
The Pole Balancing Problem
with Enzymatic Numerical P Systems

Domingo Llorente–Rivera1, Miguel A. Gutiérrez–Naranjo2

1 Department of Computer Science and Artificial Intelligence
University of Seville, Seville, Spain
domingo.llorente.rivera@gmail.com

2Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla, 41012, Spain
magutier@us.es

Summary. Pole balancing is a control benchmark widely used in engineering. It involves
a pole affixed to a cart via a joint which allows movement along a single axis. In this
problem, the movement of the cart is restricted to the horizontal axis by a track and
the pole is free to move about the horizontal axis of the pivot. The system is extremely
unstable and, the cart must be in constant movement in order to preserve the equilibrium
and avoid the fall of the pendulum.

In this paper, we study the pole balancing problem in the framework of Enzymatic
Numerical P Systems and provide some clues for using them in more complex systems.

1 Introduction

Numerical P systems (NPS for short) were introduced in [7] with the aim of adding
ideas from economic and business processes to the framework of Membrane Com-
puting. They represent a break with respect to the previous P system models
since they introduce the concept of variable and real numbers in the framework of
Membrane Computing. In the general framework of Membrane Computing (called
symbolic P systems, in order to stress the differences with numerical P systems),
membranes can be seen as encapsulations of the Euclidean space where multisets
of objects are placed. The computation in such devices is performed by the applica-
tion of rules which send objects from one to other membrane (maybe modified) or
modify the membrane structure (see [8]). In NPS, membranes do not contain mul-
tisets of objects. They contain variables with associated numerical values. These
numerical values can be integer, rational or real numbers. Instead of using rules in-
spired in biochemical reactions, the computation of these new devices is performed
by programs consisting of two parts: a production function and a repartition proto-
col. Production functions are real-valued functions of type F : Rk → R which take

196 D. Llorente-Rivera, M.A. Gutiérrez-Naranjo

the k variables which appear in the membrane where the program is defined and
computes a real value. The computed number is then distributed among different
variables according to the repartition protocol.

In spite of its undoubted potential as computational devices, in the literature
there are very few papers devoted to this model (see, e.g., [1, 2, 3, 4, 5, 9, 10, 11]
and references therein). Most of them devoted to enzymatic numerical P system
(ENPS), a model introduced in [3] where enzymatic-like variables are introduced
in the NPS in order to avoid the non-determinism in the choice of a program in a
membrane.

Although the original inspiration of numerical P system was the economic
processes, the main field of the applications has been control problems. These
problems are on the basis of many industrial processes and the design of software
controllers for more and more sophisticated devices is nowadays a challenge for
researchers. The household thermostat is a classic example of control problem:
provided the changing temperature outside, the thermostat must maintain the
temperature inside home close to a desired level. This implies react to the changes
in an unpredictable real-world providing an appropriate response in a short interval
of time.

Beyond simple examples, the design of controllers for many real world is an
extremely complex task. If we extend the thermostat example to a more general
climate control system, a linear controller will not be able to regulate the temper-
ature adequately.

Usually, the control system is a software program that takes the right decision
for the input. For this input-output interaction, the software receives an input
from the sensor and takes a decision as output. It is crucial for the final solution
to obtain a real-time response in less than 10 milliseconds. For this reason, the
control software must be as small as possible in order to obtain a quick response.

In this paper we go on with the study of NPS as devices for control problem
(see, e.g. [2, 4]). As pointed out by Gh. Păun in [6], controlling drones can be
a good application for this model and it can be an extension of the use of NPS
for 2D travelling robots found in the literature. Drone is the popular name for an
unmanned aerial vehicle which can be seen as a mobile 3D robot. From a technical
point of view, the main difference between the control of 2D travelling robots and
drones is the stability. The drone must keep the horizontal position as much as
possible regardless the air conditions. This implies the effective real-time control of
the different engines according to the changes in the environment. The control of
drones is nowadays a research field for the industry and it is a really hard task. In
a certain sense, the stability problem of a drone can be seen as the generalization
of a well-known problem in control, the pole-balancing problem.

