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Summary. The set of NP-complete problems is split into weakly and strongly NP-
complete ones. The difference consists in the influence of the encoding scheme of the
input. In the case of weakly NP-complete problems, the intractability depends on the
encoding scheme, whereas in the case of strongly NP-complete problems the problem
is intractable even if all data are encoded in a unary way. The reference for strongly
NP-complete problems is the Satisfiability Problem (the SAT problem). In this paper,
we provide a uniform family of P systems with active membranes which solves SAT –
without polarizations, without dissolution, with division for elementary membranes and
with matter/antimatter annihilation. To the best of our knowledge, it is the first solution
to a strongly NP-complete problem in this P system model.

1 Introduction

In [7], a solution of the Subset Sum problem in the polynomial complexity class
of recognizer P systems with active membranes without polarizations, without
dissolution and with division for elementary membranes endowed with antimatter
and matter/antimatter annihilation rules was provided. In this way, antimatter
was shown to be a frontier of tractability in Membrane Computing, since the
P systems class without antimatter and matter/antimatter annihilation rules is
exactly the complexity class P (see [10]).
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The Subset Sum problem belongs to the so-called weakly NP-complete prob-
lems, since its intractability strongly depends on the fact that extremely large
input numbers are allowed [8]. The reason for this weakness is based on the en-
coding scheme of the input, since every integer in the input denoting a weight wi

should be encoded by a string of length only O(log wi).
On the other hand, strongly NP-complete problems are those which remain

NP-complete even if the data are encoded in a unary way. The best-known one
of these problems is the satisfiability problem (SAT for short). SAT was the first
problem shown to be NP-complete, as proved by Stephen Cook at the University of
Toronto in 1971 [5], and it has been widely used in Membrane Computing to prove
the ability of a P system model to solve NP-problems (e.g. [9, 11, 12, 14, 16, 17]).

In this paper, we provide a solution to the SAT problem in the polynomial com-
plexity class of recognizer P systems with active membranes without polarizations,
without dissolution and with division for elementary membranes endowed with an-
timatter and matter/antimatter annihilation rules. To the best of our knowledge,
this is the first time that a strongly NP-complete problem is solved in this P system
model. The details of the implementation can provide new tools for a better un-
derstanding of the problem of searching new frontiers of tractability in Membrane
Computing.

The paper is organized as follows. In Section 2, we present a general discussion
about the relationship of model ingredients used in different solutions for solving
computationally difficult problems by P systems with active membranes, and the
emerging computational power. In Section 3, we recall the P systems model used
in this paper. The main novelty is the use of antimatter and matter/antimatter
annihilation rules as well as their semantics. In Section 4, some basics on recognizer
P systems are recalled, and in Section 5 our solution for the SAT problem is
provided. The paper finishes with some conclusions and hints for future work.

2 Computation Theory Remarks

A configuration consists of symbols (which, in the general sense, may include
instances of objects, instances of membranes, or any other entities bearing in-
formation). A computation consists of transformations of symbols. Clearly, the
computations without cooperation of symbols are quite limited in power (e.g., it
is known that E0L-behavior with standard halting yields PsREG, and accepting
P systems are considerably more degenerate).

In this sense, interaction of symbols is a fundamental part of Membrane Com-
puting, or of Theoretical Computer Science in general. Various ways of interaction
of symbols have been studied in membrane computing. For the models with active
membranes, the most commonly studied ways are various rules changing polariza-
tions (or even sometimes labels), and membrane dissolution rules. One object may
engage such a rule, which would affect the context (polarization or label) of other
objects in the same membrane, thus affecting the behavior of the latter, e.g., in
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case of dissolution, such objects find themselves in the parent membrane, which
usually has a different label.

In the literature on P systems with active membranes, normally only the rules
with at most one object on the left side were studied. Since recently, the model with
matter/antimatter annihilation rules, e.g. see [1] and [2], attracted the attention
of researchers. Clearly, it provides a form of direct object-object interaction, albeit
in a rather restricted way (i.e., by erasing a pair of objects that are in a bijective
relation). Although it is known that non-cooperative P systems with antimatter
are already universal, studying their efficiency turned out to be an interesting line
of research. So how does matter/antimatter annihilation compare to other ways
of organizing interaction of objects?

