
Looking for Computers in the Biological Cell.
After Twenty Years?

Gheorghe Păun

Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania
gpaun@us.es

1 Preliminary Cautious and Explanations

The previous title needs some explanations which I would like to bring from the
very beginning.

On the one hand, it promises too much, at least with respect to my scientific
preoccupations in the last two decades and with respect to the discussion which
follows. It is true that there are attempts to use the cell as it is (bacteria, for
instance) or parts of it (especially DNA molecules) to compute, but a research
direction which looks more realistic, at least for a while, and which has interested
me, is to look in the cell for ideas useful to computer science, for computability
models which, passing from biological structures and processes to mathematical
models, of a computational type, can not only ensure a better use of the existing
computers, the electronic ones, but they can also return to the starting point, as
tools for biological investigations.

Looking to the cell through the mathematician-computer scientist glasses, this
is the short description of the present approach, and in this area it is placed the
personal research experience which the present text is based on.

On the other hand, the title announces already the autobiographical intention.
Because a Reception Speech is a synthesis moment, if not also a career summarizing
moment, it cannot be less autobiographical than it is, one uses to say, any novel
or poetry volume. And, let us not forget, the life in the purity and signs world
(a syntagma of Dan Barbilian-Ion Barbu, a Romanian mathematician and poet)

? This is the English version of the Reception Speech I have delivered on October 24,
2014, at the Romanian Academy, Bucharest, and printed by the Publishing House of
the Romanian Academy in December 2014. The answer to this speech was given by
acad. Solomon Marcus. Some ideas and some paragraphs of the text have appeared, in
a preliminary version, in the paper Gh. Păun ”From cells to (silicon) computers, and
back”, published in the volume New Computational Paradigms. Changing Conceptions
of what is Computable (B.S. Cooper, B. Lowe, A. Sorbi, eds.), Springer, New York,
2008, 343–371.



252 Gh. Păun

of mathematics assumes/imposes a great degree of loneliness, as acad. Solomon
Marcus reminded us in his Reception Speech (2008), while the loneliness (it is
supposed to) make(s) us wiser, but it also moves us farther from the ”world-as-it-
is”, so that at some stage you no longer know how much from a mathematician
belongs to the ”world” and how much belongs to mathematics. That is why we
can consider that a mathematician is autobiographical both in his/her theorems
and in the proofs of his/her theorems, as well as in the models (s)he proposes.

Looking back in time, I find that I am now at the end of two periods of two
decades each, the second one completely devoted to ”searching computers in the
cell”, while the first period was almost systematically devoted to preparing the
tools needed/useful to this search. The present text describes mainly the latter of
these two periods.

2 Another Possible Title

For a while, I had in mind also another title, much more general, namely, From
bioinformatics to infobiology. It was at the same time a proposal and a forecast,
and the pages which follow try to bring consistency to this forecast. Actually, the
idea does not belong to me, in several places there were discussions about a new
age of biology – the same was predicted also for physics – based on using the
informational-computational paradigms, if not also based on further chapters of
mathematics, not developed yet. The idea is not to apply computer science, be it
theoretical or practical, to biology, but to pass to a higher level, to a systematic
approach to biological phenomena in terms of computability, with the key role
of information being understood. Attempts which illustrate this possibility, also
advocating for its necessity, can be found in many places, going back in time to
Erwin Schrödinger and John von Neumann. In a recent book, Infobiotics. Infor-
mation in Biotic Systems (Springer-Verlag, 2013), Vincenzo Manca also pleads for
”a new biology”, which he calls infobiotics, starting from the observation that the
life is too important to be investigated only by biologists. I would reformulate in
more general terms: the life is too important and too complex to be investigated
only by the traditional biology – with the important emphasis that exactly the biol-
ogists are called to not only benefit, but also to provide consistency to infobiology.
Together with the computer scientists and, more plausibly and more efficient, bor-
rowing from the computer scientists ideas, models, techniques, making them their
own ideas, models and techniques and developing them. There is here also a plead
for multi-trans-inter-disciplinarity (starting with the higher education), but also a
warning: this is not only possible, but, it seems, this is also at the right time, on
the verge to become urgent.



Looking for Computer in the Biological Cell 253

3 The Framework

Having in mind the title before and looking for an ”official” enveloping area, the
first syntagma which appears is natural computing – with the mentioning, however,
that it covers a very large variety of research areas, including the bioinformatics and
also moving towards infobiology. For an authoritative description, let us consider
the Handbook of Natural Computing, edited by Grzegorz Rozenberg, Thomas Bäck
and Joost N. Kok, published, in four large volumes, by Springer-Verlag, in 2012.
From the beginning of the Preface, we learn that Natural Computing is the field of
research that investigates human-designed computing inspired by nature as well as
computing taking place in nature, that is, it investigates models and computational
techniques inspired by nature, and also it investigates, in terms of information
processing, phenomena taking place in nature. The generality is obvious, adding
to the desire to identify in nature (important: not only in biology) ideas useful
to computer science, a position which, as I have already said, although it is not
completely new, if it is systematically applied, it can lead to a new paradigm in
biological research and in other frameworks too: the informational approach, hence
surpassing the traditional approach, the chemical-physical one.

The idea was formulated also in other contexts: the computational point of
view (to the information processing one adds the essential aspect of computabil-
ity) can also lead to a new physics – among others, this is the forecast of Jozef
Gruska, an active promoter of quantum computing and a pioneer of computer sci-
ence, rewarded with a diploma of this kind by the Computer Science Section of
IEEE (let us remind the fact that also Grigore C. Moisil has been awarded such
a diploma and title). On the same idea is grounded also the collective volume
A Computable Universe. Understanding and Exploring Nature as Computation,
edited by Hector Zenil and published by World Scientific in 2013. Many chap-
ters have exciting-enthusiastic titles: Life as Evolving Software, The Computable
Universe Hypothesis, The Universe as Quantum Computer, etc. There also is a
chapter-long Preface, by sir Roger Penrose, not always fully agreeing with the
hypotheses from the book.

Actually, also the Handbook of Natural Computing mentioned before includes
the quantum computing among the covered domains. Here is its contents (the main
sections, without specifying the chapters): Cellular Automata, Neural Computa-
tion, Evolutionary Computation, Molecular Computation, Quantum Computation,
Broader Perspective – Nature-Inspired Algorithms, Broader Perspective – Alterna-
tive Models of Computation. There is some degree of ”annexationism” here (for
instance, cellular automata are not too much related to the biological cells), but
let us mention that the section devoted to the molecular computation covers DNA
computing, membrane computing, and gene assembly in ciliates, the former two
areas being exactly what we are interested in here.



254 Gh. Păun

4 The Popularity of a Domain

Even remaining only at the editorial level and at the level of conferences (without
considering also the research projects, hence the financial support), one can say
that there is a real fashion of natural computing – more general, of unconventional
computing, more restricted, of bioinformatics.

Here are only a few illustrations. Springer-Verlag has a separate series of books
dedicated to natural computing monographs, named exactly in this way, it also
has a journal, Natural Computing. There is an international conference, Unconven-
tional Computing, which became, in the last year, slightly pleonastic, International
Conference on Unconventional Computation and Natural Computation. BIC-TA,
that is, Bio-Inspired Computing – Theory and Applications, is another conference
of a real success, at least in what concerns the number of participants, a meeting
whose format I has established, together with colleagues from Spain and China, in
2005, and which is organized since then each year, in China or in the neighboring
countries – this can explain the massive participation, as the Chinese researchers
are very active in this area.

We have reached the closest upper envelope of the area discussed here: the
computability inspired from biology. It is important to note that the term ”bioin-
formatics” (bio-computer science) has a double meaning, with, one can say, a
geographical determination. In the ”pragmatic West”, it mainly covers the com-
puter science applications to biology (in the ”standard” scenario, one goes from
problems towards tools, without too much theory). In Europe, both directions
of influence are taken into consideration, from biology towards computer science
and conversely. Although it is just natural that both these two research directions
should be developed together, in collaboration, the reality is not always so. In
search of solutions for current questions, some of them really urgent, for instance
from the biomedical area, mathematics and computer science often provide tools
prepared and developed in other areas. The typical example is that of differential
equations, with a glorious history in physics, astronomy, mechanics, meteorology,
and which are ”borrowed” to biology, not always checking their adequacy. I will
return to this issue, of a great importance for promoting new tools for biology.

”The European strategy”, of constructing a mathematical theory which looks
for applications after it is developed, has its appeal and advantages – but also its
traps. Being an European, being a mathematician, I have been especially attracted
by this strategy, but, in time, I became more and more interested by ”reality”, by
applications.

5 What Means to Compute?

Let us come back to the title, with the fundamental question concerning the def-
inition of the notions of computation and computer. This is a question of the
same type as ”what is mathematics?”, with many different answers, none of them



Looking for Computer in the Biological Cell 255

complete, none of them fully agreed. If information processing is a computation,
then we can see computations everywhere. With a very important detail, hidden
in the previous formulation: we can see. We, the human beings. Otherwise stated,
an observer, which interprets a process as being a computation. I do not want to
push the discussion as far as asking questions of the form ”does a tree which falls
in the water of a lake, in the middle of an uninhabited forest, produce any noise,
taking into account that there is nobody there to hear it?” – I mention the fact
that this question was the topic of a paper accepted some years ago by a con-
ference on unconventional computing, that is why I recall it – and, on the other
hand, I also do not want to involve God in this issue, the omnipresent, omniscient,
omnipotent God, considered as an universal observer (at least, not for observing
computations, maybe only for noticing noises in desert forests...).

A somewhat exaggerated but rather suggestive example is that of a drop of
liquid which falls freely in the air. During its falling down, the drop instantaneously
”solves” on its surface, by the form it takes, complex differential equations. Is this
a computation? I would not go so far. Similarly with what happens continuously
in the cells of a leaf or of the human body, at the biochemical or even at the
informational level.

The idea of a computation as a process considered so by an observer is not
at all new. One of the conclusions of the John Searle book The Rediscovery of
the Mind (MIT Press, 1992), is exactly this – a computation is not an intrinsic
property of a process, but it is observer-relative.

A very suggestive formulation of the role of the observer in considering a process
as being a computation belongs to Tommaso Toffoli. The quotation which follows
appears in a paper with a statement-title: ”Nothing makes sense in computing
except in the light of evolution” (Journal of Unconventional Computing, vol. 1,
2005, pages 3–29).

“We’we just seen that it is not useful to call computation just any nontrivial yet
somewhat disciplined coupling between state variables. We also want this coupling
to have been intentionally set up for the purpose of predicting or manipulating –
in other words, for knowing or doing something. This is what shall distinguish
bona–fide computation from other intriguing function–composition phenomena
such as weather patterns or stock–exchange cycles. But now we have new ques-
tions, namely, ‘Set up by whom or what?’, ‘What is it good for?’, and ‘How do we
recognize intention?’

Far from me to want to sneak animistic, spiritualistic, or even simply anthropic
considerations into the makeup of computation! The concept of computation must
emerge as a natural, well–characterized, objective construct, recognizable by and
useful to humans, Martians and robots alike” (my emphasis, Gh.P.).

Toffoli’s questions should be remembered and discussed, but they move us far
from our subject. Let us return to John Searle, namely, to a more technical reading
of the idea of implying an observer in the definition of a computation. This was
the approach of Matteo Cavaliere and Peter Leupold, both of them my students in
the PhD school in Tarragona, Spain, the former one being my first PhD student



256 Gh. Păun

there. They have published a series of papers with this subject, I cite here only a
recent one, by Peter Leupold, ”Is computation observer-relative?”, presented at the
Sixth Workshop on Non-Classical Models of Automata and Applications, Kassel,
Germany, July 2014. Actually, in the Cavaliere-Leupold approach there appear
two observers, one of them – we can call it observer of the first order – following a
simple process and ”translating” the steps of the process in an external language,
and the second observer, closer to the Searle-Toffoli observer, interpreting as a
computation the results of the activity of the first observer. Cavaliere and Leupold
consider a series of process-observer (of the first order) pairs which, separately,
have a reduced (computing) power, but which, together, lead to the computing
power of Turing machines from the point of view of the external observer.

6 The Turing Machine

Let us start also from another direction, from the meaning given by mathematics
to the notion of computation. Already from the thirties of the previous century
we have a definition of what is computable, the answer Alan Turing gave to the
question ”what is mechanically computable?”, formulated by David Hilbert at the
beginning of the twentieth century. ”Mechanically”, i.e., ”algorithmically” in our
today reformulation. There were many proposed answers (I recall only the recur-
sive functions and the lambda-calculus), given by great names of mathematics-
computer science (I recall here only Alonzo Church, Stephen Kleene, Emil Post),
but the solution given by Turing, what we call now Turing machine, has been
accepted as the most convincing one (a fact certified even by the highly exigent
Gödel). This is now in computer science the standard model of an algorithm (I
have not said definition, because we have only an intuitive understanding of the
idea of an algorithm, but we can say that in this way we have a definition of what
is computable).

Without entering into details, I mention only that Hilbert’s problem was more
general. It started from the algorithmic resolution of diophantine equations, those
with integer coefficients (the tenth problem in Hilbert’s 1990 list), but in its later
(in 1928) formulation Hilbert was saying that ”the Entscheidungsproblem [the de-
cision problem in the first order logic] would be solved if we would have a procedure
which, for any logical expression we would decide through a finite number of op-
erations whether it is satisfiable... Entscheidungsproblem should be considered the
main problem of the mathematical logic”. At this general level, Gödel theorems
answer negatively Hilbert’s program. Negative answers gave also Church and Tur-
ing, while Hilbert tenth problem was solved – also negatively – in 1970, by Yurii
Matijasevich (after many efforts of several mathematicians: Julia Robinson, Hilary
Putnam, Martin Davis). Turing not only gives a negative answer, moreover, he not
only defines ”the frontiers of computability”, but he also produces an example of a
problem placed behind these frontiers, a problem which is not algorithmically solv-
able, the halting problem (there is no algorithm, hence a Turing machine, which,
taking as input an arbitrary Turing machine, can tell us, in a finite number of



Looking for Computer in the Biological Cell 257

steps, whether the given input machine halts or not when starting from an arbi-
trarily given initial data). To the halting problems reduce, directly or indirectly,
most if not all undecidability results obtained after that.

The Turing machine is so important for computer science, including the natu-
ral/unconventional computability, that it is worth discussing it a little bit more.

7 Some More Technical Details

It is interesting to note that when he defined his ”machine”, Turing explicitly
started – he states this at the beginning of the paper – from the attempt to abstract
the way a human being computes, reducing to the minimum the resources used
and the operations made. In this way, in the end one obtains a ”computer” which
consists of a potentially infinite tape, bounded to the left, divided in cells where
one can write symbols from a given finite alphabet; these symbols can be read and
rewritten by a read-write head, which can ”see” only one cell, can read the symbol
written there, can change it, then it can move to the neighboring left or right cell
or it can stay in the same place; the activity of the read-write head is controlled
by the finitely many states of a memory. Thus, we get instructions of the form
s1a → s2bD with the following meaning: in state s1, with the head reading symbol
a, the machine passes to state s2, modifies a to b (in particular, a and b can be
identical), and moves the read-write head as indicated by D. One starts with the
tape empty, with the machine in a special initial state s0; one writes the initial
data on the tape (for instance, two numbers which have to be multiplied), one
places the head on the first cell of the tape (the leftmost one), and one follows the
instructions of the (e.g., multiplication) ”program” until one reaches a final state
and the machine halts, no further instruction can be applied. The contents of the
tape at that moment is the result of the computation.

