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Summary. Spiking neural P systems (in short, SNP systems) are membrane computing
models inspired by the pulse coding of information in biological neurons. SNP systems
with standard rules have neurons that emit at most one spike (the pulse) each step, and
have either an input or output neuron connected to the environment. SNP transducers
were introduced, where both input and output neurons were used. More recently, SNP
modules were introduced which generalize SNP transducers: extended rules are used
(more than one spike can be emitted each step) and a set of input and output neurons can
be used. In this work we continue relating SNP modules and finite automata: (i) we amend
previous constructions for DFA and DFST simulations, (ii) improve the construction
from three neurons down to one neuron, (iii) DFA with output are simulated, and (iv)
we generate automatic sequences using results from (iii).

Key words: Membrane computing, Spiking neural P systems, Finite automata,
Automatic sequences

1 Introduction

Spiking neural P systems (in short, SNP systems) introduced in [7], incorporated
into membrane computing the idea of pulse coding of information in computations
using spiking neurons (see for example [10][11] and references therein for more
information). In pulse coding from neuroscience, pulses known as spikes are not
distinct, so information is instead encoded in their multiplicity or the time they
are emitted.

On the computing side, SNP systems have neurons processing only one object
(the spike symbol a), and neurons are placed on nodes of a directed graph. Arcs
between neurons are called synapses. SNP systems are known to be universal in
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both generative (an output is given, but not an input) and accepting (an input
is given, but not an output) modes. SNP systems can also solve hard problems
in feasible (polynomial to constant) time. We do not go into such details, and we
refer to [7][8][9][16] and references therein.

SNP systems with standard rules (as introduced in their seminal paper) have
neurons that can emit at most one pulse (the spike) each step, and either an
input or output neuron connected to the environment, but not both. In [15], SNP
systems were equipped with both an input and output neuron, and were known
as SNP transducers. Furthermore, extended rules were introduced in [3] and [14],
so that a neuron can produce more than one spike each step. The introduced SNP
modules in [6] can then be seen as generalizations of SNP transducers: more than
one spike can enter or leave the system, and more than one neuron can function
as input or output neuron.

In this work we continue investigations on SNP modules. In particular we
amend the problem introduced in the construction of [6], where SNP modules
were used to simulate deterministic finite automata and state transducers. Our
constructions also reduce the neurons for such SNP modules: from three neurons
down to one. Our reduction relies on more involved superscripts, similar to some
of the constructions in [12].

We also provide constructions for SNP modules simulating DFA with output.
Establishing simulations between DFA with output and SNP modules, we are then
able to generate automatic sequences. Such class of sequences contain, for example,
a common and useful automatic sequence known as the Thue-Morse sequence.
The Thue-Morse sequence, among others, play important roles in many areas of
mathematics (e.g. number theory) and computer science (e.g. automata theory).
Aside from DFA with output, another way to generate automatic sequences is by
iterating morphisms. We invite the interested reader to [1] for further theories and
applications related to automatic sequences.

This paper is organized as follows: Section 2 provides our preliminaries. Section
3 provides our results. Finally, section 4 provides our final remarks.

2 Preliminaries

It is assumed that the readers are familiar with the basics of membrane computing
(a good introduction is [13] with recent results and information in the P systems
webpage1 and a recent handbook [17] ) and formal language theory (available in
many monographs). We only briefly mention notions and notations which will be
useful throughout the paper.

2.1 Language theory and string notations

We denote the set of natural (counting) numbers as N = {0, 1, 2, . . .}. Let V be an
alphabet, V ∗ is the set of all finite strings over V with respect to concatenation and

1 http://ppage.psystems.eu/
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the identity element λ (the empty string). The set of all non-empty strings over V
is denoted as V + so V + = V ∗−{λ}. We call V a singleton if V = {a} and simply
write a∗ and a+ instead of {a}∗ and {a}+. If a is a symbol in V , then a0 = λ,
A regular expression over an alphabet V is constructed starting from λ and the
symbols of V using the operations union, concatenation, and +. Specifically, (i) λ
and each a ∈ V are regular expressions, (ii) if E1 and E2 are regular expressions
over V then (E1 ∪ E2), E1E2, and E+

1 are regular expressions over V , and (iii)
nothing else is a regular expression over V . The length of a string w ∈ V ∗ is denoted
by |w|. Unnecessary parentheses are omitted when writing regular expressions, and
E+∪{λ} is written as E∗. We write the language generated by a regular expression
E as L(E). If V has k symbols, then [w]k = n is the base-k representation of n ∈ N.

