
Variants of P Systems with Toxic Objects

Artiom Alhazov1, Rudolf Freund2, and Sergiu Ivanov3

1 Institute of Mathematics and Computer Science, Academy of Sciences of Moldova
Academiei 5, Chişinău MD-2028 Moldova
Email: artiom@math.md

2 Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria
Email: rudi@emcc.at

3 Université Paris Est, France
Email: sergiu.ivanov@u-pec.fr

Summary. Toxic objects have been introduced to avoid trap rules, especially in (purely)
catalytic P systems. No toxic object is allowed to stay idle during a valid derivation in a
P system with toxic objects. In this paper we consider special variants of toxic P systems
where the set of toxic objects is predefined – either by requiring all objects to be toxic or
all catalysts to be toxic or all objects except the catalysts to be toxic. With all objects
staying inside and being toxic, purely catalytic P systems cannot go beyond the finite
sets, neither as generating nor as accepting systems. With allowing the output to be sent
to the environment, exactly the regular sets can be generated. With non-cooperative
systems with all objects being toxic we can generate exactly the Parikh sets of languages
generated by extended Lindenmayer systems. Catalytic P systems with all catalysts being
toxic can generate at least PsMAT .

1 Definitions

We assume the reader to be familiar with the underlying notions and concepts
From formal language theory, e.g., see [16], as well as from the area of P systems,
e.g., see [13, 14, 15]; we also refer the reader to [18] for actual news.

1.1 Prerequisites

The set of integers is denoted by Z, and the set of non-negative integers by N.
Given an alphabet V , a finite non-empty set of abstract symbols, the free monoid
generated by V under the operation of concatenation is denoted by V ∗. The ele-
ments of V ∗ are called strings, the empty string is denoted by λ, and V ∗\ {λ} is
denoted by V +. For any string w ∈ V , by alph(w) we denote the set of symbols

20 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

occurring in w; moreover, the set of all strings which are obtained by permut-
ing the symbols of w is denoted by Perm (w); for a set of stings L, we define
Perm (L) = {Perm (w) | w ∈ L}.

For an arbitrary alphabet V = {a1, · · · , an}, the number of occurrences of a
symbol ai in a string x is denoted by |x|ai , while the length of a string x is denoted
by |x| =

∑
ai∈V |x|ai . A (finite) multiset over a (finite) alphabet V = {a1, · · · , an}

is a mapping f : V → N and can be represented by
〈
a
f(a1)
1 , · · · , af(an)n

〉
or by any

string x for which (|x|a1 , · · · , |x|an) = (f(a1), · · · , f(an)). We will denote the vector
(f(a1), · · · , f(an)) by Ψ(f)V . The families of regular and recursively enumerable
string languages are denoted by REG and RE, respectively.

1.2 Finite Automata

The regular languages in REG are exactly the languages accepted by finite au-
tomata. A finite automaton is a quintuple M = (Q,T, δ, q0, F), where Q is the
set of states, T is the input alphabet, δ ⊆ (Q× T ×Q) is the transition function,
q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states. The language over
T accepted by M is denoted by L (M). A finite automaton is called deterministic,
if for every pair (q, a) with q ∈ Q and a ∈ P there exists exactly one state p ∈ Q
such that (q, a, p) ∈ δ.

A finite automaton with output, also called generalized sequential machine or
gsm for short, is a construct M = (Q,T,Σ, δ, q0, F), where Q is the set of states,
T is the input alphabet, Σ is the output alphabet, δ ⊆ (Q× T ×Q×Σ∗) is the
finite transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final
states. M called deterministic, if for every pair (q, a) with q ∈ Q and a ∈ P there
exists exactly one pair (q, w) ∈ Q×Σ∗ such that (q, a, p, w) ∈ δ. A (deterministic)
gsm defines a relation (function) T ∗ → Σ∗, called (deterministic) gsm mapping.
The sets of all relations (functions) defined by (deterministic) gsm mappings are
denoted by RelREG and FunREG, respectively.

We also consider a special variant of finite automata which resembles the idea
of input-driven push-down automata (for an overview, see [11]), also called visibly
push-down automata (for example, see [3]). Hence, we call this variant where the
next state only depends on the input symbol input-driven finite automata, i.e., for
any two triples (q, a, p) , (q′, a, p′) ∈ δ with q, p, q′, p′ ∈ Q and a ∈ T we have p = p′.
In the following, the subclass of regular languages accepted by input-driven finite
automata will be denoted by IDREG.

A gsm is called input-driven if for any two tuples (q, a, p, w) , (q′, a, p′, w′) ∈ δ
with q, p, q′, p′ ∈ Q and a ∈ T we have p = p′ as in the case of finite automata; such
a gsm is called deterministic if we even have (p, w) = (p′, w′). The subclasses of
(deterministic) gsm mappings defined by input-driven finite automata with output
are denoted by RelIDREG and FunIDREG, respectively.

Variants of P Systems with Toxic Objects 21

1.3 ET0L Systems

An ET0L system is a construct G = (V, T, P1, · · · , Pm, w) where m ≥ 1, V is
an alphabet, T ⊆ V is the terminal alphabet, the Pi, 1 ≤ i ≤ m, are finite sets
(tables) of non-cooperative rules over V , and w ∈ V ∗ is the axiom. In a derivation
step in G, all the symbols present in the current sentential form are rewritten
using one table. The language generated by G, denoted by L(G), consists of all
terminal strings w ∈ T ∗ which can be generated by a derivation in G starting from
the axiom w. The family of languages generated by ET0L systems and by ET0L
systems with at most k tables is denoted by ET0L and ETk0L, respectively. If
only one table is used, we omit the T .

1.4 Register Machines

A register machine is a tuple M = (m,B, l0, lh, P), where m is the number of
registers, B is a set of labels, l0 ∈ B is the initial label, lh ∈ B is the final
label, and P is the set of instructions bijectively labeled by elements of B. The
instructions of M can be of the following forms:

• l1 : (ADD (r) , l2, l3), with l1 ∈ B\ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Increases the value of register r by one, followed by a non-deterministic jump
to instruction l2 or l3. This instruction is usually called increment.

• l1 : (SUB (r) , l2, l3), with l1 ∈ B\ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
If the value of register r is zero then jump to instruction l3; otherwise, the
value of register r is decreased by one, followed by a jump to instruction l2.
The two cases of this instruction are usually called zero-test and decrement,
respectively.

• lh : HALT . Stops the execution of the register machine.

A configuration of a register machine is described by the contents (i.e., by the
number stored in the register) of each register and by the current label, which
indicates the next instruction to be executed. Computations start by executing
the instruction l0 of P , and terminate with reaching the HALT-instruction lh.

In order to deal with strings, this basic model of register machines can be
extended by instructions for reading from an input tape and writing to an output
tape containing strings over an input alphabet Tin and an output alphabet Tout,
respectively:

• l1 : (read (a) , l2), with l1 ∈ B \ {lh}, l2 ∈ B, a ∈ Tin.
Reads the symbol a from the input tape and jumps to instruction l2.

• l1 : (write (a) , l2), with l1 ∈ B \ {lh}, l2 ∈ B, a ∈ Tout.
Writes the symbol a on the output tape and jumps to instruction l2.

Such a register machine working on strings we call a register machine with
input and output tape, and we write M = (m,B, l0, lh, P, Tin, Tout). If no output
is written, we omit Tout.

22 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

As is well known (e.g., see [10]), for any recursively enumerable set of natural
numbers there exists a register machine with (at most) three registers accepting
the numbers in this set. Register machines with an input tape, can simulate the
computations of Turing machines with two registers and thus characterize RE. All
these results are obtained with deterministic register machines, where the ADD-
instructions are of the form l1 : (ADD (r) , l2), with l1 ∈ B\ {lh}, l2 ∈ B, 1 ≤ j ≤
m.