First, all known solutions of NP-complete (or more difficult) problems in mem-
brane computing rely on the possibility of P systems to obtain exponential space
in polynomial time (note that object replication alone does not count as building
exponential space, since an exponential number can be written, e.g. in binary, in
polynomial space). Such possibility is provided by either of membrane division
rules, membrane separation rules, membrane creation rules (or string replication
rules, but string-objects lie outside of the scope of the current paper); in tissue P
systems, one could apply similar approach to cells instead of membranes.

Note that in case of cell-like P systems, membrane creation alone (unlike the
other types of rules mentioned above) makes it also possible to construct a hierar-
chy of membranes, let us refer to it as structured workspace, which is used to solve
PSPACE-complete problems. The structured workspace can be alternatively cre-
ated by elementary membrane division plus non-elementary membrane division
(plus membrane dissolution if we have no polarizations).

Besides creating workspace, to solve NP-complete problems, we need to be
able to effectively use that workspace, by making objects interact. For instance, it
is known that, even with membrane division, without polarizations and without
dissolution only problems in P may be solved. However, already with two polar-
izations (the smallest non-degenerate value) P systems can solve NP-complete
problems. What can be done without polarizations?

One solution is to use the power of switching the context by membrane dis-
solution. Coupled with non-elementary division, a suitable membrane structure
can be constructed so that the needed interactions can be performed solving NP-
complete or even PSPACE-complete problems, [4]. It is not difficult to realize
that elementary and non-elementary division rules can be replaced by membrane
creation rules, or elementary division rules can be replaced by separation rules.

Finally, an alternative way of interaction of objects considered in this paper
following [7] is matter/antimatter annihilation. What are the strengths and the
weaknesses of these three possibilities (the weaker is an ingredient, the stronger is
the result, while sometimes a weaker ingredient does not let us do what a stronger
one can)?

The power of matter/antimatter annihilation makes it possible to carry out
multiple simultaneous interactions (for example, the checking phase is constant-
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time instead of linear with respect to the number of clauses), and it is a direct
object-object interaction.

The power of polarizations is the possibility of mass action (not critical
for studying computational efficiency within PSPACE as all multiplicities are
bounded with respect to the problem size) by changing context.

The power of non-elementary division lets us build structured workspace (prob-
ably necessary for PSPACE if membrane creation is not used instead of membrane
division, unless PPP=PSPACE), see [13], and change non-local context (e.g., the
label of the parent membrane).

The power of dissolution provides mass action (not critical for studying compu-
tational efficiency within PSPACE as all multiplicities are bounded with respect
to the problem size) by changing context.

3 The P System Model

In this paper, we use the common rules of evolution, communication and division
of elementary membranes which are usual in P systems with active membranes.
The main novelty in the model is the use of antimatter and matter/antimatter
annihilation rules. The concept of antimatter was introduced in the framework of
Membrane Computing as a control tool for the flow of spikes in spiking neural
P systems [15, 18, 22, 23]. In this context, when one spike and one anti-spike
appear in the same neuron, the annihilation occurs and both, spike and anti-
spike, disappear. Antimatter and matter/antimatter annihilation rules later were
adapted to other contexts in Membrane Computing, and currently this an active
research area [1, 2, 7].

Inspired by physics, we consider the annihilation of two objects a and b from
the alphabet Γ in a membrane with label h, with the annihilation rule for a and
b written as [ ab→ λ ]h. The meaning of the rule follows the idea of annihilation:
If a and b occur simultaneously in the same membrane, then both are consumed
(disappear) and nothing is produced (denoted by the empty string λ). The object
b is called the antiparticle of a and it is usually written a instead of b.

With respect to the semantics, let us recall that this rule must be applied as
many times as possible in each membrane, according to the maximal parallelism.
Following the intuition from physics, if a and a occur simultaneously in the same
membrane h and the annihilation rule [ aa → λ ]

h
is defined, then it has to

be applied, regardless any other option. In this sense, any annihilation rule has
priority over all rules of the other types of rules (see [7]).