Extremely reductionistic, but this is the most general model of an algorithmic
computation – because no previous definition of what is computable is known,
this assertion is only a hypothesis, called the Turing-Church thesis. However, what
made Turing machine so attractive were not only the simplicity of its definition and
its power (it was proved that the Turing machine can simulate any other computing
model), but also its robustness (the computing power is not changed if we add
further ingredients to the architecture or to the functioning, such as further tapes,
if we infinitely prolong the tape also to the left, if we consider non-deterministic
computations, etc.), and, mainly, the existence of universal Turing machines: there
exists a fixed Turing machine TMU which can simulate any particular Turing
machine TU , in the following sense. If a code of the machine TM (let us denote
it by code(TM)) is placed on the tape of TMU together with an input x of TU ,
then TMU will provide the same result as that provided by TU when starting
from input x. A little bit more formally (but still omitting some details – e.g.,
codifications), we can write TMU(code(TM), x) = TM(x). And Turing proved
that there are universal Turing machines. This was done in 1936, in the paper ”On



258 Gh. Păun

computable numbers, with an application to the Entscheidungsproblem”, published
in Proceedings of the London Mathematical Society, Ser. 2, vol. 42, 1936, 230–265,
with an erratum in vol. 43, 1936, pages 544–546.

This is the ”birth certificate” of the today computers, consequently called of
Turing-von Neumann type (in forties, when he has participate in the designing
of the first programmable electronic computers, von Neumann was influenced by
Turing ideas).

A couple of things deserve to be mentioned: the code of machine TM is the
program to be executed/simulated on TMU , starting from the data x; the in-
structions of TMU form the ”operating system” of our ”computer”; the data and
the programs are written in the same place, on the tape of the universal Turing
machines (in the ”computer memory”) – from here it follows the possibility to
process programs in the same way as we process data, hence the vulnerability of
programs to computer viruses.

Several details are important from the point of view of natural computing. The
work of the Turing machine is sequential, in each time unit one performs only one
instruction. In many places in nature, if not in most of them, in particular, in
biology, the processes develop in parallel, which is a very appealing feature for
computer science, but these processes are not necessarily synchronized, which, in
turn, raises difficulties for computer science.

There also are further differences between Turing machines, the ”biological
computers”, and the electronic computers, but we will discuss these differences
later.

For the time being we keep in mind that in what follows to compute has the
meaning suggested by Turing machines: there are an input and an output, between
them there is an algorithm which bridges inputs and outputs, and the result of a
computation is obtained in the moment when the machine halts. Very restricted,
but precise. With such a framework at hand, we can look around for computations,
moreover, we can investigate them in a well developed context, the computabil-
ity theory – actually, a set of several theories, such as automata theory, formal
language (grammar) theory, complexity theory and others.

8 Computer Science and Mathematics

This is maybe the place to remind a debate which motivated many discussions
and points of view, often biased, concerning the relation between computer science
and mathematics. Discussions of this kind have appeared also in the Romanian
Academy, they appeared in the higher education (in the sixties-seventies of the last
century, at the time of sputniks and hydroelectrical plants, we had many faculties
of ”mathematics-mechanics”, now mechanics was replaced by computer science),
the issue is often debated in mass media. Actually, the context is larger, sometimes
it is put in question the relation of mathematics with other sciences, with school
education, with the society. There are persons who are proud of the fact that they



Looking for Computer in the Biological Cell 259

”were not good in math”. It was even expressed the opinion that mathematics
is a luxury, a ”national fetish” (this expression has recently appeared in the title
of a Romanian newspaper article), in short, that one makes too much fuss of
mathematics and one teaches too much mathematics. This opinion is getting more
and more popular, supported also by the ubiquitous penetration of computers (”we
no longer need to know the multiplication table, the computer knows it for us”).

Of course, there is a problem with the mathematical education. What, how
much, and, mainly, how? – and there also are further questions; we can find them,
often also together with solutions, in the papers dedicated in the last years by
professor Solomon Marcus to education. The problem cannot be solved from bot-
tom up, the mathematicians involved in research and in higher education should
consider it – this is, for instance, the opinion of Juraj Hromkovic, from ETH
Zürich, formulated in an article published in the Curtea de la Argeş journal
(www.curteadelaarges.ro, August 2014), based on the practical activity in this
respect carried out in the institute where J. Hromkovic works (among others, this
activity was materialized in mathematical school books of a new type). In gen-
eral, the mathematicians should enter public debates and plead for their discipline,
mainly they are guilty if the domain loses its popularity. It is true that for a math-
ematician mathematics is a great game, which, like any game, has an intrinsic
rewarding, in the very development of the game, therefore it is natural that the
interest for ”popularization” is low among mathematicians, but the persons who
are proud of their mathematical infirmity, be it real or only claimed, are always
much more visible, more vocal, and the danger which comes from this is obvious.

Having in mind only the relation between mathematics and computer science,
let us mention that the theoretical computer science, placed at the intersection of
the two domains, is often considered by computer scientists as a part of mathemat-
ics, and by mathematicians as a part of computer science. Sometimes, theoretical
computer science has problems even inside computer science – as it happens also
with other theoretical branches of science with a strong practical dimension. Of
course, all these are false problems by themselves, but they can have unpleasant
practical consequences.

Being of the same opinion, I cite here an authoritative voice, that of Edsger W.
Dijkstra, one of the classics of computer science, in fact, of the practical computer
science: it is sufficient to remind that during sixties he has worked for implement-
ing the Algol language in the Amsterdam Mathematical Center, and, furthermore,
he was the promoter of structured programming, well-known among the software
practitioners. (Maybe it is good to add here that the first four years after gradua-
tion I have intensively written computer programs, in Cobol and Fortran, realizing
even the programs for computing the salaries of the workers in a large Bucharest
factory – I remember, therefore, what practical computer science means...)

”The end of computer science?”, asks Dijkstra, ironically-rhetorically, already
in the title of a note published in Communications of the ACM (vol. 44, March
2001, page 92), which starts with the following phrase: ”In academia, in industry,
and in the commercial world, there is a widespread belief that computing science as



260 Gh. Păun

such has been all but completed and that, consequently, computing has matured
from a theoretical topic for the scientists to a practical issue for the engineers,
the managers, and the entrepreneurs.” Then, it adds: ”This widespread belief,
however, is only correct if we identify the goals of computer science with what has
been accomplished and forget those goals that we failed to reach, even if they are
too important to be ignored.”

Much more explicit is Dijkstra in the speech he delivered in May 2000 at a
symposium (In Pursuit of Simplicity) organized at the Austin-Texas University,
on the occasion of his retirement. The title of the speech (published in Informa-
tion Processing Letters, vol. 77, February 2011, pages 53–61) is relevant: ”Under
the spell of Leibniz’s dream”. I recall a couple of aphoristic phrases: ”What is
theoretically beautiful tends to be eminently useful.” ”In the design of sophisti-
cated digital systems, elegance is not a dispensable luxury but a matter of life and
death, being a major factor that decides between success and failure.” ”These days
there is so much obsession with application that, if the University is not careful,
external forces, which do make the distinction [between theory and practice], will
drive the wedge between theory and practice and may try to banish the theorists to
a ghetto of separate departments and separate buildings. A simple extrapolation
will tell us that in due time the isolated practitioners will have little to apply; this
is well-known, but has never prevented the financial mind from killing the goose
that lays the golden eggs. The worst thing with institutes explicitly devoted to
applied science is that they tend to become institutes of second-rate theory.”

The plead to place us under the spell of Leibniz is obvious, because, Leibniz said
it, ”the symbols direct the reason”, and, after having a language where ”all reason
truths will be reduced to a kind of calculus”, ”the errors will only be computation
errors”. (Leibniz program, continued and formulated in more precise terms by
David Hilbert, cannot be realized, on the one hand, mathematics is too exact-
rigorous while the reality is too complex and nuanced to can transform everything
in formal computations, on the other hand, Gödel theorems proved that even the
Hilbert program is not realizable.)

Of course, the mathematics-computer science relationship is much more com-
plex, but we cannot explore it further here. I close the discussion returning to the
starting point: the today computers, programmable, of Turing-von Neumann type,
are born from the Turing universality theorem from 1936. It is interesting to note
(and comfortable for Dijkstra position) that, by means of a vote through Internet,
in 2013, looking for the most important scientific and technological British discov-
ery, the first place was won, surprisingly for our pragmatic times, by the Turing
machine and Turing universality theorem, which were placed ahead of the steam
engine, the telephone, the cement, the carbon fiber and other similarly important
things.



Looking for Computer in the Biological Cell 261

9 Does Nature Compute?

Having in mind the computability in the sense of Turing, the previous question
becomes more restrictive, but the discussion above provides us the borderlines in
between which we have to look for the answer: yes, nature computes at least at
the level of... humans, and yes, nature computes whenever there is a process which
can be interpreted as a computation by a suitable observer. Opinions which are
placed closer to the former or the latter of these limits can be easily found, I cite
here only one from the very permissive extreme, even passing over the borderline,
because the observer is not mentioned anymore.

At the beginning of Chapter 2 (”Molecular Computation”) of the collective vol-
ume Non-Standard Computation (T. Gramss, S. Bornholdt, M. Gross, M. Mitchel,
Th. Pellizzari, eds., Wiley-VCH, Weinheim, 1998), M. Gross says: ”Life is com-
putation. Every single living cell reads information from a memory, rewrites it,
receives data input (information about the state of its environment), processes the
data and acts according to the results of all this computation. Globally, the zil-
lions of cells populating the biosphere certainly perform more computation steps
per unit of time than all man made computers put together.”

In what follows, I adopt a more conservative and, at the same time, more pro-
ductive position: bearing in mind the mathematical definition of computability,
more precisely, the Turing approach, let us look around, especially in biology, in
search of ideas, data structures, operations with them, ways to control the opera-
tions, ”computer” architectures, which can suggest (1) new computability models,
(2) ways to better use the existing computers, (3) possibilities of improving the
existing computers at the hardware level, maybe even (4) new types of computers,
based on biological materials. It should be noticed the increased ambition from
a point to the next one. It is worth remembering that DNA computing started
from the very beginning from the attempt to compute in a test tube, thus directly
addressing the fourth goal in the list above.

We mainly had here in mind the goals of computer science, but the first ob-
jective also covers the second direction of research mentioned in the preface of the
Handbook of Natural Computing, the investigation of processes taking place in na-
ture in terms of computability, and this research direction should be explicitly and
separately emphasized, especially for pointing to a ”side effect” of this approach,
namely the return to biology, delivering models useful to the biologist.

At this moment, DNA computing was not too much useful to practical com-
puter science, it was useful to biology and much useful to nano-technology, sug-
gesting new research questions. Membrane computing has significant applications
to computer science and biology, with higher promises in the latter area, including
biomedicine and ecology among the application directions.

A detail: ”the goal of computer science” also covers the theoretical interest,
which is not supposed to necessarily lead to applications, in the restricted mean-
ing of the term. Let us think, for instance, to ciliates. In the division process, when
passing from the micronuclear genes to the macronuclear genes, these unicellular
beings complete complex operations of list processing, and they are doing this since



262 Gh. Păun

millions of years, much before the computer scientists gave name and investigated
these data structures. Of course, the ciliates are not thinking to computations
when doing this, but we, the humans, can build beautiful theories starting from
their activity, including computability models, sometimes equivalent in power with
Turing machines. Detains and references can be found in the monograph Compu-
tation in Living Cells. Gene Assembly in Ciliates (Springer-Verlag, 2004), by A.
Ehrenfeucht, T. Harju, I. Petre, D.M. Prescott, and G. Rozenberg.

10 An Eternal Dilemma

The previous discussion inevitably pushes us towards the long debate concern-
ing the relation between invention and discovery. The bibliography is huge, I
cite here only the book of acad. Solomon Marcus Invention or Discovery, Cartea
Românească Publishing House, Bucharest, 1989 (in Romanian). How much is in-
vention and how much is discovery in computer science – with particularization to
natural computing? I do not try to provide an answer, there are as many answers
as many view points, personal experiences, philosophical positions. The models we
work with are of a mathematical nature, the Platonic point of view ensures us that
everything is discovery, because mathematics itself is a revealed reality. Yes, but it
is already agreed that notions, concepts, theories, and models are inventions, the
theorems are discovered, the proofs are invented. We can continue the alternating
sequence by adding that the applications are discovered. Therefore, the models are
considered inventions.

However, I would like to introduce a nuance. The models are based on structures
which already exists, but they have not received yet a name. Moreover, differently
from a wall which can be discovered both by an archaeologist who knows what
he is searching for, but also by a fruit trees farmer who digs the soil with other
goals than finding the basement of an old church, a computability model can be
”seen” in a cell only by a computer scientist who has already in mind computability
models. For instance, the processes called by biologists symport and antiport exist,
they function since long ages in their ingenious ways, but they compute only for a
mathematician who is looking for a computing model based on passing ”objects”
from a cell compartment to another one. ”Computing by communication” – I have
searched for a while something like that, having the intuition that it exists, and
I had the solution when a biologist (Ioan Ardelean) told me about symport and
antiport operations. This was a model mostly discovered than invented. Actually,
a discovery which was not done by bringing to light the discovered object, but by
means of superposing the intuition of a model over a piece of reality. The imagined
model, similar to other existing computability models, was actualized during the
dialogue between reality and the formal framework. I can say that this is at the
same time invention and discovery.



Looking for Computer in the Biological Cell 263

11 Another Endless Discussion

I am not continuing with other similarly delicate questions, always of interest in
spite of any given answers. (For instance, providing us the opportunity to ask how
much art and how much science is in computer science, Donald Knuth entitled
an impressing editorial project, planned to have a dozen of volumes, The Art of
Programming.) However, I touch here another very sensitive topic, with which I was
confronted sometimes in the form of the newspaper question (but not completely
nonsensical): ”During your research in the cell area, have you ever met God?”
Of course, the expected answer is something different from ”yes” or ”no”, and
similarly obvious is that, if we take the question seriously, we will get lost on the
slippery sands of personal options, beliefs, metaphors.

If God is the order, the organization, the good and the beautiful, Spinoza’s
God, visible in the harmony of the Universe laws, as Einstein would say, then
yes, I meet Him continuously, both in cells and outside them. Furthermore: in the
title of a book originally published in 2009 by Simon & Schuster, and translated in
Romanian in 2011, Mario Livio asks Is God a Mathematician? I answer in the style
of Plato: no, God is not a mathematician, He is mathematics itself (the ”grammar
of the world”) – hence, again, I meet Him every moment.

If, however, God is what the Book proposes to me, then I go in line with
Galileo Galilei, who, in a letter sent to don Benedetto Castelli, on December 21,
1613, said (I recall it following Edmond Constantinescu, God Does not Play Dice,
MajestiPress Publishing House, Arad, 2008; in Romanian): ”God has written two
books, the Bible and the Book of Nature. The Bible is written in the language of
men. The Book of Nature is written in the language of mathematics. That is why
the language of the Bible is not suitable for speaking about nature. The two books
must be studied independently from each other.” And Galileo added: the Book of
Nature teaches us ”how the Sky/Heaven goes”, while the Bible teaches us ”how
to go to the Sky/Heaven”.

