanged.

The rules associated with the label h are used for all membranes with this
label, irrespective of whether or not the membrane is an initial one or it was
obtained by creation.

Several rules can be applied to different objects in the same membrane simul-
taneously.
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Following the standard notations, the class of these P systems is denoted by
A/\/l(ld7 +metantPri> Where —d indicates that dissolution rules are not used, +mc
indicates the use of membrane creation and we add +antPri to denote the use of
antimatter and annihilation rules with priority.

3 Recognizer P Systems

We recall the main notions related to recognizer P systems and complexity in
Membrane Computing. For a detailed description see, e.g., [18, 19].

A decision problem X is a pair (Ix,6x) such that I'x is a language over a finite
alphabet (whose elements are called instances) and 0x is a total Boolean function
over Ix. A P system with input is a tuple (II, X, i;7), where IT is a P system, with
working alphabet I, with p membranes labelled by 1,...,p, and initial multisets
M, ..., M, associated with them; X' is an (input) alphabet strictly contained
in I'; the initial multisets are over I' — X; and ;7 is the label of a distinguished
(input) membrane. Let (IT, X,ir) be a P system with input, I" be the working
alphabet of II, p its membrane structure, and My, ..., M, the initial multisets of
II. Let m be a multiset over X. The initial configuration of (II, X, i) with input
mis (u, M1, ..., M, Um, ..., M,). In the case of P systems with input and with
external output, the above concepts are introduced in a similar way.

A recognizer P system is a P system with input and with external output such
that:

The working alphabet contains two distinguished elements yes, no.

All its computations halt.

If C is a computation of I, then either the object yes or the object no (but
not both) must have been released into the environment, and only in the last
step of the computation. We say that C is an accepting computation (respec-
tively, rejecting computation) if the object yes (respectively, no) appears in the
external environment associated to the corresponding halting configuration of

C.

A decision problem X can be solved in a polynomially uniform way by a family
IT = {II(n)}nen of P systems of type F if the following holds:

e There is a deterministic Turing machine M such that, for every n € N, starting
M with the unary representation of n on its input tape, it constructs the P
system IT(n) in polynomial time in n.

e There is a deterministic Turing machine N that started with an instance I € I'x
with size n on its input tape, it computes a multiset w; (called the encoding
of I) over the input alphabet of IT7(n) in polynomial time in n.

e For every instance I € Ix with size n, starting II(n) with w; in its input
membrane, every computation of I7(n) halts and sends out to the environment
yes if and only if I is a positive instance of X.
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We denote by PMC £ the set of problems decidable in polynomial time using
a polynomially uniform family of P systems of type F.

4 Solving QSAT

In this section, we show that QSAT can be solved in linear time by a polynomially
uniform family of recognizer P systems of type AM()—d,+mc,+ant Pri-

The QSAT problem is the following one. Given a Boolean formula in conjunc-
tive normal form over the propositional variables {x1,...,z,}. Then the fully (ex-
istentially) quantified Boolean formula associated to ¢ is ¢* = Jz1Ve ... Qnz,p,
(where Q,, is 3 if n is odd, and it is V, otherwise). Now, the task is to decide if
p* is true, i.e., to decide if there exists a truth assignment I of the variables
{z; | 1 < i < n,iisodd} such that each extension I* of I to the variables
{z; |1 <i<n,iiseven} satisfies ¢.

Next, we construct a recognizer P system of type A/\/l(idﬂrmcyﬂmt pri b0 solve
QSAT. The construction is a variant of the one occurring in [9] where it is shown
that QSAT can be solved in linear time using a family of P systems with membrane
creation using dissolution rules. The main difference between the construction in
[9] and the one in this paper is that instead of dissolution rules we use annihilation
rules to control the computations.

Similarly as in [9], the work of our P systems can be divided into three stages:

e Generation and evaluation stage: Using membrane creation we construct a bi-
nary complete tree where the leaves encode all possible truth assignments asso-
ciated with the formula. The values of the formula corresponding to these truth
assignments are obtained in the corresponding leaves. Moreover, the nodes at
even (resp. odd) levels from the root are codified by OR gates (respectively,
AND gates).

e Checking stage: In this stage the membrane structure corresponds to a Boolean
circuit with gates AND and OR. We compute the values of the gates starting
with the truth values computed at the leaves towards the root of the circuit
which is the output gate.

e Output stage: The system sends out to the environment the answer of the
system computed in the previous stages.

The evaluation stage will be the same as in [9], since there no dissolution rules
are applied. In the other two stages we will use annihilation rules instead of using
membrane dissolution.

Let ¢ = Cy A -+ A Cyy, be a Boolean formula in conjunctive normal form over
n variables. Then ¢ can be encoded as a multiset over the alphabet {z; ;,v; ; |
1 <i<m,1<j<n}, where x;; (resp. y; ;) represents the fact that ; (resp.
—x;) occurs in C; (notice that since barred objects usually denote antimatters, we
cannot use Z; ; to represent negated variables). Let us denote the above encoding
of ¢ by cod(y). Let us moreover choose an appropriate pairing function (, ) from
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N x N to N. We construct a P system II({n,m)) processing the fully quantified
formula ¢* associated with ¢, when cod(¢p) is supplied in its input membrane. The
family presented here is:

I = {(II((n,m)), 2({n,m)),i((n,m))) | (n,m) € N*},

where the input alphabet is X ((n,m)) = {z;;,yi; | 1 <i <m,1 < j < n}, the
input membrane is i({(n, m)) =< t,V >, and the P system IT((n,m)) = (I'({n, m}),
H((n,m)), p, ws, W<y v>, R((n,m))) is defined as follows:

e Working alphabet:

I'((n,m)) = 2({n,m))
U{zjc|je{0,...n},ce {A V}}
U{zjecir 17 €{0,....,n—=1},ce {A,V}le{t, f}}
U{Zi s Yigs TigasYiga | 5 €{L...,nbi e {1,....om} L€ {t, f}}
U{ri,Ti,miemip | i€ {1,...,m}}
U{pi, @, siy ti, ui,v; | 0 € {1,2,3}} U{qy, Ps, t2, 53, Uz, V3 }
Ufa; |i€{0,...,n—1}}U{biy |ie{L,....,n—1},l e {t, f}}
U{a, lie{l,....n—1},j€{1,....5(n—i+1)}}
U {yes, no, yesy, noy, Yyesn, nop, Y€s , , Moy, }.

e The set of labels: H({(n,m)) = {<l,c>|l € {t, f},ce {AV}}U{s}.

e Initial membrane structure: p = [[|<tvs |s-

e Initial multiset: ws =0, wet,vs = {ao 20,n,¢t 20,0,7}-

o Input membrane: [J<;v>.

e The set of evolution rules, R({n, m)), consists of the following rules (recall that
A denotes the empty string and if ¢ is A then ¢ is V and if ¢ is V then € is A):

L [zjc = Zjet 2 fl<io> . LU et f}, ce{V,A},

(Zj.c0 = [Zjt+18)<t,e>) <t 2> o j€{0,...,n—1}
With these rules the P system creates a nested membrane structure with 2™ inner-
most cells each of which corresponding to a truth assignment of the variables of the
input formula. At the first step, the object z; . evolves to two objects, one for the
assignment true (the object z; ), and a second one for the assignment false (the
object zjc r). In the second step these objects create two membranes. The new
membrane with ¢ in its label represents the assignment x;,; = true; on the other
hand, the new membrane with f in its label represents the assignment x;; =false.

2. (@i = TijaTigfl<tes .
Wig = vijavigsl<ies §for L€ {tv’fi 'e {11’ ek
[ri = Tt T fl<te> cetvint jedl.onk

These rules duplicate the objects representing the formula. One copy corresponds
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to the case when the variable is assigned true, the other copy corresponds to the
case when it is assigned false. The objects r; are also duplicated (7, 7if) in
order to keep track of those clauses that evaluate true on the previous assignments
to the variables.

3. Tinpll<tes = [Mil<tes

Yirtll<tes = AN<tes ie{l,...,m},

i fll<pes = N<pe> for ce{V,A}

Yirfll<pies = [ril<fie>
Using these rules the P system can evaluate which clauses are true under the
possible (true or false) truth assignments of the corresponding variable.

4. zigallaes = [ijoa]<ies _
vigill<tes = Wij—il<tes § for | ee{{t\’/f/{a} v Ge {{12, e ,m}},

¢ 9 ) seees Ty

Ti,z[]<l,c> = [ril<t,e> J

In order to analyse the next variable the second subscript of the objects ; ;,
and y; ;; are decreased when they are sent into the corresponding membrane
labelled with [. Moreover, following the last rule, the objects r;; get into the new
membranes to keep track of the clauses that evaluate true on the previous truth
assignments.

5. [Zne = T1...TmD1@l<ie> forle{t, f} and c € {V,A}.

After the evaluation stage, these rules introduce antimatters z;, i € {1,...,m}, in
the inner membranes. These antimatters will be used to check if there is a clause
that is not satisfied by the corresponding truth assignment.

6. [ri7Ti — N<ie> o le{t, f}, ie{l,...,m},

[Fi = Qal<t,c> c e {V,A}
If an antimatter is not annihilated by the first rule, i.e., there is a clause that
is not satisfied by the corresponding truth assignment, then this antimatter
introduces the antimatter g,.

7 (g — Q2]<l,c>
[p1 — p2]<l7c>

(92T = A <t,e>
[p3Ps — Al<t,e> ; Le{t, f}
[p2 — p3l<ie> e {v,A}
3 — n0]<l,c>
(g2 — @3D3)<1.c>
[a3 — yes|<i,c>

These rules introduce yes in an innermost cell with label < [,¢ > if and only
if the antimatter g, is not present in this cell. On the other hand, if g, is in
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the cell, then object no is introduced. Since @, is introduced if and only if the
corresponding truth assignment does not satisfy all the clauses of the formula, the
appearance of yes or no in this cell indicates correctly whether the corresponding
truth assignment satisfies the formula or not.

8. [yes|<ie> = yese||<ie> or ledt f}

[no]<i,c> — N0z [|<1,e> c€e{V,N}
These rules with the rules in groups 9 and 10 below will be used to check whether
an appropriate combination of truth assignments according to the quantifiers 3
and V are founded or not.

9. [yesayes, — A<in>
[t1 — ta]<in>

[s1 — 52]<l A>

[ta = t353]<in>

[s2 = s3]<i,n>

[t3}<l A> = yesy [l<ins for L€ {t, f}
[Yes, — ta]<in>

[s3 ]<l A> = noy [J<ins>
[
[

tats = A<ins

5353 = M<in>

10. [noy oy — Al<iv>
[u1 — ua]<yv>
[v1 = va]<iv>
[ug = u3 Ts]<iv>
[02 — U3]<l,v>
[usl<i,vs = noa [l<i,v> for I € {t, f}
[Moy — Ta)<i,v>

[vs]<t,v> = yesa [l<i,v>

[ug Uy — A|<i,v>

[

v3T3 — A< v>

11, [a; = biv1, biga,r Civ11]<te> le{t,f}, i€{0,...,n—2},

bit1 [l<te> = [aiv1]<te> T eefv,A}
These rules with the rules in groups 12-14 below will be used to introduce the
multisets sltlwi and ulvl%g in the appropriate membranes. These multisets
will be used then by rules in groups 9 and 10, respectively. Since these multisets
will be needed at different levels in the membrane structure in different time
steps, we need to employ a counter ¢; ; for the appropriate timing (see also the
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groups below).

12 [an—1 = ch—11]<tc> } for le{t,f}, ce{Vv,A}
le{t,f}, ie{l,...,n},
ce{V,A}, j€{1,...,5n —5i+4}
14.  [co_kskts — S1t1Y€52)<in> or le{tf}

[Cn—k 5kt — U1 V1 IOy <1y > ke{0,...,n—1}

13, [eij = cij]<ies | for

15.  [yesals — yes|]s
[noals = no|]s.
These rules are used to send out the computed answer to the environment.

4.1 A Short Overview of the Computation

The initial configuration only has two membranes, the skin and an elementary
membrane with label < ¢,V >. Labels have two types of information. On the one
hand, the first symbol can be ¢ or f, (true of false) and the second symbol can
be A or V to denote if the corresponding variable is universally or existentially
quantified. Membrane creation rules are applied in parallel in order to obtain a
binary tree like structure of membranes enclosed in the skin. In the 2n-th step
of the computation, 2™ elementary membranes are created. One for each possible
truth assignment of the variables. The key set of rules for the evaluation of the
variables is the set 3. According to this set of rules, a symbol 7; is produced for
each variable such that its truth value makes true the clause Cj.

Each of the 2" elementary membranes in the configuration after 2n steps can
be seen as one of the possible truth assignments for the variables and the set of
different r; objects inside represent the set of clauses satisfied by the corresponding
truth assignment. In order to check if all the clauses are satisfied, a set with all the
antiparticle 7; objects is generated in each elementary membrane. If all of these 7
objects are annihilated, it means that in this elementary membrane there were all
the objects r; (maybe with multiple copies). This means that the truth assignment
associated with the elementary membrane satisfies all the clauses. Otherwise, if
any 7; is not consumed after the annihilation process, then we conclude that the
corresponding assignment does not satisfy the corresponding clause.

A set of technical rules produce an object yes or no inside each elementary
membrane. The target of most of these rules is to control that only one object yes
or no is generated, regardless the possible combination of multiple copies of r; in
the membrane.

Once the objects yes and no are generated in the elementary membranes, they
are sent up in the tree-like membrane structure. When two of these objects arrive
to an intermediate membrane, a new object yes or no is sent up, according to the
label of the membrane. Such label encodes the type of quantification (universal or
existential) of the corresponding variable. This stage is controlled by rules from
the sets 9 and 10.
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Finally, an object yes or no arrives to the skin and it is sent out to the envi-
ronment.

Consequently, the family IT solves in linear time the QSAT problem. Since
QSAT is a PSPACE-complete problem, we have the following result:

Theorem 1. PSPACE C PMC 40

d,+mec,dantPri

5 PSPACE upper bound

In this section we show that PMC%y, . . C PSPACE. The proof is
similar to the corresponding one in [23] where it is shown that PMCan,, . €
PSPACE (i.e., polynomially uniform families of P systems with active mem-
branes, with polarizations, with dissolution and nonelementary membrane division
rules can solve only problems in PSPACE). Nevertheless, there are substantial
differences between the two proofs due to the different behaviour of these systems.
In [23] it is observed that the multiset content and the polarization (so called, the
state) of a membrane M after n steps of a P system IT can be obtained by recur-
sively calculating the states of M, its parent, and its children after n — 1 steps. To
achieve that always the same computations are calculated by the recursive calls, a
weak determinism on the rules of IT was introduced in [23] (notice that since IT is a
recognizer P system, it is confluent and thus it is enough to simulate only one of its
computations). Moreover, to distinguish between membranes having same labels,
unique indexes were associated to the membranes of a configuration. The index of
a new membrane in a configuration is derived from the index of the corresponding
membrane in the previous configuration.

In our proof, on the one hand, we do not have to deal with the polarizations of
the membranes. On the other hand, we should employ an indexing technique that
is different to that occurring in [23] due to the reason that in P systems with mem-
brane creation new membranes are created from objects and not from membranes.
The rest of this section is devoted to the proof of the following theorem:

Theorem 2. PMC 4 0 C PSPACE.
—d,+mec,+antPri

We give an algorithm A with the following properties. Let II = {II(n)},en be
a polynomially uniform family of recognizer P systems of type AM _g tme +antPri-
Then, for every n € N and input multiset m of IT(n), A decides using polynomial
space in n if IT(n) produces yes started on input m.

Assume that IT(n) = (I, H, u, W, h;, R). Since II(n) is a recognizer P system,
all of its computations yield the same answer. Thus, it is enough to simulate one
particular computation of I7(n). To this end, we introduce the following weak
priorities on the rules other than annihilation rules in R (clearly, by definition,
annihilation rules have priority over the rest of the rules). We assume that evolu-
tion rules have the highest priority, followed by send-out communication, send-in
communication, and membrane creation rules. Similar type of rules have priority
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over each other as follows. Assume we have two rules r; and 7y of the same type.
Then r; has priority over ro if and only if one of the following conditions holds:

e ri=[a—al;, ra=[a— f]; and a < B (where < is the usual lexicographical
order on words),
rm=al[]i = [bli,r2=al[]; = [c]; and (i < jor (i =7 and b < ¢)),
r1=[a]; = b Ji, r2 = [al; = ¢[ ]; and b < ¢,
r1=[a— [alj]i, 72 = [a = [Blx); and (j < k or (j =k and o < 3)).