The pole-balancing problem is a feedback control system with the desired be-
havior of balancing a pole (an inverted pendulum) that is connected to a motor
driven cart by a ball-baring pivot (see Fig. 1). In this problem, the movement of
the cart is restricted to the horizontal axis by a track, and the pole is free to move
about the horizontal axis of the pivot. The system is extremely unstable and the

The Pole Balancing Problem with ENPS 197

Fig. 1. Pole Balancing problem

cart must be in constant movement in order to preserve the equilibrium and avoid
the fall of the pendulum. In a more general situation (a drone, by example) the
movement of the device must be controlled in three degrees of freedom, but it is
essentially the same problem, so the pole-balancing problem can be seen as a first
approach.

In this paper, we provide a theoretical study of the pole-balancing problem in
the framework of the ENPS and provide some ideas for further uses of ENPS in
control problems. The paper is organized as follows: Firstly, a brief introduction
to ENPS and to the Pole Balancing Problem is given. Next we provide some hints
about how the problem can be dealt with ENPS and finally some conclusions and
future work lines are presented.

2 Enzymatic Numerical P Systems

Next, we briefly recall the definition of enzymatic numerical P systems, More
details can be found in [3]. An enzymatic numerical P system is formally expressed
by:

Π = (m,H, µ, (V ar1, P r1, V ar1(0)), . . . , (V arm, P rm, V arm(0)))

where:

• m is the number of membranes used in the system (degree of Π) (m ≥ 1);
• H is an alphabet that contains m symbols (the labels of the membranes);
• µ is a tree-like membrane structure;
• V ari is a set of variables from membrane i, and the initial values for these

variables are V ari(0), i ∈ {1, . . . ,m};
• Pri is the set of programs from membrane i, i ∈ {1, . . . ,m}. Programs process

variables and have one of the following forms:
(a) Non-enzymatic form

Prj,i = Fj,i(x1,i, . . . , xki,i)→ cj,1|v1 + · · ·+ cj,ni |vni

198 D. Llorente-Rivera, M.A. Gutiérrez-Naranjo

(b) Enzymatic form

Prj,i = Fj,i(x1,i, . . . , xki,i)(ej →)→ cj,1|v1 + · · ·+ cj,ni |vni

where ej ∈ V ari is an enzyme-like variable which controls the activation of
the rule.

Rules have two components, a production function and a repartition protocol.
The l-th program of the membrane i has the following form:

Prl,i = (Fl,i, cl,1|v1 + · · ·+ cl,ni
|vni

)

where Fl,i : Rcard(V ari) → R is a real-valued function such that computes a real
number from the values of the variables in V ari; cl,1, . . . , cl,ni

are natural numbers
and v1, . . . , vn1

are the variables of the membrane i together with the variables
from the immediately upper membrane, and those from the immediately lower
membranes. If the corresponding ci is 0, the expression 0|vi is omitted.

If card(Pri) = 1 for i ∈ {1, . . . ,m}, then there is one production function per
each membrane and the system is deterministic. In case of multiple programs per
membrane, one rule is non-deterministically selected.

A universal clock is considered and, at each time t, all the variables have
associated a value. The computation is performed by computing the new value of
the variables. Such computation is performed in the following way. A rule is active
if it is in the non enzymatic form or if the associated enzyme has a greater value
than one of the variables involved in the production function. In parallel, in each
membrane an active program is chosen and its production function is used in order
to calculate a production from the value of the local variables. Once calculated,
the repartition protocol is used in order to compute the proportion of such value
that it is send to each variable. The coefficients c1 . . . cn in the repartition protocol
c1|v1+ · · ·+cn|vn specify the proportion of production distributed to each variable
v1 . . . vn. Namely, such protocol sends to the variable vi the value

qi =
production × ci∑n

i=j cj

The new value of the variable is the addition of the contribution of each applied
program. In each membrane of the system one uses one program at the time, and
this happens in parallel in all membranes.

A variable x is called productive if it does appear in a production function,
and then is consumed and reset to zero, otherwise the initial value is added to the
received contributions. The values of the variables at next time step are computed
by using repartition protocols, and so, portions distributed to variables are added
to form the new value.

The Pole Balancing Problem with ENPS 199

Fig. 2. Cart of the Pole Balancing

3 The Pole Balancing Problem

Pole balancing is an control benchmark historically used in engineering. It involves
a pole affixed to a cart via a joint which allows movement along a single axis. The
cart is able to move along a track of fixed length.