After centuries of separation – mainly dogmatical, from both sides –, alter-
nating with attempts, most of them pathetical, of reconciliation of science with
religion, the words of Galileo can look too simple or opportunistic, but they cut
in an efficient way a continuously regenerated Gordian knot. Let me mention also
a more sophisticated, but somewhat symmetrical position, of Francis S. Collins,
not only contemporary with us, but also connected to the topic of these pages,
as he was the director of National Human Genome Research Institute, one of the
leaders of the famous Human Genome Project. In 2006 he has published a book,
The Language of God. A Scientist Presents Evidence for Belief, Simon & Schus-
ter, translated in Romanian in 2009. The syntagma ”language of God” was used
also by Bill Clinton, in 2001, when he has announced the completion of ”the most
important, most wondrous map ever produced by humankind”, the map of the
around three billions of ”letters” of the ”book of life”. Even if the title seems to
suggest this, Collins is neither a creationist, nor an adept of the intelligent cre-
ation, but he is an ”evolutionary deist” and the conclusion of his book is that ”the
God of Bible is also the God of the genome” (page 222 in the Romanian version),



264 Gh. Păun

while ”science can be a form of religiosity” (page 240). This is a very comfortable
positioning, but, in what follows, I remain near Galileo.

12 The Limits of Today Computers

The fashion of natural computing and especially of the computing inspired from
biology does not have only the internal motivation, of the numerous research di-
rections explored in the last decades and proved to be theoretically interesting
and at least promising if not directly useful in practice, but it has also an external
motivation, related to the limits of the current computers, some of them rather
visible. Indeed, the computers are the twentieth century invention with the widest
impact, with implications in all components of our life, from communication to
the functioning of the financial system, from the health system to the army, from
the numerous gadgets around us to Internet. In spite of all these – actually, just
because of that – the computers which we have now have limits which we reach
often (with the mentioning that also here, like in most things, there is something
bad in the good and something good in the bad: powerful computers can be used
both in positive ways, but also for bad goals, such as breaking security systems
and cryptographic protocols on which, for instance, the protected communication
is based.) Let us however think positively and note that there are many tasks
which the today computers cannot carry out, but which we would like to have
performed.

The processors become continuously faster and more compact, the memory
storage larger and larger. Sure, but how much this tendency will last? It was much
invoked the so-called Moore law, stated in 1965 by Gordon A. Moore, co-founder of
Intel Corporation, with respect to the number of transistors which can be placed
on an integrated circuit, extended then to the cost of information unit stored,
formulated sometimes even in the form ”in each year, the computers become two
times smaller, two times faster, and two times more powerful”. Exponential in all
the three directions, thus tending fast towards the quantum limit in the dimension
of processors. Even at the more technical level, confirmed for a couple of decades,
of doubling the capacity of processors, the law – actually, only an observation,
followed by a forecast – has been adjusted several times, with the doubling/halving
moved first at one year and a half, then at two years, then at three years. Still, it
is not too bad, but one cannot continue too much even at this pace.

In fact, the real problem is a different one. Progresses are made continuously at
the technological level, but the current computers have intrinsic limits, which can-
not be overcome only by means of technological advances. The computer recognizes
fingerprints, but not human faces, it plays chess at the level of the world cham-
pion, but (on the standard board, not on reduced boards) it plays GO only at the
level of a beginner, it proves propositional calculus theorems, but cannot go over
this level (and definitely cannot distinguish trivial and non-interesting theorems
from theorems which deserve to be collected). All these and many more, mainly



Looking for Computer in the Biological Cell 265

because these computers are... of Turing-von Neumann type. That is, sequential.
Uniprocessor. (It also has other weaknesses, less restrictive in the current applica-
tions – for instance, it is a considerable energy consumer.) It computes whatever
can be computed, but this is true in principle, at the competence level. There is
here also a historical aspect. In the beginning, we were interested in what it can be
computed, in the frontiers of computability, of algorithmic decidability. All these
are important mathematical questions, but in applications it is of a direct rele-
vance the performance, the resources needed for a given computation, what we can
compute now and here, in specified conditions. How much electricity consumes a
computer and how much space it needs are no longer questions of current interest,
as they were in sixties (and still are in special frameworks, such as in cosmos and
robotics), but the time we have to wait before receiving the answer to a given
problem or the result of a computation is a crucial aspect in any application. And,
I already mentioned it, in this respect not the technological promises are crucial,
but the mathematical limits, the borderline between feasible and non-feasible.

13 A Great Challenge: the Exponential Complexity

A powerful theory was developed dealing with this subject, the computational com-
plexity theory. Since the very beginning, it has defined as tractable the problems
which can be solved in a polynomial time with respect to the size of the problem.
(An example: consider a graph – a map with localities and roads among them –
with n nodes. Which is the time necessary for an algorithm to tell us whether
or not the graph contains a Hamiltonian path, i.e., a path which visits all nodes,
passing only once through each of them? If this time is bounded by a polynomial
in n, then we say that the algorithm is of a polynomial complexity.) The problems
of an exponential complexity, those which need a time of the type 2n, 3n, etc. for
an input of size n were considered intractable. The former class was denoted by
P, the latter one with NP, with the abbreviations coming from ”polynomial” and
”non-deterministically polynomial”, respectively: a problem belongs to NP if we
can decide in a polynomial time whether a proposed solution for it is indeed a
solution or not (otherwise stated, we ”guess” a solution, then we check whether
it is correct; more technically, the solution is found by a non-deterministic Turing
machine, one which has several possible transitions at a computation step and we
rely on the fact that it always chooses the right continuation, without exhaustively
checking all possibilities). For precise details the reader can consult the monograph
of C.H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.

Let us recall that in the class NP there is a subclass, of ”the most difficult
problems in NP”, the NP-complete problems: a problem is of this type if any
other problem in NP can be reduced to it in a polynomial time. Consequently, if
an NP-complete problem could be solved in a polynomial time, then all problems
in NP could be solved in a polynomial time. The problems used in cryptography
are in most cases NP-complete.



266 Gh. Păun

A beautiful theory, which, however, in its basic version has three weaknesses:
(1) it cannot tell us yet whether or not P = NP, whether or not polynomial
solutions can be found also for the problems which are now supposed to be of an
exponential complexity, (2) the theory does not take into account such ”details”
as the coefficients and the degree of the polynomials and which, at the practical
level, can have a crucial influence on the computation time, and (3) the theory
takes into consideration the extreme cases, it is of the worst case type, it counts
the steps of computations which solve the most difficult instances of a problem,
while the reality is placed in most cases in the middle, near the ”average”. Here
is an example with a practical relevance: the linear programming problem is in
P, because the ellipsoid algorithm of Leonid Khachiyan (1979) solves the problem
in a polynomial time, but this algorithm is so complex that practically, in most
cases, it is less efficient than the old simplex algorithm, proposed during the Second
World War, considered one of the most important ten algorithms ever imagined,
but which is, theoretically, of an exponential complexity.

For these reasons, the complexity theory was refined and diversified (average
complexity, approximate algorithms – these algorithms have a direct connection
with natural computing), while the definition of tractability was carefully rede-
fined.

Anyway, the general feeling was transformed in a slogan: the Turing-von Neu-
mann computers cannot solve in a reasonable time problems of an exponential
complexity.

The interest for the P = NP problem is enormous. On the one hand, most of
the (no-trivial) practical problems are in the class NP and are not known to be
in P, hence they are (considered) intractable, cannot be efficiently solved, on the
other hand, most of the cryptographic systems in use are based on problems of an
exponential complexity, hence solving them in a polynomial time would lead to
breaking these systems. The problem whether P is or not equal to NP was already
formulated in 1971 (by Stephen Cook), and in the year 2000 it was included by
Clay Mathematical Institute, Cambridge, Massachusetts, in the list of the seven
”millennium problems”, with a prize of one million dollars for a solution.

While the importance of this problem for the theoretical computer science
cannot be overestimated, it is not clear which would be the practical consequences
of a solution, whichever this will be. There were many discussions on this topic
– see, for instance, S. Cook, ”The importance of the P versus NP question”,
Journal of the ACM, vol. 50, 2003, pages 27–29. If a proof of the strict inclusion
of P in NP will be obtained, as most computer scientists (but not all of them!)
believe, then almost nothing will be changed at the level of the practical computer
science. If the equality will be proved in a non-constructive manner, or the proof
will be a constructive one, but in a non-feasible manner (polynomial solutions to
problems in NP will be found, but with polynomials of very high degrees or with
very large coefficients), then the practical consequences will not be significant (but
a race will start for ad-hoc solutions, having the time estimated by polynomials
with reasonable degrees and coefficients). If, however, a ”cheap” passage from NP



Looking for Computer in the Biological Cell 267

to P would be found, then the consequences for the practical computer science
will be spectacular – in the good sense, excepting the cryptography, where the
consequences will be dramatic.

At the level of the software there is one further problem, which I recall here in
the formulation of Edsger W. Dijkstra (from ”The end of computer science?”, the
above mentioned paper): ”Most of our systems are much more complicated than
can be considered healthy, and are too messy and chaotic to be used in comfort
and confidence. The average customer of the computing industry has been served
so poorly that he expects his system to crash all the time.” The lack of robustness
of the complex software systems is today a concern of the same interest as it was
in the year 2000.

In order to illustrate the fact that not by means of technological progresses
one can face the exponential complexity, let us examine a simple case: let us
consider a problem of exponential complexity of the range of 2n, for instance, a
graph problem, which can be solved on a usual computer, say, for graphs with 500
nodes, in approximately one quarter of hour; let us suppose that the technology
provides us a computer which is 1000 times faster than the ones we have, which
is a totally nontrivial advance, not very frequently met. Using the new computer,
we will solve the same problems as before in about one second (around 15 minutes
means approximately 1000 seconds), but if we try to address the same problem
for graphs with more than 500 nodes, the progresses are negligible: with the new
computer we will solve in a quarter of hour only problems for graphs with at most
510 nodes. The simple reason for that is the fact that 210 is already bigger than
1000. If the problem were of complexity 3n, then we will stop around 506 nodes...

14 Promises of Natural Computing

In order to cope with the exponential complexity, but also for other reasons which I
will mention later, computer science has imagined several research directions, most
of them also related to the natural computing, even to bio-inspired computing:
(1) looking for massively parallel computers, (2) looking for non-deterministic
computers/computations, (3) looking for approximate/probabilistic solutions to
computationally hard problems.

All these three research directions were explored already in the framework of
the ”standard” computer science, both at the theoretical level and at the technol-
ogy level, the electronic one. Multiprocessor computers are available since several
years – but without reaching the massive parallelism which is supposed to solve
complex problems. If a large number of processors are put together, there appear
other problems, some of them technological (e.g., high temperature dissipation),
others, maybe more important, theoretical, concerning the synchronization of the
processors. A distinct research area deals with the synchronization complexity –
see, for instance, Juraj Hromkovic monograph Communication Complexity and
Parallel Computing, Springer-Verlag, 1997. One of the conclusions of this theory



268 Gh. Păun

says that, for a large number of processors, the synchronization cost (measured
by the number of bits necessary to this aim) becomes larger than the cost of the
computation itself, which suggests to get rid of synchronization, but then other
problems appear, as we are not accustomed to use asynchronous computers.

Even less used we are to construct and utilize ”non-deterministic computers”.
In exchange, the last of the three ideas mentioned above is rather attractive, and
in this respect of a great help is the ”brute force” of existing computers. The ap-
proach is useful especially in addressing complex optimization problems: exploring
randomly the candidate solutions space, for a large enough time, with a sufficiently
high probability we will reach optimal or nearly optimal solutions. Approximate
solutions, possibly found with a known probability of being optimal.

Here it enters the stage, with great promises, the natural computing. From now
on I will only refer to the one having a biological inspiration.

In a cell, a huge number of ”chemical objects” (ions, simple molecules, macro-
molecules, DNA and RNA molecules, proteins) evolve together, in an aqueous so-
lutions, at a high degree of parallelism, and, at the same time, of non-determinism,
in a robust manner, controlled in an intricate way, successfully facing the influences
coming from the environment, and getting in time very attractive characteristics,
such as adaptation, learning, self-healing, reproduction. Many other details are of
interest, such as the reversibility of certain processes or the energy efficiency, with
the number of operations per Joule much bigger than in the case of the electronic
processing of information (erasing consumes energy, that is why the reversible
computers are of interest; see, e.g., R. Landauer, ”Irreversibility and heat genera-
tion in the computing process”, IBM Journal of Research and Development, vol.
5, 1961, pages 183–191, and C.H. Bennett, ”Logical reversibility of computation”,
Idem, vol. 17, 1973, pages 525–532).

It seems, therefore, that during millions of years of evolution nature has pol-
ished many processes (and material supports for them) which wait to be identified
and understood by the computer scientists, in order to learn new computability
methods and paradigms, maybe for constructing computers of a new kind. And,
the computer scientists have started to work singe a long time...

Here are a few steps on this road, very shortly: Genetic algorithms, as a way
to organize the search through the space of candidate solutions, imitating the
Darwinian evolution, in order to solve optimization problems. Generalization to
evolutionary computing and evolutionary programming. Neural networks, trying
to imitate the functioning of the human brain, also used for finding approximate
solutions, especially for pattern recognition problems. A little bit later, DNA com-
puting, which has proposed a new hardware, massively parallel, based on using the
DNA molecules as a support for computations. Even younger, membrane comput-
ing, taking as the starting point the biological cell itself and cell populations.

In turn, the evolutionary computing, in general, the area of approximative al-
gorithms inspired from biology, is spectacularly ramified, in the most diverse (in
certain cases, also picturesque) directions: immune computing, ant colony algo-
rithm, bee colony algorithm, swarm computing, water flowing computing, cultural



Looking for Computer in the Biological Cell 269

algorithm, cuckoo algorithm, strawberry algorithm – and it is highly probable that
in the meantime further algorithms have been proposed...

It is important to note that all the above mentioned branches of natural com-
puting, with the exception of DNA computing, are meant to be implemented on
the usual computer, in the aim of having a better use of it; one proposes new types
of software/algorithms, not to change the computers architecture or new types of
hardware.

15 Everything Goes Back to Turing

In a certain sense and in a certain extent, the whole history of theoretical computer
science is related to biology, it has searched and has found inspiration in biology. I
have already mentioned that, in 1935-1936, when he has defined the machine which
bears now his name, Turing tried to imitate the way the humans are computing.

After one decade, McCullock, Pitts, Kleene have founded the theory of finite
automata starting from the modeling of neurons and of neural networks. Later,
the same starting point led to what is called today neural computing.

It is interesting to note that the beginnings of this research area can be identi-
fied in unpublished papers of the same Allan Turing. We have here an interesting
case which can illustrate the influence of psychology and sociology on the devel-
opment of science, telling about uninspired group leaders and about researchers
interested more in their research than in the publication of the obtained results.
Specifically, in 1948, Turing has written a short paper, called ”Intelligent ma-
chinery”, which has remained unpublished until 1968, because his boss from the
London National Physical Laboratory, ironically, named sir Charles Darwin, the
grandson of the famous biologist with the same name, has written on the corner
of the first page of the paper ”schoolboy essay”, thus preventing the publication.

”In reality, this farsighted paper was a manifesto of the field of artificial intel-
ligence. In the work (...) the British mathematician not only set out the funda-
mentals of connectionism but also brilliantly introduced many of the concepts that
were later to become central to AI, in some cases after reinvention by others.” –
I have cited from B.J. Copeland, D. Proudfoot, ”Alan Turing’s forgotten ideas in
computer science”, Scientific American, April 1999, pages 77–81. Among others,
Turing paper introduces two types of ”neural networks”, with the neurons ran-
domly connected. This was proposed as a first step towards an intelligent machine,
one of the key features of these networks being that of learning, of getting trained
for solving problems. This is neural computing avant la lettre, with the main ideas
rediscovered later, without referring to Turing. Details about Turing ”unorganized
machines” can also be found in C. Teuscher, ed., Alan Turing. Life and Legacy of
a Great Thinker, Springer-Verlag, 2003, and in C. Teuscher, E. Sánchez, ”A re-
vival of Turing’s forgotten connectionist ideas: exploring unorganized machines”,
from Proc. Connectionist Models of Learning, Development and Evolution Conf.,
Liége, Belgium, 2000 (R.M. French, J.J. Sougne, eds.), Springer-Verlag, 2001, pages



270 Gh. Păun

153–162. Furthermore, at the address http://www.AlanTuring.net one can find
details about Turing unpublished manuscripts and about the recent efforts to rein-
troduce them in circulation.