A P system with active membranes without polarizations, without dissolution
and with division of elementary membranes and with annihilation rules is a cell-
like P system with rules of the following kinds (following [3], we use subscript
0 for the rule type to represent a restriction that such rule does not depend on
polarization and is now allowed to change it; if all rules have this subscript, this
is equivalent to saying that the P system is without polarizations):
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(a0) [ a → u ]
h

for h ∈ H, a ∈ Γ , u ∈ Γ ∗. This is an object evolution rule,
associated with a membrane labeled by h: an object a ∈ Γ belonging to that
membrane evolves to a string u ∈ Γ ∗.

(b0) a[ ]
h
→ [ b ]

h
for h ∈ H, a, b ∈ Γ . An object from the region immediately

outside a membrane labeled by h is taken into this membrane, possibly being
transformed into another object.

(c0) [ a ]
h
→ b[ ]

h
for h ∈ H, a, b ∈ Γ . An object is sent out from a membrane

labeled by h to the region immediately outside, possibly being transformed
into another object.

(e0) [ a ]
h
→ [ b ]

h
[ c ]

h
for h ∈ H, a, b, c ∈ Γ . An elementary membrane can be

divided into two membranes with the same label, possibly transforming one
original object into a different one in each of the new membranes.

(g0) [ aa→ λ ]
h

for h ∈ H, a, a ∈ O. This is an annihilation rule, associated with a
membrane labeled by h: the pair of objects a, a ∈ O belonging simultaneously
to this membrane disappears.

Let us remark that dissolution rules - type (d0) - and rules for non-elementary
division - type (f0) - are not considered in this model.

These rules are applied according to the following principles (with the special
restrictions for annihilation rules specified above):

• All the rules are applied in parallel and in a maximal manner. In one step,
one object of a membrane can be used by at most one rule (chosen in a non–
deterministic way), and each membrane can be the subject of at most one rule
of types (b0), (c0) and (e0).

• If at the same time a membrane labeled with h is divided by a rule of type
(e0) triggered by some object a and there are other objects in this membrane
to which rules of type (a0) or (g0) can be applied, then we suppose that first
the rules of type (g0) and only then those of type (a0) are used, before finally
the division is executed. Of course, this process in total takes only one step.

• The rules associated with membranes labeled by h are used for all copies of
membranes with label h.

4 Recognizer P Systems

Recognizer P systems are a well-known model of P systems which are basic for the
study of complexity aspects in Membrane Computing. Next, we briefly recall some
basic ideas related to them. For a detailed description, for example, see [19, 20].
In recognizer P systems all computations halt; there are two distinguished objects
traditionally called yes and no (used to signal the result of the computation),
and exactly one of these objects is sent out to the environment (only) in the last
computation step.

Let us recall that a decision problem X is a pair (IX , θX) where IX is a language
over a finite alphabet (the elements are called instances) and θX is a predicate
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(a total Boolean function) over IX . Let X = (IX , θX) be a decision problem. A
polynomial encoding ofX is a pair (cod, s) of polynomial time computable functions
over IX such that for each instance w ∈ IX , s(w) is a natural number representing
the size of the instance and cod(w) is a multiset representing an encoding of the
instance. Polynomial encodings are stable under polynomial time reductions.

Let R be a class of recognizer P systems with input membrane. A decision
problem X = (IX , θX) is solvable in a uniform way and polynomial time by a
family Π = (Π(n))n∈N of P systems from R – we denote this by X ∈ PMCR
– if the family Π is polynomially uniform by Turing machines, i.e., there exists a
polynomial encoding (cod, s) from IX to Π such that the family Π is polynomially
bounded with regard to (X, cod, s); this means that there exists a polynomial
function p such that for each u ∈ IX every computation of Π(s(u)) with input
cod(u) is halting and, moreover, it performs at most p(|u|) steps; the family Π is
sound and complete with regard to (X, cod, s).