A trial typically begins with the pole off-center by a certain number of de-
grees. The goal is to keep the pole from falling over by moving the cart in either
direction, without falling off either edge of the track. The controller receives as
input information about the system at each time step, such as the positions of the
poles, their respective velocities, the position and velocity of the cart, etc. An even
more difficult extension of this problem involves a cart which can move in a three
dimensional space via three or more engines. In such situation the target is not
keeping a pole in a vertical position but keeping the cart as horizontal as possible.
In this paper we do not consider such generalization and focus on the simple pole
balancing problem.

The pole balancing problem can be analysed as the conjunction of two models:
focusing on the cart (see Fig. 2) and focusing on the bar (see Fig. 3). Obviously,
the applied force over one of these models results in the modification of the state of
the other model. In the first model (Fig. 2) several parameters must be considered:
F , force for controlling the system; FFriction, force of the friction of the cart in its
movement on the railway; M , mass of the cart; N , force of the pole over the cart.
The second model focus on the bar of the pole balancing (Fig. 3), where θ is the
angle of the bar with respect to the vertical, l is the length of the bar and m is the
mass of the ball placed on the top of the bar. For the control of the pole balancing,
the control software (the NPS in our study) has to know the current state of the
pole, (x, θ) and (ẋ, ẍ, θ̇, θ̈), where x represents the position of the cart, and ẋ, ẍ
the speed and acceleration respectively. The angle θ represents the angle of the bar
with respect to the vertical position and θ̇, θ̈ the angular speed and acceleration
(resp).

The equations that define this system are:

F = Mẍ+ bẋ+N (1)

N = mẍ+mlθ̈ cos θ −mlθ̇2 sin θ (2)

200 D. Llorente-Rivera, M.A. Gutiérrez-Naranjo

The system of control is represented by the equation (3), which is the result of
adding the equations (1) and (2), where F is the output for the system of control
and the force that the controller has to apply to the system, and b is the friction
of the cart.

F = (M +m)ẍ+ bẋ+mlθ̈ cos θ −mlθ̇2 sin θ (3)

For computing cos θ and sin θ using ENPS, we use the same idea proposed in
[5] where the functions are approximated by using their analytic expressions as
infinite sums shown in equations (4) and (5). There approaches will be calculated
in the designed ENPS by the membranes Cosine and Sine, respectively.

cos(x) =

∞∑
0

(−1)n
x2n

(2n)!
(4)

sin(x) =

∞∑
0

(−1)n
x(2n+1)

(2n+ 1)!
(5)

The analytic expression of the cosine can be written as

cos(x) =

∞∑
n=0

acn

where ac0 = 1 and acn is recursively obtained as follows:

acn+1 = (−acn)× θ2

(2n)(2n− 1)

Analogously, the analytic expression of the sine can be written as

sin(x) =

∞∑
0

asn

where as0 = 1 and asn is computed as

asn+1 = (−asn)× θ2

(2n)(2n+ 1)

Fig. 3. Bar of the Pole Balancing

The Pole Balancing Problem with ENPS 201

Fig. 4. ENPS membrane applied system for control pole balancing

4 ENPS Applied to the Pole Balancing Problem

In this section, we report a work-in-progress on the design of an ENPS as a software
solution for the control of the pole balancing problem. To this aim, the different
forces that affect the system are examined and the interaction among them are
computed as a flow of information between the variables of the ENPS. The basic
schema is chown in Fig. 3.

The membrane system shown in Fig. 4 is proposed as a preliminar solution for
the pole balancing problem, using three membranes: the first membrane Controller
calculates the necessary force in order to keep the vertical position; the membranes
Cosine and Sine calculate the cos and sin functions for the angle θ. The ENPS can
be considered as a software module which receives as input the data ẋ, ẍ, θ, θ̇, θ̈
and outputs the force F for controlling the system.