The same Turing, in the same year 1948, has proposed the ”genetic or evo-
lutionary search”, the first ideas of the evolutionary computing developed later,
a domain which contains now several powerful branches, (re)launched during the
years: evolutionary programming (L.J. Fogel, A.J. Owens, M.J. Walsh), genetic
algorithms (J.H. Holland), evolutionary strategies (I. Rechenberg, H.P. Schwefel),
all three initiated in the sixties, genetic programming (J.R. Koza, the years 1990).
The first experiment of computer ”optimization through evolution and recombina-
tion” was carried out in 1962, by Bremermann. Details can be found in A.E. Eiben,
J.E. Smith, Introduction to Evolutionary Computing, Springer-Verlag, 2003.

It would not be completely surprisingly if among Turing manuscripts we would
discover also ideas related to DNA computing – let us remember that Turing died
in June 1654, and the Nature paper where J.D. Watson and F.H.C. Crick described
the double helix structure of the DNA molecule was published one year before (”A
structure for deoxyribose nucleic acid”, vol. 171, April 25, pages 737–738).

It is worth mentioning that two other concepts with a high career in computer
science come from Turing, thus supporting the assertion that ”everything starts
with Turing”. First, Turing himself raised the question whether or not one can
compute... more than the Turing machine, imagining Turing machines with oracles,
which is a much investigated topic in the current computer science. Then, Turing
can be considered not only a founder of artificial intelligence, but also a forerunner
of what is called now artificial life: in the last years of his life, Turing was interested
in morphogenesis, in modeling the evolution from the genes of a fertilized egg to
the structure of the resulting animal.

16 An Encouraging Example: The Genetic Algorithms

Before passing to the DNA and membrane computing, topics which I will describe
in more details, let us spend some time discussing a branch of natural computing
inspired from biology which is, at the first sight, surprisingly efficient. This is the
genetic algorithms area, used for solving complex optimization problems for which
there do not exist deterministic optimal algorithms or these algorithms are not
efficient. The implicit slogan can look confusing: if you do not know where to go,
then go randomly – with the mentioning that the ”randomness” here is directed,
the ”random walk” is done ”like in nature, in species evolution”.

Everything is a metaphorical imitation of some elements from the Darwinian
evolution. Let us assume we have a two variables function (we can suggestively
represent it as a ground surface, with valleys and hills) for which we need to
find the maximum (one of them, if there are several). If we cannot analytically
address the problem, then we can choose to walk randomly through the definition
domain, looking for the greatest value of the function. To this aim, we represent the



Looking for Computer in the Biological Cell 271

domain points as ”chromosomes”, binary strings of a constant length, we choose
(randomly or through other methods) a given number of starting points, and we
compute the function value for all of them. Then we pass to ”evolution”: we take
two by two the ”chromosomes” and we recombine them (by crossover), that is, we
cut them at a specified position and then we recombine the fragments, the prefix
of one ”chromosome” with the suffix of the other one and conversely. In this way,
we obtain two new ”chromosomes”, describing two new individuals of the next
”generation”. We repeat this procedure for a specified number of times, we select
the best solution obtained so far, and we stop.

Nothing guarantees that in this way we reach the solution of the problem,
that, for instance, we do not get stuck in a local maximum, without being able
to escape, but, and this is the (pleasant) surprise, in a large number of practical
applications, this strategy works. Sure, there are a lot of variations of the previous
scenario, it is even said that the monographs in this area are a sort of ”cooking
books”, collections of recipes, lists of ingredients and suggestions of improvements
of the algorithms: besides recombination, similar to the biological evolution, one
also uses the local mutation operation, the passing from a generation to another
one can be done in many ways, the ”chromosomes” population can be distributed,
we can evolve it locally, communicating in a way or another among regions, there
are several halting criteria, and so on and so forth.

We have here at work the brute force of the computers and the evolutionary
metaphor – with results, I repeat and stress it, unexpectedly good: non-intuitive so-
lutions, rapid initial convergence, in many cases succeeding to avoid local maxima.
The only ”explanation” for these good results is the ”bio-mystical” one: genetic
algorithms are so good because they involve ingredients which nature has polished
for many millions of years in the species evolution.

All these induce, at the same speculative level, a rather optimistic conclusion:
if the genetic algorithms are so useful, in spite of the lack of any mathematical
argument for their usefulness, let us try to imitate biology also in other aspects,
with a great probability that, if we are similarly inspired to extract the right ideas,
to obtain other fruitful suggestions for improving the use of the existing computers
and, maybe, for imagining computers of other kinds, more efficient.

However, this optimism should be cooled down by the observation that a fa-
mous result in the area of evolutionary computing, in the area of approximate
optimization algorithms in general, is the so-called no free lunch theorem of David
Wolpert and William Macready (1997), which, informally, says that any two meth-
ods of approximate optimization are equally good, in average, over all optimization
problems. ”Equally good” can be also read ”equally bad”, for each method there
are problems for which the method does not provide satisfactory solutions.

17 A Coincidence

Before passing to DNA computing, an autobiographical intermezzo. In April 1994
I was in Graz, Austria, attending a conference, and there I got a copy of the paper



272 Gh. Păun

by Tom Head, from State University of New York at Binghamton, USA, soon after
that a friend and collaborator, ”Formal language theory and DNA: An analysis of
the generative capacity of specific recombinant behaviors”, published in Bulletin of
Mathematical Biology, vol. 49, 1987, pages 737–759. It was a revelation. I was then
after twenty years of formal language theory research and I immediately felt that
it is open there a large area of application of what I have done before. It is true, I
should had a similar revelation earlier, namely when I have read professor Solomon
Marcus paper ”Linguistic structures and generative devices in molecular genetics”,
from Cahiers de Linguistique Thèorique et Appliquée, vol. 11, 1974, pages 77–104,
but probably it was too early, at that time I had not passed yet through the
twenty years of preparation for natural computing which will be shortly described
in a forthcoming section. In his paper, Tom Head introduces a formal operation
with strings which formalizes the operation of recombination of DNA molecules.
He calls it splicing, and I will call it in the same way, thus distinguishing it from
the recombination operation from the genetic algorithms. The two operations are
related, but they are not identical. Still being in Graz, I have imagined a sort
of grammar based on the splicing operation, in fact, a variant simpler than that
of Tom Head and closer to the string operations in language theory. The paper
emerged in this way was published in Discrete Applied Mathematics and it con-
secrated the splicing version I have proposed. After a few weeks, I was in Leiden,
The Netherlands, where I have written a paper together with Grzegorz Rozenberg
and Arto Salomaa, the latter one from Turku, Finland, the place where I have
spent after that several years, initially devoted to DNA computing and then to
membrane computing. As usually well inspired, G. Rozenberg gave to our paper
the title ”Computing by splicing”. Because, starting then, we have named H sys-
tems the computing devices based on splicing, thus reminding the name of the
one who has introduced (invented of discovered?...) the respective operation, we
have sent the paper, in manuscript, to Tom Head. He has immediately replied, by
phone, asking us rather excited: have you known that right now it was carried out
a successful experiment of computing with DNA?! No, we did not know – this was
only a coincidence, which I place in the category of significant coincidences.

18 The First Computation in a Test Tube

Tom Head was talking about Leonard Adleman experiment, published in the au-
tumn of 1994 in Science, nr. 226, November 1994, pages 1021–1024: ”Molecular
computation of solutions to combinatorial problems”. Speculations about the pos-
sibility of using DNA molecules for computing were made already in seventies of
the last century (Ch. Bennett, M. Conrad, even R. Feynman, with his much in-
voked phrase ”there is plenty of space at the bottom”, referring to physics but
also extended to biology). Adleman has confirmed these expectations, solving in a
laboratory the problem whether a Hamiltonian path exists or not in a given graph
(I have mentioned it in a previous section). The problem is known to be NP-
complete, hence among the most difficult intractable problems, of an exponential



Looking for Computer in the Biological Cell 273

complexity (we assume that P is not equal to NP), but Adleman solved it in a
number of steps which is linear with respect to the size of the graph. It is true,
these steps are biochemical operations, performed by making use of a massive par-
allelism, even of non-determinism, all these made possible by the characteristics
of the DNA molecules and the related biochemistry.

In short, millions of copies of one stranded sequences of nucleotides, codifying
the nodes and the edges of the graph, were placed in an aqueous solution. Then,
by decreasing the temperature of the solution, these sequences annealed, forming
double stranded molecules, corresponding to the paths in the graph. Because there
were used sufficiently many copies of the initial sequences, with a high probability
we obtain in this way all paths in the graph. From them, the paths were selected
which pass through all nodes, and this was done by usual laboratory procedures:
gel electrophoresis for separating the molecules according to their length, then
selection through denaturation and amplification by PCR of the paths passing
through all nodes (hence Hamiltonian).

This procedure assumes a number of biochemical operations which is linear
with respect to the number of the nodes in the graph. The problem is NP-complete,
hence this is an extraordinary achievement – and the consequences were accord-
ingly sound. Already in the next year, 1995, it was organized in Princeton a meeting
with the title ”DNA Computing”, which became an international conference which
is still continuing. However...

19 Pro and Against Arguments

Adleman experiment was a historical achievement, the proof that it is possible.
However, the experiment has considered a graph with only 7 nodes, for which
the problem can be solved by a simple visual inspection. In comparison, at the
beginning of the nineties, the computers were already able to solve the Hamiltonian
path problem for graphs with several hundred nodes, sufficient for current practical
applications (in the meantime, the progresses continued).

Moreover, the solution was obtained by means of a space-time trade-off, the
number of molecules used was exponential with respect to the number of nodes.
Juris Hartmanis, an authoritative name in computer science, after expressing his
enthusiasm (Hartmanis compares computer science with physics: while the latter
progresses by means of crucial experiments, the former progresses by means of
proofs that something can be done, by demos; Adleman has produced such a
demo!), has computed the quantity of ADN which is necessary in order to apply
Adleman’s procedure for a graph with 200 nodes and he has found that the weight
of the ADN would be greater than the weight of the Earth...

From a practical point of view, DNA computing is, in a certain extent, in the
same point even now. Numerous experiments, but all of them always dealing with
”toy problems”, a lot of theory, a lot of lab experience gained in dealing with DNA
molecules, with results of interest for the general lab technology (just one example:



274 Gh. Păun

an improved version of PCR, the Polymerase Chain Reaction, called XPCR, was
proposed; one of the inventors is a mathematician, Vincenzo Manca, mentioned
already in the first pages of this text), but the domain has moved towards nano-
technology, no computability practical applications were reported (unless if, and
this is plausible, there were applications in cryptography which are still classified).

However, the list of possible advantages of using DNA molecules for computing
is large: a very good efficiency as a data support, with one bit at the level of a
nucleotide; energy efficiency; parallel and non-deterministic behavior, two dreams
of computer science (with the mentioning that the non-determinism also brings
problems, for instance, providing false solutions); a very developed laboratory tech-
nology; robustness, predictability, reversibility of certain processes.

20 The Marvelous Double Helix

The DNA molecule has surprising properties at the informational and computa-
tional level. Let us remind that, formulated in ”syntactic” terms, we have two
strings of letters A, C, G, T, the four nucleotides, placed face to face, in Watson-
Crick complementary pairs, always A being paired with T and C with G. The
two strings are oriented, in opposite directions with respect to each other; the
biochemists indicate the directionality by marking one end of a string with 3′ and
the other end with 5′. There already appear here a surprise, first pointed out by
G. Rozenberg and A. Salomaa in Technical Report 96-28 of Leiden University,
The Netherlands (October 1996), ”Watson-Crick complementarity, universal com-
putations, and genetic engineering”: the structure of the DNA molecule ”hides”,
in a codified manner, the computing power of Turing machines! The formulation
above is not precise, it however corresponds to the following observation. Already
in 1980, it was proved (J. Engelfriet and G. Rozenberg) that any language whose
strings can be recognized by a Turing machine can be written as the image of a
specified fixed language, let us denote it with TS(0, 1), by means of a sequential
transducer.

The previous language is the so-called ”twin-shuffle” over 0, 1 (hence the used
notation). Shuffle is the operation of mixing the letters of the two words, without
changing their ordering (exactly as in the case of shuffling two decks of playing
cards of different back colors). Here we shuffle the letters of two ”twin” words, one
string of symbols 0, 1 and the second string identical with this one, but changing
the ”color” of each symbol (for instance, we can add an upper bar or a prime to
each symbol in order to get the twin string). In turn, the sequential transducers
are the simplest transducers, with a finite memory and with a head which scans
the string from left to right. Let us note that we work with four symbols, let us
say 0, 1 and their pairs 0′, 1′. Exactly the number of the nucleotides, four. Let us
also note that TS(0, 1) is a fixed language. Given an arbitrary language, if it is
recognized by a Turing machine, then it can be obtained from this unique language
TS(0, 1), only the transducer depends on the language.



Looking for Computer in the Biological Cell 275

The nice and significant surprise is that the language TS(0, 1) can be obtained
by means of ”reading” the DNA molecules, in the following way: let us walk along
the two Watson-Crick complementary sequences, from the left to the right, advanc-
ing randomly along the two strands, and associating with the four nucleotides A,
C, G, T symbols 0, 1 according to the following rule: A = 0, G = 1, T = 0′, C = 1′.
Collecting all these strings over 0, 1, 0′, 1′, for all readings of all DNA molecules,
we get a set which is exactly TS(0, 1)!

Consequently, any language which can be defined by a Turing machine can
be obtained by translating these readings of the DNA molecules by means of
the simplest transducer, the sequential one, with a finite memory. The transducer
depends on the language, it ”extract” from TS(0, 1) the result of the computations
of a Turing machine. The power is there, what we have to do is only to make it
visible. (In a certain sense, we have again the coupling of a simple process, the
”reading” of the DNA molecule, and an observer of the first order, a simple one, the
sequential transducer, like in the papers of M. Cavaliere and P. Leupold mentioned
before, with the result reaching the highest level of computability, the power of
Turing machines.)

Two questions arise in this framework. For instance, we mentioned the different
orientation of the two strands of the DNA molecule, but in the previous reading we
pass along the two strands in the same direction, from the left to the right. There
is no problem, the reading of the double stranded DNA molecules can proceed
in opposite directions and the result is the same. Second: nature is redundant,
are all the four nucleotides (the four symbols 0, 1, 0′, 1′) necessary in order to
cover, in the sense discussed above, the power of Turing machines? No, three
symbols are sufficient – but not two! Proofs for all these results can be found
in the monograph (translated in Japanese, Chinese, and Russian) Gh. Păun, G.
Rozenberg, A. Salomaa, DNA Computing. New Computing Paradigms, Springer-
Verlag, 1998.

