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Cell division (I)

One of the basic processes in the cell life cycle.

I Binary fission (prokaryotic cells)

I Mitosis (eukaryotic cells)

I Meiosis (eukaryotic cells)
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Cell division (II)

Cell division inspired mechanism in Membrane Computing:

I P systems with active membranes (membrane division rules)1

? Evolution, Send-in, Send-out, Dissolution, Membrane division rules.

? Computational completeness.

? Computational efficiency (a semi-uniform polynomial time solution for SAT by using

communication rules with length bounded by the number of clauses of the input2).

I Tissue P systems with cell division (cell division rules)3

? Symport/antiport, Cell division rules.

? Computational completeness.

? Computational efficiency (a uniform polynomial time solution for SAT by using communication

rules with length at most 5).

1
Gh. Păun. Computing with membranes: Attacking NP-complete problems. In I. Antoniou, C. Calude, M. J.

Dinneen, (eds.) Unconventional Models of Computation, UMC’2K Springer-Verlag, 2000, pp. 94-115.
2

C. Zandron, C. Ferreti, G. Mauri. Computing with membranes: Attacking NP-complete problems. In I.
Antoniou, C. Calude, M. J. Dinneen, (eds.) Unconventional Models of Computation, UMC’2K Springer-Verlag,
2000, pp. 289-301.

3
Gh. Păun, M.J. Pérez-Jiménez, A. Riscos-Núñez. Tissue P system with cell division. International Journal of

Computers, Communications & Control , Vol. III, 3 (2008), 295–303.
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Gh. Păun. Computing with membranes: Attacking NP-complete problems. In I. Antoniou, C. Calude, M. J.

Dinneen, (eds.) Unconventional Models of Computation, UMC’2K Springer-Verlag, 2000, pp. 94-115.
2

C. Zandron, C. Ferreti, G. Mauri. Computing with membranes: Attacking NP-complete problems. In I.
Antoniou, C. Calude, M. J. Dinneen, (eds.) Unconventional Models of Computation, UMC’2K Springer-Verlag,
2000, pp. 289-301.

3
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Membrane fission (I)

Lipid membranes:

I Plasma membrane

? Separates the interior of a cell from its environment.

I Membrane compartments

? Concentrations barriers alowing incorporate material (donnor-aceptor membrane).
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Membrane fission (II)

Membrane fission inspired mechanism in Membrane Computing:

I P systems with active membranes:

? Membrane separation rules associated with subsets of the working alphabet4

(a semi-uniform polynomial time solution to SAT by using evolution rules with length at most 5).

? Membrane separation rules associated with a prefixed partition of the working alphabet5

(computational completeness + a uniform polynomial time solution to SAT by using evolution

rules with length at most 5).

I Tissue P systems with cell separation:

? Cell separation rules associated with a prefixed partition of the working alphabet6

(a semi-uniform polynomial time solution to SAT by using evolution rules with length at most 8).

4
A. Alhazov, T.O. Ishdorj. Membrane operations in P systems with active membranes. In Gh.Păun et al.

(eds.) Proceedings of the Second Brainstorming Week on Membrane Computing, Sevilla, 2-7 February 2004,
Research Group on Natural Computing, TR 01/2004, University of Seville, 37-44.

5
L. Pan, T.-O. Ishdorj. P systems with active membranes and separation rules. Journal of Universal Computer

Science, 10, 5 (2004), 630–649.
6

L. Pan, M.J. Pérez-Jiménez. Computational complexity of tissue–like P systems. Journal of Complexity, 26, 3
(2010), 296–315.
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Trans-membrane transport

Networks of membranes which compute by communication only:

? Symport/antiport rules7 .

? Used both for communication with the environment and for direct communication between membranes.

? The environment plays an active role.

? Computational completeness.

7
A. Păun, Gh. Păun, G. Rozenberg. Computing by communication in networks of membranes, International

Journal of Foundations of Computer Science, 13, 6 (2002), 779–798.
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Cell-like P systems with symport/antiport rules

Π = (Γ, E ,Σ, µ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout) 8

? Computational completeness.