The control of the pole balancing is calculated by the rule Pr11 which encodes
the Equation 3. This rule needs the constants: M , the cart mass; m, the mass of
the ball; and l, the length of the bar. It takes as input the state of the system,
encoded in the variables: acc, acceleration of the cart (ẍ); speed, velocity of the
cart (ẋ); angleSpeed (θ̇) and angleAcc, (θ̈) angle speed and acceleration. In order
to approximate cos θ and sin θ from θ, the Controller membrane uses the rules
Pr21 and Pr31. The cosine and sine are computed recursively by the rules Pr12
for the cosine and Pr13 for the sine, until the current errors, Ec for the cosine
and Es for the sine, are less than Erc and Ers respectively as it is proposed in

202 D. Llorente-Rivera, M.A. Gutiérrez-Naranjo

[12].Finally, the system returns the control related to equation 3 with the cos θ
and sin θ calculated previously.

Membranes Cosine and Sine approximate the cos and sin functions by using
the analytic expressions from Eq. (4) and (5). These membranes return cos by the
rule Pr12 and sin by the rule Pr13, where the system adds the result for each
one in cos and sin. The membranes stop when the current error is less than the
errors provided as parameters, Erc and Ers. The system stop is controlled by rule
Pr62 for the cosine and Pr63 for the sine as the current error is lower than the
parameter Erc for the cosine membrane and Ers for the sine membrane.

The following trace shows how the system from Fig. 4 should work:

• Membrane Controller:
– The input of the system ẋ0, ẍ0, θ0, θ̇0, θ̈0 are the values of the correspond-

ing variables in the initial configuration. We also consider two variables
cosApp and sinApp where the approximated values of the cos and sin
functions will be stored.

– Production Function:
· F1 = (M +m)ẍ+ bẋ+mlθ̈ cos θ −mlθ̇2 sin θ;
· F2 = cos θ;
· F3 = sin θ;

• Membrane Cosine:
– Variables: ac has an initial value of 1, nc has an initial value of 1, Cc has

an initial value of ∞, Ec has an initial value of 1;
– Production function:
· F4 = (−ac)× θ2

(2nc)(2nc−1) ;

· F5 = nc+ 1;
· F6 = θ;
· F7 = ac+ cos;
· F8 = |ac|;
· F9 = −∞;

– Reparation protocol: ac receives 1 (C21 = 1), nc receives 1 (C22 = 1), cos
receives 1 (C23 = 1), Cc receives 1 (C24 = 1), Ec receives 1 (C25 = 1);

• Membrane Sine:
– Variables: as has an initial value of 1, ns has an initial value of 1, Cs has

an initial value of ∞, Es has an initial value of 1;
– Production function:
· F10 = (−as)× θ2

(2ns)(2ns+1) ;

· F11 = ns+ 1;
· F12 = θ;
· F13 = as ∗ θ;
· F14 = |as|;
· F15 = −∞;

– Reparation protocol: as receives 1 (C31 = 1), ns receives 1 (C32 = 1), sin
receives 1 (C33 = 1), Cs receive ∞ (C34 = 1), Es receive 1 (C35 = 1);

The Pole Balancing Problem with ENPS 203

• Step 1
– Membrane Cosine:
· ac21 = 1, nc22 = 1,cos23 = 0, θ = 1, Cc =∞, Ec = 1, Erc = 0.0001;
· Compute productions function’s value:

· F4 = (−ac21)× θ2

(2nc22)(2nc22−1) ⇒ F4 = − 1
2 ;

· F5 = nc22 + 1⇒ F5 = 2;
· F6 = θ ⇒ F6 = 1;
· F7 = ac21 + cos23 ⇒ F7 = 1;
· F8 = ac21 ⇒ F8 = 1;
· F9 is not executed, because Cc− (Erc−Ec) =∞− (0.0001− 1) =
∞+ 1 is not bigger than Cc;

· Compute ’unitary portion’:
· q4 = F4/C21 ⇒ ac21 = − 1

2 ;
· q5 = F5/C22 ⇒ nc22 = 2;
· q6 = F6/θ ⇒ Θ = 1;
· q7 = F7/C23 ⇒ cos23 = 1;
· q8 = F8/C25 ⇒ Ec = 1;

– Membrane Sine:
· as31 = 1, ns32 = 1,sin33 = 0, θ = 1, Cs =∞, Es = 1, Ers = 0.0001;
· Compute productions function’s value:

· F10 = (−as31)× θ2

(2ns32)(2ns32+1) ⇒ F8 = − 1
6 ;