5 Solving SAT

Propositional Satisfiability is the problem of determining, for a formula of the
propositional calculus, if there is an assignment of truth values to its variables for
which that formula evaluates to true. By SAT we mean the problem of proposi-
tional satisfiability for formulas in conjunctive normal form (CNF). In this section
we describe a family of P systems which solves it. As usual, we will address the
resolution via a brute force algorithm, which consists of the following stages (some
of the ideas for the design are taken from [6] and [21]):

• Generation and Evaluation Stage: All possible assignments associated with
the formula are created and evaluated (in this paper we have subdivided this
group into Generation and Input processing groups of rules, which take place
in parallel).

• Checking Stage: In each membrane we check whether or not the formula eval-
uates to true for the assignment associated with it.

• Output Stage: The systems sends out the correct answer to the environment.

Let us consider the pair function 〈 , 〉 defined by 〈n,m〉 = ((n + m)(n + m +
1)/2) + n. This function is polynomial-time computable (it is primitive recursive
and bijective from N2 onto N). For any given formula in CNF, ϕ = C1 ∧ · · · ∧Cm,
with m clauses and n variables V ar(ϕ) = {x1, . . . , xn} we construct a P system
Π(〈n,m〉) solving it, where the multiset encoding of the problem to be the input
of Π(〈n,m〉) (for the sake of simplicity, in the following we will omit m and n) is

cod(ϕ) = {xi,j : xj ∈ Ci} ∪ {yi,j : ¬xj ∈ Ci}.

For solving SAT by a uniform family of deterministic recognizer P systems
with active membranes, without polarizations, without non-elementary membrane
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division and without dissolution, yet with matter/antimatter annihilation rules,
we now construct the members of this family as follows:

Π = (O,Σ,H = {0, 1}, µ = [ [ ]
2

]
1
, w1, w2, R, iin = 2), where

Σ = {xi,j , yi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n},
O = {d, t, f, F, F , T, non+5, Fn+5, yesn+6, yesn+6, non+6, yes, no}
∪ {xi,j , yi,j | 1 ≤ i ≤ m, −1 ≤ j ≤ n} ∪ {xi,−1, yi,−1 | 1 ≤ i ≤ m}
∪ {ci, ci | 1 ≤ i ≤ m} ∪ {ej | 1 ≤ j ≤ n+ 3}
∪ {yesj , noj , Fj | 1 ≤ j ≤ n+ 5},

w1 = no0 yes0 F0, w2 = dn e1,

and the rules of set R are given below, presented in groups Generation, Input
processing, Checking and Output, together with explanations how the rules in the
groups work.

Generation
G1. [ d ]

2
→ [ t ]

2
[ f ]

2
;

G2. [ t→ y1,−1 · · · ym,−1 ]
2
;

G3. [ f → x1,−1 · · ·xm,−1 ]
2
;

G4. [ xi,−1 → λ ]
2
, 1 ≤ i ≤ m;

G5. [ yi,−1 → λ ]
2
, 1 ≤ i ≤ m.

In each step j, 1 ≤ j ≤ n, every elementary membrane is divided, one child
membrane corresponding with assigning true to variable j and the other one with
assigning false to it. One step later, proper objects are produced to annihilate the
input objects associated to variable j: in the true case, we introduce the antimatter
object for the negated variable, i.e., it will annihilate the corresponding negated
variable, and in the false case, we introduce the antimatter object for the variable
itself, i.e., it will annihilate the corresponding variable. Remaining barred (anti-
matter) objects not having been annihilated with the input objects, are erased in
the next step.

Input processing
I1. [ xi,j → xi,j−1 ]

2
, 1 ≤ i ≤ m, 0 ≤ j ≤ n;

I2. [ yi,j → yi,j−1 ]
2
, 1 ≤ i ≤ m, 0 ≤ j ≤ n;

I3. [ xi,−1 xi,−1 → λ ]
2
, 1 ≤ i ≤ m;

I4. [ yi,−1 yi,−1 → λ ]
2
, 1 ≤ i ≤ m;

I5. [ xi,−1 → ci ]
2
, 1 ≤ i ≤ m;

I6. [ yi,−1 → ci ]
2
, 1 ≤ i ≤ m.