Cell-like versus Tissue-like: Symport/antiport rules:

Cell-like tissue-like

Set of rules Each membrane has associated a set of rules Associated with the system

Structure Rooted tree: defined in an explicit way Directed graph: defined by the set of rules

Environment Only skin membrane can communicate with it Any cell can communicate with it

Communication Two membranes: in an indirect way Two cells: directly

8
A. Păun, Gh. Păun. The power of communication: P systems with symport/antiport, New Generation

Computing, 20, 3 (2002), 295–305.
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A. Păun, Gh. Păun. The power of communication: P systems with symport/antiport, New Generation

Computing, 20, 3 (2002), 295–305.
7 / 1



For each k ≥ 1, we consider the following classes of recognizer cell-like P
systems (set of rules associated with each membrane)

CDC(k)

? (u, out; v, in), for u, v ∈ Γ∗ (symport-antiport rules) whose length (|u| + |v|) is at most k.

? [ a ]i → [ b ]i [ c ]i , where i ∈ {1, 2, . . . , q} and a, b, c ∈ Γ (division rules).

CSC(k)

? (u, out; v, in), for u, v ∈ Γ∗ (symport-antiport rules) whose length (|u| + |v|) is at most k.

? [ a ]i → [ Γ1 ]i [ Γ2 ]i , where i ∈ {1, 2, . . . , q}, a ∈ Γ, i 6= iout and {Γ1, Γ2} is a fixed partition of Γ
(separation rules).

The semantics is similar to the tissue P systems with cell division or separation.
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Cell-like P systems with symport/antiport rules and “without environment”

Π = (Γ, E ,Σ, µ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout) such that E = ∅.

? No objects initially located in the environment of the system available in an arbitrary number of copies.

? In such P systems objects in the environment always have finite multiplicity.

The classes ̂CDC(k) and ̂CSC(k)
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Recent results

I P = PMCCDC(1) = PMCCSC(1) (dependency graph technique).

I P = PMCCSC(2) (algorithmic technique).

I NP∪ co-NP ⊆ PMCCSC(3) (SAT ∈ PMCCSC(3)).

I NP∪ co-NP ⊆ PMCCDC(2) (HAM− CYCLE ∈ PMCCDC(2)).

I P = PMCĈSC (algorithmic technique).

I For each k ≥ 1, PMCCDC(k) = PMC ̂CDC(k)
(simulation technique).
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I P = PMCĈSC (algorithmic technique).

I For each k ≥ 1, PMCCDC(k) = PMC ̂CDC(k)
(simulation technique).

10 / 1



Proof techniques

Dependency graph

? Construction of a directed graph (dependency graph) GΠ associated with a P system Π verifying:

• There exists an accepting computation of Π if and only if there exists a path between two

distinguished nodes in the dependency graph associated with it.

Algorithmic

? A deterministic algorithm A working in polynomial time that receives as input a P system Π and an input

multiset m of Π. Then, algorithm A reproduces the behaviour of a single computation of Π + m.

Simulation

? Π′ simulates Π in an efficient way if the following holds:

(a) Π′ can be constructed from Π by a DTM working in polynomial time.

(b) There exists an injective function, f , from Comp(Π) onto Comp(Π′) such that:

• There exists a DTM that constructs f (C) from computation C in polynomial time.

• A computation C is an accepting computation if and only if f (C) is an accepting one.

• There exists a polynomial function p(n) verifying |f (C)| ≤ p(|C|) for each C ∈ Comp(Π).
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Frontiers of the efficiency

NonEfficiency Efficiency
(Feasible) (Presumably Efficient)

CDC(1) CDC(2) (length)

CSC(2) CSC(3) (length)

CSC(2) CDC(2) (kind)

ĈSC(2) ̂CDC(2) (kind)

ĈSC CSC (environment)

Each such frontier provides a new way to tackle the P versus NP problem.
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Does structure matter?

Similar results for:

I Tissue P systems with symport/antiport rules (cell division/cell
separation).

I Cell-like P systems with symport/antiport rules (cell division/cell
separation).

Open questions:

1. Cell-like P systems with symport/antiport rules, can be efficiently
simulated by tissue P systems with symport/antiport rules?

2. Tissue P systems with symport/antiport rules, can be efficiently
simulated by cell-like P systems with symport/antiport rules?

Idea: Complexity aspects on Tissue P systems with active cells.
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