· F11 = ns32 + 1⇒ F9 = 2;
· F12 = θ ⇒ F10 = 1;
· F13 = as31 + sin33 ⇒ F11 = 1;
· F14 = |as31| ⇒ F14 = 1;
· F15 is not executed, because Cs− (Ers−Es) =∞− (0.0001− 1) =
∞+ 1 is not bigger than Cs;

· Compute ’unitary portion’:
· q10 = F10/C31 ⇒ as31 = − 1

6 ;
· q11 = F11/C32 ⇒ ns32 = 2;
· q12 = F12/θ ⇒ Θ = 1;
· q13 = F13/C33 ⇒ sin33 = 1;
· q14 = F14/C35 ⇒ Es = 1;

• Step 2:
– Membrane Cosine:
· ac21 = − 1

2 , nc22 = 2,cos23 = 1, θ = 1, Cc =∞, Ec = 1, Erc = 0.0001;
· Compute productions function’s value:

· F4 = (−ac21)× θ2

(2nc22)(2nc22−1) ⇒ F4 = 1
24 ;

· F5 = nc22 + 1⇒ F5 = 3;
· F6 = θ ⇒ F6 = 1;
· F7 = ac21 + cos23 ⇒ F7 = − 1

2 ;
· F8 = ac21 ⇒ F8 = 1

2 ;
· F9 is not executed, because Cc− (Erc−Ec) =∞− (0.0001− 1) =
∞+ 1 is not bigger than Cc;

204 D. Llorente-Rivera, M.A. Gutiérrez-Naranjo

· Compute ’unitary portion’:
· q4 = F4/C23 ⇒ ac23 = 1

24 ;
· q5 = F5/C22 ⇒ nc22 = 3;
· q6 = F6/θ ⇒ Θ = 1;
· q7 = F7/C23 ⇒ cos23 = 1

2 ;
· q8 = F8/C25 ⇒ Ec = 1

2 ;
– Membrane Sine:
· as31 = − 1

6 , ns32 = 2,sin33 = 1, θ = 1, Cs =∞, Es = 1, Ers = 0.0001;
· Compute productions function’s value:

· F10 = (−as31)× θ2

(2ns32)(2ns32+1) ⇒ F8 = 1
120 ;

· F11 = ns32 + 1⇒ F9 = 3;
· F12 = θ ⇒ F10 = 1;
· F13 = as31 + ns33 ⇒ F11 = 1− 1

6 = 5
6 ;

· F14 = |as31| ⇒ F14 = 1
6 ;

· F15 is not executed, because Cs− (Ers−Es) =∞− (0.0001− 1) =
∞+ 1 is not bigger than Cs;

· Compute ’unitary portion’:
· q10 = F10/C33 ⇒ as33 = 1

120 ;
· q11 = F11/C32 ⇒ ns32 = 3;
· q12 = F12/θ ⇒ Θ = 1;
· q13 = F13/C33 ⇒ sin33 = 5

6 ;
· q14 = F14/C35 ⇒ Es = 1

6 ;
• Step N-1:

– Using the same reason for the membranes Cosine and Sine, both mem-
branes are executed until error is less than Erc, Ec < Erc, for the Cosine
and Ers, Es < Ers, for the Sine. Then the execution stops.

– Membrane Controller:
· cos θ = 1, sin θ = 1, F [0];
· Compute productions function’s value:
· F1 = (M +m)ẍ+ bẋ+mlθ̈ cos θ −mlθ̇2 sin θ ⇒ F1 = (M +m)ẍ+

bẋ+mlθ̈ −mlθ̇2;
· F2 = cos θ ⇒ F2 = cos;
· F3 = sin θ ⇒ F3 = sin;

· Compute ’unitary portion’:
· q1 = F1/(C11 + C12)⇒ F13 = (M +m)ẍ+ bẋ+mlθ̈ −mlθ̇2;
· q2 = F2/C11 ⇒ cos θ = cos;
· q3 = F3/C12 ⇒ sinΘ = sin;