2.2 Deterministic finite automata

Definition 1. A deterministic finite automaton (in short, a DFA) D, is defined
by the 5-tuple D = (Q,Σ, q1, δ, F ), where:

� Q = {q1, . . . , qn} is a finite set of states,
� Σ = {b1, . . . , bm} is the input alphabet,
� δ : Q×Σ → Q is the transition function,
� q1 ∈ Q is the initial state,
� F ⊆ Q is a set of final states.

Definition 2. A deterministic finite state transducer (in short, a DFST) with
accepting states T , is defined by the 6-tuple T = (Q,Σ,∆, q1, δ

′, F ), where:

� Q = {q1, . . . , qn} is a finite set of states,
� Σ = {b1, . . . , bm} is the input alphabet,
� ∆ = {c1, . . . , ct} is the output alphabet,
� δ′ : Q×Σ → Q×∆ is the transition function,
� q1 ∈ Q is the initial state,
� F ⊆ Q is a set of final states.

Definition 3. A deterministic finite automaton with output (in short, a DFAO)
M , is defined by the 6-tuple M = (Q,Σ, δ′′, q1, ∆, τ), where:

� Q = {q1, . . . , qn} is a finite set of states,
� Σ = {b1, . . . , bm} is the input alphabet,
� δ′′ : Q×Σ → Q is the transition function,
� q1 ∈ Q is the initial state,
� ∆ = {c1, . . . , ct} is the output alphabet,
� τ : Q→ ∆ is the output function.

A given DFAO M defines a function from Σ∗ to ∆, denoted as fM (w) =
τ(δ′′(q1, w)) for w ∈ Σ∗. If Σ = {1, ..., k}, denoted as Σk, then M is a k-DFAO.
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Definition 4. A sequence, denoted as a = (an)n≥0, is k-automatic if there exists
a k-DFAO, M , such that given w ∈ Σ∗k , an = τ(δ′′(q1, w)), where [w]k = n.

Example 1. (Thue-Morse sequence) The Thue-Morse sequence t = (tn)n≥0 counts
the number of 1’s (mod 2) in the base-2 representation of n. The 2-DFAO for t
is given in Fig. 1. In order to generate t, the 2-DFAO is in state q1 with output
0, if the input bits seen so far sum to 0 (mod 2). In state q2 with output 1, the
2-DFAO has so far seen input bits that sum to 1 (mod 2). For example, we have
t0 = 0, t1 = t2 = 1, and t3 = 0.

--

]

? W

0 0

1

1

start q1/0 q2/1

Fig. 1. 2-DFAO generating the Thue-Morse sequence.

2.3 Spiking neural P systems

Definition 5. A spiking neural P system (in short, an SNP system) of degree
m ≥ 1, is a construct of the form Π = ({a}, σ1, . . . , σm, syn, in, out)

where:

� {a} is the singleton alphabet (a is called spike);
� σ1, . . . , σm are neurons of the form σi = (ni, Ri), 1 ≤ i ≤ m, where:

– ni ≥ 0 is the initial number of spikes inside σi;
– Ri is a finite set of rules of the general form: E/ac → ap; d, where E is a

regular expression over {a}, c ≥ 1, with p, d ≥ 0, and c ≥ p; if p = 0, then
d = 0 and L(E) = {ac};

� syn ⊆ {1, . . . ,m} × {1, . . . ,m}, with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses);
� in, out ∈ {1, . . . ,m} indicate the input and output neurons, respectively.

A rule E/ac → ap; d in neuron σi (we also say neuron i or simply σi if there is no
confusion) is called a spiking rule if p ≥ 1. If p = 0, then d = 0 and L(E) = {ac}, so
that the rule is written simply as ac → λ, known as a forgetting rule. If a spiking
rule has L(E) = {ac}, we simply write it as ac → ap; d. The systems from the
original paper [7], with rules of the form E/ac → a; d and ac → λ, are referred to
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as standard systems with standard rules. The extended rules (i.e. p ≥ 1) used in
this work are referred to as SNP systems with extended rules in other literature,
e.g. [6], [14], [16].