Speaking about computations and redundancy, let us remember that a large
part of the DNA molecule is ”residual”, it does not codify genes and we do not
exactly know what it is used for. We can then speculate: if in the cell, at the genetic
level, one performs computations (the viruses are strings of nucleotides, hence their
identification is a parsing operation, hence a computation), and these computations
are supposed to be complex, why not?, even of the level of Turing machines, then
we need a ”workspace”, a ”tape” which in the end remains empty in most of its
length, with the result placed in a finite part of it (at the beginning in the case of
the Turing machine tape). Can then the DNA without an apparent usefulness be
the workspace for complex computations, which we cannot yet understand?

21 Computing by Splicing

In his experiment, Adleman has not used the splicing operation, but the bio-
chemical ingredients specific to the splicing have been used in many other cases:



276 Gh. Păun

restriction enzymes, which cut the DNA molecules in well specified contexts, lig-
ases which glue back the nucleotides thus repairing the strands, recombination on
the basis of the ”sticky ends” of the molecules with the strands of different lengths,
hence with nucleotides which do not have their Watson-Crick pairs.

I do not recall biochemical details or mathematical details concerning the splic-
ing operation. In short, two molecules (represented as simple strings, because the
nucleotides of a strand are precisely identified by their complementary nucleotides
placed on the other strand) are cut in two parts each, in the middle of a context
specified by a pair of substrings, and the fragments obtained are recombined cross-
wise, thus obtaining two new strings. Starting from an initial set of strings and
applying this operations repeatedly (with respect to a given finite set of contexts,
hence of splicing rules), we obtain a computing device, a language generator, sim-
ilar to a grammar. We obtain an H system. A large part of the monograph DNA
Computing. New Computing Paradigms cited before is dedicated to the study of
these systems: variants, extensions, generative power, properties.

Always when a new computing model is introduced, the first question to clarify
concerns its power, in comparison with the automata theory and language theory
classifications – the Turing machine and its restrictions, the Chomsky grammars,
the Lindenmayer systems. Let us only note that the two ”poles” of computability
are the power of Turing machines, through the Turing-Church thesis the maxi-
mal level of algorithmic computability, and the power of the finite automata, the
minimal level. In terms of grammars and languages, the maximal class is that of
unrestricted Chomsky grammars and of recursively enumerable languages, while
the minimal one corresponds to regular grammars and languages.

The H systems with a finite number of starting strings and a finite number of
splicing rules generate only regular languages. This is not sufficient as computing
power, moreover, a ”computer” of this level cannot have (convenient) universality
properties, hence it cannot be programmable.

Interesting and attractive enough is the fact that, adding a minimal control
on the splicing operation, with many controls of this kind suggested by the area
of regulated rewriting or coming from biology (example: associate a promoter, a
symbol, with each splicing rule and the rule is applied only to strings which contain
that symbol; a variant – the symbol does not appear, it acts as an inhibitor), then
we obtain H systems which are equivalent with the Turing machine. The proof
is constructive, therefore we ”import” in this way from the Turing machines the
existence of the universal machine, which means that we get an universal H system,
a programmable one.

Unfortunately, so far, no such universal ”computer” based on splicing was
realized in a laboratory. The passage from the natural case, with an uncontrolled
splicing operation (thus with the power under the power of the finite automaton),
to the controlled case was not yet done in a laboratory and it is not clear whether
it can be realized in the near future. The construction of the universal computer
based on splicing has to still wait...



Looking for Computer in the Biological Cell 277

22 An Important Detail: The Autonomous Functioning

Let us not forget that a universal, programmable computer should work au-
tonomously, that is, after starting a program, the computer continues without
any external control. This is completely different from the usual DNA computing
experiments, where the human operator (or a robotic operator) controls the whole
process. For instance, in the case of the 1994 experiment, Adleman was, in fact,
the ”computer”, he has only used the DNA molecules as a support for the compu-
tation, while the computation complexity counted the lab steps performed by the
biochemist, not the internal steps, the DNA operations, performed in parallel.

There are, however, promising progresses towards the implementation of au-
tonomous computations, the key-word, very much promoted in the last years,
being self-assembly. Remarkable achievements in this direction has obtained Erik
Winfree and his group from Caltech, Pasadena, USA, and his approach is worth
mentioning also because it starts (pleasantly enough for the discussion concern-
ing the usefulness of mathematics for computer science) from an old chapter of
theoretical computer science, the domino calculus of Wang Hao, developed in the
beginning of sixties of the last century. In short, square dominos, with the edges
colored (marked), can be used for computing (by placing the dominos adjacently,
in such a way that the neighboring dominos have the contact edges of the same
color), thus simulating the work of a Turing machine. We obtain once again a
computing model which is universal.

Erik Winfree has constructed ”dominos” from DNA molecules, with the edges
marked with suitable sequences of nucleotides, he has left them free in a solution,
such that the dominos glued together according to the Watson-Crick affinity of the
nucleotides ”coloring” the edges. The approach worked well, the experiments were
successful – but everything has remained once again, in Hartmanis terms, at the
level of a demo. It is important to underline that this time it was not addressed a
given problem, as in Adleman case and as in most of the experiments reported in
the DNA computing literature, but it was implemented in a laboratory a Turing
machine, hence an universal computing model – that is why this demo is perhaps
farther reaching than that of Adleman (however, Adleman was the first one...).

There also are other attempts to obtain autonomous ”computers” in a labo-
ratory. I mention here only the simulation of a finite automaton, an achievement
of a team from Weizmann-Rehovot and Tehnion-Haifa, Israel: Y. Benenson, T.
Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, E. Shapiro, ”Programmable and au-
tonomous computing machine made of biomolecules”, Nature, vol. 414, November
2001, pages 430–434, with the mentioning that one deals with a finite automaton
with only two states. Again, only a demo...

23 What Means to Compute in a Natural Way?

The DNA Computing monograph has also chapters dedicated to other ways of
computing, inspired from the DNA biochemistry, for instance, by insertion and



278 Gh. Păun

deletion of substrings (in given contexts), by means of a ”domino game” with DNA
molecules which are coupled on the basis of the Watson-Crick complementarity, a
model different from the Wang Hao one.

Splicing, insertion-deletion, prolongation of strings. In membrane computing
we use the multiset processing. The evolution itself is mainly based on recom-
bination/splicing, the local mutations appear only accidentally. In contrast, the
existing computers and almost all theoretical models of computing use the string
rewriting operation. One works locally, on strings of arbitrary length. This ob-
servation is valid for automata, grammars, Post systems, Markov algorithms. All
these operations, both the rewriting and the ”natural” ones (the splicing only with
an additional control), so different among them, lead to computability models of
the same power, that of the Turing machine.

The question is obvious: what means to compute in a natural way? With many
continuations: Why computer science has not considered (with rare exceptions)
also other operations different from rewriting? Can we devise (electronic) comput-
ers based on ”natural operations” (for instance, using the splicing or other forms
of recombination)? When Hilbert has formulated the question ”what is mechan-
ically computable?”, he probably had in mind formal logical systems, where the
substitution is a central inference rule, and Turing has proposed an answer in the
same language. Were we influenced in this way to think in the same terms when
we have designed the first computers? I have never heard that the engineers have
said that we cannot imagine, maybe also construct, computers based on different
operations.

It remains the question whether or not such new types of computers would
be better than the existing computers or not. Theoretically, they will have the
same power, hence the differences should be looked for on different coordinates:
computational efficiency, easiness of use, learning possibilities and so on.

I said above that the H systems are either of the power of finite automata
or equivalent with Turing machines. Similar situations are met in the membrane
computing. Can we then say that the classes of automata and grammars which lie
in between finite automata and Turing machines – and there are many such classes
investigated in the theoretical computer science – are not ”natural”? In some sense,
this is the case. For instance, the context-free languages have a definition which has
a mathematical-linguistic motivation, while the context-sensitive languages have
a definition with a motivation coming from the complexity theory (it refers to the
space needed for generating or recognizing the strings of a language).

24 Let Us Pass to the Cell!

In spite of the theoretical achievements, of numerous successful experiments (how-
ever, dealing with problems of small dimensions) and of the continuous progresses
in what concerns the lab techniques, the DNA computing has not confirmed the
enthusiasm of the twenty years ago, after the announcement of the Adleman ex-
periment – if not having, as I have suggested before, application in cryptography



Looking for Computer in the Biological Cell 279

which will be declassified only after several decades. There are elements which can
support this assumption. For instance, during the first DNA Computing Confer-
ence, Princeton, 1995, a communication was presented (D. Boneh, C. Dunworth,
R. Lipton: ”Breaking DES using a molecular computer”) which described a possi-
bility to break Data Encryption Standard, DES, the system used by the American
administration, using DNA, in four months. Next year, the subject was discussed
by a team containing also Adleman, and the proposed DNA experiment was sup-
posed to can break DEA in five days, provided that the lab operations would be
done by robots. A further paper of this kind was presented in 1997, the year when
DES was broken also with electronic computers and then abandoned.

Anyway, at some years after Adleman experiment it was clear that one cannot
go essentially further, it was necessary to have one more innovative idea, one more
”breakthrough” in order to make an essential step towards applications (towards
a ”killer-app”, as the Americans use to say), and one of the ”explanations” of this
situation was the fact that DNA molecules behave better in vivo (more predictable,
more robustly) than in vitro. The suggestions is just natural: let us go to the cell!

At the personal level, this moment coincided with the writing of the DNA
Computing monograph, a fact which repeated almost systematically in the first two
decades of my research career: after approximately five years of work in a branch
of theoretical computer science, I have put together, alone or in collaboration, the
results, publishing a monograph, and after that I have passed to another topic
– still remaining in the framework of theoretical computer science, especially of
formal language and automata theory. A lack of perseverance or an excess of
curiosity? Maybe a part of each of them, but a lucky combination: all chapters of
theoretical computer science which I have explored before passing to the membrane
computing area were used, sometimes in a decisive extent, in this last domain –
with which I have discontinued the tradition of a change at each five years: after
sixteen years dedicated almost exclusively to membrane computing, in spite of the
fact that I have written, as usually, a monograph after about five years from the
first paper, there is no sign of decreasing the interest for this area.

25 The Fascinating Cell

The cell is really fascinating for a mathematician-computer scientist. I am sure
that this is true also for biologists. The smallest entity which is unanimously
considered alive. The topic is not trivial: at the middle of years 1980, at the Santa
Fe Institute for complexity studies a new research vista was initiated, under the
name of artificial life, as an extension of artificial intelligence, aiming to investigate
the life per se, to simulate it on non-biological supports, on computer and in
mathematical terms. The starting point was, of course, the attempt to have a
definition for what we intuitively call life, but the progresses have not went too
far: all definitions either left out something alive, or they ensured that, for instance,
the computer viruses are alive (they have ”metabolism”, self-reproduction etc.).



280 Gh. Păun

Let us also remember that already Erwin Schrödinger has a book whose title asks
What is Life? (Cambridge Univ. Press., 1967, translated in Romanian in 1980).

The cell passes this test. It is an extraordinarily small ”factory”, with a com-
plex, intricate and efficient internal structure, where an enormous number of agents
interact, from ions to large macromolecules like that of ADN, and where informa-
tional processes are carried out at each place and in each moment. Some cells
live alone (I am not saying ”isolated”), as unicellular organisms, other cells form
tissues, organs, organisms.

It is a topic of interest the one concerning the role of the cells in making possible
the life itself. I am only citing the reference book B. Alberts, A. Johnson, J. Lewis,
M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 4th ed. Garland
Science, New York, 2002, the paper of Jesper Hoffmeyer ”Surfaces inside surfaces.
On the origin of agency and life”, Cybernetics and Human Knowing, vol. 5, 1998,
pages 33–42, also important for what follows because it proposes the slogan ”life
means surfaces inside surfaces”, referring to the membranes which define the inner
structure of the cells, and I end with a paragraph from the book of S. Kauffman,
At Home in the Universe, Oxford University Press, 1995: “The secret of life, the
wellspring of reproduction, is not to be found in the beauty of Watson–Crick
pairing, but in the achievements of collective catalytic closure.”

I am adding also a suggestive equation-slogan, which acad. Solomon Marcus
has launched during one of the first Workshops on Membrane Computing, the one
in Curtea de Argeş, 2002:

Life = DNA software + membrane hardware.

26 The Membrane. From Biology to Computability

We have thus arrived to a fundamental ingredient – the membrane. One can speak
very much about it, and the biologists and the experts in bio-semiotics have done
it. The cell itself exists because it is separated from the neighboring environment
by a membrane. Not only metaphorically, any entity exists because it is delimited
by a ”membrane”, actual or virtual, from the world around.

The (eukaryotic) cell also has a number of membranes inside: the one which en-
closes the nucleus, the complicated Golgi apparatus, vesicles, mitochondria. From
a computational point of view, the main role of these membranes is to define ”pro-
tected reactors”, compartments where a specific biochemistry takes place. There
also are other features-functions of the biological membranes which are important
for membrane computing: in membranes are placed protein channels which allow
the selective communication among compartments; on membranes are bound en-
zymes which control many of the biochemical processes which take place around
them; the membranes are useful also for creating reaction spaces small enough so
that the molecules swimming in solution can get in contact so that they can react.
It is said that when a compartment is too large for the local biochemistry to be
efficient, nature creates new membranes, in order to obtain small enough ”reac-



Looking for Computer in the Biological Cell 281

tors” (so that, by Brownian movement, the molecules collide sufficiently frequent
and react) and for creating new ”reaction surfaces”.

I stress the fact that I look here to the cell, its structure, and processes inside
it through the glasses of the mathematician-computer scientist, ignoring many
biochemical details (for instance, the structure itself of the membranes) and inter-
preting the selected ingredients according to the goal of this approach: to define a
computing model.

Let us give some details, starting with the essential role of membranes in com-
munication. If, in the biological cell or in the model we are going to define, the
compartments delimited by membranes evolve separately, then we will not have one
”reactor”, but a number of neighboring ”reactors”, evolving independently. How-
ever, the membranes ensure the integration. The polarized molecules or those of
great dimensions cannot pass through the (phospholipid, with a polarized ”head”
and two hydrophobic ”legs”) molecules of the membranes, but they can pass across
a membrane through the protein channels embedded in it. This passage is selec-
tive and sometimes it is done against the gradient, from a smaller concentration
to a higher concentration. A very interesting case is that of the simultaneous pas-
sage through a protein channel of two or more molecules: the respective molecules
cannot pass separately, but they can do it together, either in the same direction
(symport) or in opposite directions, one molecule entering the respective compart-
ment and the other one going out, simultaneously (antiport). An important chapter
of membrane computing is based on these operations and the interest comes from
the particularity of this process: there is no rewriting, but only object transport
across the borders defined by the membranes, there is no erasing, but only com-
munication. Computing by communicating (objects). We can formulate also in this
context the question what means to compute in a natural way?

We can read in many places about the informational processes taking place in
a cell, in most cases with the involvement of membranes, too.

”Many proteins in living cells appear to have as their primary function the
transfer and processing of information, rather than the chemical transformation
of metabolic intermediates or the building of cellular structures. Such proteins are
functionally linked through allosteric or other mechanisms into biochemical ‘cir-
cuits’ that perform a variety of simple computational tasks including amplification,
integration, and information storage.”

This is the abstract of the D. Bray paper ”Protein molecules as computational
elements in living cells”, published in Nature, vol. 376, July 1995, pages 307–312.
In their turn, S.R. Hameroff, J.D. Dayhoff, R. Lahoz-Beltra, A.V. Samsonovich, S.
Rasmussen, in a paper from Computer, November 1992, pages 30–39, interpret the
cytoskeleton as an automaton, while W.R. Loewenstein, in The Touchstone of Life.
Molecular Information, Cell Communication, and the Foundations of Life, Oxford
University Press, 1999, constructs a whole theory starting from the informational
aspects of the cell life. About the bio-semiotics of the cell has elaborated in many
places Jesper Hoffmeyer, already mentioned at the previous pages. I am citing
here only his paper ”Semiosis and living membranes”, presented at Seminário



282 Gh. Păun

Avançado de Comunicaçao e Semiótica. Biossemiótica e Semiótica Cognitiva, Sao
Paolo, Brasil, 1998.