• Step N:
– Membrane Controller:
· cos θ = cos, sin θ = sin, F13 = (M +m)ẍ+ bẋ+mlθ̈ −mlθ̇2;
· Compute productions function’s value:
· F1 = (M +m)ẍ+ bẋ+mlθ̈ cos θ −mlθ̇2 sin θ ⇒ F1 = (M +m)ẍ+

bẋ+mlθ̈ cos−mlθ̇2 sin;
· F2 = cos θ ⇒ F2 = cos;

The Pole Balancing Problem with ENPS 205

· F3 = sin θ ⇒ F3 = sin;
· Compute ’unitary portion’:
· q1 = F1/(C11 + C12)⇒ F13 = (M +m)ẍ+ bẋ+mlθ̈ cos−mlθ̇2 sin;
· q2 = F2/C11 ⇒ cos θ = cos;
· q3 = F3/C12 ⇒ sinΘ = sin;

5 Conclusions and Future Work

In this paper, we study the use of the ENPS model in a control benchmark widely
used in engineering and report our work-in-progress on the design of an efficient
system able to control real-life pole balancing devices. Such design can be seen
of a first approach to more complex control systems. One of the most important
features of such control systems is the simplicity since they must provide an answer
as soon as possible in order to effectively solve real-time problems. In this first
approach, the solution is based on the mathematical approach known as PID,
Proportional Integral Derivative, but other approaches are possible.

After completing the design, the immediate future work is to prove the designed
NPS by integrating a NPS simulator as SNUPS [1] with a physics simulation
environment as Webots. The experimental results will provide useful feedback in
order to improve our design to make competitive with other control software.

A future second stage will be to generalize the design to 3D vehicles and check
the design with the appropriate drone flight simulator.

Acknowledgements

MAGN acknowledges the support of the project TIN2012-37434 of the Ministerio
de Economı́a y Competitividad of Spain.

References

1. Buiu, C., Arsene, O., Cipu, C., Patrascu, M.: A software tool for modeling and
simulation of numerical P systems. Biosystems 103(3), 442–447 (2011)

2. Buiu, C., Vasile, C., Arsene, O.: Development of membrane controllers for mobile
robots. Information Sciences 187, 33–51 (2012)

3. Pavel, A., Arsene, O., Buiu, C.: Enzymatic numerical P systems - a new class of
membrane computing systems. In: BIC-TA. pp. 1331–1336. IEEE (2010)

4. Pavel, A.B., Buiu, C.: Using enzymatic numerical P systems for modeling mobile
robot controllers. Natural Computing 11(3), 387–393 (2012)

5. Pavel, A.B., Vasile, C.I., Dumitrache, I.: Robot Localization Implemented with En-
zymatic Numerical P Systems. In: Prescott, T.J., Lepora, N.F., Mura, A., Verschure,
P.F.M.J. (eds.) Living Machines. Lecture Notes in Computer Science, vol. 7375, pp.
204–215. Springer (2012)

206 D. Llorente-Rivera, M.A. Gutiérrez-Naranjo

6. Păun, Gh.: Some quick research topics., In these proceedings.
7. Păun, Gh., Păun, R.A.: Membrane computing and economics: Numerical P systems.

Fundamenta Informaticae 73(1-2), 213–227 (2006)
8. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press, Oxford, England (2010)
9. Vasile, C.I., Pavel, A.B., Dumitrache, I., Kelemen, J.: Implementing obstacle avoid-

ance and follower behaviors on koala robots using numerical P systems. In: Garćıa-
Quismondo, M., Maćıas-Ramos, L.F., Păun, Gh., Valencia-Cabrera, L. (eds.) Tenth
Brainstorming Week on Membrane Computing. vol. II, pp. 215–227. Fénix Editora,
Sevilla, Spain (2012)

10. Vasile, C.I., Pavel, A.B., Dumitrache, I., Păun, Gh.: On the power of enzymatic
numerical P systems. Acta Informatica 49(6), 395–412 (2012)

11. Vasile, C.I., Pavel, A.B., Dumitrache, I.: Universality of enzymatic numerical p sys-
tems. International Journal of Computer Mathematics 90(4), 869–879 (2013)

12. Ana Brânduçsa Pavel, Cristian Ioan Vasile and Ioan Dumitrach: Robot Localization
Implemented with Enzymatic Numerical P Systems. Living Machines 2012, 204-215,
2012