One can see that even with the above priorities, II(n) can have different com-
putations on the same input. Indeed, assume, for example, that I7(n) has a con-
figuration which contains a membrane structure [[ ]2 [ ]2]1 with an object a in
membrane 1. Assume also that IT(n) has the rule » = a[ ] — [b]2. Then when
I1(n) applies r, it nondeterministically chooses a membrane with label 1 and sends
a into this membrane. It also can bee seen that there is no such nondeterminism
concerning the other types of rules. As we will see later, using unique indexes of the
membranes having the same labels, we can avoid of this nondeterminism during
the simulation.

Next we define these unique indexes. First of all, we assume that different
membranes have different labels in the initial configuration. Assume now that
C = C,...,C) is a computation of II(n). Let ¢ € {1,...,l} and M be a mem-
brane in C;. Let d(M, C;) denote the depth of M in the membrane structure in
C;. More precisely, if M is the skin, then d(M,C;) = 1; if M is a child of a mem-
brane M’, then d(M, C;) := d(M’', C;) + 1. Let moreover d(C;) := maz{d(M, C;) |
M is a membrane in C;}. We inductively define a function fco that assigns to ev-
ery membrane M in C; an index from ((H UN)"*1)4M.C) (je. the index of M
will be a d(M, C;)-tuple of words with length i + 1 containing letters from H UN).
The indexes of the membranes in C; are inductively defined as follows. For the
skin membrane M with label s, let Fo(M) := (s1). Now let M be a membrane in
C1 and assume that Fo(M) = (wy, ..., war,c,))- If M’ is a child membrane of M
with label h, then Fo(M') := (hl,w1, ..., wq(m,c,))- An example of this indexing
in the initial configuration can be seen on Fig. 1, where these indexes are written
in the lower-right corner of the membranes. Now assume that fo already assigns

(g1.f1) (h1,f1)

Fig. 1.
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an index to every membrane in C; (i < [). Let M be a membrane in C; and assume
that fo(M) = (w1, ..., wam,c,))- If M" is the membrane in C;y; that corresponds
to M, then let fo(M') = (wil,..., wa,c,)1) (notice that since dissolution and
membrane duplication rules are not allowed, every membrane in C; has a corre-
sponding membrane in C;;1). Finally, let h € H and assume that ay,...,a; are
those objects in M (ordered lexicographically) that create membranes with label
h in the step from C; to Cy11. For every j € {1,...,k}, let M; be that membrane
which is created from a;. Then fo(M;) := (ha§~j, wil, ..., wyn,c;yl). An example
of this indexing can be seen in Fig. 2, where at the first step a enters to mem-
brane with index (h1, f1) and evolves to b. Then, during the second step, b creates
the membrane with index (gbbl, h111, f111). Notice that from this index we can

(GLf1) (g111, f111)

= =
a
©
b
(gbb1,h111, f111)
(hLfy | (h11, f11) (h111, f111)
— | — | — |11
Fig. 2.

decode the following information. The label of the membrane is g, its parent has
label h and index (h111, f111), and the membrane was created in the second step
of the computation from an object b. In general, the above defined indexes have
the following properties:

e For a given initial configuration C; and a computation C' = C1,...,C, the
possible indexes of the membranes in C' can be effectively enumerated (notice
that the maximal number of objects in a membrane can be calculated from the
number of objects in € and the number of computation steps);

e For a membrane M with index (hi41,1...%1,..., Akig1 ... ikj),
— if k& > 1, then the index of the parent membrane of M is
(h2i271 [P i27j, sy hkikJ PN ik,j): and
— the possible indexes of the children of M can be effectively enumerated;
o For amembrane M with index (h141,1...91,5,..., Rglk,1 ...k, ) such that j > 1,
either

- 411 =...=11,; =1 and M occurs already in the initial configuration, or
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- 411 =...=11,-1 = a, for some a € I', and M is created from a in the
(j — 1)th step of the computation.

Let ¢ = C4,...,C; be a computation of II(n) and j € {1,...,I}.
We introduce an order on the indexes of membranes occurring in C; and
satisfying that d(M,C;) = d(M’,C;). Assume that M and M’ are mem-

branes with these properties and fo(M) = (hii11...%1,5,.-, ki1 .- 0k;),
and‘ fc(M’) = (hﬁlilzijvvhgf@gml%ﬂa whgrs k = d(M,Cj). The.n
(Rrit . itgs ooy hidp i) < (RYdY g oo @y jye oo hydy g oo 0y ;) if and only if

hyiia...i1j < hyijq...47 ;, where < is the usual lexicographical order on words
assuming that, for every object a € I' and number n € N, a < n.

Let C = C4,...,C; be a halting computation of IT(n) such that, for every
1 € {1,...,1}, C; has the following property. Assume that there is a membrane
M with label h in C; and there are more than one membranes with label g in
M. Assume also that there is a rule r = a[ |; = [b]y in R. Then Cj;; is that
configuration of I7(n) where the objects a in M are sent by the rule r to that
membrane with label g which has a smaller index by the above defined order
on the indexes. We will simulate this particular computation C' by recursively
calculating the multiset content of membranes in C'. This is done using a function
called CONTENT. CONTENT gets as parameters an index of a membrane M and a
number j and returns with the multiset content of M in C; (i.e., the content of
M after j —1 computation steps). The basic strategy of the computation, roughly,
is the following. First we try to compute the content of M and the content of its
parent M’ in C;_q. If M’ does not exist in C;_1, then M also does not exist and
we can return nil showing that the content of M in C; is undefined. If only M
does not exist in C;_1, we check whether it was created in the step from C;_; to
C;. If no, then we return nil, otherwise we return the newly created content of M.
If both M and M’ exist in C;j_4, then we calculate the content of M in C; using
the contents of M and M’ in C;_; and by calculating the contents of the children
of M in Cj—1~

For the better readability, in the algorithms defined below we will refer to the
annihilation (resp. evolution, send-out communication, send-in communication,
and membrane creation) rules as ann (resp. evo, in_com, out_com, and cre).

1. function CONTENT((hlil,l .. .Z'17j, ey hkik,l - ik7j),j)
// We calculate the multiset content of a membrane M with index
(h1i171 . .Z'1,j7 .. .,hkikJ .. .ik’j) in Cj;
2. if j =1 then
3. if 941 = 1,...,ixp1 = 1 AND there is a membrane structure p =
[[th . ..]hk71 }hk in Cl then

return the multiset content of the inner membrane in p
else return nil
end if;

exit

NS ot
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8. end if;

// If j =1 and the index corresponds to a membrane in C1, then return the content
of this membrane, and return nil, otherwise;
9. S« CONTENT((hl’L’Ll Ce il,j—17 ceey hkik,l - ik,j—l)aj — 1),
// If 5 > 1, then we recursively calculate the content of M in Cj_1;
10. Sp @5 8" + &5 S, + @5 X' + &;
11. if Ay is not the label of the skin membrane then

12. Sp — CONTENT((hQZ'Q’l R ig’jfl, ceey hkik,l Ce ’L'k,jfl),j — 1)7
// If M is not the skin, then we calculate the content of the parent M’ of M in
Ci—1;

13.  if S, = nil then return nil; exit
// If the parent M’ of M does not exist in Cj_1, then M cannot exist in Cj;
14.  else

15. TRYRULES(hg, ann, S,, X', X');
16. TRYRULES(hg, evo, Sp, X', X');
17. TRYRULES(hg, out_com, Sp, X', X');

// We remove from S;, those objects that do not contribute to the content of M
in C; by applying rules ann, evo, and out_com to the content of M" in C;_q;

18. for all possible index (hy4y...4) ;_1,..., Pxig1.. ik -1) such
that (hllill’l...i/17j_1,...7hk7;k’1 ...ik’jfl) < (hlil,l ...il,j,h...,
hrig1 .. ikj—1

19. Se <= CONTENT((hy4y 4 -7 j_q5- s hiik1 - ik j-1),5 — 1);

20. if S. # nil then

21. TRYRULES(hY, in_com, X', X', S})

22. end if

23. end for

// We remove those objects from the content of M’ that are sent to child mem-

branes other than M;
24. end if

25. end if

26. if S # nil then

27.  TrYRULES(hy,ann, S, X', X');

28.  TrRYRULES(hq,evo,S,S", X');

29.  TrRYRULES(hy, out_com, S, X', X');
//We apply rules ann, evo, and out_com to the content S of M in Cj_;

30. TrRYRULES(hi,in-com,S,,S’, X’)
// We send objects from the parent M’ to the children M by applying in_com
rules;

31.  COMMWITHCHILDREN((hqi1,1 ... 91,51, -, Akig1 .. ik j-1),J —1,5,5);
//We calculate the interactions between M and its children in C;_1;

32. S+ SuUS
// We calculate the content of M in C;; here S contains those objects that
were not involved by any rule; S’ contains the results of the applicable rules;

33. return S’; exit

34. end if
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35. if S = nil then

36. COMMWITHCHILDREN((hgio 1 .. .42 j—1,... Rl .. g j-1),0 —1,5p, X');
// If M does not exists in Cj_1, then we examine if it can be created in M’ in the
step from C;_1 to Cj; first we remove those objects from the content of M’ that
are sent to its children during the step form C;_; to Cj;

37. ifar...ap € Sp (a1 <...<ay)suchthati;; = ... = i1 ;1 = a; AND
il’j =t AND [(lt — [U]hl]hz € R then

38. S+ v;
// If a1,...,a; occur in S, and M can be created in M’ by the rule [a; —
[V]hy]he, then the content of M in Cj is v;

39. return S’

40. else

41. return nil

42.  end if

43. end if

Next we define the procedure TRYRULES which have five parameters. The first
one is a label of the membrane, the next one is a type of rules, and the last three
parameters are those sets of objects that are involved by the application of the
corresponding type of rules.

1. procedure TRYRULES(g, type, X, Y, Z)
2. case type of

ann: for each rule [a@ — A],; do

4 remove every pair a,a from X

5 end for

6. evo: for each rule [a — a], do

7

8

@

remove every occurrence of a from X;
. add to Y the same number of multiset represented by «
9. end for
10.  in_com: for each rule af ], — [b], do

11. remove every occurrence of a from Z;
12. add to Y the same number of objects b
13.  end for

14.  out_com: for each rule [a], — b[ ], do
15. remove every occurrence of a from X;
16. add to Z the same number of objects b
17.  end for

18.  cre: for each rule [a — [ ], ], do

19. remove every occurrence of a from X
20. end for

21. end case

Now, we define the procedure COMMWITHCHILDREN which calculates the com-
munications between a membrane and its children. This procedure has four pa-
rameters. The second parameter is a number j which determines which step of



174 Z. Gazdag and M.A. Gutiérrez-Naranjo

the computation is considered. The first parameter is an index of a membrane in
Cj. The last two parameters are those sets of objects that are involved by the
communications between this membrane and its children in the step from C; to

Cj+1.

1. procedure COMMWITHCHILDREN((h1@1,1 .. .%1,5, .-+, Aklr,1---%k,j), 5, X, Y)

2. for each gl; 1 ...11 ;, where g € H,l11,...,l1; € HUN do

3. Sc — Content((gll,l A le, hlil,l A i17j, ey hkik,l A ik}7j>7j>;

4 if S. # nil then

5 Y+ @;

6. TRYRULES(g, ann, S, Y, Y');

7. TRYRULES(g, evo, S., Y, Y");

8 TRYRULES(g, out_com, S., Y’ Y);

9 TRYRULES(g,in_com, Y'Y’ X);
// We apply rules of type ann and evo to keep the computation deterministic;
membrane creation rules are skipped as they do not contribute to the content
of the parent membrane stored in X; in-communication rules involve only the
content of the parent membrane;

10. end if
11. end for

Finally, we present the procedure A to decide if IT(n) sends out to the envi-
ronment yes on a given input multiset m. We assume without loss of generality
that those rules that send out to the environment yes (resp. no) have the form
[yes]s — yes (resp. [yes]s — yes), where s is the label of the skin membrane.

1. procedure A(II(n))
// HI(n) = (I, H,u, W, hi, R) is a recognizer P systems of type AM_4 tme,+antPri
with input multiset m

2. s < the label of the skin in p;
3. S+ g
4. for each j=1,2,... do
5. S < CONTENT((si1...45),7) where i1 =1,...,i; = 1;
6. if yes € S and there is a rule [yes]s — yes then output: yes; exit
7. end if
8. if no € S and there is a rule [no]; — no then output: no; exit
9. end if
10. end for

First we show that A halts on IT(n) and m. Since CONTENT recursively calls
itself with a decreasing second parameter and CONTENT with second parameter
1 exits after finite steps, we can conclude that CONTENT always exits after finite
steps. Moreover, since II(n) is a recognizer P system, it halts in [ steps, for an
appropriate number [. Thus the multiset content of the skin of IT should contain
yes or no after at most [ — 1 steps. Therefore, [ + 1 is the highest number that
occurs as a second parameter in the calls of CONTENT in A. This means that A
stops after a finite number of steps.
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Next we discuss the space complexity of A. Let II = {II(n)},en be a poly-
nomially uniform family of P systems of type AM_g +me +antpri- By definition,
there is a polynomial p(n) such that the size of the initial configuration of IT(n)
containing an encoding of a formula in its input membrane is upper bounded by
p(n). Moreover, there is a polynomial ¢(n) such that the running time of IT(n) is
upper bounded by t(n).

Let C = C4,...,C; be a halting computation of II(n), for some ! < ¢(n), and
M be a membrane in C; (i € {1,...,1}). Then the index w = fo(M) contains
at most k + ¢ — 1 components, where k = d(C4). Clearly, k is upper bounded by
p(n). Moreover, every component of w is a word with length at most t(n) + 2. It
follows then that w contains at most (p(n)+t(n)—1)-(t(n)+2) letters. Clearly, for
every i € {1,...,1}, the size of C; is at most p(n)° (™) (the size of a configuration
is the sum of the number of objects and membranes in the configuration). Thus,
every letter in w that is contained in N is at most p(n)k't(”), for some appropriate
constant k. Therefore, storing a letter of a word in w needs at most log(p(n)**(™) =
O(nt(n)) bits (notice that the first letters of the words in w are labels and the
number of different labels is bounded by p(n)). This implies that the index w can
be stored using at most O((p(n) + t(n)) - t(n) - nt(n)) bits, i.e., the number of
necessary bits is polynomial in n. Therefore, on every level of the recursion in the
function CONTENT, the number of bits that is used to store the parameters is upper
bounded by an appropriate polynomial. Moreover, the depth of the recursion in
CONTENT is bounded by the poynomial ¢(n). It follows, that the space complexity
of A is bounded by a polinomial too.

6 Conclusions and Future Work

In this paper, we have proved that the family of P systems with membrane creation
and annihilation rules characterizes the complexity class PSPACE. In [5] it has
been proved that P systems with active membranes without polarizations, with-
out dissolution and with division of elementary and non-elementary membranes
endowed with antimatter and annihilation rules can solve NP-complete problems.
It is an interesting research topic to explore the exact computational power of these
systems. It seems that these systems can only solve problems in PSPACE. On
the other hand, solving a PSPACE-complete problem with these systems seems
to be a challenging task.
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Summary. P systems are the computational models introduced in the context of mem-
brane computing, a computational paradigm within the more general area of uncon-
ventional computing. Kernel P (kP) systems are defined to unify the specification of
different variants of P systems, motivated by challenging theoretical aspects and the
need to model different problems. In this paper, we present kPWORKBENCH, a software
framework developed to support kP systems. kPWORKBENCH integrates several simula-
tion and wverification tools and methods, and provides a software suit for the modelling
and analysis of membrane systems.

1 Introduction

Membrane computing is a computational paradigm, within the more general area
of unconventional computing [24], inspired by the structure and behaviour of the
eukaryotic cell. The formal models introduced in this context are called membrane
systems or P systems. After their introduction [22], membrane systems have been
widely investigated for computational properties and complexity aspects, but also
as a model for various applications [23]. The introduction of different variants
of P systems has been motivated by challenging theoretical aspects, but also by
the need to model different problems. An account of the theoretical developments
is presented in [23], a set of general applications can be found in [6], whereas
specific applications in systems and synthetic biology are provided in [11] and
some of the future challenges are presented in [14]. More recently, applications
in optimisations and graphics [16] and synchronisation of distributed systems [9]

have been developed.
Several variants of P systems have been introduced and studied to model and

analyse different problems, e.g., systems and synthetic biology [11], synchronisation
of distributed systems [9], optimisations and graphics [16]. While the introduction
of new variants allowed modelling different sets of problems, the ad-hoc addition
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of new features has caused an abundance of P system variants, with a lack of a
coherent integrating view, and well-defined framework would allow us to analyse,

verify and validate the system behaviour.
We introduced kernel P systems (kP systems) [15] as an attempt to target these

issues and create more general membrane computing models, integrating the most
used concepts from P systems. A revised version of the model and the specification
language can be found in [12] and its usage to specify the 3-colouring problem and
a comparison to another solution provided in a similar context [8], is described in
[13]. The kP systems have been also used to specify and analyse, through formal

verification, synthetic biology systems [21, 20].