In this context we can also remember the essential role of the water in the life
of the cell, as well as the processes of moving water molecules across membranes
through the dedicated channels, the aquaporines, in whose discovery our colleague
Gheorghe Benga had pioneering contributions.

27 A Terminology-History Parenthesis

Before passing to a quick description of membrane computing, let me point out a
few preliminary things.

First, about the name of the domain. I have called it membrane computing,
starting from the position of the membrane in the life of the cell, in its architec-
ture and functioning, but the choice was not the best one. ”Cellular computing”
was probably the most ”marketable” choice, but I have discarded it as being too
comprehensive.

Then, the name of the models: in the first papers, I used ”membrane systems”,
but soon those who started to investigate these models have called them ”P sys-
tems”, continuing the line of other computing devices having a name (H systems
are the closest ones). In the beginning this induced to me some public discomfort,
for instance, during conferences, but the letter P soon became autonomous, com-
pletely neutral to me. What is interesting is that there are papers which use the
syntagma ”P system”, sometimes even in the title, without citing any paper of
mine. Of course, it would be a great success if this syntagma will became largely
folkloric...

The domain has grown very rapidly and it is still active after more than sixteen
years since its initiation. I have sometimes asked myself which were the explana-
tions, and what I can do for enhancing the growth. Several aspects concurred to
the interest for the membrane computing: the favorable context (the natural com-
puting ”fashion” mentioned in the beginning); the right moment, on the one hand,
with respect to the DNA computing (which, in some sense, is covered and general-
ized by membrane computing), on the other hand, with respect to the theoretical
computer science in general and the formal language theory in particular.

There are several things to be mentioned here. After four decades since the in-
troduction of Chomsky grammars, the formal language theory became ”classical”
enough and got somewhat retired from the front research (almost completely in
USA), even if there still exist specialized conferences (for instance, about finite au-
tomata and their applications) or more general conferences (DLT – Developments
in Language Theory). Membrane computing appeared as a continuation and an ex-
tension of formal language theory: the main investigation objects are no longer the
strings of symbols and the languages, but (I anticipate) the multisets of symbols
and the sets of multisets. Strings, without taking into account the ordering of the
symbols, more technically speaking, strings ”seen” through the Parikh application,



Looking for Computer in the Biological Cell 283

the one which tells us the number of occurrences of each symbol in a given string.
The consequence was that a large number of researchers in formal language theory
became interested in the new research area. Among them, since the very beginning,
important names, such as Arto Salomaa (Finland) and Grzegorz Rozenberg (The
Netherlands), Oscar H. Ibarra (USA), Sheng Yu (Canada), Kamala Krithivasan
(India), Takashi Yokomori (Japan), Mario J. Pérez-Jiménez (Spain), as well as
very active researchers from my generation, such as Jürgen Dassow (Germany),
Erzsébet Csuhaj-Varjú (Hungary), Jozef Kelemen (The Czech Republic), Rudolf
Freund (Austria), Gheorghe Marian and Gabriel Ciobanu (Romania), Yurii Ro-
gozhin (Republic of Moldova), Linqiang Pan (China), many of them coagulating
around them research groups dedicated to membrane computing.

Somewhat surprising was the rapidly growing number of PhD students – now
doctors – who have presented theses in membrane computing. There are over 50
at this moment. I mention only the first two, Shankara Narayanan Krishna (India)
and Claudio Zandron (Italy), with the theses presented in 2001, respectively, in
2002. Starting with the summer of 2014, C. Zandron is the chairman of the steering
committee of membrane computing.

A comprehensive information about the membrane computing area can be
found at the domain website from the address http://ppage.psystems.eu, hosted
in Vienna (it is the successor of a page which has functioned for many years in
Milan, Italy, at the address http://psystems.disco.unimib.it).

Of course, it has counted very much the ”sociology” of the domain. A com-
munity was soon created, and this is very important, not only in science, but in
culture in general. They have contributed to that the seniors mentioned above,
the yearly conferences (started in 2000, with the first three editions organized in
Curtea de Argeş, Romania, where the meeting returned for the tenth edition and
where I intend to also organize the twentieth edition) as well as a series of meet-
ings which I would like to specially emphasize, one of a unusual format, which
I have organized for the first time in Tarragona, Spain, in 2003. After that, it
took place every year in Seville, also in Spain. Because it had to have a name,
I called it ”Brainstorming Week on Membrane Computing”. One week when re-
searchers interested in membrane computing work together, far from the current
preoccupations, teaching or bureaucratic tasks. A very fruitful idea was to collect
in advance open problems and research topics and to circulate them among the
participants before the meeting in Seville, then addressed, in collaboration, during
the Brainstorming. Very useful meetings – in the website of membrane computing
one can find the yearly volumes, with the papers written or only started during
the Brainstorming.

Very useful was, of course, the Internet. The first paper, ”Computing with
membranes”, has waited more than one year before it was published in Journal
of Computer and System Sciences (vol. 61, 2000, pages 108–143), but, because
I was in Turku, Finland, in the autumn of 1998, I made the paper available on
Internet, in the form of an internal report of TUCS, Turku Center for Computer
Science (Report No. 208, 1998, www.tucs.fi). Until 2000, when the journal paper



284 Gh. Păun

has appeared, there were written some dozens of papers, making possible the
organization of the first meeting dedicated to this topic, in Curtea de Argeş.

28 A Quick View on Membrane Computing

Let us not forget: we want to start from the cell and to construct a computing
model. The result (the one proposed in the fall of 1988) is something of the fol-
lowing form. We look to the cell and we abstract it until we only see the structure
of the hierarchically arranged membranes, defining compartments where multisets
of objects are placed (I am using a generic term, abstract, free of any biochemical
interpretation); these objects evolve according to given reactions. A multiset is a
set with multiplicities associated with its elements, hence it can be described by
a string; for instance, aabcab describes the multiset which contains three copies of
a, two of b, and one of c. All permutations of the string aabcab describe the same
multiset. The reactions, in their turn, are described by multiset ”rewriting” rules,
of the form u → v, where u and v are strings which identify multisets. Initially
(in the beginning of a computation), in the compartments of our system we have
given multisets of objects. The evolution rules start to be applied, like biochemical
reactions, in parallel, simultaneously, making evolve all objects which can evolve –
and thus the multisets change. Using a rule u → v as above means to ”consume”
the objects indicated by u and to introduce the objects indicated by v. We have
to notice that the objects and the rules are localized, placed in compartments, the
rules in a given compartment are applied only to objects from that compartment.
Certain objects can also pass through membranes. We proceed by applying rules
until (like in the case of a Turing machine) we get stuck, no rule can be applied,
and then the computation halts. The result of a halting computation is ”read”, for
instance, in the form of the number of objects placed in a compartment specified
in advance.

Processing of multisets (of symbols), in parallel, in the compartments defined
by a hierarchical structure of membranes – this is the short description of a ”P
system”. A distributed grammar, working with multisets of symbols – this is the
direct connection with the formal language theory.

The working site starting here looks endless.
First, one can introduce a large number of variations of P systems, with a

mathematical, computer science, biological motivation, or motivated by applica-
tions.

From the point of view of mathematics, the models should be minimalistic,
they have to contain the smallest number of ingredients. For computer science, a
computing model is good to be as powerful as possible, in the best case universal,
equivalent with the Turing machine, and as efficient as possible, in the best case
able to solve NP-complete problems in polynomial time.

Biology and applications provide a long list of alternatives, starting with the
way of arranging the membranes (hierarchical, as in a cell, or placed in the nodes



Looking for Computer in the Biological Cell 285

of an arbitrary graph, as in tissues and other populations of cells), the types of
objects (symbols as before, strings or even more complex data structures, such as
graphs or bidimensional arrays), the form of the evolution rules (also dependent
on the type of objects), the strategies of applying them, the way of defining the
result of a computation.

I have mentioned before the multiset rewriting rules. They can be arbitrary,
non-cooperative (with the left hand multiset consisting of a single object, which
corresponds to context-free rules in Chomsky grammars), or, an intermediate case,
catalytic (of the form ca → cv, where c is a catalyst, an object which assists
object a in its transformation to the multiset v). Then, we have the symport
and antiport rules, which move objects from a compartment into another one
(example: the antiport rule (u, out; v, in), associated with a membrane, moves the
objects indicated by u from this membrane to the surrounding compartment and
the objects indicated by v in the opposite direction). Very important are the rules
which divide membranes, because they increase, even exponentially, the number
of membranes in the system. Many other types of rules were investigated (for
instance, with a control on their application – with promoters, inhibitors, etc.),
but I do not mention them here, the presentation would become too technical for
the intentions of this text.

If the objects in the compartments of a system are strings, then they evolve
by means of operations specific to strings: rewriting, insertion and deletion, or,
in order to make the model more uniform from a biological point of view, by the
splicing operation from the DNA computing.

An interesting situation is that when we work with symbol objects, hence with
numbers, but the result of a computation is ”read” outside the system, in the form
of the string of the objects which are expelled from the system. It is worth noticing
the qualitative difference between the internal data structure, the multiset, and
the external one, the string, which carries out positional information.

In turn, the applications need a completely different strategy of constructing
the models – far from minimalistic, but adequate to the modeled piece of reality;
this time not the computing power is of interest, but the evolution in time of the
system. I will come back to applications.

Over this small jungle of models one superposes the investigation program
of the classic computer science: computing power, normal forms, descriptional
complexity, computational complexity, simulation programs, etc., etc.

29 Classes of Results (and Problems)

Of course, I will not recall precise theorems, but I will only mention the two main
classes of results in membrane computing and their general form.

Computational completeness/universality: most of the classes of P systems con-
sidered so far are equivalent with Turing machines, they are computationally com-
plete. Because the proofs are constructive, in this way one also brings to membrane



286 Gh. Păun

computing the universality property in the sense of Turing (that is why we speak
about computational completeness and universality as they would be synonymous).
In most cases, this result is obtained for systems of a reduced, particular form,
with a small number of membranes. For instance, cell-like P systems with only
two membranes, using catalytic rules (hence not of the general form) can compute
whatever the Turing machines can compute.

An important detail: two catalysts are sufficient. It is an open problem whether
the P systems with only one catalyst are universal. The conjecture is that the
answer is negative, but the proof still fails to appear. This is one of the most
interesting types of open problems in membrane computing (many of them still
open): identifying the precise borderline between universality and non-universality.

Efficiency: the classes of P systems which can grow (exponentially) the number
of membranes can solve NP-complete problems in a polynomial time. The idea is
to generate, in a polynomial time, an exponential working space and then to use it,
in parallel, for examining the possible solutions to a problem. Membrane division
helps, similarly the membrane creation, similarly other operations. Like in the case
of the Adleman experiment, we have again a space-time trade-off, but in our case
the space is not provided in advance, but it is created during the computation,
through ”mitosis” or by means of other ”realistic” biological operations.

There are also in this area open problems concerning the borderline between
efficiency and non-efficiency, but more difficult to be stated in plain words.

Interesting is a somewhat unexpected fact. Using rules of the form a → aa,
applied in parallel, we can produce an exponential number of copies of a in a linear
number of steps. (In n steps, we get 2n copies of a.) However, such an exponential
working space is not of any help in solving high complexity problems in a feasible
time– this is what the so-called Milan theorem, from Claudio Zandron PhD thesis,
says. If these objects are localized, placed in an exponentially large number of
membranes, then the situation is different. Otherwise stated, not only the size of
the working space matters, but also its structure, the possibility to apply different
rules in different compartments. This is a subtle aspect, which I do not know
whether it has been met also in other frameworks.

For details, the reader is refereed to the monograph Membrane Computing.
An Introduction, published by Springer-Verlag in 2002 (and recently translated in
Chinese) and, especially, to The Oxford Handbook of Membrane Computing, edited
by Gh. Păun, G. Rozenberg, and A. Salomaa and published by Oxford University
Press, in 2010.

30 Significations for Computer Science and for Biology

A computing model which has the same power as the Turing machine is a good
thing, such a computer is universal not only in the intuitive sense, but it is also
programmable. Moreover we have here a distributed, parallel computer, with a
great degree of non-determinism, controlled in various biologically inspired ways.



Looking for Computer in the Biological Cell 287

Let us, however, observe the similarities and the differences between a usual
computer program, a set of instructions of a Turing machine, and a set of evolu-
tion rules of a P system. In the programming languages, the programs consist of
precisely ordered instructions, perhaps labeled and addressed by means of these
labels. In the case of the Turing machine, the sequence of instructions to be ap-
plied is determined by the states of the machine and by the contents of the tape. In
the cell case, the reactions are potential, their set is completely unstructured, and
their application depends on the available molecules. The evolution rules are just
waiting for the data to which they can be applied, there is a competition between
rules with respect to the objects to process.

The differences are visible and they suggest once again the question what means
to compute in a natural way?, adding now the question whether we can work with
programs in the form of completely unstructured sets of instructions.

On the other hand, in the first moment, it is expected that the biologist reaction
to results of the type of the equivalence with the Turing machine is indifference, a
raising of the shoulders. Another domain, another language, another book... But:
if the cell is so powerful from a computational point of view, then, according to an
old result, the Rice theorem (”all nontrivial problems – having both instances with
a positive answer and instances with a negative answer – about a computing model
equivalent with Turing machines are algorithmically undecidable”), no nontrivial
question about the cell can be solved in an algorithmic way, by means of a program.
The biologists formulate every day such questions: How a cell, a cell population, an
organ or an organism evolves in time? Is there a substance which gets accumulated
over a given threshold, in a given compartment? What happens if we add a multiset
of molecules (a medicine), does the state of an organ improves (from specified
points of view)? – and so on. If a model of the cell would be decidable, then
we could find the answer to such questions by (algorithmically) examining the
model, at a given initial state. But, because this is not possible (cannot be done
in principle, not only we cannot do it now, here), what remains to do are the
laboratory experiment (expensive and time consuming), the computer experiment
(cheap, fast, but with the relevance depending on the quality of the model), and,
theoretically, the non-algorithmic, ad-hoc, approach.

The previous paragraphs can be seen also as a plead for biology to learn new
languages, in particular, the language of theoretical computer science, thus having
the possibility of raising problems and of finding solutions which cannot appear,
cannot be even formulated in the previous language. This would be an essential
step towards infobiology.

31 Three Novel Computer Science Problems

In the continuation of the discussion about the significance for computer science,
let us point out a remarkable fact: natural computing in general and membrane
computing in particular raise theoretical questions which were not considered in



288 Gh. Păun

the framework of the classical computer science. Here are three questions of this
kind, all three pertaining to complexity theory.

Like in the case of Adleman, most experiments of DNA computing started
from an instance of a problem and constructed a ”computer” associated with that
instance. The standard complexity theory does not allow such an approach, it asks
for uniform solutions, for programs/algorithms which start from the problem (and
its size) and solve all instances of the problem. The idea is that during the pro-
gramming stage one can already work on solving the problem, so that one can then
pretend that the solution was found faster than it was the case in reality. That is
why, also for the uniform solutions one limits the time allowed for programming,
for constructing the algorithm. Let us then place a bound also on the program-
ming time in the case when we start from an instance, so that we cannot cheat
here either. The relationship between uniform solutions and semi-uniform (with
a limited time for programming) solutions is not clarified yet, in spite of its im-
portance for the natural computing. In membrane computing there were reported
a series of related results – see, for instance, recent papers by Damien Woods
(Caltech, USA), Niall Murphy (Microsoft Research, Cambridge, UK), Mario J.
Pérez-Jiménez (Seville University, Spain).