The rules are applied as follows: If σi contains k spikes, ak ∈ L(E) and k ≥ c,
then the rule E/ac → ap; d ∈ Ri with p ≥ 1, is enabled and can be applied.
Rule application means consuming c spikes, so only k − c spikes remain in σi.
The neuron produces p spikes (also referred to as spiking) after d time units, to
every σj where (i, j) ∈ syn. If d = 0 then the p spikes arrive at the same time as
rule application. If d ≥ 1 and the time of rule application is t, then during the
time sequence t, t + 1, . . . , t + d − 1 the neuron is closed. If a neuron is closed, it
cannot receive spikes, and all spikes sent to it are lost. Starting at times t+ d and
t+ d+ 1, the neuron becomes open (i.e., can receive spikes), and can apply rules
again, respectively. Applying a forgetting rule means producing no spikes. Note
that a forgetting rule is never delayed since d = 0.

SNP systems operate under a global clock, i.e. they are synchronous. At every
step, every neuron that can apply a rule must do so. It is possible that at least
two rules E1/a

c1 → ap1 ; d1 and E2/a
c2 → ap2 ; d2, with L(E1) ∩ L(E2) 6= ∅, can

be applied at the same step. The system nondeterministically chooses exactly one
rule to apply. The system is globally parallel (each neuron can apply a rule) but is
locally sequential (a neuron can apply at most one rule).

A configuration or state of the system at time t can be described by Ct =
〈r1/t1, . . . , rm/tm〉 for 1 ≤ i ≤ m: Neuron i contains ri ≥ 0 spikes and it will open
after ti ≥ 0 time steps. The initial configuration of the system is therefore C0 =
〈n1/0, . . . , nm/0〉, where all neurons are initially open. Rule application provides
us a transition from one configuration to another. A computation is any (finite
or infinite) sequence of transitions, starting from a C0. A halting computation is
reached when all neurons are open and no rule can be applied.

If σout produces i spikes in a step, we associate the symbol bi to that step.
In particular, the system (using rules in its output neuron) generates strings over
Σ = {p1, . . . , pm}, for every rule r` = E`/a

j` → ap` ; d`, 1 ≤ ` ≤ m, in σout. From
[3] we can have two cases: associating b0 (when no spikes are produced) with a
symbol, or as λ. In this work and as in [6], we only consider the latter.

Definition 6. A spiking neural P module (in short, an SNP module) of degree
m ≥ 1, is a construct of the form Π = ({a}, σ1, . . . , σm, syn,Nin, Nout)

where

� {a} is the singleton alphabet (a is called spike);
� σ1, . . . , σm are neurons of the form σi = (ni, Ri), 1 ≤ i ≤ m, where:

– ni ≥ 0 is the initial number of spikes inside σi;
– Ri is a finite set of rules of the general form: E/ac → ap, where E is a

regular expression over {a}, c ≥ 1, and p ≥ 0, with c ≥ p; if p = 0, then
L(E) = {ac}

� syn ⊆ {1, . . . ,m} × {1, . . . ,m}, with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses);
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� Nin, Nout(⊆ {1, 2, . . . ,m}) indicate the sets of input and output neurons, re-
spectively.

In [15], SNP transducers operated on strings over a binary alphabet as well con-
sidering b0 as a symbol. SNP modules, first introduced in [6], are a special type of
SNP systems with extended rules, and generalize SNP transducers.

SNP modules behave in the usual way as SNP systems, except that spiking
and forgetting rules now both contain no delays. In contrast to SNP systems,
SNP modules have the following distinguishing feature: at each step, each input
neuron σi, i ∈ Nin, takes as input multiple copies of a from the environment (in
short, Env); Each output neuron σo, o ∈ Nout, produces p spikes to Env, if a rule
E/ac → ap is applied in σo; Note that Nin ∩Nout is not necessarily empty.