We have previously studied the theoretical aspects [15] and the verification
and simulation techniques developed for kP systems [10, 3, 2]. In this paper,
we present KkPWORKBENCH (available and can be downloaded from its website
http://www.kpworkbench.org), a software framework developed to support the
analysis of kP systems. kPWORKBENCH integrates several simulation and verifica-
tion tools and methods. The framework also facilitates verification by incorporat-
ing a property language based on natural language statements, which makes the
property specification a very easy task. These features make kPWORKBENCH the
only available tool supporting the non-probabilistic analysis of membrane systems
through simulation and verification. The usability and novelty of our approach
have been illustrated by some case studies [21, 20] chosen from synthetic biology
(a new and emerging branch of biology that aspires to the engineering of new
biological systems).

The paper is organised as follows: in Section 2 are introduced the key con-
cepts and definitions related to kP systems; the kPWORKBENCH is discussed in
Section 3; in Section 4 are summarised some kP systems applications; Section 5
illustrates through some examples the use of the kPWORKBENCH platform and
final conclusions are provided in Section 6.

2 Kernel P Systems

A kP system is made of compartments placed in a graph-like structure. A com-
partment C; has a type t; = (R;,0;), t; € T, where T represents the set of all
types, describing the associated set of rules R; and the execution strategy that
the compartment may follow. Note that, unlike traditional P system models, in
kP systems each compartment may have its own rule application strategy. The
following definitions are largely from [15].

Definition 1. A kernel P (kP) system of degree n is a tuple
kIl = (A)/J’7017 .. '7Cnai0)7

where A is a finite set of elements called objects; u defines the membrane struc-
ture, which is a graph, (V,E), where V are vertices indicating components, and
E edges; C; = (t;,w;), 1 < i < n, is a compartment of the system consisting of
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a compartment type from T and an initial multiset, w; over A; iy is the output
compartment where the result is obtained.

Each rule » may have a guard g denoted as r {g}. The rule r is applicable
to a multiset w when its left hand side is contained into w and g holds for w.
The guards are constructed using multisets over A and relational and Boolean
operators. For example, rule r : ac — ¢ {> a3A > b? V = > ¢} can be applied
iff the current multiset, w, includes the left hand side of r, i.e., ac and the guard
holds for w - it has at least 3 a’s and 2 b’s or no more than a c¢. A formal definition
may be found in [15].

Definition 2. A rule associated with a compartment type l; can have one of the
following types:

(a) rewriting and communication rule: x — y {g},

where © € AT and y has the form y = (a1,t1)...(an,tp), h >0, a; € A and t;
indicates a compartment type from T — see Definition 1 — with instance compart-
ments linked to the current compartment; t; might indicate the type of the current
compartment, i.e., t;, — in this case it is ignored; if a link does not exist (the two
compartments are not in E) then the rule is not applied; if a target, t;, refers to
a compartment type that has more than one instance connected to l;, then one of
them will be non-deterministically chosen;

(b) structure changing rules; the following types are considered:
(b1) membrane division rule: [}, = [y1]e;, - - [yple;, {9}
where x € AT and y; has the form y; = (aj1,t51) ... (ajn,,tjn,) like in rewrit-
ing and communication rules; the compartment l; will be replaced by p com-
partments; the j-th compartment, instantiated from the compartment type t;,
contains the same objects as l;, but x, which will be replaced by y;; all the links
of l; are inherited by each of the newly created compartments;

(b2) membrane dissolution rule: [z];, — A {g};

the compartment l; and its entire contents is destroyed together with its links.
This contrasts with the classical dissolution semantics where the inner multiset
s passed to the parent membrane - in a tree-like membrane structure;

(b3) link creation rule: [:E}tzi; []tzj - [y}tzi - thj {g};

the current compartment is linked to a compartment of type t;; and x is trans-
Jormed into y; if more than one instance of the compartment type t;; exists then
one of them will be non-deterministically picked up; g is a guard that refers to
the compartment instantiated from the compartment type t;,;

(b4) link destruction rule: [z];, — thj = [Ylt, ; th]- {9}

is the opposite of link creation and means that the compartments are discon-
nected.

Each compartment can be regarded as an instance of a particular compartment
type and is therefore subject to its associated rules. One of the main distinctive
features of kP systems is the execution strategy which is now statutory to types
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rather than unitary across the system. Thus, each membrane applies its type spe-
cific instruction set, as coordinated by the associated execution strategy.

An execution strategy can be defined as a sequence o = o1&0o92& . . . &0, where
o; denotes an atomic component of the form:

e ¢, an analogue to the generic skip instruction; € is generally used to denote an
empty execution strategy;

e 1, arule from the set R; (the set of rules associated with type t). If r is appli-
cable, then it is executed, advancing towards the next rule in the succession;
otherwise, the compartment terminates the execution thread for this particular
computational step and thus, no further rule will be applied;

o (ri,...,ry), with r; € R;,1 < i < n symbolizes a non-deterministic choice
within a set of rules. One and only one applicable rule will be executed if
such a rule exists, otherwise the atom is simply skipped. In other words the
non-deterministic choice block is always applicable;

o (r1,...,mp)*, with r; € Ry, 1 <14 < n indicates the arbitrary execution of a set
of rules in R;. The group can execute zero or more times, arbitrarily but also
depending on the applicability of the constituent rules;

o (ri,...,mn) ", € Ry,1 < i < n represents the maximally parallel execution
of a set of rules. If no rules are applicable, then execution proceeds to the
subsequent atom in the chain.

The execution strategy itself is a notable asset in defining more complex be-
haviour at the compartment level. For instance, weak priorities can be easily ex-
pressed as sequences of maximally parallel execution blocks: (11) T&(r2) T& ... &(r3) T
or non-deterministic choice groups if single execution is required. Together with
composite guards, they provide an unprecedented modelling fluency and plastic-
ity for membrane systems. Whether such macro-like concepts and structures are
preferred over traditional modelling with simple but numerous compartments in
complex arrangements is a debatable aspect.

The kP system models are described in a machine readable language, called
kP-Lingua [10]. Below, we illustrate the kP systems concepts on an example, which
is slightly adjusted from [10, 2].

Example 1. A type definition in kP-Lingua.

type C1 {
choice {
>2b : 2b -> b, a(C2)
b-> 2b .
}
}
type C2 {
choice {
a —> a, {b, 2c}(C1)
}
}

ml {2x, b} (C1) - m2 {x} (C2)
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Above, C1,C2 denote two compartment types, which are instantiated as m1,m2,
respectively. m1 starts with the initial multiset 2x,b and m2 starts with x. The
rules of C1 are chosen non-deterministically, only one at a time — this is achieved
by the use of the key word choice. The first rule is fired only when its guard
becomes true; in other words, only when the current multiset has at least three
b’s. This rule also sends an a to the instance of C2 that is linked. In the type C2,
there is only one rule to be fired, which happens only when there is an a in the
compartment C1.

3 kPWorkbench

kPWORKBENCH is an integrated software suit developed to provide a tool support
for kP systems. kPWORKBENCH employs a set of tools and methods, allowing one
to model membrane systems and to analyse them through simulation and verifica-
tion. In the following, we briefly discuss some features of the software framework.

3.1 Features
Modeling.

kPWORKBENCH accepts kP system models specified in an intuitive modelling lan-
guage, kP—Lingua. kP systems accumulate the most important aspects of various P
system variants, so kP-Lingua provides a generic language to model various mem-
brane systems. kPWORKBENCH features a graphical model editor, permitting to

create new model files and editing existing files.
The grammar of the kP-Lingua language is written in ANTLR (ANother Tool

for Language Recognition) [1], automatically generating the necessary syntactic
and semantic analysers. ANTLR also constructs the data structures that rep-
resent the corresponding abstract syntaz tree (AST) together with a traversing
functionality.

Simulation.

kPWORKBENCH offers two different approaches to simulate kP systems. In both
approaches, a kP-Lingua model is provided as an input, and the execution traces of
the model are returned as an output. These traces permit exploring the dynamics

of the system and observing how the system evolves over time.
In the first approach, we have developed a custom simulation tool [3], which

recreates the system dynamics as a set of simulation runs. The tool translates a kP—
Lingua specification into an internal data structure, which permits representing
compartments, containing multisets of objects and rules, and their connections
with other compartments.

In the second approach, we have integrated the FLAME simulator [7], a general
purpose large scale agent based simulation environment. FLAME is based on the X-
machine formalism [17], a type of extended finite state machine whose transitions
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Prop. Pattern Lang. Construct LTL formula CTL formula

Next next p Xp EX p

Existence eventually p Fp EF p

Absence never p —(F p) —(EF p)

Universality always p Gp AGp

Recurrence infinitely-often p GFp AG EF p
Steady-State steady-state p FGp AF AGp

Until p until ¢ pUgq A(pUygq)

Response p followed-by ¢ G(p—Fq) AG (p — EF q)
Precedence p preceded-by ¢ “(=pU(=pAq)) —(E(—pU(-pAq)))

Table 1: Some property patterns defined in kP—Queries and the LTL and CTL
translations. Note that LTL implicitly quantifies universally over paths (i.e. “ne-
cessity”). To complement this semantics, in CTL we translate some formulas by
assuming quantification over some paths (i.e. “possibility”).

are labelled by processing functions that operate on a (possibly infinite) set called
memory, that models the system data. FLAME has been successfully used in various
applications, ranging from biology to macroeconomics.

In order to simulate kernel P system models using the FLAME framework, an
automated model translation has been implemented for converting the kP-Lingua
specification into communicating X-machines [17]. One of the main advantages of
this approach is the high scalability degree and efficiency for simulating large scale
models.

Verification.

Although there have been some efforts to apply formal verification, in particular
model checking, methods and methodologies for various P systems (e.g., [19, 4]),
utilising a comprehensive, integrated and automated verification approach is a very
challenging task in the context of membrane computing. For example, it is very
difficult to transform some complex features, e.g. membrane division, dissolution
and link creation/destruction, into suitable abstractions in model checking tools.

We have successfully addressed these issues, and developed a verification envi-
ronment [10, 2] for kPWORKBENCH, integrating some state of the art model check-
ing tools, e.g. the SPIN [18] and NUSMV [5]. The translations from a kP-Lingua
representation to the corresponding SPIN and NUSMV inputs (i.e. PROMELA and

SMv, respectively) are automatically performed.
In order to facilitate the property specification task, kP WORKBENCH features

a property language, kP-Queries, based on natural language statements. The lan-
guage also provides a list of property patterns (templates), generated from most
commonly used queries (see Table 1). The property language permits specifying
the target logic (i.e. LTL and CTL) for different properties without placing a re-
quirement on a specific model checker. In this way, we can use the same set of
properties in various verification experiments.
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3.2 System architecture
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Fig. 1: The overview architecture of kPWORKBENCH framework

Figure 1 depicts an overview of the kPWORKBENCH system architecture, which
consists of three modules:

1. The kernel P (kP) module takes a kP system model specified in kP-Lingua,
which can be created or edited using a dedicated model editor, as input. The kP-
Lingua module parses the input file and validates its syntax via ANTLR (which
generates the necessary syntactic and semantic analysers). The kP-Model module
accommodates the corresponding data structures of the input model, comprising
compartment types, execution strategies, rules, multiset of objects and connections
between compartments. The kP-Lingua module instantiates a kP—Model object
and maps the AST generated by ANTLR to that object. This object is used as
Data Transfer Object (DTO) between different modules of the framework. This
separation helps developers to easily add new components to the framework.

2. The Simulation module consists of two components, kPWORKBENCH Sim-

ulator and FLAME Translator. Both require the kP-Model object and simulator
parameters, e.g. number of steps, as input. The kPWORKBENCH Simulator com-
ponent is a custom simulator, which processes the multisets of objects of the input
model with respect to its execution strategies and rules. The FLAME Translator
transforms the kP—Model object into a FLAME Model object that aggregates agent,
function, input, condition and output classes. It assigns each compartment to an
agent, and the rules and the multiset of objects are stored as agent data. It cre-
ates a specific function for each type of execution strategy. In addition it creates
C functions that represent the system behaviour (they are executed by FLAME
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when the agent makes a transition from one state to another). The FLAME Trans-
lator uses the ANTLR template group feature to produce the FLAME simulator

specifications from the FLAME Model object.
3. The Verification module contains three components: the SPIN and NUSMV

translators and the kP—Queries module:
The SpiN Translator has two main components: Translator and Promela

(SPIN’s specification language). The Promela component aggregates the Promela
language specifications: MType, Array, Do statement, If statement, Init, etc. The
Translator maps the kP—Model object to a Promela object using the following
procedure [10]: (i) A compartment type is translated into a data type definition
with the multiset of objects and links to other compartments, and also with tem-
porary storage variables that provide the parallelism of P systems. (ii) Multiset of
objects is assigned to an integer array where an index denotes the object and its
value represents the multiplicity of the object. (iii) The set of rules are organised
according to the execution strategies mapped by a Proctype definition — a Promela
process. (iv) Maximal parallelism and arbitrary execution strategies are mapped

to the Do statement, and choice execution strategy is mapped to If statement.
After the mapping process, the Translator component translates the Promela

object to the corresponding Promela model, used by the SPIN model checker. How-
ever, this translation is not simple and straightforward, especially the structure
changing rules, and arbitrary and maximal parallelism execution strategies com-
plicate the translation process. More details about the translation from kP System

model to the SPIN model checker specification can be found in [10].
Similarly, the NUSMV Translator translates the kP-Model object to the corre-

sponding NUSMYV representation (NUSMV’s specification language). The transla-
tor has two main components: Translator and NUSMYV. The NUSMV component
consists of subcomponents representing the NUSMV language objects, such as
module, variables, INVARs, Case Statements, Conditions, and logical connectives.
The Translator maps the kP-Model object to the NUSMV object as follows: (i)
Each compartment is translated into a module. (ii) The content of compartments
is translated into variables. (iii) The initial multisets of the compartment are as-
signed into module parameters. (iv) Rules and guards are translated into the case
statements. (v) The behaviour of execution strategies and the parallelism of P

systems are achieved by introducing custom variables.
After the mapping process, the Translator component generates the NUSMV

model from the NUSMV object, which is then provided as input to the NUSMV
model checker. During the mapping process, we have overcome a few challenging
domain specific restrictions. For example, unlike Promela, NUSMV has restrictions
on defining arrays, and only allows accessing a value of array by a symbolic constant
index; but it does not allow assigning a value by a symbolic constant. Therefore,
instead of using arrays, we created a variable for each multiset of objects. Also,
in Promela, we can non-deterministically pick a true statement among branches
when there are more than one true statements; whereas, in NUSMV the selections
are only deterministic. It always chooses the first true statement from a list of
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conditions. We overcome that issue by introducing an INVAR declaration whenever
a non-determinism behaviour is required.

The kP-Queries module receives a property, natural language based state-
ments, as input. The user can build properties from the property language edi-
tor. The editor interacts with the kP—Lingua model, and permits accessing the
native model elements, which simplifies the property building process. The kP—
Queries’ domain language has its own grammar, which is independent from and
much simpler than the target model checking languages. The DSL (domain spe-
cific language) of the property language is written in ANTLR, receiving the EBNF
grammar as input and generates the corresponding syntactic and semantic anal-
ysers as well as the corresponding AST. In order to simplify the traversal of the
AST, we adapt a strategy, which maps the AST to a better structured internal data
representation. To traverse between the elements of the internal data structure (a
tree-like hierarchy), we follow the Visitor design pattern. Namely, the internal data
nodes are treated as visitable entities, which are able to accept visitors and request
to visit them. Each visitor has a specific functionality for visiting every single node.
The visitor design pattern approach enables the kP—Queries module to translate
every node of the internal presentation of property into the target model checker’s
corresponding property specification language.

4 Applications

Although membrane computing is mainly inspired from biology, its application to
biological systems has been very limited due to the lack of a coherent and well-
defined framework that allows us to analyse, verify and validate these systems.
The methods and methodologies we have developed in [15, 10, 3, 2] to tackle these
issues have filled an important gap in this respect. kPWORKBENCH, implementing
these methodologies and algorithms, now provides a fully automated tool support,
facilitating the modelling and analysis of biological systems through simulation
and verification.