Partially blind register machines with d registers use instructions qi :
(ADD(r), qj , qk) and qi : (SUB(r), qj). Moreover, the result is produced in the
first m registers, while in a successful computation registers m + 1, · · · , d are re-
quired to be empty in the end (and we assume that the output registers are never
decremented).

2 P systems

The ingredients of the basic variants of (cell-like) P systems are the membrane
structure, the objects placed in the membrane regions, and the evolution rules.
The membrane structure is a hierarchical arrangement of membranes. Each mem-
brane defines a region/compartment, the space between the membrane and the
immediately inner membranes; the outermost membrane is called the skin mem-
brane, the region outside is the environment, also indicated by (the label) 0. Each
membrane can be labeled, and the label (from a set Lab) will identify both the
membrane and its region. The membrane structure can be represented by a rooted
tree (with the label of a membrane in each node and the skin in the root), but also
by an expression of correctly nested labeled parentheses. The objects (multisets)
are placed in the compartments of the membrane structure and usually repre-
sented by strings, with the multiplicity of a symbol corresponding to the number
of occurrences of that symbol in the string. The basic evolution rules are multiset
rewriting rules of the form u → v, where u is a multiset of objects from a given
set O and v = (b1, tar1) · · · (bk, tark) with bi ∈ O and tari ∈ {here, out, in} or
tari ∈ {here, out} ∪ {inj | j ∈ Lab}, 1 ≤ i ≤ k. Using such a rule means “con-
suming” the objects of u and “producing” the objects b1, · · · , bk of v; the target
indications here, out, and in mean that an object with the target here remains
in the same region where the rule is applied, an object with the target out is sent
out of the respective membrane (in this way, objects can also be sent to the en-
vironment, when the rule is applied in the skin region), while an object with the
target in is sent to one of the immediately inner membranes, non-deterministically
chosen, whereas with inj this inner membrane can be specified directly. In general,
we may omit the target indication here.

Yet there are a lot of other variants of rules; for example, if on the right-
hand side of a rule we add the symbol δ, the surrounding membrane is dissolved
whenever at least one such rule is applied, at the same moment all objects inside
this membrane (the objects of this membrane region together with the whole

Variants of P Systems with Toxic Objects 23

inner membrane structure) are released to the surrounding membrane, and the
rules assigned to the dissolved membrane region get lost.

Another option is to add promoters p1, · · · , pm ∈ O+ and inhibitors
q1, · · · , qn ∈ O+ to a rule and write u → v|p1,··· ,pm,¬q1,··· ,¬qn , which rule then
is only applicable if the current contents of the membrane region includes any of
the promoter multisets, but none of the inhibitor multisets; in most cases promot-
ers and inhibitors are rather taken to be singleton objects than multisets.

For all these variants of P systems defined above, the variants of toxic objects
defined later in this paper can be defined, too. As this paper is just a starting point
of such investigations, in the following we shall restrict ourselves to P systems
containing only non-cooperative rules and/or catalytic rules (see definitions given
below).

Formally, a (cell-like) P system is a construct

Π = (O,µ,w1, · · · , wm, R1, · · · , Rm, fI , fO)

where O is the alphabet of objects, µ is the membrane structure (with m mem-
branes), w1, · · · , wm are multisets of objects present in the m regions of µ at the
beginning of a computation, R1, · · · , Rm are finite sets of evolution rules, associ-
ated with the membrane regions of µ, and fO/fI is the label of the membrane
region where the outputs are put in/from where the inputs are taken. (fO/fI= 0
indicates that the output/input is taken sent to/taken from the environment).

If a rule u → v has at least two objects in u, then it is called cooperative,
otherwise it is called non-cooperative. In catalytic P systems we use non-cooperative
as well as catalytic rules which are of the form ca→ cv, where c is a special object
which never evolves and never passes through a membrane (both these restrictions
can be relaxed), but it just assists object a to evolve to the multiset v. In a purely
catalytic P system we only allow catalytic rules. For a catalytic as well as for a
purely catalytic P system Π, in the description of Π we replace “O” by “O,C”
in order to specify those objects from O which are the catalysts in the set C. As
already explained above, cooperative and non-cooperative as well as catalytic rules
can be extended by adding promoters and/or inhibitors, thus yielding rules of the
form u→ v|p1,··· ,pm,¬q1,··· ,¬qn .

All the rules defined so far can be used in different derivation modes: in the
sequential mode (sequ), we apply exactly one rule in every derivation step; in the
asynchronous mode (asyn), an arbitrary number of rules is applied in parallel; in
the maximally parallel (maxpar) derivation mode, in any computation step of Π
we choose a multiset of rules from the sets R1, · · · , Rm in a non-deterministic way
such that no further rule can be added to it so that the obtained multiset would
still be applicable to the existing objects in the membrane regions 1, · · · ,m.

The membranes and the objects present in the compartments of a system at
a given time form a configuration; starting from a given initial configuration and
using the rules as explained above, we get transitions among configurations; a
sequence of transitions forms a computation (we often also say derivation). A
computation is halting if and only if it reaches a configuration where no rule can

24 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

be applied any more. With a halting computation we associate a result generated
by this computation, in the form of the number of objects present in membrane
fO in the halting configuration. The set of multisets obtained as results of halting
computations in Π working in the derivation mode δ ∈ {sequ, asyn,maxpar} is
denoted by mLgen,δ (Π), the set of natural numbers obtained by just counting the
number of objects in the multisets of mLgen,δ (Π) by Ngen,δ (Π), and the set of
(Parikh) vectors obtained from the multisets in mLgen,δ (Π) by Psgen,δ (Π). If we
first project the results in mLgen,δ (Π) to a terminal alphabet OT , then we add
the superscript T to N and Ps.

Yet we may also start with some additional input multiset winput over an input
alphabet Σ in membrane fI , i.e., in total we there have wfIwinput in the initial
configuration, and accept this input winput if and only if there exists a halting
computation with this input; the set of multisets accepted by halting computations
in

Π = (O,Σ, µ,w1, · · · , wm, R1, · · · , Rm, fI)

working in the derivation mode δ is denoted by mLacc,δ (Π), the corresponding
sets of natural numbers and of (Parikh) vectors are denoted by Nacc,δ (Π) and
Psacc,δ (Π), respectively.

For the input being taken from the environment, i.e., for fI = 0, we need
an additional target indication come as, for example, used in a special variant of
communication P systems introduced by Petr Sośık (e.g., see [17]) where no objects
are generated or deleted, but may only pass through membranes; (a, come) on the
right-hand side of a rule applied in the skin membrane means that the object a is
taken into the skin membrane from the environment (all objects there are assumed
to be available in an unbounded number). The multiset of all objects taken from
the environment during a halting computation then is the multiset accepted by
this accepting P system, which in this case we shall call a P automaton; the idea
of P automata was first published in [4] and considered at the same time under
the notion of analysing P systems in [8]. The set of non-negative integers and the
set of (Parikh) vectors of non-negative integers accepted by halting computations
in Π are denoted by Naut (Π) and Psaut (Π), respectively.

The family of sets Yγ,δ (Π), Y ∈ {N,Ps}, γ ∈ {gen, acc, aut} computed by
P systems with at most m membranes working in the derivation mode δ and
with rules of type X is denoted by Yγ,δOPm (X). If we first project the results in
mLgen,δ (Π) to a terminal alphabet OT , then we add the superscript T to N and
Ps.

A P system Π can also be considered as a system computing a partial recursive
function (in the deterministic case) or even a partial recursive relation (in the non-
deterministic case), with the input being given in a membrane region fI 6= 0 as
in the accepting case or being taken from the environment as in the automaton
case. The corresponding functions/relations computed by halting computations in
Π are denoted by ZYα (Π), Z ∈ {Fun,Rel}, Y ∈ {N,Ps}, α ∈ {acc, aut}.

Variants of P Systems with Toxic Objects 25

For example, it is well known (for example, see [12]) that for any m ≥ 1, for
the types of non-cooperative (ncoo) and cooperative (coo) rules we have

NREG = Ngen,maxparOPm (ncoo) ⊂ Ngen,maxparOPm (coo) = NRE.