Second: in DNA computing and in many models in membrane computing,
at least part of the steps of a computation are of a non-deterministic type, but
in the end the experiment/computation provides a unique result. The idea is to
organize the computation in such a way that it is confluent, with two variants:
either the system evolves non-deterministically for a while, then it ”converges” to
a unique configuration and then it continues in a deterministic way, or the system
”converges logically”, it gives the same result irrespective how it evolves. Again,
the complexity theory lacks a study of these situations, of the cases intermediate
between determinism and non-determinism.

Finally, the biology provides situations where extended resources wait for ex-
ternal challenges which activate a suitable portion of the resource. The examples
of the brain and of the liver, from which we use at any given time only part of
the huge number of available cells, are the most known. We can then imagine
”computers” – for instance, neural networks – with an arbitrarily large number
of cells/neurons, but containing only a limited quantity of information (not to
hide there the solution of a problem); after introducing a problem in the system,
one activates the necessary number of cells/neurons for solving it. There is no
theory dealing with this strategy (of using pre-computed resources). How the pre-
computed working space should look in order to contain only ”a limited quantity
of information”, how this information can be defined and measured, when a system
with pre-computed resources is acceptable/honest, it cannot hide the solution of
a problem in its structure?

Natural computing not only motivates the improvement of old results in com-
puter science, but it also makes necessary new developments, which were not imag-
ined before.



Looking for Computer in the Biological Cell 289

32 About the Tools Used in Membrane Computing

In order to stress once again the relationships between various branches of theo-
retical computer science which, at the first sight, look far from each other, and the
fact that membrane computing, the natural computing in general, use many old
techniques and results, let me remind some details from my personal experience.

In the first universality proof for P systems I have used the result of Yuri Mati-
jasevich mentioned also before, of characterizing the sets of numbers computed by
Turing machines as solutions of diophantine equations. I have, however, soon real-
ized that a simpler proof can be obtained starting from the characterization of the
same sets of numbers with the help of the matrix grammars. The initial paper was
published in this form. In this context it appears the necessity of improving some
old results in this area. After a while, also the matrix grammars were replaced,
the proofs are now based mainly on register machines, investigated already in the
sixties.

A technique even older was useful in the first universality proof for H systems,
namely the way of functioning of Post systems, which were introduced at the
beginning of the years 1940. Adapted to the splicing operation, this has led to
a technique called rotate-and-simulate, which has become almost standard for H
systems and their variants.

In the first years of my research activity, I was much interested in matrix
grammars and I have concluded this research with a monograph (published in
Romanian, in 1981), extended after a while to a book (published by Springer-
Verlag, in 1989), in collaboration with Jürgen Dassow, from Magdeburg, Germany,
dedicated to all restrictions in the derivation of context-free grammars. The same
happened with other domains which were useful in the membrane computing; the
Marcus contextual grammars and the grammar systems are the most important
of them.

In mathematics and computer science it is not possible to say in advance
whether and when a subject or a result will be useful...

33 Spiking Neural P (SNP) Systems

A class of P systems inspired from the brain structure and functioning deserves to
be separately discussed. It was introduced later than other models (M. Ionescu,
Gh. Păun, T. Yokomori: ”Spiking neural P systems”, Fundamenta Informaticae,
vol. 71, 2006, pages 279–308), but it seems that it will get earlier hardware imple-
mentations useful to computer science (details about this possibility can be found
in the paper ”The stochastic loss of spikes in spiking neural P systems: Design and
implementation of reliable arithmetic circuits”, by Zihan Xu, Matteo Cavaliere,
Pei An, Sarma Vrudhula, published in Fundamenta Informaticae, vol. 134, issue
1-2, January 2014, pages 183–200).



290 Gh. Păun

In a few words, such a system consists of ”neurons” linked through ”synapses”
along which circulate electrical impulses, produced in the neurons by means of spe-
cific rules. Like in the case of the real neurons (see, for instance, W. Maass: ”Net-
works of spiking neurons: The third generation of neural network models”, Neural
Networks, vol. 10, 1997, pages 1659–1671), the communication among neurons is
done by means of identical electrical impulses, spikes, for which the frequency is
relevant, codifying information. Otherwise stated, important is the distance in time
between spikes. In each moment, the axons are a sort of ”bar codes”, sequences
of 0 and 1 which move from a neuron to another one. Obviously, the model ig-
nores many neuro-biological details, but even at this reductionistic level we can
formulate a series of questions concerning the relevance for computer science. In
a certain sense, the SNP systems use the time as a support of information. The
distance between two events, two spikes here, codifies a number. Can we construct
a computer with such a ”memory”? I mention the question only as a speculation
– provocative at the theoretical level.

A result which deserves to be recalled refers to the search of SNP systems which
are universal in the Turing sense, that is, they can be programmed in such a way
to simulate any other SNP system. From the equivalence with the Turing machine,
it follows immediately that such a system exists. The problem of interest concerns
the number of neurons of an ”universal brain” of this kind, able to simulate any
computation in any particular system. This number is not at all too large. In the
paper ”Small universal spiking neural P systems”, BioSystems, vol. 90, 2007, pages
48–60, by Andrei Păun and Gh. Păun, one uses 50 – 80 neurons, depending on the
type of rules for producing spikes, but these numbers were subsequently decreased.
In newspaper terms, we can say that ”there are computationally universal brains
consisting of only a few tens of neurons”. From here we can either infer that a
computing model of the form of SNP systems is very powerful, actually, that the
neurons of these systems are too powerful, or that the Turing computability level
is not very high – or both these conclusions. Of course, the human brain does not
function as a Turing machine – but the computational paradigm was useful, in a
certain extent, in modeling the brain functioning.

34 About Implementations

The DNA computing started by the definition of the splicing operation, in 1987,
but about the possibility of using DNA molecules for computing there were dis-
cussions already one decade before. However, the domain became popular after
Adleman experiment in 1994. An example was thus created, so that the question
whether or not there are implementations of P systems is both natural and fre-
quent. It is understood that one speaks about implementations on a biological
substrate. The answer is negative. There were some attempts, but no successful
experiment was reported.

An experiment of this kind was designed in the group of professor Ehud Keinan
(with well known research both in chemistry and biology) from the Technion Insti-



Looking for Computer in the Biological Cell 291

tute in Haifa, Israel, where I have spent one week in 2006, exactly with this purpose.
Two main related problems were identified from the beginning: finding a P system
plausible to be implemented in a laboratory and, of course, finding the biochemi-
cal techniques necessary. We did not intend to solve an NP-complete problem, we
have not found a reasonable one, but we have looked for a system whose behav-
ior was illustrative for membrane computing (compartments, multisets, parallel
processing), and we have chosen a system generating numbers in the Fibonacci
sequence. The lab implementation seemed to be only a time issue – as well a ques-
tion of money, for buying the laboratory equipments and the... DNA molecules.
The plan was to simulate the membranes by means of the micro-chambers of a
reconfigurable lab installation, with the objects being DNA molecules.

The first experiments did not succeed, then the... sociology of science struck
again: the two PhD lady students who were in charge with this experiment moved
to USA. In the meantime, an USA patent has appeared, on the name of Ehud
Keinan, for implementing a P system, but using another technique, based on three
non-miscible liquids placed in a common space. As far as I know, it is about a
”theoretical implementation”, no successful experiment was reported.

The question which naturally arises is whether or not such an experiment would
bring something useful from the point of view of applications. Recalling a saying
of Benjamin Franklin, ”it is impossible to say what will become a newborn baby”,
but, having in mind the case of DNA computing, it is highly possible that this will
only be a demo, at the level of simple calculations.

Completely different is the situation of implementations on an electronic hard-
ware. There are several promising implementations on a parallel hardware (on
NVIDIA graphic cards, in Seville, Spain), on a hardware especially designed for
membrane computing (Madrid – Spain and Adelaide – Australia), on networks of
computers, even on web. All these succeed in a great extent to capture the essen-
tial characteristics of P systems, the parallelism. Having in mind the parallelism,
I do not call implementations, but simulations the cases when one uses standard
sequential computers.

On the other hand, both the simulation programs and, still more, the imple-
mentations are useful in applications.

35 Applications

Membrane computing confirms an observation already made in several situations:
when a mathematical theory, starting from a piece of reality, is sufficiently devel-
oped at the abstract, theoretical level, there are high chances to find applications
not only in the domain which has inspired it, but in other areas too, some of them
far away, at the first sight, from the reality from where the theory emerged (but
having a common deep structure). It is, very convincingly, the present case.

It was just natural to return to the cell. Biology needs tools and models, the
cell is not easy to model. It was stated that, after completing the human genome



292 Gh. Păun

reading, the main challenge for the bioinformatics is the modeling of the cell (M.
Tomita: ”Whole-cell simulation: A grand challenge of the 21st century”, Trends in
Biotechnology, vol. 19, 2001, pages 205–210). I have already mentioned that many
of the models currently used in biology are based on differential equations. In
many cases they are adequate, in many cases not. Differential equations belong to
the mathematics of the continuum, they are appropriate to very large populations
of molecules, uniformly stirred. However, in a cell, many molecules can be found
in small numbers, therefore the approximation of the finite through the infinite,
as necessary for applying differential equations, can lead to wrong results. This
makes necessary the discrete models, in particular, the P systems, which also
have other characteristics which are attractive for the biologist: they come from
biology, hence they are easily understandable, which is an aspect which should
not be underestimated; furthermore, P systems are algorithmic models, directly
programmable in order to simulate them on the computer; can be easily extended,
are scalable, adding new components, of any type, does not change the simulation
program; their behavior is emergent, cannot be predicted by just looking to the
components.

There are many applications of membrane computing in biology and
biomedicine. From the individual cell, the applications passed to populations of
cells (e.g., of bacteria) and then to... ecosystems. Here is only one title, a sug-
gestive one: ”Modeling ecosystems using P systems: The bearded vulture, a case
study”, by Mónica Cardona, M. Angels Colomer, Mario J. Pérez-Jiménez, Delfi
Sanuy, and Antoni Margalida, the last two being biologists, experts in the ecol-
ogy of the bearded vulture and animal protection from Lleida, Spain. Of course,
the ecosystem is a metaphoric cell, while the ”molecules” are the vultures, goats,
wolves, hunters, all these in discrete quantities, small known numbers, with no
possibility to be modeled with the instruments of the continuous mathematics.
Other ecosystems which were investigated concern Panda bears in China and the
zebra mussel from the water basins of the Spanish hydroelectrical plants.

So far, plausible applications. Not so expected are the applications in computer
graphics (but in this respect we have a previous example, that of Lindenmayer
systems), cryptography (in the organization of the attack against certain crypto-
graphic systems), approximate optimization (distributed evolutionary computing,
with the distribution organized like in a cell; the number of papers in this area
is very large, the topic being popular in China, and the results are surprisingly
and pleasantly good – with the mentioning that the famous no free lunch theorem
should cool down also here the enthusiasm), economic modeling (a metaphorical
extension similar to that to ecosystems), robot control.

These two last areas of applications are part of a potentially larger one, based
on the use of the so-called numerical P systems, where, in a cell-like framework
there evolve numerical variables, not molecules; the evolution is done by means of
certain programs, consisting of a production function and a repartition protocol. The
inspiration comes from economics (Gh. Păun, Radu Păun: ”Membrane computing
and economics: Numerical P systems”, Fundamenta Informaticae, vol. 73, 2006,



Looking for Computer in the Biological Cell 293

pages 213–227). The systems of this kind compute functions of several variables, in
a parallel way, and this computation is rather efficient, that is why it is expected
that this somewhat exotic class of P systems will find further applications.

Details about applications can be found in the webpage of membrane comput-
ing, in the mentioned Handbook, as well as in the collective volumes Applications of
Membrane Computing (edited by G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez) and
Applications of Membrane Computing in Systems and Synthetic Biology (edited by
P. Frisco, M. Gheorghe, M.J. Pérez-Jiménez), both of them published by Springer-
Verlag, in 2006 and 2014, respectively.

36 Doubts, Difficulties, Failures

During ceremonies like the today one [delivering a Reception Speech in the
Academy] or with the occasion of periodical reports, it is not usual, even not ap-
propriate, to also speak about difficult moments, even if this would be instructive
for the reader and useful for the domain.

On the other hand, the hesitations and the doubts are continuously a compo-
nent of the researcher life. For instance, I can compile a long list of moments where
my expectations were of a certain type and the results were different.

This happened starting with the mathematical results. For instance, in the be-
ginning I did not believe that the catalytic P systems are universal, furthermore,
that they are universal even in the case of using only two catalysts. Similarly, for
a while I have expected to find a class of systems for which the number of mem-
branes induces an infinite hierarchy (of the classes of sets of computed numbers).
In exchange, almost always the universality is obtained with only one or two mem-
branes. One membrane means no structure of the system, a trivial architecture.
Of course, we can see here the positive fact: the (catalytic) processing of multisets
is powerful enough in order to simulate a Turing machine.

Because I have in mind the case of the DNA computing, I do not count as a
failure the fact that there are no biological implementations of P systems (although
such an event would have a great publicity impact), but I still wait for an imple-
mentation on a parallel or a dedicated hardware having a ”commercial” value. Such
an implementation is necessary and, I believe, it is also possible. For instance, some
years ago, a team of biologists and computer scientists from Nothingham, Sheffield
(UK), and Seville have tried to simulate on a computer the communication among
bacteria, modeling the so-called quorum sensing. The simulation programs were
able to deal with hundreds of bacteria, the biologists wanted to pass to popula-
tions of thousands of bacteria. My expectation is that the implementations, for
instance, on NVIDIA cards, will reach soon this level of magnitude requested by
the biologists.

Concerning the applications in general, although they were not of interest at
the beginning of membrane computing, at some moment it was clear that the do-
main cannot pass over a certain level of development and notoriety without ”real”



294 Gh. Păun

applications. For a while, there were applications, but of the postdiction, not of
the prediction type. The frequent scenario is the following: we take a biological
phenomenon, discussed in a paper or in a book, we formalize it as a P system, we
write a simulation program (or we take one available – at this moment we also have
a specialized programming language, P-lingua, realized in the Seville University),
we perform experiments with data from the paper or the book, and if the results
are similar to those obtained in a laboratory or through other methods, we are
happy. Postdiction, nothing new for the biologists, we only get more confidence in
the new model and we can tune it with real data. In order to pass over this stage
it is necessary to have a biologist in the team, who should come with a research
question, with hypotheses which need to be checked. In turn, the computer sci-
entist should come with sufficiently versatile models and with sufficiently efficient
programs, in order to cope with the complexity of biological processes. After six-
teen years, the bibliography of membrane computing applications is rather large –
see the references from the previous section – although still we need biologists who
have to come towards the computer scientists, maybe to learn membrane comput-
ing or, at least, to learn to use the instruments which the computer scientists have
already realized (and tested).

I said before that I was continuously interested in forming a community –
initially, this was an intuitive desire, later it became conscious, as this was a way
to stabilize the domain against the dynamics of the groups. This looks as an
external aspect, but we do not have to ignore the influence of the psycho-sociology
on science, especially in the case of young branches. A group which is broken can
mean a group less (it depends where its members land, whether they continue or
not the research activity) or the apparition of several new groups, in new places. I
have been the witness of both these two types of consequences. Fortunately, at the
present time, the membrane computing community has dimensions which provide
it with a comfortable inertia – which, however, does not mean that membrane
computing will not get dissolved into infobiology, it already works for that...