The usability and novelty of our approach has already been illustrated in some
well-known case studies, chosen from systems and synthetic biology. In [21], we
showed how our approach utilises the non-deterministic analysis of two biological
systems, the quorum sensing in P. aeruginosas (a bacterial pathogen) and the
synthetic pulse generator. Namely, we used our approach to observe various phe-
nomena in genetic regulatory networks, e.g. various interactions between molecular
species and various dependencies between molecules. Likewise, in [20], we showed
how our approach can be used to formally analyse unconventional programs, e.g.

some genetic Boolean gates.
We believe that our methods and techniques, and hence the kPWORKBENCH

platform, provide significant contributions to the membrane & unconventional
computing communities.
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Prop. |Pattern (i) Informal, (ii) Formal, (iii) Spin (LTL) Representations
(i) No more than one termination signal will be generated
1 |Universality |(ii) always m.t <=1
(iii) 1t1 prop { [1 (c[0].x[t.] <= 1 || state != step_complete) }
(i) The system will never generate 15 as a square number
2 |Absence (ii) never m.s = 15
(iii) 1t1 prop { !'(<> (c[0].x[s_] == 15 && state == step_complete)) }
(i) In the long run, the system will converge to a state in which, if the termination
3 |Steady-state|signal is generated, no more a objects will be available
(ii) steady-state (m.a = 0 implies m.t = 1)
(iii) 1t1 prop { <> (I1 ((c[0].x[a] == 0 -> c[0].x[t] == 1) ||
state != step_complete) && state != step_complete) }
Prop.|Pattern (i) Informal, (ii) Formal, (iii) NuSMV (CTL) Representations
(1) The system will eventually consume all a objects, on some runs
4 |Existence |(ii) eventually m.a =0
(iii) SPEC EF m.a = 0
(i) On some runs the system will eventually halt
5 |Existence |[(ii) eventually m.t =1
(iii) SPEC EF m.t = 1
(i) No more than one termination signal will be generated
6  |Universality |(ii) always m.t <=1
(iii) SPEC AG m.t <= 1
(i) The system will never generate 15 as a square number
7 |Absence (ii) never m.s = 15
(iii) SPEC ! (EF m.s = 15)
(i) The consumption of all a objects will always be preceded by a halting signal
8 |Precedence |(ii) m.a = 0 preceded-by m.t =1
(iii) SPEC !(E ['(m.a = 0) U (!(m.a = 0) & m.t = 1)]1)
(i) By starting the computation with at least one a object, on some runs the system
9  |Response will eventually consume all of them
(ii) m.a >0 followed-by m.a = 0
(iii) SPEC AG (m.a > 0 -> EF m.a = 0)
(i) A halting signal will always be followed by the consumption of all a objects
10 |Response  [(ii) m.t = 1 followed-by m.a = 0
(iii) SPEC AG (m.t = 1 -> EF m.a = 0)

Table 2: List of properties derived from the property language and their represen-
tations in different formats.

5 Examples

5.1 Generating square numbers

We present below a kernel P systems model that generates square numbers (start-
ing with 1) each step. The multiplicity of object “s” is equal to the square number
produced each step.

type main {

max {

=t: a->{}

< t: a->a, 2b, s
<t: a->a, s, t
<t: b->b, s




A Software Framework for Kernel P Systems 189

mO
m1 m2

m3

Fig. 2: The structure.

3

m {a} (main)

An execution trace for this model can be visualised as follows:

a
a2bs
a 4b 4s
a 6b 9s

kPWORKBENCH automatically converts the kP-Lingua model into the corre-
sponding input languages of the SPIN, and NUSMYV model checkers. In order to
verify that the problem works as desired, we have constructed a set of properties
specified in kP-Queries, listed in Table 2. The applied pattern types are given in
the second column of the table. For each property we provide the following infor-
mation; (i) informal description of each kP-Query, (ii) the formal kP-Query, (iii)
the translated form of the kP-Query into the LTL specifications written in SPIN
modelling language, and CTL specifications written in the NUSMV language. The
results of all queries are positive, as expected.

5.2 Broadcasting with acknowledgement

In this case study, we consider broadcasting with acknowledgement in ad-hoc net-
works. Each level of nodes in the hierarchy has associated a unique type with
communication rules to neighbouring (lower and upper) levels. This is the only
way we can simulate signalling with kP systems such that we do not hard-wire
the target membranes in communication rules, i.e. assume we do not know how
many child-nodes are connected to each parent as long as we group them by the
same type; evidently, this only applies to tree structures. The kP Systems model
written in kP—Lingua is given as follows:

type LO {

max {

a->b, a (L1), a (L2)
}

3
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type L1 {
max {
a, ¢ > c (LO)

a > b, a (L3)
b, ¢ -> ¢ (LO)

}

}

type L3 {

max {

a, ¢ > ¢ (L2)
}

}

mO0 {a} (LO)

ml {c} (L1) - mO .
m2 {} (L2) - mO.
m3 {c} (L3) - m2 .

In order to verify that the model works as desired, we have verified some
properties, presented in Table 3. The results are positive, except Properties 1 and
5, as expected. These results confirm the desired system behaviour.

6 Conclusion

We have presented the kPWORKBENCH toolset developed to support kernel P
systems. kPWORKBENCH integrates several simulation and verification tools and
methods and permits modelling and analysis of membrane systems. It also features
a property language based on natural language statements to facilitate property
specification. These features make kPWORKBENCH the only available integrated
toolset permitting non-deterministic analysis (through simulation and verification)
of membrane systems.

We are planning to work on more case studies from different fields, e.g., systems
& synthetic biology, engineering and economics.
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Prop.|Pattern (i) Informal, (ii) Formal, (iii) Spin (LTL) Representations
(i) The terminal nodes will receive the broadcast message at the same time
3 |Existence |[(ii) eventually (ml.a >0 and m3.a >0)
(iii) 1t1 prop { <> ((c[0].x[a] > O && c[0].x[a] > 0) &&
state == step_complete) }
(i) The root node will never recewe an acknowledgement without sending a broadcast
3 |Absence (ii) never m0.a >0 and m0.c >0
(iii) 1t1 prop { !(<> ((c[0].x[a] > 0 && c[0].x[c.] > 0) &&
state == step_complete)) }
(i) The node m2 will always receive broadcast message before its child node (m3)
3 |Response |(ii) m2.a = 1 followed-by m3.a = 1
(iii) 1t1 prop { [1 ((cl0].x[a] == 1 -> <> (c[0].x[a] == 1 &
state == step_complete)) || state != step_complete) }
Prop.|Pattern (i) Informal, (ii) Formal, (iii) NuSMV (CTL) Representations
(i) The node m1 will eventually receive the broadcast message
4 |Existence |(ii) eventually ml.a >0
(iii) SPEC EF ml.a > 0
(i) The terminal nodes will receive the broadcast message at the same time
5 |Existence |(ii) eventually ml.a >0 and m3.a >0
(iii) SPEC EF (ml.a > 0 & m3.a > 0)
(i) The root node will never receiwe an acknowledgement without sending a broadcast
6 |Absence (ii) never m0.a >0 and m0.c >0
(iii) SPEC !(EF (m0.a > 0 & mO.c > 0))
i e node m2 will always receive the broadcast message before its child node (m
i) Th de m2 will al e the broad b its child nod, 3
7 |Response [(ii) m2.a = 1 followed-by m3.a = 1
(iii) SPEC AG (m2.a = 1 -> EF m3.a = 1)
i) In the long run, the system will converge to a state in which the root node
i) In the long he sy i1l g in which th d
9 |Steady-state will have been received the acknowledgement from all the terminal nodes and
4 no more broadcasts will occur
(ii) steady-state (m0.c = 2 implies m0.a = 0)
(iii) SPEC AF (AG (m0.c = 2 -> m0.a = 0))
i) In the long run, the system will converge to a state in which the root node
i) In the l h ill in which th d
9 |Steady-state will have been received the acknowledgement from all the terminal nodes and
’ y no more acknowledgements will occur
(ii) steady-state (m0.c = 2 implies (ml.c = 0 and m3.c = 0))
(iii) SPEC AF (AG (m0.c = 2 -> (ml.c = 0 & m3.c = 0)))

Table 3: List of properties derived from the property language and their represen-
tations in different formats.
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Summary. Pole balancing is a control benchmark widely used in engineering. It involves
a pole affixed to a cart via a joint which allows movement along a single axis. In this
problem, the movement of the cart is restricted to the horizontal axis by a track and
the pole is free to move about the horizontal axis of the pivot. The system is extremely
unstable and, the cart must be in constant movement in order to preserve the equilibrium
and avoid the fall of the pendulum.

In this paper, we study the pole balancing problem in the framework of Enzymatic
Numerical P Systems and provide some clues for using them in more complex systems.

1 Introduction

Numerical P systems (NPS for short) were introduced in [7] with the aim of adding
ideas from economic and business processes to the framework of Membrane Com-
puting. They represent a break with respect to the previous P system models
since they introduce the concept of variable and real numbers in the framework of
Membrane Computing. In the general framework of Membrane Computing (called
symbolic P systems, in order to stress the differences with numerical P systems),
membranes can be seen as encapsulations of the Euclidean space where multisets
of objects are placed. The computation in such devices is performed by the applica-
tion of rules which send objects from one to other membrane (maybe modified) or
modify the membrane structure (see [8]). In NPS, membranes do not contain mul-
tisets of objects. They contain variables with associated numerical values. These
numerical values can be integer, rational or real numbers. Instead of using rules in-
spired in biochemical reactions, the computation of these new devices is performed
by programs consisting of two parts: a production function and a repartition proto-
col. Production functions are real-valued functions of type F' : R¥ — R which take
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the k variables which appear in the membrane where the program is defined and
computes a real value. The computed number is then distributed among different
variables according to the repartition protocol.

In spite of its undoubted potential as computational devices, in the literature
there are very few papers devoted to this model (see, e.g., [1, 2, 3, 4, 5, 9, 10, 11]
and references therein). Most of them devoted to enzymatic numerical P system
(ENPS), a model introduced in [3] where enzymatic-like variables are introduced
in the NPS in order to avoid the non-determinism in the choice of a program in a
membrane.

Although the original inspiration of numerical P system was the economic
processes, the main field of the applications has been control problems. These
problems are on the basis of many industrial processes and the design of software
controllers for more and more sophisticated devices is nowadays a challenge for
researchers. The household thermostat is a classic example of control problem:
provided the changing temperature outside, the thermostat must maintain the
temperature inside home close to a desired level. This implies react to the changes
in an unpredictable real-world providing an appropriate response in a short interval
of time.

Beyond simple examples, the design of controllers for many real world is an
extremely complex task. If we extend the thermostat example to a more general
climate control system, a linear controller will not be able to regulate the temper-
ature adequately.

Usually, the control system is a software program that takes the right decision
for the input. For this input-output interaction, the software receives an input
from the sensor and takes a decision as output. It is crucial for the final solution
to obtain a real-time response in less than 10 milliseconds. For this reason, the
control software must be as small as possible in order to obtain a quick response.

In this paper we go on with the study of NPS as devices for control problem
(see, e.g. [2, 4]). As pointed out by Gh. Paun in [6], controlling drones can be
a good application for this model and it can be an extension of the use of NPS
for 2D travelling robots found in the literature. Drone is the popular name for an
unmanned aerial vehicle which can be seen as a mobile 3D robot. From a technical
point of view, the main difference between the control of 2D travelling robots and
drones is the stability. The drone must keep the horizontal position as much as
possible regardless the air conditions. This implies the effective real-time control of
the different engines according to the changes in the environment. The control of
drones is nowadays a research field for the industry and it is a really hard task. In
a certain sense, the stability problem of a drone can be seen as the generalization
of a well-known problem in control, the pole-balancing problem.

The pole-balancing problem is a feedback control system with the desired be-
havior of balancing a pole (an inverted pendulum) that is connected to a motor
driven cart by a ball-baring pivot (see Fig. 1). In this problem, the movement of
the cart is restricted to the horizontal axis by a track, and the pole is free to move
about the horizontal axis of the pivot. The system is extremely unstable and the
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Fig. 1. Pole Balancing problem

cart must be in constant movement in order to preserve the equilibrium and avoid
the fall of the pendulum. In a more general situation (a drone, by example) the
movement of the device must be controlled in three degrees of freedom, but it is
essentially the same problem, so the pole-balancing problem can be seen as a first
approach.

In this paper, we provide a theoretical study of the pole-balancing problem in
the framework of the ENPS and provide some ideas for further uses of ENPS in
control problems. The paper is organized as follows: Firstly, a brief introduction
to ENPS and to the Pole Balancing Problem is given. Next we provide some hints
about how the problem can be dealt with ENPS and finally some conclusions and
future work lines are presented.

2 Enzymatic Numerical P Systems
Next, we briefly recall the definition of enzymatic numerical P systems, More
details can be found in [3]. An enzymatic numerical P system is formally expressed

by:

I =(m,H,p,(Vary, Pri,Vari(0)),..., Varmy, Prm, Var,(0)))

where:

e m is the number of membranes used in the system (degree of IT) (m > 1);

e H is an alphabet that contains m symbols (the labels of the membranes);

e 4 is a tree-like membrane structure;

e Var; is a set of variables from membrane 4, and the initial values for these

variables are Var;(0), i € {1,...,m};

e Pr; is the set of programs from membrane 7, i € {1,..., m}. Programs process
variables and have one of the following forms:
(a) Non-enzymatic form

Prii=Fji(Tii .. T0) = cialvr + o+ ¢ vn,
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(b) Enzymatic form

Prji=Fji(w1,...,250)(€; =) = ¢jalvr + -+ ¢jn,|vn,

where e; € Var; is an enzyme-like variable which controls the activation of
the rule.

Rules have two components, a production function and a repartition protocol.
The [-th program of the membrane ¢ has the following form:

Pri; = (Fi,calvi+ - +cn,

Un,)

where F; : Reomd(Var) 5 R g a real-valued function such that computes a real
number from the values of the variables in Var;; ¢ 1, ..., ¢ n, are natural numbers
and vy,...,v,, are the variables of the membrane i together with the variables
from the immediately upper membrane, and those from the immediately lower
membranes. If the corresponding ¢; is 0, the expression 0]v; is omitted.

If card(Pri) =1 for i € {1,...,m}, then there is one production function per
each membrane and the system is deterministic. In case of multiple programs per
membrane, one rule is non-deterministically selected.

A universal clock is considered and, at each time ¢, all the variables have
associated a value. The computation is performed by computing the new value of
the variables. Such computation is performed in the following way. A rule is active
if it is in the non enzymatic form or if the associated enzyme has a greater value
than one of the variables involved in the production function. In parallel, in each
membrane an active program is chosen and its production function is used in order
to calculate a production from the value of the local variables. Once calculated,
the repartition protocol is used in order to compute the proportion of such value
that it is send to each variable. The coefficients ¢; . .. ¢, in the repartition protocol
c1)|v1 4+ -+ cn v, specify the proportion of production distributed to each variable
v1 ...V,. Namely, such protocol sends to the variable v; the value

production X c;
qi = n -
Ei:j Cj

The new value of the variable is the addition of the contribution of each applied
program. In each membrane of the system one uses one program at the time, and
this happens in parallel in all membranes.

A variable x is called productive if it does appear in a production function,
and then is consumed and reset to zero, otherwise the initial value is added to the
received contributions. The values of the variables at next time step are computed
by using repartition protocols, and so, portions distributed to variables are added
to form the new value.
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Fig. 2. Cart of the Pole Balancing

3 The Pole Balancing Problem

Pole balancing is an control benchmark historically used in engineering. It involves
a pole affixed to a cart via a joint which allows movement along a single axis. The
cart is able to move along a track of fixed length.

A trial typically begins with the pole off-center by a certain number of de-
grees. The goal is to keep the pole from falling over by moving the cart in either
direction, without falling off either edge of the track. The controller receives as
input information about the system at each time step, such as the positions of the
poles, their respective velocities, the position and velocity of the cart, etc. An even
more difficult extension of this problem involves a cart which can move in a three
dimensional space via three or more engines. In such situation the target is not
keeping a pole in a vertical position but keeping the cart as horizontal as possible.
In this paper we do not consider such generalization and focus on the simple pole
balancing problem.

The pole balancing problem can be analysed as the conjunction of two models:
focusing on the cart (see Fig. 2) and focusing on the bar (see Fig. 3). Obviously,
the applied force over one of these models results in the modification of the state of
the other model. In the first model (Fig. 2) several parameters must be considered:
F, force for controlling the system; Fpp;ction, force of the friction of the cart in its
movement on the railway; M, mass of the cart; IV, force of the pole over the cart.
The second model focus on the bar of the pole balancing (Fig. 3), where 6 is the
angle of the bar with respect to the vertical, [ is the length of the bar and m is the
mass of the ball placed on the top of the bar. For the control of the pole balancing,
the control software (the NPS in our study) has to know the current state of the
pole, (z, 0) and (&, &, 0, 9), where x represents the position of the cart, and #, &
the speed and acceleration respectively. The angle 6 represents the angle of the bar
with respect to the vertical position and 6, 6 the angular speed and acceleration
(resp).