For γ ∈ {gen, acc, aut} and δ ∈ {sequ, asyn,maxpar}, the family of sets
Yγ,δ (Π), Y ∈ {N,Ps}, computed by (purely) catalytic P systems with at
most m membranes and at most k catalysts is denoted by Yγ,δOPm (catk) and
Yγ,δOPm (pcatk), respectively; from [5] we know that, with the results being sent
to the environment (which means taking fO = 0), we have

Ygen,maxparOP1 (cat2) = Ygen,maxparOP1 (pcat3) = Y RE.

Remark 1. Here we have to add a remark which is important for the rest of this
paper. Originally, Gheorghe Păun used an internal elementary membrane to obtain
clean results without having to count the catalysts. Hence, sending out the results
also uses a second membrane region, thus, from a topological point of view, there
in fact is no difference between using the outer region or an inner membrane region
without rules to be applied there. In sum, specifying the number of membranes is
not sufficient to capture all subtle features of complexity. Hence, in the following,
we will write P1,ext to indicate that, besides the single membrane, we also use the
environment as a second membrane region. Thus, the result for (purely) catalytic
P systems now will be written as

Ygen,maxparOP1,ext (cat2) = Ygen,maxparP1,ext (pcat3) = Y RE.

In the general case, we will also use the notation Pm,ext for P systems with m
membranes and external output, and to contrast this, we will use Pm,int for systems
with internal output to make a clear difference to the normal notations Pm which
might mean both of these cases.

Finally we remark that P systems with internal output still could (mis)use the
environment to let objects vanish, yet we will assume that such symbols will be
erased instead of being sent out, so for such P systems, without loss of generality,
we can assume that there is no communication with the environment at all.

Remark 2. In order to avoid counting the catalysts in the results, we can
also make a projection erasing them. Whereas in general we would write
Ygen,maxparOP

T
1 (cat2), instead we now would write Ygen,maxparOP

−cat
1,int (cat2). In

this case, we really use one membrane only, as only one membrane region itself is
needed to obtain the results.

Remark 3. Usually, catalytic P systems and many other variants of P systems can
be flattened to one membrane, see [6]. Yet in general, flattening means that we
have to make a terminal projection to get the results or to use external output
for that purpose, i.e., with catalytic P systems flattened to one membrane, clean

26 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

results cannot be obtained without using external out or terminal extraction. In
fact, all results in the P systems area should be carefully inspected with respect
to these subtle details of complexity definitions.

As we shall see in the following sections, the way how to obtain the results in
many cases will have a significant influence on the computational power of several
variants of P systems with toxic objects.

Remark 4. As in this paper we will only consider P systems using the maximally
parallel derivation mode, in the following the subscript maxpar will be omitted.

Finally, P systems can also be considered as mechanisms for generating and
accepting string languages as well as for computing any partial recursive function
f : Σ∗ → Γ ∗ on strings. Here the input string consists of the sequence of symbols
taken in from the environment during a halting computation and the output string
is formed by the sequence of symbols sent out to the environment; hence, the P
system works like in the automaton style, but the input and output streams of
symbols are interpreted as strings. In general, any number of symbols can be
taken in and sent out in one computation step, and any possible sequence of those
symbols has to be taken into account as a substring to be concatenated with the
strings already computed by the preceding computation steps – thus, not only one
input and one output string may result from a successful halting computation.

The string relation computed by halting computations in a P system Π is
denoted by Lcom (Π). If we only consider the symbols taken in from the envi-
ronment, Lcom (Π) can be seen as an automaton accepting the strings computed
by the sequences of symbols taken in during halting computations and we also
write Laut (Π); if no symbols are taken from the environment, Lcom (Π) describes
a string language generated by Π and we also write Lgen (Π). By LδOPm (X),
δ ∈ {gen, aut}, as well as by RelLcomOPm (X) and FunLcomOPm (X) we denote
the families of string languages generated and accepted as well as the families
of string relations and functions computed by P systems with at most m mem-
branes using rules of type X. With FunRE and RelRE denoting the class of
partial recursive string functions and relations, respectively, the following results
can be derived from the results proved in [5] (for the generating case, also see [15],
Theorem 4.17):

Theorem 1. For any δ ∈ {gen, aut}, Z ∈ {Fun,Rel}

RE = LδOP1 (cat2) = LδOP1 (pcat3)

as well as
ZRE = ZLcomOP1 (cat2) = ZLcomOP1 (pcat3) .

3 Toxic Objects in P Systems

We specify a specific subset Otox of O as toxic objects. Toxic objects must not
stay idle as otherwise the computation is abandoned without yielding a result.

Variants of P Systems with Toxic Objects 27

In a successful computation, in any computation step continuing a derivation, we
always have to apply multisets of rules evolving all toxic objects. On the other
hand, if no rule can be applied any more and thus the system halts, toxic objects
do no harm and we take out the results in the usual way depending on the specific
definition for the systems under consideration.

A P system with toxic objects is only allowed to continue a computation from
a configuration C by using an applicable multiset of rules covering all copies of
objects from Otox occurring in C; moreover, if every non-empty multiset of appli-
cable rules is not covering all toxic objects, the whole computation having yielded
the configuration C is abandoned, i.e., no results can be obtained from this com-
putation.

For any variant of P systems, we add the set of toxic objects Otox and in the
specification of the families of sets of (vectors of) numbers generated/accepted by P
systems with toxic objects using rules of type X we add the subscript tox to O, thus
obtaining the families YγOtoxPm (X), for any Y ∈ {N,Ps, L}, γ ∈ {gen, acc, aut},
and m ≥ 1.

3.1 Variants of P Systems with Toxic Objects

We may distinguish the following variants:

• all symbols are toxic, i.e., we write YγOtoxallPm (X);
• in catalytic P systems, exactly the catalysts are toxic, i.e., we write

YγOtoxcatPm (X);
• at least the catalysts are toxic, i.e., we write YγOtox⊇catPm (X);
• all except the catalysts are toxic, i.e., we write YγOtox−catPm (X).

In all these notations, we may add the superscript T to indicate terminal
extraction or the superscript −cat to indicate that the catalysts are not taken
into account for the results; moreover, we replace Pm by Pm,ext or Pm,int in order
to explicitly specify that the system uses external or internal output, respectively.

Remark 5. The results established in the following implicitly may assume the P
system to be flattened to one membrane, but in the sense of the previous remarks,
we have to be very careful whether we have internal output, so that toxicity of
symbols matters, or else we have external output, in which case we assume that
the objects sent out do not affect the work of the system any more.

4 Purely Catalytic P Systems with All Objects Being Toxic

We first consider the specific variants of P systems which in any step only allow
for a bounded number k of rules to be applied, for example, purely catalytic P
systems. Obviously, in this case, as until the end of a computation every symbol
has to be affected by a rule, at most k symbols can evolve in any computation

28 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

step, which of course bounds the number of possible configurations by a constant
number, too.

For the generative case with internal output, we show that we get precisely all
finite sets, while for the accepting case (i.e., internal input), the power is also quite
limited – everything which is not finite is arbitrary, and, moreover, only specific
finite sets are accepted.

Lemma 1. For all m ≥ 1 and all k ≥ 1,

PsgenOtoxallP
−cat
m,int (pcatk) = PsFIN.

Proof. For the forward inclusion, we notice that the initial configuration is fixed,
and the size of a vector we can generate by halting in any non-initial configuration
is bounded by the maximal sum of the right-hand sides of rules over different
catalysts.

For the converse inclusion, it is enough to mention that for any finite set F of
d-dimensional vectors of non-negative integers, there exists a P system Π of type
OtoxallP

−cat
1,int (pcat1) such that

Π =
(
O = {c1, a} ∪ T,C = {c1} , µ = []

1
, w1 = c1a,R1, 1

)
,

where {c1, a} ∩ T = ∅, |T | = d with T being written 〈a1, · · · , ad〉 as an ordered
set, and R1 consists of precisely one rule c1a → c1a

k1
1 · · · a

kd
d for every element

(k1, · · · , kd) ∈ F , so each element of F is generated in one step; for F = ∅, we
simply take the rule c1a → c1a, which causes an infinite computation. For both
cases, we can define R1 as follows:

R1 =
{
c1a→ c1a

k1
1 · · · a

kd
d | (k1, · · · , kd) ∈ F

}
∪ {c1a→ c1a} .