37 At the Frontier of Science-Fiction

The main promise of natural computing is a better use of the existing computers,
pushing forward the frontier of feasibility, by providing solutions, perhaps approx-
imate, to problems which cannot be solved by means of traditional techniques.
The DNA computing came with a more ambitious goal, that of providing a new
type of hardware, of ”biological chips”, ”wet processors”, efficient not only in com-
putational terms, but also in what concerns the energy consumption, or making
plausible very attractive features, self-healing, adaptation, learning. Biology can
suggest also new computer architectures or ideas for implementing other dreams
of computer science, such as the parallel computation, the unsynchronized one,
the control of distributed processes, the reversible computation and so on.

All these are somewhat standard expectations, but there also are some ideas
which point out to the science of tomorrow, if not directly to science-fiction.



Looking for Computer in the Biological Cell 295

One of these directions is that which aims to hypercomputability, to ”compute
the uncomputable”, to pass beyond the ”Turing barrier”. The domain is well de-
veloped, there are over one dozen basic ideas which lead to computability models
stronger that the Turing machine – while physics does not forbid any one of these
ideas, moreover, it even suggests ideas which look genuinely SF, like, e.g., the use
of an internal time of the model which contains cycles or of a bidimensional time. It
is true, Martin Davis (”The myth of hypercomputation”, in Alan Turing: The Life
and Legacy of a Great Thinker, C. Teuscher, ed., Springer, 2004, pages 195-212)
considers all of them tricks by which the computing power is introduced in the
model from the very beginning, in disguise, and then one proves that the model
passes beyond the Turing machine (for example, one considers real numbers, which
can codify, in their infinite sequence of decimals, all possible computations), but
there also are some ideas which look more realistic that others.

One of them is that of acceleration, already discussed several decades ago, not
only in computer science: R. Blake (1926), H. Weyl (1927), B. Russell (1936), have
imagined processes which need one time unit (measured by an external clock) for
performing the first step, half of a time unit for the second step (the process
”learns”), and so on, at every step, half of the time needed by the previous step.
In this way, in two time units (I insist: external, measured by the observer) one
performs infinitely many (internal) steps. Such an accelerated Turing machine can
solve the halting problem, hence it is more powerful than a usual Turing machine.

Let us now remember the observation that nature creates new membranes
in order to get small reactors, where the reactions are enhanced, because of the
higher possibilities of molecules to collide. Consequently, smaller is faster. The
biochemistry in an inner membrane is faster than in the surrounding membrane.
Let us push the speculation to the end and assume that the ”life” in a membrane
is twice faster than in the membrane containing it. Exactly the acceleration we
have mentioned above. One can prove (C. Calude, Gh. Păun: ”Bio-steps beyond
Turing”, BioSystems, vol. 77, 2004, pages 175–194) that, exactly as in the case
of the accelerated Turing machine, an accelerated P system (able to repeatedly
create inner membranes) can decide the halting problem.

Hypercomputability can seem to be only a mathematical exercise, but it is
estimated that passing beyond the Turing barrier could have more important con-
sequences than finding a proof, even an efficient one, of the P = NP equality; see,
for instance, B.J. Copeland: ”Hypercomputation”, Minds and Machines, vol. 12,
2002, pages 461–502.

Let us get closer to the laboratory. I have mentioned the lab implementation of
a finite automaton with an autonomous functioning. A finite automaton can parse
strings. The genes are strings, the viruses are strings (of nucleotides). A hope of
medicine is to cure illnesses by editing genes, to eliminate viruses by identifying
them and then cutting them in pieces. A more efficient idea than to introduce
medicines in out body is to construct a ”machinery” which can recognize and edit
the necessary sequences of nucleotides, genes or viruses. To this aim, we need a
carrying vector, to bring the gene editor in the right place. The identification of



296 Gh. Păun

that place can be done by an automaton, possibly a finite one, while the vector
can be a sort of nano-carrier which can be also built from DNA molecules. In
short, un nano-robot, suitably multiplied, which can move from a cell to another
one, curing what it is necessary to be cured. A pre-project of such a nano-robot
was presented in 2004, by Y. Benenson, E. Shapiro, B. Gill, U. Ben-Dor, R. Adar
(”Molecular computer. A ’smart drug’ in a test tube”), to the tenth edition of the
DNA Computing Conference organized in Milan, Italy. In a great extent, it was the
same team which has implemented the autonomous finite automaton mentioned
before.

There still are many things to be done, the possibility to have our body con-
tinuously scanned by a gene repairing robot is not at all close to us. (Such a robot
can also have malevolent tasks, it can be a weapon – one can open here a discus-
sion about the ethics of research, but there are sufficiently many debates of this
type, even in bio-computer science. Also Francis S. Collins speaks about bioethics
in The Language of God, the book mentioned several pages before.) On the other
hand, there are numerous nano-constructions made of DNA, ”motors”, ”robots”,
etc. The nano-technology based on DNA biochemistry is spectacularly developed.
I cite, as a reference, the paper J.H. Reif, T.H. LaBean, S. Sahu, H. Yan, P.
Yin: ”Design, simulation, and experimental demonstration of self-assembled DNA
nanostructures and motors”, Proceedings of the Workshop on Unconventional Pro-
gramming Paradigms, UPP04, Le Mont Saint-Michel, September 2004.

It is worth mentioning here also an observation made by Jana Horáková and
Jozef Kelemen in ”Capek, Turing, von Neumann, and the 20th century evolution
of the concept of machine”, from Proceedings of the International Conference in
Memoriam John von Neumann, Budapest Polytechnic, 2003, pages 121–135, with
respect to the evolution of computers, somewhat in parallel with the evolution of
the idea of a robot: from organic to electromagnetic, then to electronic, and in the
end tending to return to organic.

Further speculations? Without any limits, starting from facts with a solid sci-
entific background. In the extreme edge, one can mention Frank Tipler, with his
controversial eternal life, in informational terms, which is nothing else than artifi-
cial life at the scale of the whole universe (F. Tipler: The Physics of Immortality,
Doubleday, New York, 1994). In any case, we have to be conscious that all these
are plans for tomorrow formulated today in the yesterday language, to cite a saying
of Antoine de Saint-Exupéry. The progresses in bioengineering can bring surprises
which we cannot imagine in this moment.

38 Do We Dream Too Much?

Let us come down on the Earth, to the reality, to the natural computing as we have
it now and how it is plausible to have it in the near future, adopting a lucid position,
even a skeptical one, opposed to the enthusiasm from the previous section and to
the enthusiasm of many authors. (I am not referring here to newspaper authors,
which too often use big words when talking about bioinformatics.)



Looking for Computer in the Biological Cell 297

In order to promote an young scientific branch, the enthusiasm is useful and
understandable – but natural computing is no longer an young research area. Let
us oppose here to the previous optimism a more realistic position, starting from
the differences, many and significant, between computer science and biology, from
the difficulties to implement bio-ideas in computer science and computations in
cells: the goal of life is life, not the computations, we, the computer scientists, see
everywhere computations and try to use them for us; in a certain sense, life has
unbounded time and resources, it affords to make experiments and to discard the
results of unsuccessful attempts – all these are difficult to extend to computers,
even if they are based on biomolecules. Similarly, life has a great degree of re-
dundancy and non-determinism. Then, the biological processes have a high degree
of complexity, moreover, they seem to mainly use the mathematics of approxi-
mations, probabilities, fuzzy sets, all of which are difficult to be captured in a
computing model, not to speak about the difficulty to implement them.

Still more important: we perhaps dream too much even from the theoretical
point of view. First, the space-time trade-off does not redefine the complexity
classes, at most it can enlarge the feasibility space (see again Hartmanis remarks
about Adleman experiment).

Then, there is a theorem of Michael Conrad (”The price of programmability”, in
the volume The Universal Turing Machine: A Half-Century Survey, R. Herken, ed.,
Kammerer and Unverzagt, Hamburg, 1988, pages 285–307) which says that three
desired characteristics of a computer, programmability (universality), efficiency,
and evolvability (the capacity to adapt and learn), are contradictory, there is no
computer which can have all these three features at the same time. We can interpret
this result as a general no free lunch theorem for the natural computing.

A similar theorem of limitation of ”what can be done in principle” belongs to
Robin Gandy, a student and collaborator of Turing, which offers general math-
ematical arguments to Martin Davis: the hypercomputability is a difficult thing
to reach (see, for instance, the paper by R. Gandy ”Church’s thesis and princi-
ples for mechanisms”, in the volume The Kleene Symposium, J. Barwise et al.,
eds., North-Holland, Amsterdam, 1980, pages 123–148). Gandy wanted to free
the Turing-Church thesis of any anthropic meaning (in Turing formulation, the
thesis says that ”everything which can be computed by a human being can be
computed by a Turing machine”). To this aim, he has defined a general notion of
a ”computing machine”, described by four properties formulated mathematically
and which any ”computer”, an actual or a theoretical one, should possess. Then,
Gandy proved that any machine having these properties can be simulated by a
Turing machine.

Passing from theoretical computer science to applications, let me notice that
there are visible limitations also in this respect. I am even convinced that, if one
will make lists with the properties the models and the simulations we would like to
have (adequacy, relevance, accuracy, efficiency, understandability, programmabil-
ity, scalability and so on), then impossibility theorems similar to Arrow, Conrad,



298 Gh. Păun

Gödel theorems will be proved concerning the modeling and the simulation of the
cell – the very task which M. Tomita formulated.

39 Everything is New and Old All Are...

(The title of this section reproduces a verse from a poem by Mihai Eminescu, the
national poet of Romania.)

In spite of what was said above, there is a more and more visible interest in
the modeling of the cell. Actually, a dedicated research direction was proposed,
the systems biology, with several programmatic papers, published in high visibility
journals, such as Science and Nature. The main promotor was H. Kitano (”Sys-
tems biology: A brief overview”, Science, vol. 295, March 2002, pages 1662–1664,
”Computational systems biology”, Nature, vol. 420, November 2002, pages 206–
210), which has in mind a general model of the cell, meant to be simulated on a
computer and then used, in relation also with other computer science and biolog-
ical instruments, in such a way ”to transform biology and medicine in a precise
engineering”. The goal is important and probably feasible in a medium-long term,
but the insistence with which one speaks about ”systems biology” as about a novel
idea made Olaf Wolkenhauer to ask already in the title of his paper from Bioin-
formatics (vol. 2, 2001, pages 258–270) whether this is not only ”the reincarnation
of systems theory applied in biology”. The paper recalls the efforts in this respect
made in the years 1960, with the disappointments appeared at that time, due,
among others, to the limits of the computers (but also to the limits of biology: let
us remember that the Singer-Nicolson model of the membrane as a ”fluid mosaic”
dates only from 1972). But, besides the computing power, it is possible that some-
thing else was missing, which is perhaps missing even today, both in computer
science and in biology. The last paragraph from Olaf Wolkenhauer paper invokes
the name of Mihailo Mesarovic, a classic of systems theory, which, in 1968, said:
”in spite of the considerable interest and efforts, the application of systems theory
in biology has not quite lived up the expectations... One of the main reasons for
the existing lag is that systems theory has not been directly concerned with some
of the problems of vital importance in biology”. His advice for biologists, contin-
ues Olaf Wolkenhauer, is that such a progress can only be obtained by means of a
stronger direct interaction with the systems theory researchers. ”The real advance
in the applications of systems theory to biology will come about only when the
biologists start asking questions which are based on the system-theoretic concepts
rather than using these concepts to represent in still another way the phenomena
which are already explained in terms of biophysical or biochemical principles...
then we will not have the application of engineering principles to biological prob-
lems, but rather a field of systems biology with its own identity and in its own
right.” (M.D. Mesarovic: ”System theory and biology – view of a theoretician”,
in System Theory and Biology, M.D. Mesarovic, ed., Springer, New York, 1968,
pages 59–87)



Looking for Computer in the Biological Cell 299

Mesarovic words can be taken as a motto of infobiology in favor of which the
whole present text pleads.

The transformation of biology and medicine in ”a precise engineering” can
be also related with the current difficulties to understand what is life, material-
ized, among others, in the current limits of the artificial intelligence and artificial
life. One says, for instance, that up to now the computers are good in IA, the
intelligence amplification, but not equally good in AI, artificial intelligence. Still
less progresses were made in what concerns the artificial life. In terms of Rodney
Brooks (”The relationship between matter and life”, Nature, vol. 409, January
2001, pages 409–411), this suggests that ”we might be missing something funda-
mental and currently unimagined in our models of biology”. Computers are good
in crunching numbers, but ”not good at modeling living systems, at small or large
scale”. The intuition is that life is more than biophysics and biochemistry, but
what else it is can be something which we cannot imagine today, ”some aspects
of living systems which are invisible to us right now”. ”It is not completely im-
possible that we might discover some new properties of biomolecules or some new
ingredient”. An example of such a ”new stuff”, R. Brooks says, can be the quan-
tum effects from the microtubules of the neural cells, which, according to Penrose,
”might be the locus of consciousness at the level of the individual cell” (citation
from R. Brooks).

A similar opinion was expressed by another great name of the artificial intel-
ligence, John McCarthy (”Problems and projection in CS for the next 49 years”,
Journal of the ACM, vol. 50, 2003, pages 73–79): ”Human–level intelligence is a dif-
ficult scientific problem and probably needs some new ideas. These are more likely
to be invented by a person of genius than as part of a Government or industry
project”.

Anyway, the progresses related to the collaboration between computer science
and biology should not be underestimated. If we do it, then we take a risk which
has struck big names of science and cultures. I close with a funny example of this
kind, some statements (dated around 1830) of the French philosopher Auguste
Comte: ”Every attempt to employ mathematical methods in the study of biological
questions must be considered profoundly irrational and contrary to the spirit of
biology. If mathematical analysis should ever hold a prominent place in biology –
an aberration which is happily almost impossible – it would occasion a rapid and
widespread degeneration of that science.”

Thanks to God, the philosopher was wrong – but we needed about two hundred
years to see that...

40 (Provisory) Last Words

I hope that this quick description was convincing in showing that the way from
biology to computer science and back to biology is intellectually fascinating and
useful to both sciences.



300 Gh. Păun

A few things should be remembered: (i) in all its history, computer science tried
to learn from biology, (ii) and this effort brought important benefits to computer
science and equally to biology; (iii) the progresses in this area should not be un-
derestimated, (iv) but, in general, it is plausible that we expect too much (and too
fast) from the computer science-biology symbiosis, (v) because we ignore the es-
sential differences between the two universes, the inherent limits of computability
and the fact that biology is not a mathematically formalized science, (vi) with the
mentioning that it is possible to need a new mathematics in order to model and
simulate life and intelligence; finally, (vii) let me anticipate a new age of biology,
beyond the today bioinformatics and the today natural computing, and let me also
propose a name for it, infobiology.

Should we wait two further decades in order to see it taking shape?

From an intellectual point of view, during the forty years which I have told
about here I have lived around academician Solomon Marcus, a ”big tree” which
invalidates the phrase (”In the shadow of big trees not even the grace is growing.”)
by which Constantin Brancusi motivated his decision to refuse to work under the
guidance of Rodin: professor Solomon Marcus never puts shadow on his numerous
students and collaborators, but on the contrary. I repeat, in order to stress it: on
the contrary. I witness this and I dedicate to him this discourse, thanking him
once again.