The equations that define this system are:

F = Mi +bi+ N (1)

N = mi + mif cos § — mlf? sin 0 2)



200 D. Llorente-Rivera, M.A. Gutiérrez-Naranjo

The system of control is represented by the equation (3), which is the result of
adding the equations (1) and (2), where F is the output for the system of control
and the force that the controller has to apply to the system, and b is the friction
of the cart.

F = (M + m)i + bi + milf cos § — mlf?sin 0 (3)

For computing cos and sin § using ENPS, we use the same idea proposed in

[5] where the functions are approximated by using their analytic expressions as

infinite sums shown in equations (4) and (5). There approaches will be calculated
in the designed ENPS by the membranes Cosine and Sine, respectively.

> 2n

cos(x) = %(—1)" (gn)' (4)
& x(2n+1)
sin(z) = Z(—U"m (5)

0
The analytic expression of the cosine can be written as

oo
cos(x) = Z acy,
n=0

where acg = 1 and ac, is recursively obtained as follows:
92

ac = (—acy) X ————

n1 = (—aca) (2n)(2n — 1)

Analogously, the analytic expression of the sine can be written as
oo
sin(z) = Z asy
0
where asp = 1 and as,, is computed as

92
asni+1 = (—asy) X m

N

Fig. 3. Bar of the Pole Balancing
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Controller

acc[input], speed[input], angle[input], angleV[input], angleAc[input], M[Mcart], m[mP], b[b]
Pryy: (M +m).ace + b.speed +m.l.angleAc. cos® +m. . angleV?sin8

Pry,:cos8 — 1|cos

Pryy: siné — 1|sin

(e NS A

ac[1],nc[1], Celinf], Bc[input], Erc[input], Ec[1] as[1],ns[1], Cs[inf], Bs[input], Ers[input], Es[1]
2 2

Pryy: (—ac) (ch)fzﬁ (Cec —)1|ac Prya: (—as) m (Cs —)1]as

Pryyinc+ 1 (Cc =) 1|nc Pryzins +1(Cs =) 1ns

Pry,: 8¢ (Cc —)1|6c Prys: 85 (Cs —)1|0s

Prys:ac + cos (Cc —)1|cos Prys:as.8s + sin (Cs —)1|sin

Prg,: |ac] (Ere —)1|Ec Prs,: |as| (Ers —)1|Es

Qz: —inf((Cc — (Erc — Ec)) —=)1|Cc / Qr&g: —inf((Cs — (Ers — Es)) —)1|Cs /

Fig. 4. ENPS membrane applied system for control pole balancing

4 ENPS Applied to the Pole Balancing Problem

In this section, we report a work-in-progress on the design of an ENPS as a software
solution for the control of the pole balancing problem. To this aim, the different
forces that affect the system are examined and the interaction among them are
computed as a flow of information between the variables of the ENPS. The basic
schema is chown in Fig. 3.

The membrane system shown in Fig. 4 is proposed as a preliminar solution for
the pole balancing problem, using three membranes: the first membrane Controller
calculates the necessary force in order to keep the vertical position; the membranes
Cosine and Sine calculate the cos and sin functions for the angle . The ENPS can
be considered as a software module which receives as input the data #, #, 6, 6, 6
and outputs the force F' for controlling the system.

The control of the pole balancing is calculated by the rule Pri; which encodes
the Equation 3. This rule needs the constants: M, the cart mass; m, the mass of
the ball; and [, the length of the bar. It takes as input the state of the system,
encoded in the variables: acc, acceleration of the cart (Z); speed, velocity of the
cart (); angleSpeed (0) and angleAce, (0) angle speed and acceleration. In order
to approximate cosf and sinf from 6, the Controller membrane uses the rules
Proy and Prs;. The cosine and sine are computed recursively by the rules Pris
for the cosine and Prq3 for the sine, until the current errors, Ec¢ for the cosine
and Es for the sine, are less than Erc and Ers respectively as it is proposed in
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[12].Finally, the system returns the control related to equation 3 with the cosé
and sin @ calculated previously.

Membranes Cosine and Sine approximate the cos and sin functions by using
the analytic expressions from Eq. (4) and (5). These membranes return cos by the
rule Pris and sin by the rule Pri3, where the system adds the result for each
one in cos and sin. The membranes stop when the current error is less than the
errors provided as parameters, Erc and Ers. The system stop is controlled by rule
Prgo for the cosine and Prgs for the sine as the current error is lower than the
parameter Erc for the cosine membrane and Ers for the sine membrane.

The following trace shows how the system from Fig. 4 should work:

e Membrane Controller:

— The input of the system g, Zg, 0, 6y, y are the values of the correspond-
ing variables in the initial configuration. We also consider two variables
cosApp and sinApp where the approximated values of the cos and sin
functions will be stored.

— Production Function:

Fy = (M + m)i + bi: + mlf cos § — mlf?sin 6;
F5 = cos0;
F3 =sin 6,

e Membrane Cosine:

— Variables: ac has an initial value of 1, nc has an initial value of 1, C'¢ has
an initial value of co, Fc has an initial value of 1;

— Production function:

0° .
Fy= (—GC) x (2nc)(2nec—1)?

Fs =nc+1;
Fs = 0;

F; = ac + cos;
Fs = |ac;

Fy = —o0;

1), nc receives 1 (Cay = 1), cos
1), Ec receives 1 (Cos = 1);

— Reparation protocol: ac receives 1 (Ca
receives 1 (Ca3 = 1), Cc receives 1 (Coy
e Membrane Sine:
— Variables: as has an initial value of 1, ns has an initial value of 1, C's has
an initial value of co, E's has an initial value of 1;
— Production function:

02

Fro = (=as) X gyt
F11 :ns—i—I,

Fiy =0,

Fi3 =as %0,

Fig = las|;

Fi5 = —o0;

— Reparation protocol: as receives 1 (C31 = 1), ns receives 1 (C53 = 1), sin
receives 1 (C33 = 1), C's receive oo (C34 = 1), E's receive 1 (Czs = 1);
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e Step 1l
—  Membrane Cosine:
aco1 =1, negg = 1,c0803 = 0,0 =1, Ce =00, Ec =1, Erc = 0.0001;
Compute productions functQion’s value:
Fy= (—ac21) X (2nc22)(%—nc22—1) = F, = —%;
Fs=ncog +1= F5; =2;
Fsg=0= Fs = 1;
F7; = acoy + cosas = Fr = 1;
Fs =aco1 = Fg = 1;
Fy is not executed, because Cc — (Erc — Ec) = oo — (0.0001 — 1) =
oo 4 1 is not bigger than Cec;
Compute "unitary portion’:
qs = F1/Co1 = acy1 = —3;
g5 = I5/Cay = ncop = 2;
g = Fs/0 =0 =1,
qr = F7/Ca3 = cosa3 = 1;
qs = F8/025 = Fc=1;
— Membrane Sine:
aszy =1, nsgs = 1,sing3 =0,0 =1, Cs = o0, Es =1, Ers = 0.0001;
Compute productions functi(z)n’s value:
Fig = (—as31) x Mw = Fg=—%;
Fi1 =ns3s+1= Fy=2;
Fig=0= Fip=1;
Fi3 = as3; + sings = F11 = 1;
Fiy = lass| = Fia = 1;
F5 is not executed, because C's — (Ers — Es) = co— (0.0001 — 1) =
o0 4 1 is not bigger than C's;
Compute 'unitary portion’:
q10 = F10/Cs1 = ass1 = —§;
q11 = F11/C3z = ns3p = 2;
qi2 = F12/0 = 0 = 1;
q13 = F13/C33 = sings = 1;
© qua=F/Cs5 = Es =1;
e Step 2:
— Membrane Cosine:
acgy = —%, nego = 2,c0893 = 1,0 =1, Cc = 00, Ec =1, Erc = 0.0001;
Compute productions function’s value:
Fy = (—aca1) x (gnm)(og—nm_l)
Fs =ncogs+1= F5=3;
Fs = 0= Fs = 1;
F7 = aco1 + cosaz = Fr = —%;
Fg =acoy = Fg = %;
Fy is not executed, because Cc — (Erc — Ec) = co — (0.0001 — 1) =
0o + 1 is not bigger than Cec;

1
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Compute "unitary portion’:
qs = F1/Co3 = acas = 23
g5 = I5/Cay = ncop = 3;
g6 = Fg/0 = O = 1;
q7 = F7/Ca3 = cosas = 3;
-+ gz = F3/Cys = Ec=3;
— Membrane Sine:
assy = —%, nsgy = 2,s5ing3 =1, 0 =1, Cs = o0, Es = 1, Ers = 0.0001;
Compute productions functicz)n’s value:
Fip = (—as31) x (gmgz,)fm = I3 = 135
Fi1 =ns3s+1= Fy=3;
Fio=0=Fip=1;
Fis=ass +nsgs = Fiu=1-4=2;
Fiy = lass1| = Fiu = ¢;
F5 is not executed, because C's — (Ers — Es) = co— (0.0001 — 1) =
o0 4 1 is not bigger than C's;
Compute 'unitary portion’:
q10 = F10/C33 = ass3 = 1555
qi1 = F11/C32 = ns3p = 3;
qi2 = Fi12/0 = 0 =1;
q13 = F13/C33 = sinzz =
qua = F14/C35 = Es = &

)

(&[S}

e Step N-1:
— Using the same reason for the membranes Cosine and Sine, both mem-
branes are executed until error is less than Erc, Ec < Erc, for the Cosine
and Ers, Es < Ers, for the Sine. Then the execution stops.
—  Membrane Controller:
cosf =1, sinf =1, F[0];
Compute productions function’s value:
Fy = (M +m)i + bi +mlfcos —mlf?sinh = F| = (M 4+ m)i +
bi: + mlf — ml?;
F5 = cosf = F5 = cos;
F3 =sinf = F3 = sin;
Compute "unitary portion’: ) _
q1 = Fl/(Cu + 012) = F13 = (M —l—m)w + bz + ml — ml92;
g2 = F»/C11 = cosf = cos;
q3 = Fg/Clg = sin® = sin;
e Step N:
—  Membrane Controller:
cos @ = cos, sinf = sin, Fi13 = (M 4+ m)Z + bt + mlf — ml6?:
Compute productions function’s value:
Fy = (M +m)i + bi +mlfcos® —mif?sinf = F| = (M 4+ m)i +
bi: + mlf cos —ml6? sin;
Fy = cosf = F5 = cos;
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F3 =sinf = F3 = sin;
Compute "unitary portion’: ) _
q = F1/(Cy1 + C12) = Fi3 = (M +m)d + bi + ml6 cos —ml6? sin;
g2 = F5/C11 = cos 8 = cos;
q3 = Fg/Clg = sin@ = sin;

5 Conclusions and Future Work

In this paper, we study the use of the ENPS model in a control benchmark widely
used in engineering and report our work-in-progress on the design of an efficient
system able to control real-life pole balancing devices. Such design can be seen
of a first approach to more complex control systems. One of the most important
features of such control systems is the simplicity since they must provide an answer
as soon as possible in order to effectively solve real-time problems. In this first
approach, the solution is based on the mathematical approach known as PID,
Proportional Integral Derivative, but other approaches are possible.

After completing the design, the immediate future work is to prove the designed
NPS by integrating a NPS simulator as SNUPS [1] with a physics simulation
environment as Webots. The experimental results will provide useful feedback in
order to improve our design to make competitive with other control software.

A future second stage will be to generalize the design to 3D vehicles and check
the design with the appropriate drone flight simulator.
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Summary. We investigate the influence that the flow of information in membrane systems
has on their computational complexity. In particular, we analyse the behaviour of P systems
with active membranes where communication only happens from a membrane towards
its parent, and never in the opposite direction. We prove that these “monodirectional
P systems” are, when working in polynomial time and under standard complexity-theoretic
assumptions, much less powerful than unrestricted ones: indeed, they characterise classes
of problems defined by polynomial-time Turing machines with NP oracles, rather than
the whole class PSPACE of problems solvable in polynomial space.

1 Introduction

P systems with active membranes working in polynomial time are known to be able
to solve all PSPACE-complete problems [1]; this exploits membrane structures
of polynomial depth and a bidirectional flow of information (in terms of moving
objects or changing charges), both from a parent membrane to its children, and
the in opposite direction.

When restricting the depth of the membrane structures of a family of P systems
to a constant amount, it is still possible to solve problems in the counting hier-
archy CH, defined in terms of polynomial-time Turing machines with oracles for
counting problems [4]. In the proof of this result, it has been noticed that send-in
communication rules of the form a [ ] — [b]g allow us to check whether the amount
of objects located in a membrane exceeds a (possibly exponential) threshold in
polynomial time.

It is then natural to ask whether that feature is actually necessary in order to
obtain the power of counting in polynomial time. In this paper we prove (under the
standard complexity-theoretic assumption that PNP =£ P#P) that this is actually
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the case: P systems with monodirectional communication, where the information
flows only towards the outermost membrane, are limited to PNF, the class of
problems efficiently solved by Turing machines with NP oracles. This happens
even when allowing polynomially deep membrane structures, a weak form of non-
elementary membrane division, or dissolution (which, in this case, turns out to be
as powerful as weak non-elementary division). The PNP upper bound is actually
reached when dissolution or weak non-elementary division are allowed; if neither is
available, then the computation power decreases to PNP | where the queries must
all be fixed in advance, rather than asked adaptively. Chapter 17 of Papadimitriou’s
book [7] provides more details on complexity classes defined in terms of Turing
machines with NP oracles.

For an introduction to P systems with active membranes (AM), we refer the
reader to the original paper by Gh. Paun [8], supplemented by the definitions
of complexity classes PMC 4 (resp., PMC? ) of problems solved by uniform
(resp., semi-uniform) families of confluent P systems in polynomial time [5]. De-
fine M = AM(—i, —n,+wn) to be the class of monodirectional P systems with
active membranes, without send-in rules; we also remove the usual (“strong”)
non-elementary division rules, of the form
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since they also provide a way for membrane h to share information with its children
by changing their charge. We replace these rules by “weak” non-elementary division
rules [11] of the form [a]f — [b]ﬁ [c]}}, which allow the creation of complex membrane
structures (such as complete binary trees) without exchanging information with
the children membranes.

Let M(—d), M(—wn), and M(—d,—wn) denote monodirectional P systems
without dissolution, without weak non-elementary division, and without both kinds
of rules, respectively. For each class D of P systems, let PMCp and PMCZ, be the
classes of problems solvable by uniform and semi-uniform families of P systems of
class D. Then, the main results of this paper can be summarised as follows:

e The whole class PMC[/T/][, as well as PMCLT/]I(_d) and PMCBC]I(_WH), are equiva-
lent to PP, Here [x] denotes optional semi-uniformity.

e The class PMCM

M(—d,—wn) is equivalent to P‘II\IP.

The rest of the paper is structured as follows: in Section 2 we prove some basic
limitations of monodirectional P systems; in Section 3 we exploit these results
to prove upper bounds to the complexity classes for monodirectional P systems;
in Section 4 we provide the corresponding lower bounds by simulating Turing
machines with NP oracles; in Section 5 some results of the preceding sections are
improved; finally, in Section 6 we present some open problems and directions for
future research.
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2 Properties of monodirectional P systems

We begin by proving some properties of monodirectional P systems that show how
the lack of inbound communication substantially restricts the range of behaviours
exhibited during the computations.

Definition 1. Let IT be a P system, and let C and D be configurations of II. We
say that C is a restriction of D, in symbols C C D, if the membrane structures of
the two configurations are identical (i.e., they have the same shape, labelling, and
charges) and each multiset of objects of C is a submultiset of that located in the
corresponding region of D.

The following proposition shows that, while a recogniser P system working in
time ¢ might create exponentially many objects per region during its computation,
only a polynomial amount (with respect to t) of them in each region does actually
play a useful role if the system is monodirectional: indeed, the final result of the
computation can be identified by just keeping track of a number of objects per
region equal to the number of steps yet to be carried out.

Lemma 1. Let IT be a monodirectional recogniser P system, and let C = (Co,...,Cs),
with t > 1, be a halting computation of II. Then, there exists a sequence of configu-
rations (Dy, ..., D) such that

(i) we have D; CE C; for 0 < ¢ < t, and each multiset of D; has at most t — i
objects;
(ii) for alli < t there exists a configuration E;11 such that €411 is reachable in
one step from D; (D; — ;41 for brevity) and Dit1 C Eq1;
(#3) a send-out rule of the form [a]} — []2 yes (resp., [a]f — [],f no) is applied
to the outermost membrane during the transition step Dy—1 — & if and only
if C is an accepting (resp., rejecting) computation.