�

Lemma 2. For all m ≥ 1 and all k ≥ 1,

NaccOtoxallPm (pcatk) = {{d} | 0 ≤ d ≤ k − 1}
∪ {{0, k′} | 0 ≤ k′ ≤ k} ∪ {∅,N} .

Proof. We proceed with the forward inclusion. Take an arbitrary P system Π of
type OtoxallPm (pcatk), where

Π = (O,C = {c1, · · · , ck′} , Σ ⊆ O \ C, µ,w1, · · · , wm, R1, · · · , Rm, i0) ,

where k′ ≤ k. Before the computation starts, input w0 ∈ Σ∗ is added to wi0 . Only
two cases are possible that do not lead to a computation which is not abandoned
immediately: either the P system halts immediately, or all objects from w1, · · · , wm
as well as all the objects from w0 ∈ Σ∗ additionally placed in region i0 participate
in catalytic rules in the first step, hence the number of catalysts must be equal to

Variants of P Systems with Toxic Objects 29

the number of non-catalysts. In the second case, it follows that the size |w0| of the
input w0 must be equal to k′ −

∑m
i=1 |wi|. In the first case, it is easy to see that

if Π immediately halts on some non-empty input, then it must also immediately
halt on the empty input. If we have at least one rule for every input symbol in
Σ, then immediate halting happens only on the empty input. If, however, there
exists at least one symbol from Σ that does not appear in the left side of any rule
from Ri0 , then any number of these symbols (let us call them “passive”) would be
accepted.

We now put it all together. For the same system, having both immediate halting
case and later halting case is only possible if besides the input, the initial system
has only catalysts. This yields exactly {0, k′}, k′ ≤ k if there are no passive objects
in Σ, or the entire set N otherwise. Only immediate halting yields {0} and N,
depending on the presence of passive objects in Σ. Finally, only later halting
yields {d} for 0 ≤ d < k (the last inequality is strict since at least one non-catalyst
is needed besides the input to reject 0). And of course, we may have a P system
with no halting computations, accepting ∅. The family of all sets mentioned above
is {{d} | 0 ≤ d ≤ k − 1}∪{{0, k′} | 0 ≤ k′ ≤ k}∪{∅,N}, which proves the forward
inclusion of the claim of the lemma.

For the converse inclusion, it is enough to exhibit P systems for each of these
sets; in every case, the input alphabet is Σ = {a}.

Π∅ =
(
O = {c1, a} , C = {c1} , Σ = {a}, µ = []

1
, w1 = c1a,R1, i0 = 1

)
,

R1 = {c1a→ c1a} ;

ΠN =
(
O = {c1, a} , C = {c1} , Σ = {a}, µ = []

1
, w1 = c1, R1, i0 = 1

)
,

R1 = ∅;

Πd,0 =
(
O = C ∪ {a}, C = {c1, · · · , cd} , Σ = {a}, µ = []

1
, w1, R1, i0 = 1

)
,

w1 = c1 · · · cd,
R1 = {cia→ ci | 1 ≤ i ≤ d} , 0 ≤ d ≤ k;

Πd =
(
O = C ∪ {a}, C = {c1, · · · , cd+1} , Σ = {a}, µ = []

1
, w1, R1, i0 = 1

)
,

w1 = c1 · · · cd+1a,

R1 = {cia→ ci | 1 ≤ i ≤ d} , 0 ≤ d ≤ k − 1.

Indeed, the only rule of Π∅ forces an infinite loop on the empty input, while for a
non-empty input the computation is blocked because more than one toxic object
a cannot be simultaneously taken by c1. On the other end of the spectrum, ΠN
accepts any input by immediate halting, because the catalyst always stays idle
as there is no rule in the system. P system Πd,0 either halts immediately with no
input, or halts after one step, erasing the input of exactly d objects, d ≤ k. Finally,
the P system Πd halts after one step, erasing the input of exactly d objects, d < k.

These observations conclude the proof. �

30 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

Note 1. Of course, characterizing sets of vectors in the accepting case would be
more tedious for the following reason. Without passive objects, P system would
accept some subset of Σ≤k−1, as well as a subset of Σ≤k containing some vectors
of weight d ≤ k and a vector of zeros, and the empty set. With passive objects, any
number of them is allowed for the case of immediate halting, while the projection
of the accepted vectors onto the non-passive objects should form a set containing
some vectors of weight d ≤ k and a vector of zeros. The meaning of the word
some throughout this note can be made more precise by analyzing exactly which
multisets of weight d can be consumed by d catalysts, depending on the rules of
the system (whereas in the case of accepting numbers, only the total weight of
such multisets was taken into consideration).

While Lemma 1 characterized PsFIN by P systems with internal output, in
the case of external output their power becomes exactly PsREG, as the following
theorem shows:

Lemma 3. For all m ≥ 1 and all k ≥ 1,

PsgenOtoxallPm,ext (pcatk) = PsREG.

Proof. Let M = (Q,T, δ, q0, F) be a deterministic finite automaton. Then we
construct the P system Π which generates Ps (L (M)):

Π =
(
O = C ∪Q ∪ T,C = {c1} , µ = []

1
, w1 = c1q0, R1, i0 = 0

)
,

R1 = {c1p→ c1q(a, out) | (p, a, q) ∈ δ, p, q ∈ Q, a ∈ T}
∪ {c1p→ c1 | p ∈ F} .

We conclude that PsREG ⊆ PsgenOtoxallP1,ext (pcat1).
The converse inclusion can be argued as follows: In any successful computation

step with k catalysts, there must be exactly k non-catalysts, and a computation
stops with having yielded a result if all objects inside the system including the cat-
alysts are idle; hence, this finite set of useful configurations is finite and constitutes
the set of states of a finite automaton simulating the computations of the P sys-
tem. Since every rule in such a system involves one catalyst and one non-catalyst,
for a configuration C to allow some derivation C ⇒ C ′ it is necessary (although
not sufficient) that the number of catalysts equals the number of non-catalysts
inside the system. Hence, for a P system

Π = (O,C, µ,w1, · · · , wm′ , R1, · · ·Rm′ , i0)

having fixed the set of objects O, the membrane structure µ of m′ ≤ m membranes,
and the set of catalysts C, with the number k′ ≤ k of catalysts, the set Q of
configurations containing a total of exactly k′ objects from O \ C in m′ regions
of the P system is bounded. Moreover, the set Q′′ of all configurations reachable
from Q in one step is also bounded. Finally, we define Q′ = Q′′ ∪ {q0} where q0 is

Variants of P Systems with Toxic Objects 31

the initial configuration, as well as Qh ⊆ Q′ to be the set of halting configurations
(in which no rule can be applied any more).

Hence, a P system with external output generating vectors of natural numbers
can be modeled by a finite automaton M = (Q′, T, δ, q0, Qh) having Q′ as the
set of states, T contains d symbols for the generation of d-dimensional vectors,
δ contains the triple (p, v, q) for any transition from a configuration p ∈ Q′ to a
configuration q ∈ Q′ sending out v; the set of the final states is precisely Qh.

In sum, with all objects being toxic, purely catalytic P systems with external
output can exactly generate the regular sets of vectors. �

The statement of Lemma 3 can be generalized to languages, as well as to P
automata and P transducers. Indeed, in case of external input (P automaton case)
and/or external output, the finite number of different configurations can serve as
the finite state set of a finite automaton for the input specified by (a, come) in the
rules and/or for the output specified by (a, out) in the rules.

Lemma 4. For all m ≥ 1 and all k ≥ 1,

LgenOtoxallPm (pcatk) = REG.