3 Main results

In this section we amend and improve constructions given in [6] to simulate DFA
and DFST using SNP modules. Then, k-DFAO are also simulated with SNP mod-
ules. Lastly, SNP modules are related to k-automatic sequences.

3.1 DFA and DFST simulations

We briefly recall the constructions from theorem 8 and 9 of [6] for SNP modules
simulating DFAs and DFSTs. The constructions for both DFAs and DFSTs have
a similar structure, which is shown in Fig. 2. For neurons 1 and 2 in Fig. 2, the
spikes and rules for DFA and DFST simulation are equal, so the constructions
only differ for the contents of neuron 3. Let D = (Q,Σ, δ, q1, F ) be a DFA, where
Σ = {b1, . . . , bm}, Q = {q1, . . . , qn}. The construction for theorem 8 of [6] for an
SNP Module ΠD simulating D is as follows:

ΠD = ({a}, σ1, σ2, σ3, syn, {3}, {3}),

where

� σ1 = σ2 = (n, {an → an}),
� σ3 = (n, {a2n+i+k/a2n+i+k−j → aj |δ(qi, bk) = qj}),
� syn = {(1, 2), (2, 1), (1, 3)}.

The structure for ΠD is shown in Fig. 2. Note that n,m ∈ N, are fixed numbers,
and each state qi ∈ Q is represented as ai spikes in σ3, for 1 ≤ i ≤ n. For each
symbol bk ∈ Σ, the representation is an+k. The operation of ΠD is as follows: σ1
and σ2 interchange an spikes at every step, while σ1 also sends an spikes to σ3.

Suppose that D is in state qi and will receive input bk, so that σ3 of ΠD has ai

spikes and will receive an+k spikes. In the next step, σ3 will collect an spikes from
σ1, an+k spikes from Env, so that the total spikes in σ3 is a2n+i+k. A rule in σ3
with L(E) = {a2n+i+k} is applied, and the rule consumes 2n+ i+ k − j spikes,
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therefore leaving only aj spikes. A single state transition δ(qi, bk) = qj is therefore
simulated.

With a 1-step delay, ΠD receives a given input w = bi1 , . . . , bir in Σ∗ and
produces a sequence of states z = qi1 , . . . , qir (represented by ai1 , . . . , air ) such
that δ(qi` , bi`) = qi`+1

, for each ` = 1, . . . , r where qi1 = q1. Then, w is accepted
by D (i.e. δ(q1, w) ∈ F ) iff z = ΠD(w) ends with a state in F (i.e. qir ∈ F ). Let
the language accepted by ΠD be defined as:

L(ΠD) = {w ∈ Σ∗|ΠD(w) ∈ Q∗F}.

Then, the following is theorem 8 from [6]

Theorem 1. (Ibarra et al [6]) Any regular language L can be expressed as L =
L(ΠD) for some SNP module ΠD.

'
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Fig. 2. Structure of SNP modules from [6] simulating DFAs and DFSTs.

The simulation of DFSTs requires a slight modification of the DFA con-
struction. Let T = (Q,Σ,∆, δ′, q1, F ) be a DFST, where Σ = {b1, . . . , bk},
∆ = {c1, . . . , ct}, Q = {q1, . . . , qn}. We construct the following SNP module sim-
ulating T :

ΠT = ({a}, σ1, σ2, σ3, syn, {3}, {3}),

where:

� σ1 = σ2 = (n, {an → an}),
� σ3 = (n, {a2n+i+k+t/a2n+i+k+t−j → an+s|δ′(qi, bk) = (qj , cs)}),
� syn = {(1, 2), (2, 1), (1, 3)}.

The structure for ΠT is shown in Fig. 2. Note that n,m, t ∈ N are fixed numbers.
For 1 ≤ i ≤ n, 1 ≤ s ≤ t, 1 ≤ k ≤ m: each state qi ∈ Q, each input symbol
bk ∈ Σ, and each output symbol cs ∈ ∆, is represented by ai, an+t+k, and an+s,
respectively.

The operation of ΠT given an input w ∈ Σ∗ is in parallel to the operation of
ΠD; the difference is that the former produces a cs ∈ ∆, while the latter produces
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a qi ∈ Q. From the construction of ΠT and the claim in Theorem 1, the following
is Theorem 9 from [6]:

Theorem 2. (Ibarra et al[6]) Any finite transducer T can be simulated by some
SNP module ΠT .