Input objects associated with variable j decrement their second subscript during
j + 1 steps to −1. The variables not representing the desired truth value are elim-
inated by the corresponding antimatter object generated by the rules G2 and G3,
whereas any of the input variables not annihilated then, shows that the associated
clause i is satisfied, which situation is represented by the introduction of the object
ci.
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Checking
C1. [ ej → ej+1 ]

2
, 1 ≤ j ≤ n+ 1;

C2. [ en+2 → c1 · · · cmen+3 ]2;
C3. [ ci ci → λ ]

2
, 1 ≤ i ≤ m;

C4. [ ci → F ]
2
, 1 ≤ i ≤ m;

C5. [ en+3 → F ]
2
;

C6. [ F F → λ ]
2
, 1 ≤ i ≤ m;

C7. [ F ]
2
→ [ ]

2
T .

It took n+2 steps to produce objects ci for every satisfied clause, possibly multiple
times. Starting from object e1, we have obtained the object en+2 until then; from
this object en+2, at step n+ 2 one anti-object is produced for each clause. Any of
these clause anti-objects that is not annihilated, is transformed into F , showing
that the chosen variable assignment did not satisfy the corresponding clause. It
remains to notice that object T is sent to the skin (at step n+ 4) if and only if an
object F did not get annihilated, i.e., no clause failed to be satisfied.

Output
O1. [ yesj → yesj+1 ]

1
, 1 ≤ j ≤ n+ 5;

O2. [ noj → noj+1 ]
1
, 1 ≤ j ≤ n+ 5;

O3. [ Fj → Fj+1 ]
1
, 1 ≤ j ≤ n+ 4;

O4. [ T → non+5Fn+5 ]
1
;

O5. [ non+5 non+5 → λ ]
1
;

O6. [ non+6 ]
1
→ [ ]

1
no;

O7. [ Fn+5 Fn+5 → λ ]
1
;

O8. [ Fn+5 → yesn+6 ]1;
O9. [ yesn+6 yesn+6 → λ ]

1
;

O10. [ yesn+6 ]
1
→ [ ]

1
yes.

If no object T has been sent to the skin, then the initial no-object can count up
to n + 6 and then sends out the negative answer no, while the initial F -object
counts up to n + 5, generates the antimatter object for the yes-object at stage
n + 6 and annihilates with the corresponding yes-object at stage n + 6. On the
other hand, if (at least one) object T arrives in the skin, then the no-object is
annihilated at stage n + 5 before it would be sent out in the next step, and the
F -object is annihilated before it could annihilate with the yes-object, so that the
positive answer yes can be sent out in step n+ 6.

Finally, we notice that the solution is uniform, deterministic, and uses only
rules of types (a0), (c0), (e0) as well as matter/antimatter annihilation rules. The
result is produced in n+ 6 steps.

6 Conclusions

Although the ability of the model for solving NP problems was proved in [7], to the
best of our knowledge, this is the first solution to a strongly NP problem by using
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annihilation rules in Membrane Computing. Let us remark the important role of
the definition for recognizer P systems we have used in this paper. This definition
is quite restrictive, since only one object yes or no is sent to the environment in
any computation. In the literature one can find other definitions of recognizer P
systems and therefore other definitions of what it means to solve a problem in
the framework of Membrane Computing. The study of the complexity classes in
Membrane Computing deserves a deep revision under these new definitions.
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Fernando Sancho-Caparrini. A Prolog simulator for deterministic P systems with
active membranes. New Generation Computing, 22(4): 349–363, 2004.

7. Daniel Dı́az-Pernil, Francisco Peña-Cantillana, Artiom Alhazov, Rudolf Freund, and
Miguel A. Gutiérrez-Naranjo. Antimatter as a frontier of tractability in membrane
computing. Fundamenta Informaticae, 134: 83–96, 2014.

8. Michael R. Garey and David S. Johnson. Computers and Intractability, A Guide to
the Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.
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