Proof. By induction on t. If ¢ = 1, then the environment of C; contains yes
or no, which have been sent out during the computation step C; — C; by a
rule [a]? — []5 yes or [a]¥ — []g no. Let Dy C Cy be obtained by keeping only the
objects on the left-hand side of send-out, dissolution, and division rules applied
during Cy — C; (we call these rules “blocking”, since at most one of them can be
applied inside each membrane at each step). At most one object per region is kept,
given the lack of send-in rules. Let D; T C; be obtained by deleting all objects.
Then:

(i) we have Dy C Cy and Dy C C; by construction, and all multisets of Dy and D;
have at most 1 and exactly 0 objects, respectively;
(ii) let the transition Dy — &1 be computed by applying all blocking rules applied
during the step Cy — C1, which are all enabled by construction; then & C Cy
and, since D1 C C; and D; contains no objects, necessarily Dy C &1
(#1) the computation C is accepting if and only if the rule [a|f — [ ]2 yes is
applied from Cy, and the latter is equivalent by construction to that rule
being applicable from Dy (the reasoning is similar if C is rejecting).
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This proves the base case. Now let C = (C_1,Cy, ..., C;) be a halting computation
of length ¢t 4+ 1. The sub-computation (Cy,...,C;) is also halting, and by induction
hypothesis there exists a sequence of configurations (Dy, ..., D;) satisfying (i)—(u).
Construct the configuration D_; as follows: first of all, keep all objects from C_;
that appear on the left-hand side of blocking rules applied during the computation
step C_1 — Cy; this requires at most one object per region, and guarantees that
the membrane structure’s shape and charges can be updated correctly (i.e., the
same as Cy and Dy).

We must also ensure that all objects of Dy can be generated from D_; during
the transition D_; — &y. Once the blocking rules to be applied have been chosen,
any object a located inside a membrane of Dy can be traced back to a single object
in D_;. Either a appears on the right-hand side of one of those blocking rules,
or it appears on the right-hand side of an object evolution rule applied in the
step C_1 — Cp, or it does not appear explicitly in any rule applied in that step; in
the latter case, it is either carried on unchanged from D_; (possibly from another
region, if membrane dissolution occurred), or is created by duplicating the content
of a membrane by applying a division rule (triggered by a different object). As a
consequence, at most ¢ objects per region of D_1, possibly in conjunction with a
single object per region involved in blocking rules, suffice in order to generate the ¢
objects per region of Dy. As a consequence,

(i) we have D_; C C_y by construction, and D_; contains at most ¢ + 1 objects
per region;

(ii) by applying all blocking rules and as many evolution rules as possible from
the computation step C_; — Cp in D_1, we obtain a configuration & with
the same membrane structure as Dy and, as mentioned above, containing all
objects from Dy (and possibly other objects generated by evolution rules).

Since (éit) holds by induction hypothesis, this completes the proof. O

Notice that this lemma does not give us an efficient algorithm for choosing
which objects are important for each step of the computation; it only proves that
a small (i.e., polynomial-sized) multiset per region exists. However, it is easy to
find such an algorithm by slightly relaxing the conditions: instead of limiting the
cardinality of the multisets to t — i, we limit the number of occurrences of each
symbol to that value, and simply delete the occurrences in excess separately for
each symbol. This gives us the larger cardinality bound |I'| x (¢ — i) per region,
which is polynomial whenever the number of computation steps of the system is,
and still allows us to simulate the overall behaviour of the P system.

Lemma 1 fails for P systems with send-in rules because some configurations
where each multiset is small nonetheless require a previous configuration with a
region containing exponentially many objects. This is the case, for instance, for
P systems solving counting problems, where the number of assignments satisfying a
Boolean formula is checked against a threshold by means of send-in rules [4]. Those
assignments are represented in the P system by a potentially exponential number of
objects located in the same region, which are sent into exponentially many children
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membranes in parallel (i.e., at most one object enters each child membrane), and
cannot always be reduced to a polynomial amount without changing the accepting
behaviour of the P system.

Another property of monodirectional P systems is the existence of computations
where membranes having the same labels always have children (and, recursively, all
the descendents) with the same configuration. This property will be useful when
simulating confluent recogniser monodirectional P systems in Section 3.

Lemma 2. Let II be a monodirectional P system. Then there exists a computa-
tion C = (Co,...,Ct) of II where, in each configuration C;, the following holds:
any two subconfigurations® of C; having membranes with the same label as roots
are identical, except possibly for the multiset and charge of the root membranes
themselves.

Proof. By induction on i. The statement trivially holds for the initial configuration
of I, since the membranes are injectively labelled.

When a division rule is applied to a membrane h, two subconfigurations with
root h are created; this is the only way to generate multiple membranes sharing
the same label. The two resulting subconfigurations may only differ with respect
to the contents and charges of the root membranes, since the internal membranes
have evolved before the division of h occurs (recall that the rules are applied, from
a logical standpoint, in a bottom-up way [8]).

On the other hand, if two subconfigurations with identically labelled root
membranes already exist in a configuration C;, then we can assume that the
property holds by induction hypothesis. We can then nondeterministically choose
which rules to apply in the subconfiguration having the first membrane as root,
excluding the root itself; since the other subconfiguration is identical (except
possibly for the root), the same multiset of rules can also be applied to it, thus
preserving the property in the next configuration of the system. a

While Lemma 2 somehow “compresses” each level of the configuration of
monodirectional P systems, it does not, however, reduce the number of distinct
membranes per level to a polynomial number. Indeed, the standard membrane
computing technique of generating all (exponentially many) possible assignments
to a set of variables does not require send-in rules [10], and can be carried out in
parallel on all levels of the membrane structure.

Lemma 2 also fails for P systems with send-in rules. The reason is that two
identical subconfigurations can be made different by having a single object located
immediately outside, and nondeterministically sending it into one of the root
membranes of the two subtrees; the evolution of the two branches of the system
might then diverge completely.

2 We define a subconfiguration of C; as a subtree (a root node together with all its
descendents) of the membrane structure of C;, including labels, multisets, and charges
of the membranes.
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3 Simulation of monodirectional P systems

It is a well-known result in membrane computing that P systems with active
membranes can be simulated in polynomial time by deterministic Turing machines
if no membrane division rules are allowed [10]. More specifically, the portion of the
system that is not subject to membrane division can be simulated deterministically
with a polynomial slowdown, while the output of the dividing membranes can
be obtained by querying an appropriate oracle. It was recently proved that, for
standard (bidirectional) P systems where only elementary membranes can divide,
an oracle for a #P function is necessary and sufficient [5].

In what follows we prove that an NP-oracle is sufficient for the simulation
of monodirectional P systems. In particular, the oracle will solve the following
problem.

Lemma 3. Given the initial configuration of an elementary membrane with label h
of a monodirectional P system, an object type a € I', and two integers k,t € N in
unary notation, it is NP-complete to decide whether the set of membranes with
label h ezisting at time t emits (via send-out or dissolution rules) at least k copies
of object a at that time step.

Proof. The problem is NP-hard, since one can simulate an arbitrary polynomial-
time, nondeterministic Turing machine M by using a single membrane with ele-
mentary division (without using send-in rules) and obtain the same result as M
by checking if the resulting membranes send out at least one (k = 1) “acceptance
object” at a specific time step [4].

Conversely, the problem can be solved by a nondeterministic, polynomial-time
Turing machine M as follows. Simulate ¢ computation steps of the membrane explic-
itly, by keeping track of its charge and multiset, as in any standard simulation [10].
If the membrane divides, then M keeps track of all the resulting membranes, until
the number exceeds k. If that happens, then k£ copies of the membrane are chosen
nondeterministically among those being simulated (which are at most 2k after any
simulated step, if all membranes divide), and the remaining ones are discarded.
Since there is no incoming communication, any instance of the membrane can
be simulated correctly, as its behaviour does not depend on the behaviour of its
siblings. If one of the simulated membranes dissolves before t steps, one of the k
“slots” is released and can be reused in case of a further membrane division.

After having simulated ¢ steps as described, the machine M accepts if and only
if at least k copies of a are emitted (sent out, or released by dissolution) in the
last step by the membranes being simulated. At most k& membranes need to be
simulated in order to check whether at least k copies of the object are emitted
and, by exploiting nondeterminism, we are guaranteed that the correct subset
of membranes is chosen by at least one computation of M. Since k and t are
polynomial with respect to the size of the input, the result follows. a
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The values of ¢ and k are given in unary since, otherwise, the number of steps
or the number of membranes to simulate could be exponential with respect to the
size of the input, and the problem would not be solvable in polynomial time.

As a consequence of Lemma 3, monodirectional P systems without non-
elementary division can be simulated in polynomial time with access to an NP
oracle.

Theorem 1. PMCj\A( C pNP,

—wn)

Proof. The rules applied to non-elementary membranes can be simulated directly
in deterministic polynomial time by a Turing machine M [5]; this includes the
outermost membrane, which ultimately sends out the result object. In order to
update the configurations of the non-elementary membranes correctly, the objects
emitted from elementary membranes (which potentially divide) have to be added
to their multisets.

Suppose the P systems of the family being simulated work in polynomial
time p(n). By Lemma 1, the final result of the computation can be correctly
determined by keeping track of at most p(n) copies of each object per region.
Hence, we can update the configurations by using an oracle for the problem of
Lemma 3. At time step ¢, we make multiple queries for each label h of an elementary
membrane and for each object type a € I': by performing a binary search on k
over the range [0, p(n)], we can find the exact number of copies of a emitted by
membranes with label h at time ¢, or discover that this number is at least p(n)
(and, in that case, we only add p(n) objects to the multiset). This completes the
proof. O

Monodirectional P systems without non-elementary division become weaker if
dissolution is also disallowed: now a membrane cannot become elementary during
the computation, and thus the evolution of each dividing membrane is always
independent of the rest of the system. This allows us to perform all queries in
parallel, rather than sequentially (in an adaptive way).

* NP
Theorem 2. PMCM(_(L_WH) - L

Proof. If dissolution rules are not allowed, being elementary is a static property
of the membranes, i.e., a membrane is elementary for the whole computation if
and only if it is elementary in the initial configuration. By observing that each
query is completely independent of the others (i.e., each query involves a different
membrane, time step and object) and also independent of the configurations of the
non-dividing membranes (due to the lack of send-in rules), we can perform them
in parallel even before starting to simulate the P system. This proves the inclusion
in Ph\IP. a

Now consider monodirectional P systems with non-elementary membrane divi-
sion. For this kind of systems, the behaviour of a dividing membrane is, of course,
dependent on the behaviour of its children and, recursively, of all its descendants.
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In order to simulate the behaviour of the children by using oracles, we define a more
general query problem, where we assume that the behaviour of the descendents of
the membrane mentioned in the query has already been established.

First of all, notice that the lack of send-in rules allows us to extend the notion
of transition step C — D between configurations to labelled subforests® £ of C
and F of D as & — F; the only differences from the standard definition are that £
is not necessarily a single tree, and that its outermost membranes may divide and
dissolve.

Definition 2. Let IT be a monodirectional P system, let C be a configuration of II,
and let h € A be a membrane label. A subforest S of C is called a label-subforest
induced by h, or h-subforest for brevity, if one of the following conditions hold:

e C is the initial configuration of I, and S consists of a single tree rooted in the
(unique) membrane h,

e C is a possible configuration of II at time t + 1 with C' — C, and there exists
an h-subforest 8’ in C' such that S’ — S.

The notion of h-subforest can be viewed as a generalisation of the equivalence classes
of membranes in P systems without charges defined by Murphy and Woods [6].

Lemma 4. Let II be a monodirectional P system. Then there exists a computation
of IT where, at each time step and for each membrane label h € A, all h-subforests
are identical.

Proof. Multiple h-subforests can only be created by division of an ancestor of h; but
then, by Lemma 2, there exists a computation of IT where the resulting h-subforests
are identical. 0

Ezample 1. Figure 1 shows the evolution of the membrane structure of a monodi-
rectional P system and its label-subforests. The label-subforests in the initial
configuration Cy coincide with all downward-closed subtrees. In the computation
step Co — C1 both hy and hg divide; the division of the latter causes the duplication
of the hs- and hy-subforests (and, indirectly, of the hs-subforest); the division of
an ancestor membrane is the only way to have more than one label-subforest. By
Lemma 4, we can always assume that multiple label-subforests induced by the same
label are identical. In the computation step C; — Cs, the rightmost membrane
having label hy and both instances of h, dissolve. Notice that this does not cause
the disappearance of the two hy-subforests: in the general case, the membranes hy
might contain label-subforests induced by different labels, and we still need to refer
to them as a single entity (the hy-subforest), without the need to describe the
internal structure, even when hy ceases to exist.

As can be observed from Figure 1, a subforest can be identified as an h-subforest
by checking whether it can be generated from the downward-closed subtree rooted
in h in the initial configuration.

3 We define a subforest F’ of a forest F' to be any subgraph such that, whenever F’
includes a vertex v, it also includes all the descendents of v.
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Fig. 1. Evolution of a membrane structure and its label-subforests, which are enclosed
by dashed rectangles.

A computation that ensures that all h-subforests are identical for all h € A
can be obtained by imposing a total ordering (a priority) on the set of rules of
the P system, and applying inside each membrane the rules with higher priority
whenever possible. In the following, we assume that a priority order (e.g., the
lexicographic order) has been fixed; there is no loss of generality in doing that,
since we only focus on confluent P systems in this paper. We define the multiset of
objects emitted by a label-subforest as the union of the multisets emitted by its
outermost membranes.

Lemma 5. Given the initial configuration of a membrane with label h of a monodi-
rectional P system, an object a € I', two integers k,t € N in unary notation, and a
table T of the objects emitted during computation steps 1, ...t by the label-subforests
immediately contained in h, it is NP-complete to decide whether each h-subforest
emits at least k copies of object a at time t.
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Proof. The problem is NP-hard, since the set of elementary membranes with
label h of Lemma 3 is an example of h-subforest; that problem is thus a special
case (limited to label-subforests of height 0) of the current one.

To prove membership in NP we also use an algorithm similar to the proof of
Lemma 3: simulate up to k instances of membrane h, nondeterministically choosing
which ones to keep when a membrane division occurs. However, besides simulating
the rules directly involving the membranes with label h, we need to update their
configuration by adding, at each computation step, the objects emitted by the
label-subforests they contain. This is trivial, since the required data is supplied as
the input table T. Here we exploit Lemma 4, and simulate a computation where
all label-subforests contained in multiple instances of h are identical, and always
emit the same objects.

The other main difference from the proof of Lemma 3 is that we do not release
one of the k slots when one instance of membrane A dissolves, since its children may
still emit objects, and those count in determining the output of the h-subforest.
Rather, if an instance of h currently being simulated dissolved during steps 1, ..., ¢,
then we add the outputs at time ¢ of the label-subforests immediately contained
in h to the result of the computation; those outputs are obtained from table T'.

The statement of this lemma then follows from an argument completely anal-
ogous to that presented in the proof of Lemma 3: there exists a sequence of
nondeterministic choices leading to the simulation of k instances of h sending out
at least k objects if and only if at least k objects are actually sent out by the
P system being simulated. O

We can finally show that monodirectional P systems using non-elementary
division (and dissolution) also do not exceed the upper bound PNF,

Theorem 3. PMC,, C pPNP,

Proof. We use an algorithm similar to the one described in the proof of Theorem 1.
However, instead of using the oracle to compute the output of the elementary
membranes, we use it to compute the output of the label-subforests. This requires
first asking all queries for the label-subforests of height 0 (with an empty table T'),
then using the results as the table T for the queries involving label-subforests
of height 1, and so on, until reaching the non-divisible membranes; these can be
simulated directly by using the results of the queries involving the label-subforests
immediately contained in them. Notice that the queries involving label-subforests
of a given height can always be asked in parallel (across all values of a, k,t); the
queries must be asked sequentially only when involving different heights. a

PNP

4 Simulation of machines

In order to prove the converse inclusions between complexity classes, we describe a
simulation of any Turing machine M with an NP oracle by means of monodirectional
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P systems (an adaptation of [4]). Let @ be the set of states of M; we assume,
without loss of generality, a binary alphabet {0,1} for M. Finally, we denote
by 6: Q x X — @ x X x {q,>} the transition function of M.

Suppose that the configuration of M at a certain time step is the following:
the tape contains the string x = x; - - - x,,, the state of the machine is ¢, and the
tape head is located on cell i. This configuration is encoded as a multiset located
in a single membrane h of the P system, as follows. There is one object 1;_; for
each 1 < j < m such that z; = 1; that is, each 1 in the string x is represented as an
object indexed by its position in z, shifted by 4; the Os of x are not represented by
an object, but rather by the absence of the corresponding 1. The object 1y (resp.,
its absence) represents a 1 (resp., a 0) located under the tape head; the indices
will be updated (increased or decreased) when simulating a tape head movement.
Finally, the state ¢ of M is encoded as an object ¢ with the same name. Further
objects, not part of the encoding of the configuration of M, may also appear for
simulation purposes.