Proof. Using similar arguments as already pointed out in the previous proof, we
can easily argue that purely catalytic P systems with all objects being toxic can
generate any regular language L; the only difference now is that any sequence of
symbols sent out during a successful computation is interpreted as string.

Now we consider the converse, i.e., as in the previous proof, a P system with
external output generating strings can be modeled by the finite automaton having
Q′ as the set of states and Qh as the set of the final states as constructed there,
but now for any transition from a configuration p ∈ Q′ to a configuration q ∈ Q′
sending out v, δ contains the triple (p, v′, q) for all v′ ∈ Perm(v). �

Lemma 5. For all m ≥ 1 and k ≥ 2,

LautOtoxallPm (pcatk) = REG,
RelautOtoxallPm (pcatk) = RelREG.

Proof. For a P automaton or a P transducer Π, again take Q′ and Qh as con-
structed in the proof of Lemma 4.

A P automaton can be modeled by a finite automaton having Q′ as the set
of states. A transition from configuration p ∈ Q′ to a configuration q ∈ Q′ while
having u brought from the environment is simulated by rules (p, u′, q) for all u′ ∈
Perm(u); clearly, |u| ≤ k′. The set of the final states is precisely Qh.

A P automaton with external output can be modeled by a finite transducer
having Q′ as the set of states. A transition from configuration p ∈ Q′ to a con-
figuration q ∈ Q′ while having u brought in and v sent out is simulated by rules

32 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

(p, u′/v′, q), u′ ∈ Perm(u), v′ ∈ Perm(v); clearly, |u| ≤ k′ and |v| ≤ k′. The set
of the final states is precisely Qh.

For proving the converse inclusion, take an arbitrary finite automaton M =
(Q,T, δ, q0, F); without loss of generality, we assume that M has at least one
outgoing transition from any non-final state.

A P automaton

Π =
(
O = {c1, c2, b} ∪ T,C = {c1, c2} , Σ = T, µ = []

1
, w1 = c1c2b, R1, i0 = 1

)
R1 = {c1p→ c1q(a, come) | (p, a, q) ∈ δ, p, q ∈ Q, a ∈ T}
∪ {c2x→ c2 | x ∈ {b} ∪ T} ∪ {c2q → c2 | q ∈ F}

can simulate M , using two catalysts c1, c2. Each transition (p, a, q) ∈ δ can be
simulated by rule c1p → c1q(a, come), but also rule the c2a → c2 is needed to
erase the symbol previously brought in. The initial contents of a single membrane
is c1c2q0b, where besides q0, one additional non-catalyst b /∈ {c1, c2}∪T is used to
keep c2 busy in the first step. Halting can be simulated by rule c1q → c1 for each
final state q; in the same step c2 deletes the last symbol brought in.

A P automaton with external output can simulate a finite transducer in the
same way as a P automaton without output simulates a finite automaton. The
only difference is that now the simulated transitions have the form (p, a/u, q), and
the corresponding simulating rules are c1p→ c1q(a, come)(u, out), the rest of the
construction being exactly the same as in the previous paragraph. �

Two catalysts are needed for simulating an arbitrary finite automaton by a
P automaton, since both the state symbol and the symbol brought in from the
environment have to be processed in parallel. For the case of only one catalyst, the
object brought in from the environment itself has to serve as a state. However, in
this way, the last object brought inside completely determines the set of possible
objects that can be brought inside in the next step, which considerably reduces the
generality of finite automata. Having this in mind, we characterize input-driven
finite automata:

Lemma 6. For all m ≥ 1,

LautOtoxallPm (pcat1) = IDREG,
RelautOtoxallPm (pcat1) = RelIDREG.

Proof. The inclusion that at most IDREG/RelIDREG is generated/computed
with one catalyst follows from the fact that exactly one non-catalyst may appear in
any non-halting non-blocking configuration, and, except the initial configuration,
this is precisely the symbol taken from the environment in the previous step. In
any successful computation, the only rules applied in any step, possibly except in
the last step, are erasing one non-catalyst while bringing in another one instead.

For the inclusion that we can generate/compute the entire families
IDREG/RelIDREG, we use a construction similar to that of the previous lemma,

Variants of P Systems with Toxic Objects 33

except instead of erasing the object a brought in the previous step by c2, this ob-
ject is used instead of the state object: each transition (qa, b, qb) now is simulated
by the rule c1a → c1(b, come). The initial contents of a single membrane is c1q0,
where the initial state q0 is an additional symbol not in the input alphabet. Halting
can be simulated by the rules c1a→ c1 for all final states qa.

For the case of a P automaton with external output, the simulation is the
same as above, except that now we also have an output: the transitions to be
simulated have the form (qa, b/u, qb), and the corresponding simulating rules are
c1a → c1(b, come)(u, out); the rest of the construction is exactly the same as in
the previous paragraph. �

Finally, the domain of relations computed with internal input (with either
output region) corresponds to the sets accepted with internal input, see Lemma 2.
Similarly, the range of relations computed with internal output and with internal
input corresponds to the sets generated with internal output, see Lemma 1. The
nature of these relations always results from a finite-state behavior, but we are
not going into further details here; another question to be answered in the future
is the exact characterization of P automata with internal output.

5 Non-Cooperative P Systems with All Objects Being Toxic

In this section we consider P systems without catalysts and with only non-
cooperative rules, yet with all objects being toxic.

5.1 Connection to L Systems

Example 1. Take the following P system with all objects being toxic.

Πint =
(
O = {a, b}, µ = []

1
, w1 = a,R1 = {a→ aa, a→ b}, i0 = 1

)
.

In n computation steps we obtain a2
n

and in a final step b2
n

. Only in this last
step we may apply the rule a→ b introducing the toxic symbol b for which no rule
exists. Hence, the generated set is Ngen (Πint) = {2n | n ≥ 0}.

Example 2. The same set is accepted by the P automaton Πaut and generated by
the P system Πext with external output:

Naut (Πaut) = Ngen (Πext) = Ngen (Πint) = {2n | n ≥ 0} where

Πaut =
(
O = {a, b}, µ = []

1
, w1 = a,R1 = {a→ aa, a→ (b, come)}, i0 = 1

)
;

Πext =
(
O = {a, b}, µ = []1 , w1 = a,R1 = {a→ aa, a→ b(b, out)

}
, i0 = 0).

Indeed, the behavior of Πaut and Πext is the same as that of Πint, except produc-
ing b inside the membrane is replaced by bringing in b from the environment, or
accompanied by sending out b to the environment. Again, if both rules are simul-
taneously applied, then the toxic objects b will block the computation, but still we
will get a result if only symbols b are present in the final configuration.

34 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

We now compare non-cooperative P systems with all objects being toxic to L
systems.

Lemma 7. For (γ, α) ∈ {(gen, int), (gen, ext), (aut,−)},

PsE0L ⊆ PsγOtoxallP1,α (ncoo) .

Proof. Let G = (V, T, P,w) be an E0L system. We recall that for each symbol
a ∈ V , P has to contain some rule with a on the left side. For every a ∈ T , we
replace a by Na throughout all the rules of P . Moreover, we take Na → a into
R for every a ∈ T . These terminal rules are exactly applied in the last step of
a derivation in the P system Π, whereas the other rules in R simulate the rules
from P . As the final step with using the rules Na → a is an additional derivation
step, instead of rules a → λ erasing a symbol a we instead have to use the rules
Na → E and E → λ where E is a new symbol representing the erased symbol for
one step.

Hence, we construct the corresponding non-cooperative P system Π with all
symbols being toxic as follows (for the automaton case, we have to insert Σ = T):

Π = (O = V ∪ {Na | a ∈ T} ∪ {E} , µ = []
1
, w1 = w,R1, i0 = 1),

R1 = {h(a)→ h(u) | a→ u ∈ P, a ∈ V } ∪ {Na → E | a→ λ ∈ P, a ∈ T}
∪ {Na → a | a ∈ T} ∪ {E → λ} ,

where h : V ∪{E} → V \T ∪{Na | a ∈ T}∪{E} is the morphism given by h(a) = a
for X ∈ V \ T ∪ {E} and h(a) = Na for a ∈ T .