The previous constructions from [6] on simulating DFAs and DFSTs have how-
ever, the following technical problem:

Suppose we are to simulate DFA D with at least two transitions, (1) δ(qi, bk) =
qj , and (2) δ(qi′ , bk′) = qj′ . Let j 6= j′, i = k′, and k = i′. The SNP module ΠD

simulating D then has at least two rules in σ3: r1 = a2n+i+k/a2n+i+k−j → aj ,
(simulating (1)) and r2 = a2n+i′+k′

/a2n+i′+k′−j′ → aj
′

(simulating (2)).
Observe that 2n+ i+ k = 2n+ i′+ k′, so that in σ3, the regular expression for

r1 is exactly the regular expression for r2. We therefore have a nondeterministic
rule selection in σ3. However, D being a DFA, transitions to two different states
qj and qj′ . Therefore, ΠD is a nondeterministic SNP module that can, at certain
steps, incorrectly simulate the DFA D. This nondeterminism also occurs in the
DFST simulation. An illustration of the problem is given in example 2.

Example 2. We modify the 2-DFAO in Fig. 1 into a DFA in Fig. 3 as follows:
Instead of Σ = {0, 1}, we have Σ = {1, 2}; We maintain n = m = 2, however,
the transitions are swapped, so in Fig. 3 we have the following two (among four)
transitions: δ(q1, 2) = q2, and δ(q2, 1) = q1. These two transitions cause the nonde-
terministic problem for the SNP module given in Fig. 4. The problem concerns the
simulation of the two previous transitions using rules a7/a5 → a2 and a7/a6 → a
in σ3, which can be nondeterministically applied: if σ3 contains a2 spikes and re-
ceives a3 from Env (representing input 1 for the DFA), at the next step σ3 will
have a7 spikes, allowing the possibility of an incorrect simulation.

--

]

? W

1 2

2

1

start q1 q2

Fig. 3. DFA with incorrect simulation by the SNP module in Fig. 4.

Next, we amend the problem and modify the constructions for simulating DFAs
and DFSTs in SNP modules. Given a DFA D, we construct an SNP module Π′D
simulating D as follows:
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a6/a5 → a

a7/a5 → a2

a7/a6 → a

a8/a7 → a2

Fig. 4. SNP module with incorrect simulation of the DFA in Fig. 3.

Π′D = ({a}, σ1, syn, {1}, {1}),

where

� σ1 = (1, {ak(2n+1)+i/ak(2n+1)+i−j → aj |δ(qi, bk) = qj}),
� syn = ∅.

We have ΠD containing only 1 neuron, which is both the input and output neuron.
Again, n,m ∈ N are fixed numbers. Each state qi is again represented as ai spikes,
for 1 ≤ i ≤ n. Each symbol bk ∈ Σ is now represented as ak(2n+1) spikes. The
operation of Π′D is as follows: neuron 1 starts with a1 spike, representing q1 in D.
Suppose that D is in some state qi, receives input bk, and transitions to qj in the
next step. We then have Π′D combining ak(2n+1) spikes from Env with ai spikes,
so that a rule with regular expression ak(2n+1)+i is applied, producing aj spikes to
Env. After applying such rule, aj spikes remain in σ1, and a single transition of D
is simulated.

Note that the construction for Π′D does not involve nondeterminism, and hence
the previous technical problem: Let D have at least two transitions, (1) δ(qi, bk) =
qj , and (2) δ(qi′ , bk′) = qj′ . We again let j 6= j′, i = k′, and k = i′. Note that being
a DFA, we have i 6= k. Observe that k(2n + 1) + i 6= k′(2n + 1) + i′. Therefore,
Π′D is deterministic, and has two rules r1 and r2 correctly simulating (1) and (2),
respectively. We now have the following result.