A transition step of M is simulated by 7 steps of the P system. We assume that
the membrane h containing the encoding of the configuration of M also contains
the object &.

Step 1. The object © is sent out (as the “junk” object #) in order to change the
charge of h to negative:

el = [ # (1)

Step 2. When h is negative, the object 1y is sent out, if appearing, in order
to change the charge to positive. If 15 does not appear, the membrane remains
negative.

o)y — [} # (2)
The remaining tape-objects are primed:
(1, — 1], for i # 0 (3)
The state-object ¢ is also primed, and produces the object ®:
g~ q Gy (4)

Step 3. The system can now observe the charge of h and establish whether 1,
appeared (i.e., whether the symbol under the tape head was 1) or not (i.e., the
symbol was 0); this corresponds to a positive or negative charge, respectively. The
object ¢’ is rewritten accordingly:

[d" = (@, D]y [4" — (¢,0)];, (5)
At the same time, the neutral charge of h is restored by ®:

(1% = [1h # for o€ {+, -} (6)
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Step 4. For the sake of example, suppose the transition function of M on state ¢
is defined by d(¢,0) = (r,1,>) and (g, 1) = (s,0,<); the other cases are similar.
The object (g,0) or (g,1) is rewritten accordingly:

[(@,0) = (r.1,0)]3 [(a.1) = (5,0, (7
Simultaneously, the tape-objects are primed again:
(15 — 19 for i # 0 (8)

Step 5. Now the triple generated in the previous step is “unpacked” into its
components, which include an object that will be eventually rewritten into the new
state-object, the object 1j (or nothing), and an object to be used to change the
charge according to the direction of the movement of the tape head:

[(r,1,4) = 7 10 @]9 forr € Q (9)
[(r,1,5) — 7 17 S forr € Q (10)
[(r,0,<) — 7 ]9 forre @ (11)
[(r,0,5) — 7S] forre @ (12)

Step 6. The object @, if appearing, changes the charge of the membrane to
positive:

[l — (I} # (13)

If © appears, it behaves similarly, according to rule (1). Simultaneously, the object 7
is primed and produces ®:

[F— 7 o) forr € Q (14)

Step 7. Now the charge of h is negative if the tape head is moving right, and the
indices of the tape-objects have to be decremented, or positive if the tape head is
moving left, and the indices must be incremented; the primes are also removed:

17— 1,45, (17— 1] for —(m—-1)<i<m-—1 (15)

The object # is now rewritten into the state-object r, and produces the © object
to be used in Step 1 of the simulation of the next step of M:

[ —r o] for r € @ non final and o € {+, —} (16)

Finally, the neutral charge of h is restored by ® through rule (6). The configuration
of the membrane now encodes the next configuration of M, and the system can
begin simulating the next computation step. The process is depicted in Figure 2.
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Fig. 2. Two successive Turing machine configurations, and the configurations of the
P system simulating the transition step (in left-to-right, top-to-bottom order).

When r € @ is a final state (accepting or rejecting), instead of applying rule (16)
the system rewrites the object #' as yes or no:

[ — yes]s for r € Q accepting and o € {+, —} (17)
[ = noly for r € @ rejecting and « € {+, —} (18)

The object yes or no is then sent out as the result of the computation of the
P system in the next step:

[yes]i, — [1h yes [nol5, — [ 1 no (19)
It is easy to see that this simulation provides us with a uniform family of

P systems ITy; = {II, : x € {0,1}*}, each consisting of a single membrane h and
simulating the deterministic Turing machine M on all possible inputs.
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4.1 Simulating oracle queries

If membrane A is not the outermost membrane of the system, then we can use
division rules to simulate nondeterminism with parallelism. Suppose, for the sake
of example, that the transition function of M describes nondeterministic binary
choices such as (g, 0) = {(r, 1,>), (s,0,<)}. Then, instead of the rules (7), we define
the elementary division rule

[(, 0)] = [(r, 1,2)]5 [(5,0, )13 (20)

The two resulting copies of membrane h can then evolve in parallel according to
the two possible choices.

This construction allows us to simulate polynomial-time deterministic Turing
machines M with an NP oracle. In this section, we use the following conventions:
the machine M simulates a work tape and a query tape with a single tape, by
using the odd and even positions, respectively. When making a query, M writes
the query string in the even positions of its tape, then enters a query state g-. The
oracle answers by erasing the query string (i.e., overwriting it with zeros), except
for the first cell, where it writes 0 or 1 according to the result. The machine M
then resumes its computation in state g, with the tape head located on the answer.

The oracle can be simulated by a polynomial-time nondeterministic Turing
machine M’; having initial state ¢; and deciding the oracle language. This machine
uses only the even positions of the tape, and ends its computation in the post-
query configuration described above. We assume that M’ performs a series of
nondeterministic choices leading to acceptance, if an accepting computation exists
at all.

This combination of M and M’ can be simulated by linearly nested membranes
of a P system, one membrane for each query to be asked. The computation begins
inside the innermost membrane, where we place a multiset encoding the initial
configuration of M on its input x; whenever a query is performed, the computation
moves one level higher in the membrane structure. In the following description we
refer to all nested membranes as h, for brevity; the labels can be made unique,
and the rules replicated for each label, with a polynomial-time preprocessing. The
P system simulates the computation steps of M as described above, until M
enters the query state g-. Now the system pauses the simulation of M. Instead of
producing ¢g» and ©, as in rule (16), the system produces ¢» and ¢+, where ¢ is the
maximum number of steps required by M’ on query strings written by M. This
number can be bounded above by considering the polynomial running time of M’
on the longest possible query string, which is at most as long as the running time
of M on its input . The object G, is sent out from h as g, setting its charge to
negative as © does, and upon reaching the parent membrane it begins counting
down:

[@.45 = [ @ (21)
[q; — q!,j_ﬂ% for 1 <j<t (22)
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In the internal membrane, the nondeterministic Turing machine M’ is now simulated.
Since M’ is allowed to make nondeterministic choices, in general there will be a
number of membranes simulating M’ after the first simulated step. When one of
these membranes is simulating the last step of a computation of M’, the object g
is produced by rule (14): then, instead of having a rule of type (16), the object g/ is
used to dissolve the membrane and release the tape-objects to the parent membrane:

@l — # for v e {+, -} (23)

After ¢ steps, all membranes simulating M’ have completed the simulation, and
have released their contents to the parent membrane. This membrane now contains:

o the object ¢ 0;

e objects 1; corresponding to the 1s contained in the odd positions of the tape
of M (which are left unchanged by the simulation of M’); each of these objects
has a multiplicity equal to the number of computations of M’ on the previous
query string;

e zero or more occurrences of 11, one for each accepting computation of M’ on
the query string; in particular, there is at least one occurrence of 1; if and only
if the query string is accepted by the oracle. Notice that this object has index 1
even if it is on the first even position of the tape, since index 0 is reserved to
the tape cell under the head (tape cell 1).

Before resuming the simulation of M, the system needs to eliminate any duplicate
copies of objects 1;. First of all, the object ¢ ¢ is rewritten into qi, the next state
of M:

[gr0 — ]} (24)

We then change the behaviour of M in such a way that, before continuing its
original computation after receiving the answer to the oracle query, it sweeps its
entire tape left-to-right and back to the first cell. This behaviour, in conjunction
with the following extra rule of the P system:

[Lo — e} (25)

erases any duplicate of 1; for all . Indeed, if a copy of 15 appears when h is positive,
then another copy has been sent out in the previous step by rule (2); rule (25)
eliminates such duplicates.

When the tape head of M moves back to the leftmost cell, the machine can
resume its original behaviour, and the encoding of the configuration of M in the
P system is now correct according to the description given at the beginning of this
section.

Further queries by M are simulated analogously, by exploiting another level
of the membrane structure. Notice that simulating a query actually “consumes”
one level of the membrane structure, due to the dissolution rule (23). For this
reason, the initial membrane structure of the P system simulating M consists of
an outermost membrane, containing as many nested membranes as the number of
queries performed by M.
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Theorem 4. A deterministic polynomial-time Turing machine which asks p(n)
queries to an NP oracle on inputs of length n can be simulated by a uniform family
of monodirectional P systems of depth p(n) without non-elementary division rules.

Proof. The family of P systems IT = {II, : x € {0,1}*} simulating M on input z
can be constructed uniformly in polynomial time, since only the initial multiset
depends on the actual string x, while the set of rules and the membrane structure
only depend on |z|. We only need to make sure that the indices of the tape-objects
are large enough to ensure that both the tape of M and the tape of M’ can be
represented at the same time. a

Corollary 1. PNP C PMC p((—wn)- O

Instead of using membrane dissolution as in rule (23), we can use the object g/
to produce ®:

(4 — &n for a € {+, -} (26)

which ensures that the charge of h is positive instead of negative two steps later.
The tape-objects are then sent out, one at a time, by using the following rules:

L= L for —(m—1)<i<m-—1 (27)

The timer ¢ of the object ¢+ has to be increased appropriately, in order to take
into account the time needed to send out all the tape-objects. However, since
the membrane where the simulation of M is non-elementary after the first query,
rule (20) is now a weak non-elementary division rule. As a consequence, we have:

Theorem 5. A deterministic polynomial-time Turing machine which asks p(n)
queries to an NP oracle on inputs of length n can be simulated by a uniform family
of monodirectional P systems of depth p(n) without dissolution rules. a

Corollary 2. PNP C PMC p(—q)- a

In order to prove the converse of Theorem 2, we introduce an auxiliary com-
plexity class (a variant of the class of optimisation problems OptP [3]).

Definition 3. Define OrP to be the class of functions f: {0,1}* — {0,1}* having a
polynomial-time nondeterministic Turing machine M such that, for all x € {0,1}*,
we have f(x) = \/ M(x), where M(x) denotes the set of possible output strings
of M on input x, and \/ denotes bitwise disjunction of strings; here we assume
that the bitwise disjunction of strings of different lengths is performed by padding
the shortest ones with zeros.

The purpose of the class OrP is to capture a polynomial number of parallel NP
queries with a single query to a function over binary strings.

Proposition 1. PFP = pOrP[],
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Proof. A polynomial number of parallel queries yi, - .., ¥, to an oracle for L € NP
can be replaced by a single query to an oracle for the function f(y1,...,ym) =
z1 -+ Zm, where z; = 1 if and only if y; € L. Let M be an NP machine decid-
ing L, and let M’ be the following nondeterministic machine: on input y1, ..., Ym
simulate M on each y; and record the corresponding output bit z;; finally, out-
put z1 -« zpy,. For all 1 <14 < m, if y; is accepted by the oracle, then there exists a
computation of M’ such that z; = 1: thus, by taking the bitwise disjunction of all
possible output strings of M’, we obtain the i-th bit of f(y1,...,¥ym); this proves
that f € OrP. Notice that this proof requires the query strings y1, ..., ¥y, to be
fixed in advance, i.e., the queries cannot be performed adaptively.

Vice versa, a single query to an oracle for f € OrP with query string y
can be replaced by the following polynomial number of parallel queries, one for
each 1 < i < |f(y)|: “is the i-th bit of f(y) a 1?”. These queries are in NP,
since they can be answered by simulating an OrP machine M for f and selecting
only its i-th output bit; the answer will be positive if and only if there exists a
computation of M having a 1 as the i-th output bit, which (by definition of OrP)
is equivalent to the i-th bit of f(y) being 1. O

Simulating an OrP query by means of a P system is completely analogous to
simulating an NP query, except that, instead of a single output bit, we have a
polynomial number of them. These binary strings are automatically combined by
bitwise disjunction when the tape-objects are sent out of the membrane simulating
the nondeterministic Turing machine. Furthermore, since a single OrP query suffices
to capture Pll‘\IP, we obtain the following results:

Theorem 6. A deterministic polynomial-time Turing machine which asks a poly-
nomial number of parallel queries to an NP oracle on inputs of length n can be
simulated by a uniform family of monodirectional P systems of depth 1 without
dissolution (and, necessarily, without non-elementary division). a

Corollary 3. Ph\IP C PMC ((—d,—wn)- a

5 Further results

The depth of the P systems of Theorems 4 and 5 can be asymptotically reduced
by exploiting the equivalence of a logarithmic number of adaptive queries and a
polynomial number of parallel queries [7, Theorem 17.7], formally PﬁIP = pNP[logn],
Suppose a deterministic polynomial-time Turing machine performs p(n) sequential
NP queries, and divide these queries into @(p(n)/logn) blocks of @(logn) queries.
Each block can then be replaced by a polynomial number of parallel NP queries
or, by Proposition 1, by a single OrP query. Hence, p(n) sequential NP queries
can be simulated by ©(p(n)/logn) sequential OrP queries, and each of the latter
can be simulated by one level of depth in a P system:
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Corollary 4. A deterministic polynomial-time Turing machine which asks p(n)
queries to an NP oracle on inputs of length n can be simulated by a uniform family of
monodirectional P systems of depth ©(p(n)/logn) without non-elementary division
rules (resp., without division rules). O

Theorem 3 can be sharpened by making the intra-level query parallelism explicit
with OrP queries:

Corollary 5. Let IT be a family of semi-uniform polynomial-time monodirectional
P systems of depth f(n). Then IT can be simulated by a polynomial-time determin-
istic Turing machine with f(n) queries to an OrP oracle. a

We can also prove that monodirectional families of P systems of any con-
stant depth, even with dissolution and non-elementary division rules (in sym-
bols M(O(1))), are always equivalent to families of depth one without dissolution
and without non-elementary division (in symbols M(1, —d, —wn)), and thus only
able to simulate parallel NP queries.

(]

Theorem 7. PMCM(

_ (%] NP
oq)) = PMC L

1,—d,—wn) =
Proof. By Theorem 6, we already know that Pﬁ\IP C PMCq(0(1)), even when
limited to depth 1; the inclusion PMC vq0(1)) € PMCj\A(ou)) holds by definition.

The inclusion PMCjM(O(l)) C P‘ll\IP can be proved as follows. By Theorem 3, a
family of P systems of constant depth k can be simulated in polynomial time by
asking k sets (one per level) of p(n) parallel queries, for some polynomial p. Each
set of p(n) parallel queries can be converted into ©(logn) sequential queries [7,
Theorem 17.7], for a total of k x ©(logn) sequential queries. These can be converted
back into a polynomial number of parallel queries. a

Finally, observe that Theorem 3 also trivially holds for monodirectional P sys-
tems without charges. This implies a better upper bound than previously known [5]
for a monodirectional variant of the P conjecture [9, Problem F], which states that
P systems without charges and without non-elementary division characterise P.

6 Conclusions

In this paper we confirmed the importance of the direction of the information flow
in P systems with active membranes with respect to their computing power. Indeed,
when working in polynomial time and using only outward-bound communication,
the corresponding complexity class decreases from PSPACE to PNP | or from P#P
to P‘NP when non-elementary division and dissolution rules are disallowed. It is
interesting to notice that, unlike with other restrictions such as removing membrane
division [10] or charges and dissolution [2], the resulting P systems are still more
powerful than P (unless, of course, P = NP).
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The role of strong non-elementary division (which is replaced in this paper
by weak non-elementary division) in the absence of send-in rules is still unclear.
Even if it provides a way to convey information from a parent membrane to its
children, we do not know whether this is sufficient to altogether replace send-in
communication while maintaining a polynomial run-time.

Finally, it would be interesting to investigate monodirectional P systems where
the information flow is reversed, i.e., send-out communication and dissolution rules
(as well as strong non-elementary division rules) are disallowed. A first issue to
overcome is choosing an appropriate acceptance condition for the P systems, to
replace sending out yes or no from the outermost membrane. The acceptance
condition most similar “in spirit” to the original one is probably accepting (resp.,
rejecting) by having at least one yes (resp., no) object appear, either anywhere in
the system, or inside a distinguished (and possibly dividing) membrane, during the
last computation step; we also add the restriction that yes and no can never appear
together, since giving the priority to one of them would allow us to solve NP-
complete (or coNP-complete) problems “for free”. Such monodirectional P systems
appear to be very weak when working in polynomial time; indeed, even though
exponentially many membranes can still be created by division, they can never
communicate. Is P actually an upper bound to the class of problems they can
solve?
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Summary. PDP systems are a type of multienvironment P systems, which serve as a
formal modeling framework for Population Dynamics. The accurate simulation of these
probabilistic models entails large run times. Hence, parallel platforms such as GPUs has
been employed to speedup the simulation. In 2012 [14], the first GPU simulator of PDP
systems was presented. In this paper, we present current updates made on this simulator,
and future developments to consider.