By construction, every object from {Na | a ∈ T}∪ {V \ T} can evolve by rules
from R1, while objects in T cannot. If a computation in Π ends up with a config-
uration in which the skin contains both objects from T and objects not from T ,
then the computation is blocked without yielding any result. Therefore, the only
derivations of Π which will not be discarded are those in which Π simulates a
derivation of G up to some configuration h(w), w ∈ (T ∪ {E})∗, and then applies
the rules Na → a and eventually the rule E → λ, and only those, to transform
h(w) into w.

To show the same result for external output, it suffices to set i0 to 0 and
replace every rule Na → a by Na → a(a, out). Alternatively, to show the same
result for external input, it suffices to set i0 to 0 and replace every rule Na → a
by Na → a(a, come). �

In the case of P systems with internal output (without terminal filtering) and
only one membrane, we can directly show the converse inclusion.

Lemma 8. PsgenOtoxallP1,int (ncoo) ⊆ PsE0L.

Proof. Let Π = (O,µ = []1 , w1, R1, i0 = 1) be a non-cooperative P system
with all objects being toxic. We construct the corresponding E0L system G as
follows:

Variants of P Systems with Toxic Objects 35

G = (V = O ∪ {#} , T, P, w = w1),

T = {a ∈ O | there exists no rule a→ u ∈ R with u ∈ O∗} ,
P = R1 ∪ {a→ # | a ∈ T ∪ {#}} .

We immediately observe that, whenever G introduces a terminal symbol, it
will be rewritten into a trap symbol in the next step. Thus, the only way for G to
produce a terminal string is to move from a string over V \T to a string over T in
a single step. But this exactly corresponds to the way in which Π evolves, because
rewriting a terminal a into # in G corresponds to discarding the derivation of Π
in which a is produced alongside non-terminals. �

Corollary 1. PsgenOtoxallP1,int (ncoo) = PsE0L.

Proof. The result follows from Lemma 8 in combination with Lemma 7 for the
case of P systems with internal output and only one membrane. �

In case of multiple membranes or terminal filtering or both, however, there is a
problem: symbols that represent objects in non-output regions do not contribute
to the output. Yet, since E0L is known to be closed under arbitrary morphisms
(see, e.g., [16] volume 1 page 34), the result can be strengthened as follows:

Theorem 2. For all m ≥ 1,

PsE0L = PsgenOtoxallP
T
m,int (ncoo)

= PsgenOtoxallPm,int (ncoo)

= PsgenOtoxallPm,ext (ncoo)

= PsautOtoxallPm (ncoo) .

Proof. We only have to show that any P system with internal output, eventually
even with terminal extraction, or else with external output (terminal extraction
need not be considered in this case, as any non-wanted symbol need not be sent
out) or external input can be simulated by an E0L-system.

First, we can flatten the given P system Π with internal output to only one
membrane, yet keeping in mind that then we have to use terminal extraction to
obtain the results in a clean form. Hence, in this case, we simply apply the construc-
tion from Lemma 8 to the flattened P system Π ′ thus obtaining an E0L-system G
generating a set of strings which exactly represent the multisets generated by the
P system Π ′. In order to obtain the original results, we have to apply a projec-
tion hT erasing all non-terminals only yielding strings/multisets over T . As E0L is
closed under arbitrary morphisms (see, e.g., [16] volume 1 page 34), from G we can
construct an E0L-system G′ directly generating the desired results. If the original
P system Π used terminal extraction to a terminal alphabet Σ, we can to apply
another projection from T to Σ to obtain the desired results (by constructing a
corresponding E0L-system G′′).

36 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

If we have a P system Π using external output, we instead first flatten the
system to an equivalent P system Π ′ with only one membrane, but still having
external output. Then, from this P system Π ′ with one membrane and external
output we construct an equivalent P system Π ′′ with only one membrane region
having internal output in the skin membrane, but with terminal filtering. Instead
of sending a symbol a out by using (a, out) on the right side of a rule in Π, we
replace any occurrence of (a, out) by Na in the rules of the skin membrane in Π ′′.
In that way, the P system Π ′′ keeps each symbol a sent out by Π in the new
inner output membrane i0 = 1 as Na. In the skin membrane, the rules Na → Na
keep these symbols alive until the application of the rules Na → a allows the
system to halt with yielding the desired result if exactly with the application of
these terminal rules no non-terminal afterwards remains in the whole system. As a
subtle detail we have to mention that we again, as in the proof of Lemma 7, have to
be careful with λ-rules a→ λ (again we use the rules a→ E and E → λ instead),
but now also with any other “passive” object b which cannot evolve any more -
such a symbol has to be treated like a terminal symbol, going to an intermediate
symbol Nb before it finally goes to b, and then each of these symbols is projected
to λ by using the terminal extraction.

Hence, we conclude that computations in Π ′′ and in Π yield the same results.
According to the construction given above, we can obtain an E0L-system G′′ such
that Ps (L (G′′)) = Ps (Π ′′) = Ps (Π).

In the automaton case, we can use similar ideas as in the previous case: instead
of (a, come) for terminal symbols from the input alphabet Σ on the right side
of rules of a P automaton Π we use NaN

′
a in a flattened P system Π ′′ with

internal output and terminal extraction. Then N ′a is used instead of a in the rules
of Π ′′ used instead of the corresponding rules of Π, and we also add the rules
Na → Na and the terminal rules Na → a. Moreover, any “passive” object b which
cannot evolve any more has to be treated as already explained before; the same
holds for the dealing with λ-rules a → λ. Hence, finally projecting all terminal
symbols on themselves and all other symbols on λ with the projection hΣ , we
have got a P system with internal input and terminal extraction Π ′′ such that
hΣ(Ps(Π ′′)) = Ps(Π). �

5.2 Internal Input

However, the accepting power of P systems with internal input is much lower,
namely subregular.

Lemma 9. PsaccOtoxallPm(ncoo) (PsREG.

Proof. First, if a P system Π accepts any non-empty input over the input alphabet
Σ, then also the empty input is accepted. Indeed, take an arbitrary P system Π
accepting some multiset win ∈ Σ∗, say in m steps. Each of the objects, both initial
ones and input ones, initially being in the system, will produce some (possibly

Variants of P Systems with Toxic Objects 37

empty) multiset of objects which cannot further evolve by rules of Π. Clearly,
replacing win by λ and following exactly the same evolution of all initial objects,
we will get an accepting computation of at most m steps.

Second, for a similar reason, if win is accepted, than any submultiset of win is
accepted.

Third, if Π accepts some input win containing at most one occurrence of any
symbol in Σ, then it also accepts every input w′in ∈ (alph (win))

∗
, i.e., any multiset

over {a ∈ Σ | |win|a > 0}. Indeed, consider the accepting computation of win, say
of m steps. In this computation, every input object a from win is either erased in at
most m steps, or produces in exactly m steps some non-empty multiset of objects
that cannot evolve by rules of Π; let us call such symbols “passive”. Replacing each
input object by an arbitrary number of its copies, following the same evolution
as in the accepting computation before, we again get a computation where every
input object is either erased in at most m steps, or produces in exactly m steps
some non-empty multiset of passive objects. This computation will either erase
everything in at most m steps, or halt in exactly m steps.

Therefore, non-cooperative P systems with internal input with all symbols
being toxic can accept at most all possible unions of sets from {T ∗ | T ⊆ Σ}. �

It can be shown that last statement from the proof given above actually is an
equality.

Theorem 3. For all m ≥ 1,

PsaccOtoxallPm(ncoo) =

{
Ps

(
n⋃
i=1

T ∗i

)
| Σ alphabet, Ti ⊆ Σ, 1 ≤ i ≤ n, n ≥ 0

}
.