Theorem 3. Any regular language L can be expressed as L = L(Π′D) for some
1-neuron SNP module Π′D

For a given DFST T , we construct an SNP module Π′T simulating T as follows:

Π′T = ({a}, σ1, syn, {1}, {1}),

where

� σ1 = (1, {ak(2n+1)+i+t/ak(2n+1)+i+t−j → an+s|δ′(qi, bk) = (qj , cs)}),
� syn = ∅.
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We also have Π′T as a 1-neuron SNP module similar to Π′D. Again, n,m, t ∈ N
are fixed numbers, and for each 1 ≤ i ≤ n, 1 ≤ k ≤ m, and 1 ≤ s ≤ t: each state
qi ∈ Q, each input symbol bk ∈ Σ, and each output symbol cs ∈ ∆, is represented
as ai, ak(2n+1)+t, and an+s spikes, respectively. The functioning of Π′T is in parallel
to Π′D. Unlike ΠT , Π′T is deterministic and correctly simulates T . We now have
the next result.

Theorem 4. Any finite transducer T can be simulated by some 1-neuron SNP
module Π′T .

3.2 k-DFAO simulation and generating automatic sequences

Next, we modify the construction from Theorem 4 specifically for k-DFAOs by:
(a) adding a second neuron σ2 to handle the spikes from σ1 until end of input is
reached, and (b) using σ2 to output a symbol once the end of input is reached.
Also note that in k-DFAOs we have t ≤ n, since each state must have exactly
one output symbol associated with it. Observing k-DFAOs from Definition 3 and
DFSTs from Definition 2, we find a subtle but interesting distinction as follows:

The output of the state after reading the last symbol in the input is the re-
quirement from a k-DFAO, i.e. for every w over some Σk, the k-DFAO produces
only one c ∈ ∆ (recall the output function τ); In contrast, the output of DFSTs
is a sequence of Q×∆ (states and symbols), since δ′′(qi, bk) = (qj , cs). Therefore,
if we use the construction in Theorem 4 for DFST in order to simulate k-DFAOs,
we must ignore the first |w| − 1 symbols in the output of the system in order to
obtain the single symbol we require.

For a given k-DFAO M = (Q,Σ,∆, δ′′, q1, τ), we have 1 ≤ i, j ≤ n, 1 ≤ s ≤ t,
and 1 ≤ k ≤ m. Construction of an SNP module ΠM simulating M , is as follows:

Π = ({a}, σ1, σ2, syn, {1}, {2}),
where

� σ1 = (1, R1), σ2 = (0, R2),
� R1 = {ak(2n+1)+i+t/ak(2n+1)+i+t−j → an+s|δ′′(qi, bk) = qj , τ(qj) = cs}
∪{am(2n+1)+n+t+i → am(2n+1)+n+t+i|1 ≤ i ≤ n},

� R2 = {an+s → λ|τ(qi) = cs} ∪ {am(2n+1)+n+t+i → an+s|τ(qi) = cs},
� syn = {(1, 2)}.

We have ΠM as a 2-neuron SNP module, and n,m, t ∈ N are fixed numbers.
Each state qi ∈ Q, each input symbol bk ∈ Σ, and each output symbol cs ∈ ∆, is
represented as ai, ak(2n+1)+t, and an+s spikes, respectively. In this case however,
we add an end-of-input symbol $ (represented as am(2n+1)+n+t spikes) to the input
string, i.e. if w ∈ Σ∗, the input for ΠM is w$.

For any bk ∈ Σ, σ1 of ΠM functions in parallel to σ1 of Π′D and Π′T , i.e.
every transition δ′′(qi, bk) = qj is correctly simulated by σ1. The difference how-
ever lies during the step when $ enters σ1, indicating the end of the input. Sup-
pose during this step σ1 has ai spikes, then those spikes are combined with the
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am(2n+1)+n+t spikes from Env. Then, one of the n rules in σ1 with regular expres-
sion am(2n+1)+n+t+i is applied, sending am(2n+1)+n+t+i spikes to σ2.

The first function of σ2 is to erase, using forgetting rules, all an+s spikes it
receives from σ1. Once σ2 receives am(2n+1)+n+t+i spikes from σ1, this means that
the end of the input has been reached. The second function of σ2 is to produce
an+s spikes exactly once, by using one rule of the form am(2n+1)+n+t+i → an+s.
The output function τ(δ′′(q1, w$)) is therefore correctly simulated. We can then
have the following result.