1 Introduction

P systems[16, 17] have become good candidates for computational modeling thanks
to the compartmental and discrete features, both in Systems Biology [19, 20] and
Population Dynamics [3]. In this concern, it is worth to mention the achieved
success in real ecosystem modeling through probabilistic P systems, such as the
Bearded Vulture in the Catalan Pyrenees (endangered species) [2], and the zebra
mussel in Ribarroja reservoir (exotic invasive species) [1]. These works have lead
to a formal, computational modeling framework called Population Dynamics P
systems (PDP systems) [4].

In order to experimentally validate these P systems based models, the devel-
opment of simulators is requested [17]. P-Lingua [5, 25] is a simulation framework
for P systems, which aims to be generic, multi-platform (it is written in Java)
and to provide a standard description language for P systems. It has been used
to develop simulators for many variants of P systems, specially for PDP systems.
Furthermore, experts and model designers are able to run virtual experiments in
an abstracted way (without the need of accessing to details of P systems) through
a special software called MeCoSim [18, 24]. MeCoSim uses P-Lingua as the simu-
lation core.
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The run times offered by these general simulation frameworks are high for some
scenarios involving large and complex models. This lack of efficiency is mainly given
from the facts of both using Java Virtual Machine and implementing sequential
algorithms [10]. Indeed, simulating massively parallel devices like P systems in a
sequential fashion is twice inefficient. This issue is can be addressed by harnessing
the highly parallel architecture within modern processors to map the massively
parallelism of P systems [10, 11].

Whereas commodity CPUs can contain dozens of processors, current graphic
processors (GPUs) [8, 15] provide thousands of computing cores. They can be
programmed using general-purpose frameworks such as CUDA [9, 23], OpenCL
and OpenAcc. GPUs exploit data parallelism by using a very fast memory and
simplistic cores. Given the high level of parallelism within modern GPUs (up
to 3500 cores per device [23]), they have provided a platform to implement real
parallelism of P systems in a natural way. Many P system models have been
considered to be simulated with CUDA [11]: P systems with active membranes,
SAT solutions with families of P systems with active membranes and of tissue
P systems with cell division, Enzymatic Numerical P systems, Spiking Neural P
systems without delays, and Population Dynamics P systems [14], among others.
Most of these simulators are within the scope of PMCGPU (Parallel simulators for
Membrane Computing on the GPU) software project [26], which aims to gather
efforts on parallelizing P system simulators with GPU computing.

As shown by all of these research works, the development of a new P system
simulator requires a big research and development effort. For example, in the case
of the simulator for PDP systems, the simulation algorithm called DCBA [13, 3]
was implemented. It is based on 4 different phases with completely different char-
acteristics, and the parallelization effort is also different in each one (e.g. second
phase of DCBA is a random sequential loop that cannot be easily parallelized).
Therefore, the different semantical and syntactical elements of each P system vari-
ant lead to completely different GPU-based simulators. Not only does the GPU
code depend on the simulated variant, but its efficiency also depend on the simu-
lated P system within the variant [14].

In this paper, we show new developments on the GPU simulator for PDP
systems. In summary, a new input module received binary files has been created,
allowing to run real ecosystem models defined with P-Lingua. Moreover, we present
a road map proposal, a set of research lines for future work that is going to be
addressed.

The paper is structured as follows: Section 2 provides an overview of the re-
quired concepts to understand this paper. Section 3 presents the new feature of
the simulator consisting in a input module to read binary files, and also some
preliminary results. Finally, Section 4 discuses future developments to take into
consideration.
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2 Preliminaries

In this section we briefly provide the minimum concepts for the understandability
of the paper. We will not introduce the model of PDP systems and GPU computing
into detail. Instead, we provide short descriptions along with useful references.

2.1 PDP systems model and simulation: DCBA

PDP systems [4, 3] are a branch of multienvironment P systems [6], which con-
sists in a directed graph whose nodes are called environments. Each environment
contains a single cell-like P system. Moreover, the arcs of the graph is implicitly
given by a set of communication rules which allow the movement of objects be-
tween environments in a one-to-many fashion. Thus, these rules are of the form:
(@)e; = (Y1)es, -+~ (Yn)e,, - All the P systems within a PDP system have the same
skeleton: the same membrane structure (with three polarizations), the same work-
ing alphabet, and the same set of (skeleton) evolution rules. These rules are of the
form: u [ v ]2 =« [ ]7. It can be seen that these P systems are an extension of
the active membranes model. However, no dissolution neither division are allowed,
and special care on the consistency of rules has to be taken.

PDP systems have also a probabilistic flavor in terms of probabilities associated
to the rules. On the one hand, a probability is associated to each skeleton rule for

each environment, thus being of the following form: u [ v ]¢ L= [ v }ﬁ On
the other hand, a probability is associated to each communication rule globally
to the PDP system. Rules are executed in a maximal parallel way according to
the probabilities. Rules having the same left-hand side must satisfy the following
condition: the sum of their probabilities has to be 1. Eventually, rules having an
“unique” left-hand side have associated the probability 1. Inherently to the model
is the concept of rule block: a block is formed by rules having the same left-hand
side.

For the syntax of the models, refer to [3, 4] and [6]. Concerning the semantics of
the model, several simulation algorithms have been proposed since the introduction
of PDP systems. Each new algorithm aimed at improving the accuracy in which
the reality is mapped to the models. Perhaps, the most difficult feature to handle
by the simulation algorithms is the competition of objects between rules from
different blocks (note that rules within a block have a the same left-hand side, and
the objects are consumed according to the probabilities) [10].

The latest introduced algorithm for PDP system is called Direct distribution
based on Consistent Blocks Algorithm (DCBA) [13]. The approach taken in it is
based on the idea of distributing the objects along the rule blocks in a proportional
way. After this distribution, the rules within the blocks are selected according to
their probabilities using a multinomial distribution. In summary, DCBA consists
in 4 phases: 3 for selecting rules and the last one for performing the execution.
The scheme of DCBA is the following:
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1. Initialization of the algorithm: static distribution table (columns: blocks,
Rows: (objects,membrane))

2. Loop over Time

3. Selection stage:

4. Phase 1 (Distribution of objects along rule blocks)

5. Phase 2 (Maximality selection of rule blocks)

6. Phase 3 (Probabilistic distribution, blocks to rules)

7. Execution stage

The proportional distribution of objects along the blocks is carried out through
a table which implements the relations between blocks (columns) and objects in
membranes (rows). We always start with a static (general) table, and depending
on the current configuration of the PDP system, the table is dynamically modified
by deleting columns related to non-applicable blocks. Note that after phase 1, we
have to assure that the maximality condition still holds. This is normally conveyed
by a random loop over the remaining blocks.

Finally, DCBA also handles the consistency of rules by defining the concept of
consistent blocks [13, 10]: rules within a block have the same left-hand side and
the same charge in the right-hand side. There is a further restriction within phase
1: if two non-consistent blocks (having different associated right-hand charge) can
be selected in a configuration, the simulation algorithm will return an error, or
optionally non-deterministically choose a subset of consistent blocks.

2.2 GPU computing

Today, PC’s processors offer from 2 to 16 computing cores, and this number can
be increased to 64 or even 128 in high end equipments. These cores are complex
enough to run threads simultaneously, each one with its own context, exploiting a
coarse grain level of parallelism. For example, OpenMP [22] is a threading library
for multicore processors, which can be used in C/C++.

High Performance Computing world has changed in the past years. The intro-
duction of the GPU [8] as a co-processor unit to compute and render 3-D graphics,
encouraged the change of trend in HPC solutions and start to consider heteroge-
neous platforms having CPUs and co-processors. The GPU has been devised as
a highly parallel processor since it was conceived, and now, GPGPU enables the
GPU to be used for general purpose scientific applications [21].

A GPU consists in SIMD multiprocessors interconnected to a fast bus with the
main memory system [15, 9]. Each multiprocessor has a set of computing cores
that execute instructions synchronously (they always perform the same instruction
over different data) and a small portion of sketchpad memory (similar to caches in
CPUs, but manually managed by programmers), among other elements. Current
GPUs also implement cache memories (one L2 at the level of the memory system,
and a L1 cache which resides within the sketchpad memory).

Fortunately, all these aspects are abstracted to the programmer with high level
programming models such as CUDA [9, 23]. Introduced by NVIDIA in 2007, CUDA
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allows to run thousands of lightweight threads concurrently arranged in blocks.
Threads belonging to the same block can cooperate and easily be synchronized.
Threads from different blocks can only be synchronized by finishing their execution.
All these threads execute the same code, called kernel, in a SPMD (single-program,
multiple-data) fashion, since they can access to different pieces of data by using the
identifiers associated to each thread and block. Moreover, each thread can also take
different branches of execution, but this is penalized when happened within a warp
(a group of 32 threads), given that it will makes the execution to be serialized. The
largest but slowest memory system is called global memory, whereas the smallest
but fastest sketchpad memory belonging to each block is called shared memory.
The access to these memories should be done carefully, since best bandwidth is
achieved when threads access to memory in coalesced (to contiguous addresses)
and aligned way [15].

Finally, the GPU architecture has been improving by the different releases.
GT800, Fermi, Kepler and Maxwell are the codename of each NVIDIA GPU gen-
eration. Each one has been associated to a Compute Capability (CC), 1.X, 2.X,
3.X, and 5.X, respectively [23].

2.3 PDP systems parallel simulation on the GPU

As mentioned above, the main objective of DCBA is to improve the accuracy of
the algorithm. However, it comes at expenses of low efficiency. Currently, P-Lingua
framework implements the algorithm, but it is usually not recommended when
dealing with large models because of the large simulation times. This lack of effi-
ciency is mainly due to the use of Java Virtual Machine and sequential algorithms.
Indeed, simulating massively parallel devices like P systems in a sequential fashion
is twice inefficient. A solution to outcome this issue is by harnessing the highly
parallel architecture within modern processors to map the massively parallelism
of P systems [10].

GPUs provide a good platform to implement real parallelism of P systems
in a natural way, by using their high level parallelism [11]. Most of P systems
simulators based on GPU are within the scope of PMCGPU (Parallel simulators
for Membrane Computing on the GPU) software project [26], which aims to gather
efforts on parallelizing P system simulators with GPU computing. Specifically,
there is a subproject for PDP systems, called ABCD-GPU.

ABCD-GPU started with a multi-core version [12, 10], based on C++ and
OpenMP, in which the environments and/or the simulations are distributed along
the processors. Experiments showed that parallelizing by simulations leads to bet-
ter speedups; that is, in a multiprocessor CPU, it is better to parallelize coarsely.
In order to deal with finer-grain parallelism, a CUDA version has been also de-
veloped [14, 10]. In general, these parallel simulators are based on the following
principles:

e Ffficient representation of the data, both for PDP system syntactical elements
and auxiliary structures of DCBA. In this concern, the static and dynamic
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tables for phase 1 are not really implemented. Instead, the operations over
these tables are translated to operations over the syntactical elements of the
PDP system, together with much smaller structures. This approach is called
virtual table, and has shown to dramatically decrease the required amount of
data and time in DCBA.

e Fxploiting levels of parallelism presented in the simulation of PDP systems:
processing of rule blocks and rules, evolution of environments, and conducting
several simulations to extract statistical data from the probabilistic model.

As mentioned in previous section, CUDA requires a large amount of parallelism
to effectively use GPUs resources [9]. Parallelizing only by simulations as in the
OpenMP version is not enough, and the parallelism level is coarse. Instead, the
solution was to extract more parallelism from the PDP systems as follows [14]:

e Thread blocks: they are assigned to each environment and each simulation.
For each transition step, there is a minimal communication along environ-
ments (only when executing communication rules), and each simulation can be
executed independently.

e Threads: each thread is assigned to each rule block/column in selection phases
(1, 2 and 3). In execution phase (4), threads will execute rules in parallel. As
it is possible to have more rule blocks than threads per thread block, they
perform a loop over rule blocks in tiles.

So far, ABCD-GPU simulator has been tested by using randomly generated
PDP systems. The goal of this was to provide a flexible way to construct bench-
marks for performance analysis, by stressing the simulator with different topolo-
gies. For example, Table 1[14] shows the performance of the simulator with PDP
systems having different lengths of the left-hand sides (in terms of number of dif-
ferent objects in the multisets u and v) in average, and running on a NVIDIA
Tesla C1060 GPU, which has 240 cores and CC 1.3. These results clearly show
that phase 2 is the bottleneck of the simulator, since it is the less parallel phase
consisting in a random sequential loop. Moreover, when the competition for ob-
jects increase (having more objects in the LHS leads to more competitions), overall
performance drastically decreases.

Test with average LHS length of 1.5

% CPU | % GPU Speedup
Phase 1| 53.7% | 30.1% 14.23x
Phase 2| 12.6% 47% 2.13x
Phase 3| 22.6% 13.7% 13.2x
Phase 4| 11.1% 9.2% 9.7x

Table 1. Performance testing through randomly generated PDP systems.
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3 A new input module: binary files

After the first version of ABCD-GPU [14], the efforts were focused on creating a
input module to read PDP system descriptions. In this section, we briefly present
the new features of the ABCD-GPU simulator, which is a module to read bi-
nary files defining PDP systems models. We also show preliminary results of the
simulator with a real ecosystem model.

3.1 Format definition

Similarly to the simulator of P systems with active membranes [10, 11], the design
decision for the input file was a binary format. The reason for this is twofold:

o Size of files: the GPU simulator is conceived for running very large models.
Otherwise, it is not worth to be used. Thus, the communication with the simu-
lator should be as efficient as possible to avoid overheads. Since we use P-Lingua
for describing PDP system models, it makes sense to use pLinguaCore to parse
the files. In this concern, P-Lingua is used as the parser and compiler which
send a file to the simulator with unwrapped rules (recall that rules in P-Lingua
can be defined in a symbolic way). Thus, in order to reduce the size of the file
as much as possible, we have defined a binary format which assign the less bits
to each syntactic element.

o [Ffficiency: related with the latter, the binary file is also organized in such a
way that it fits well with the initialization of structures in the simulator. This
helps the efficiency of the parser, while reducing the size of the files.

Although using this kind of format lead to a coupled design (between the
P-Lingua parser and the simulator), it will allow to use the GPU engine while
reducing the communication/storage cost.

Next, we show the structure of the format for the binary file, which is divided
into 5 sections:

e Header: unequivocally identify this file as a binary description file for PDP
systems.

e Sub-header: defines the accuracy used along the file, for the different fields. This
allows to use the exact number of bytes according to the number of objects,
rules, etc.

o Global sizes: define the size of alphabet, number of rules, membranes, environ-
ments and membrane structure.

e Rule blocks: their information is given in 3 subsections, each one giving infor-
mation for allocating space related with the next one.

e Initial configuration description.

HHHHEHEHHEHEHEEHEHEEHEHEEHEHEREHHEREHHEEEHHBEEHHEHEHEBHRHEBHEEEE
# Binary file format for the input of the simulator: PDP systems
# (revision 16-09-2014). The encoded numbers must be in big-endian



10

11

12

13

14

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

49

234 M.A. Martinez-del-Amor, L.F. Macias-Ramos, M.J. Pérez-Jiménez

# Header (4 Bytes):

OxAF

0x12

OxFA

0x21 (Last Byte: 4 bits for P system model, 4 bits for file version)

# Sub-header (3 Bytes):

Bit-accuracy mask (2 Bytes, 2 bits for each number N (meaning a precision

of 2°N Bytes)), for:

- Num. of objects (2 bits (meaning 270 -- 272 Bytes))

- Num. of environments (2 bits (meaning 270 -- 272 Bytes))

- Num. of membranes (2 bits (meaning 270 -- 272 Bytes))

- Num. of skeleton rules (2 bits (meaning 270 -- 272 Bytes))

- Num. of environment rules (2 bits (meaning 270 -- 272 Bytes))

- Object multiplicities in rules (2 bits (meaning 270 -- 272 Bytes))

- Initial num. of objects in membranes (2 bits (meaning 270 -- 272 Bytes))
- Multiplicities in initial multisets (2 bits (meaning 270 -- 272 Bytes))

Listing char strings (1 Byte, 5 bits reserved + 3 bits), for:
- Reserved (5 bits)

- Alphabet (1 bit)

- Environments (1 bit)

- Membranes (1 bit)

#---- Global sizes

# Alphabet

Number of objects in the alphabet (1-4 Bytes)

## For each object (implicit identificator given by the order)
Char string representing the object (finished by ’\0’)

# Environments

Number of environments, m parameter (1-4 Bytes)

## For each environment (implicit identificator given by the order)
Char string representing the environment (finished by ’\0’)

# Membranes (including the environment space as a membrane)

Number of membranes, q parameter + 1 (1-4 Bytes)

## For each membrane (implicit identificator given by the order,
from 1 (0 denotes environment))

Parent membrane ID (1-4 Bytes)

Char string representing the label (finished by ’\0’)
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# Number of rule blocks