Proof. The inclusion ⊆ follows from the proof of the previous theorem, so it suffices
to prove that all such sets can indeed be accepted. For n = 0, ∅ can be accepted
by the P system

Π =
(
O = {a, b}, Σ = {a}, µ = []

1
, w1 = b, R1 = {b→ b}, i0 = 1

)
.

Take arbitrary numbers n > 0 and k > 0, an input alphabet Σ =
{aj,0 | 1 ≤ j ≤ k} and sets Ti ⊆ Σ, 1 ≤ i ≤ n. We construct a P system accepting
precisely all inputs from

⋃n
i=1 T

∗
i .

Π =
(
O,Σ, µ = []

1
, w1 = λ,R1, i0 = 1

)
,

O = {aj,i | 0 ≤ i ≤ n+ 1, 1 ≤ j ≤ k} ∪ {b},
R1 = {aj,i → aj,i+1 | 0 ≤ i ≤ n, 1 ≤ j ≤ k}
∪ {aj,i → b | 1 ≤ i ≤ n, 1 ≤ j ≤ k, aj,0 ∈ Ti}
∪ {aj,n+1 → aj,n+1 | 1 ≤ j ≤ k} .

Indeed, every input object aj,0 either enters an infinite loop after n + 1 steps, or
evolves into b (that cannot further evolve by the rules of Π) after some number i

38 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

of steps if aj,0 ∈ Ti. The only way a non-empty input is accepted is if all objects
evolve into b in the same number i of steps, which is possible if and only if the
input is contained in

⋃n
i=1 T

∗
i . �

5.3 Describing Languages

In the previous subsection we have studied numbers and vectors described by
non-cooperative P systems with all objects being toxic. We have shown that they
characterize very limited subregular behavior in the case of internal input, while
in the cases of external input, internal output or external output their power is
strongly related to that of E0L systems. A natural question arises – what can
we say about languages? We now illustrate the difficulty of this problem by a
few examples, generating non-context-free languages and illustrating the power of
synchronization emerging from halting with toxic objects.

Example 3. Our first example shows how a simple non-context-free language can
be accepted using external input:

Π =
(
O = {S, a, b, c}, µ = []

1
, w1 = S,R1, i0 = 0

)
,

R1 = {S → S(a, come), S → a, a→ a, a→ (bc, come)} .

This P system accepts the language La(bc) =
⋃
n≥1 {an}Perm (bncn), since the

multiplicities of symbols a, b and c brought in are the same, and all objects b and
c must be brought inside in the same (i.e., in the last) step of the computation,
which must be after all objects a have been brought inside.

Note that, without toxicity, the result would still be some non-context-free
language consisting of the same number of symbols a, b and c, but it would also
contain strings which are not of the form {a}∗ {b, c}∗.

It is no longer surprising that replacing (x, come) by x(x, out) for all x ∈
{a, b, c} in the system above, we get a P system with external output generating
the same language La(bc).

Example 4. If, in the previous example, we replace each rule a → (bc, come) by
the two rules a → (b, come) and b → (c, come), we get a P automaton accepting
language La(b)(c) = {anbncn | n ≥ 1}, because to halt without being blocked, all
objects c must be brought inside in the same step, and therefore also all objects
b must have been brought inside just one step before that, and hence all objects
a must have already been brought in by then. Clearly, replacing (x, come) by
x(x, out) for all x ∈ {a, b, c} throughout all the rules, we get a P system with
external output again generating the language La(b)(c).

In the rest of this section we show that non-cooperative P systems can generate
rather complicated languages even without making use of the synchronization
power of toxicity, and taking all objects to be toxic does not change the language.

Variants of P Systems with Toxic Objects 39

The following example of a difficult language generated by a non-cooperative
P system with external output is taken from [2]. This language is considerably
more “difficult” than languages in REG · Perm(REG), which informally can be
explained as follows: besides permutations of symbols sent out at the same time,
it exhibits another kind of non-context-freeness, although this second source of
“difficulty” alone, however, could be captured as the intersection of two linear
languages.

Example 5. Consider the non-cooperative P system with external output

ΠD =
(
O = {D,D′, a, b, c, a′, b′, c′} , µ = []

1
, w1 = DD,R1, i0 = 0

)
,

R1 =
{
D → (a, out)(b, out)(c, out)D′D′, D → (a, out)(b, out)(c, out),

D′ → (a′, out)(b′, out, (c′, out)DD, D′ → (a′, out)(b′, out)(c′, out)
}
.

The contents of region 1 is a population of objects D, initially 2, which are
primed if the step is odd. Assume that there are k objects inside the system.
In each step, every symbol D is either erased or doubled (and primed or de-
primed), so the next step the number of objects inside the system will be any
even number between 0 and 2k. In addition to that, the output during that step
is Perm

(
(abc)k

)
, primed if the step is odd. Hence, the generated language can be

described as

L (ΠD) =
⋃

k0=1, 0≤ki≤2ki−1, 1≤i≤2t+1, t≥0

Perm
(
(abc)2k0

)
Perm

(
(a′b′c′)2k1

)
· · ·

Perm
(
(abc)2k2t

)
Perm

(
(a′b′c′)2k2t+1

)
.

To give an idea of how complex a language generated by a non-cooperative
membrane system can be, imagine that the skin may contain populations of mul-
tiple symbols that (like D in the example above) can be erased or multiplied (with
different periods), and also be rewritten into each other. The same, of course, hap-
pens in usual context-free grammars, but since the terminal symbols in P systems
with external output are collected from the derivation tree level by level instead
of from left to right as in context-free grammars, the effect is quite different.

We finally again mention that the generated language remains the same even
if all objects are toxic. Moreover, by replacing all outputs of the form (x, out) by
(x, come) and adding rules x → λ we can convert this P system with external
output into a P automaton defining the same language.

6 Catalytic P Systems with Exactly the Catalysts being
Toxic Generate at Least PsMAT

In this section we investigate catalytic P systems where precisely the catalysts are
toxic, i.e., the computation is aborted if any of them is not used in some step

40 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

before the computation halts. We prove that at least all Parikh sets of matrix
languages can be generated in this setting, using the fact that partially blind
register machines generate precisely PsMAT .

Theorem 4. For all m ≥ 1,

PsgenOtoxcatPm,int(cat∗) ⊇ PsMAT.

Proof. Let M = (d,B, l0, lh, P) be a partially blind register machine, with the first
k registers being its output registers. Let e = fk+1 · · · fd and let e(r) be e without
fr. Without loss of generality, we assume that the first instruction labeled by l0 is
an ADD-instruction. We then construct the following P system.

Π = (O,C, µ = []
1
, w1 = l0efd+1, R1, i0 = 1), where

C = {cr | k + 1 ≤ r ≤ d} ∪ {cp},
O = C ∪B ∪ {fr | m+ 1 ≤ r ≤ d+ 1} ∪ {or | 1 ≤ r ≤ d},
R1 = {cpli → cpljore, cpli → cplkore | li : (ADD(r), lj , lk) ∈ P}
∪ {cpli → cplje(r) | li : (SUB(r), lj) ∈ P}
∪ {cror → cr, crfr → cr, crfd+1 → cr# | k + 1 ≤ r ≤ d}
∪ {x→ # | x ∈ B ∪ {#} ∪ {fr | k + 1 ≤ r ≤ d}}
∪ {cplh → cpe} ∪ {cpfd+1 → cp} .

The catalyst cr for the working register r, k + 1 ≤ r ≤ d, is kept busy by the
single copy of the symbol fr; only in the case of a SUB-instruction on r, in the next
step the rule cror → cr should be applied, hence, e(r) is taken instead of e, thus
leaving the catalyst cr free for an object or. On the other hand, if such a symbol
or in that case is not present, due to maximal parallelism the rule crfd+1 → cr#
introducing the trap symbol # has to be applied. The catalyst cp is used for
guiding the computation according to the program given by P . When M reaches
the final halting instruction labeled by lh, then for a last time e is generated, but
no instruction label is generated any more, hence, in the last step of a successful
computation of Π the rule cpfd+1 → cp will be applied together with the rules
crfr → cr for k + 1 ≤ r ≤ d. The computation in Π will then only stop with
yielding a result if no rule can be applied any more, i.e., if no trap symbol has
been introduced during the computation, and moreover, at the end no symbol or
for k + 1 ≤ r ≤ d is present, i.e., if all working registers are empty.