Theorem 5. Any k-DFAO M can be simulated by some 2-neuron SNP module
ΠM .

Next, we establish the relationship of SNP modules and automatic sequences.

Theorem 6. Let a sequence a = (an)n≥0 be k-automatic, then it can be generated
by a 2-neuron SNP module Π.

k-automatic sequences have several interesting robustness properties. One
property is the capability to produce the same output sequence given that the
input string is read in reverse, i.e. for some finite string w = a1a2 . . . an, we have
wR = anan−1 . . . a2a1. It is known (e.g. [1]) that if (an)n≥0 is a k-automatic se-
quence, then there exists a k-DFAO M such that an = τ(δ′′(q0, w

R)) for all n ≥ 0,
and all w ∈ Σ∗k , where [w]k = n. Since the construction of Theorem 5 simulates
both δ′′ and τ , we can include robustness properties as the following result shows.

Theorem 7. Let a = (an)n≥0 be a k-automatic sequence. Then, there is some
2-neuron SNP module Π where Π(wR$) = an, w ∈ Σ∗k , [w]k = n, and n ≥ 0.

An illustration of the construction for Theorem 5 is given in example 3.

Example 3. (SNP module simulating the 2-DFAO generating the Thue-Morse se-
quence) The SNP module is given in Fig. 5, and we have n = m = t = 2. Based
on the construction for Theorem 5, we associate symbols 0 and 1 with a7 and a12

spikes, respectively. The end-of-input symbol $, q1, and q2 are associated with a14,
a, and a2 spikes, respectively (with a and a2 appearing only inside σ1).

The 2-DFAO in Fig. 1 has four transitions, and rules r1 to r4 simulate the four
transitions. Rules r5 and r6 are only applied when $ enters the system. Rules r7
and r8 are applied to “clean” the spikes from σ1 while $ is not yet encountered by
the system. Rules r8 and r9 produce the correct output, simulating τ .

4 Final Remarks

In [3], strict inclusions for the types of languages characterized by SNP systems
with extended rules having one, two, and three neurons were given. Then in [15],
it was shown that there is no SNP transducer that can compute nonerasing and
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1 a

r1 : a8/a7 → a3

r2 : a13/a11 → a4

r3 : a9/a7 → a4

r4 : a14/a13 → a3

r5 : a15 → a15

r6 : a16 → a16

2 r7 : a3 → λ

r8 : a4 → λ

r9 : a15 → a3

r10 : a16 → a4

Fig. 5. SNP module simulating the 2-DFAO in Fig. 1.

nonlength preserving morphisms: for all a ∈ Σ, the former is a morphism h such
that h(a) 6= λ, while the latter is a morphism h where |h(a)| ≥ 2. It is known (e.g.
in [1]) that the Thue-Morse morphism is given by µ(0) = 01 and µ(1) = 10. It
is interesting to further investigate SNP modules with respect to other classes of
sequences, morphisms, and finite transition systems. Another technical note is that
in [15] a time step without a spike entering or leaving the system was considered
as a symbol of the alphabet, while in [6] (and in this work) it was considered as λ.

We also leave as an open problem a more systematic analysis of input/output
encoding size and system complexity: in the constructions for Theorems 3 to 4,
SNP modules consist of only one neuron for each module, compared to three
neurons in the constructions of [6]. However, the encoding used in our Theorems
is more involved, i.e. with multiplication and addition of indices (instead of simply
addition of indices in [6]). On the practical side, SNP modules might also be
used for computing functions, as well as other tasks involving (streams of) input-
output transformations. Practical applications might include image modification
or recognition, sequence analyses, online algorithms, et al.

Some preliminary work on SNP modules and morphisms was given in [2]. From
finite sequences, it is interesting to extend SNP modules to infinite sequences. In
[4], extended SNP systems2 were used as acceptors in relation to ω-languages.
SNP modules could also be a way to “go beyond Turing” by way of interactive
computations, as in interactive components or transducers given in [5]. While the
syntax of SNP modules may prove sufficient for these “interactive tasks”, or at
least only minor modifications, a (major) change in the semantics is probably
necessary.
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