The lack of the symbol fr when a SUB-instruction on register r is carried out
guarantees that the computation is trapped if no register symbol or, k+1 ≤ r ≤ d,
is present by the enforced application of the rule crfd+1 → cr#. If the final rule
cpfd+1 → cp is applied too early, i.e., as long as some l ∈ B is present, then the
introduction of the trap symbol # by the rule l → # is enforced by the maximal
parallelism.

We finally observe that only the catalysts are toxic here, so any number of
symbols or with 1 ≤ r ≤ d can be generated during any successful computation.

�

Variants of P Systems with Toxic Objects 41

The preceding theorem shows that a partially blind register machine with m−1
working registers can be simulated by a P system with internal output in the single
membrane with at most m catalysts these being exactly the toxic objects.

7 Conclusion and Future Research

In this paper we have introduced multiple variants of P systems with toxic objects,
depending on which objects are toxic. It is important to note that so far in P
systems toxic objects and the concept of synchronized halting with toxic objects
has not been used in the literature, and thus toxic objects also have not been used
to change the computational power of P systems, but rather to decrease the rule
complexity of P systems (toxic objects in that case being equivalent to the usual
ones, additionally having rules rewriting them into a trap symbol thus forcing the
computation to never halt). In this paper, the results are quite different. The most
visible one is the non-cooperative case, where toxicity boosts the computational
power from PsREG to PsE0L. On the other side, requiring certain, or even
all, objects to be toxic can also bring limitations to the computational power.
The most dramatic limitation is the power of purely catalytic P systems, where
complete toxicity lowers the power of internal output from PsRE all the way down
to PsFIN , and the power of internal input from NRE down to either accepting
all numbers, or accepting very restricted finite sets.

Most results we have obtained here describe the computational power of P
systems with all objects being toxic or precisely all catalysts being toxic, depending
on the kinds of rules used (e.g., non-cooperative, purely catalytic or catalytic), the
number of membranes, the output region, in terms of number sets, vector sets or
languages, or even computing relations. We repeat the results we obtained in this
paper, for easier comparison.

For all m ≥ 1, we have shown that

PsgenOtoxallPm,int (pcatk) = PsFIN, k ≥ 1,
NaccOtoxallPm (pcatk) = {{d} | 0 ≤ d ≤ k − 1}

∪ {{0, k′} | 0 ≤ k′ ≤ k} ∪ {∅,N} , k ≥ 1,
LgenOtoxallPm (pcatk) = REG, k ≥ 1,
LautOtoxallPm (pcatk) = REG, k ≥ 2,

RelautOtoxallPm (pcatk) = RelREG, k ≥ 2,
LautOtoxallPm (pcat1) = IDREG,

RelautOtoxallPm (pcat1) = RelIDREG,
PsgenOtoxallP

T
m,int (ncoo) = PsE0L,

PsgenOtoxallPm,int (ncoo) = PsE0L,
PsgenOtoxallPm,ext (ncoo) = PsE0L,

PsautOtoxallPm (ncoo) = PsE0L,
PsaccOtoxallPm(ncoo) = {Ps (

⋃n
i=1 T

∗
i) | Σ alphabet, Ti ⊆ Σ, 1 ≤ i ≤ n, n ≥ 0} ,

PsgenOtoxcatPm,int(cat∗) ⊇ PsMAT.

42 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

Non-cooperative P systems with all objects being toxic have been shown to be
quite versatile, for example, we can easily generate {anbncn | n ≥ 1}.

Multiple problems remain open. We find particularly interesting the following
ones:

• Characterize PsgenOtoxcatPm,int(cat∗) and all other possible variants of re-
stricting the set of toxic objects not yet covered by the results obtained in this
paper.

• There still remains the open problem how to characterize the families of sets
of (vectors of) natural numbers generated by [purely] catalytic P systems with
only one [two] catalyst[s].

References

1. A. Alhazov, B. Aman, R. Freund: P systems with anti-matter. In: [9], 66–85.
2. A. Alhazov, C. Ciubotaru, Yu. Rogozhin, S. Ivanov: The family of languages gen-

erated by non-cooperative membrane systems. In: Gh. Păun, M.J. Pérez-Jiménez,
A. Riscos-Núñez, G. Rozenberg, A. Salomaa: Membrane Computing, International
Conference, CMC11, Jena, Lecture Notes in Computer Science 6501, 2011, 65–79.

3. R. Alur, P. Madhusudan: Visibly pushdown languages. In: L. Babai (Ed.): Proceedings
of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA,
June 13-16, 2004, 202–211, ACM, 2004.

4. E. Csuhaj-Varjú, Gy. Vaszil: P automata or purely communicating accepting P sys-
tems. In: Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron (Eds.): Membrane
Computing, International Workshop, WMC-CdeA 2002, Curtea de Argeş, Roma-
nia, August 19–23, 2002, Revised Papers. Lecture Notes in Computer Science 2597,
Springer, 2003, 219–233.

5. R. Freund, L. Kari, M. Oswald, P. Sośık: Computationally universal P systems with-
out priorities: two catalysts are sufficient. Theoretical Computer Science 330 (2),
251–266 (2005).

6. R. Freund, A. Leporati, G. Mauri, A. E. Porreca, S. Verlan, C. Zandron: Flatten-
ing in (tissue) P systems. In: A. Alhazov, S. Cojocaru, M. Gheorghe, Yu. Rogozhin,
G. Rozenberg, A. Salomaa (Eds.): Membrane Computing - 14th International Con-
ference, CMC 2013, Chişinău, Republic of Moldova, August 20-23, 2013, Revised
Selected Papers, Lecture Notes in Computer Science 8340, Springer, 2014, 173–188.

7. R. Freund, I. Pérez-Hurtado, A. Riscos-Núñez , S. Verlan: A formalization of mem-
brane systems with dynamically evolving structures. International Journal of Com-
puter Mathematics 90 (4) (2013), 801-815.

8. R. Freund, M. Oswald: A short note on analysing P systems. Bulletin of the EATCS
78, 2002, 231–236.

9. M. Gheorghe, G. Rozenberg, A. Salomaa, P. Sośık, C. Zandron: 15th International
Conference, CMC 2014, Prague, Czech Republic, August 20-22, 2014, Revised Se-
lected Papers. Lecture Notes in Computer Science 8961, Springer, 2014.

10. M. L. Minsky: Computation: Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, New Jersey, USA, 1967.

11. A. Okhotin, K. Salomaa: Complexity of input-driven pushdown automata. SIGACT
News 45 (2), 47–67 (2014).

Variants of P Systems with Toxic Objects 43

12. Gh. Păun: Computing with Membranes. J. Comput. Syst. Sci. 61, 108–143 (2000);
also see TUCS Report 208, 1998, www.tucs.fi.

13. Gh. Păun: Computing with Membranes. Journal of Computer and System Sciences
61 (1) (2000), 108–143 (and Turku Center for Computer Science-TUCS Report 208,
November 1998, www.tucs.fi).

14. Gh. Păun: Membrane Computing. An Introduction. Springer, 2002.
15. Gh. Păun, G. Rozenberg, A. Salomaa (Eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press, 2010.
16. G. Rozenberg, A. Salomaa (Eds.): Handbook of Formal Languages, 3 volumes.

Springer, 1997.
17. P. Sośık, J. Matyšek: Membrane computing: when communication is enough. In:

C. Calude, M. Dinneen, F. Peper (Eds.): Unconventional Models of Computation
2002, Lecture Notes in Computer Science 2509, Springer, 2002, 264–275.

18. The P Systems Website: http://ppage.psystems.eu.

