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Summary. We further investigate the parallel array P systems recently introduced by
K.G. Subramanian, P. Isawasan, I. Venkat, and L. Pan. We first make explicit several
classes of parallel array P systems (with one or more axioms, with total or maximal
parallelism, with rules of various types). In this context, some results from the above
mentioned paper by Subramanian et al. are improved. A series of open problems are
formulated.

1 Introduction

The generality/versatility of membrane computing is already a well known fact,
the computing framework abstracted from the cell structure and functioning can
cover a large variety of processes, dealing – in particular – with a large variety
of objects processed in the compartments of membrane structures. The arrays
(in general, 2D and 3D figures of various types) are one of the types of objects
considered already since 2001, see [3]. A direct extension from string objects to
two-dimensional arrays was introduced in [1] and then investigated in a series of
papers.

A recent contribution to this research area is [6], where a natural counterpart
of the array P systems from [1] is considered: parallel rewriting of arrays, instead of
the sequential rewriting from [1]. Actually, the kind of parallelism investigated in
[6] is that suggested by Lindenmayer systems: all nonterminals of an array should
be rewritten in each step. A possible alternative, closer to the style of membrane
computing, is to consider the maximal parallelism: a multiset of rules is used which
is maximal among the multisets of applicable rules in a given moment.

In the present paper, we explicitly consider these two kinds of parallelism, and
we prove that most of the results from [6] hold true for both kinds of parallelism,
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also improving those results (less membranes are used in some of them, while the
powerful priority relation is avoided in other results).

Several questions remain open; several topics for further research are formu-
lated.

2 Definitions and Notations

It is useful for the reader to be familiar with basic elements of membrane com-
puting, e.g., from [4] (with up-dated information available at [7]), and of array
grammars, but the used notions will be recalled below. Actually, in what con-
cerns the arrays, we will usually use the pictorial representation, hence we need a
minimal formalism (otherwise, cumbersome if rigorously formulated).

The arrays we consider consist of finitely many symbols from a specified alpha-
bet V placed in the points (we call them pixels) of Z2 (the plane); the points of the
plane which are not marked with elements of V are supposed to be marked with
the blank symbol # /∈ V . Given an array W over V , supp(W ) denotes the set of
points in Z2 marked with symbols in V . In order to specify an array, it is usual to
specify the pixels of the support, by giving their coordinates, together with their
associated symbols from V , but, as we said above, we will pictorially represent the
arrays, indicating their non-blank pixels. These pictures should be interpreted as
arrays placed in any position of the plane (congruent, possible to be superposed
by means of a translation).

We denote by V ∗2 the set of all two-dimensional arrays of finite support over
V , including the empty array, denoted by λ. Any subset of V ∗2 is called an array
language.

We handle the arrays by means of rewriting rules. An array rewriting rule (over
an alphabet V ) is written as a usual string rewriting rule, in the form W1 → W2,
where W1,W2 are isotonic arrays over V : W1 and W2 cover the same pixels, no
matter whether they are marked with symbols in V or with #. When graphically
representing an array, usually we ignore the blank pixels, but, when representing
rewriting rules, the pixels marked with # are also explicitly shown. A rule as above
is used to rewrite an array W in the natural way: a position in W is identified
where W1 can be superposed, with all pixels matching, whether or not they are
marked with symbols in V or with #, and then those pixels are replaced with W2

(the fact that W1 and W2 are isotonic ensures the fact that this replacement is
possible). If the result is the array W ′, we write W =⇒ W ′. The reflexive and
transitive closure of the relation =⇒ is denoted by =⇒∗.

Similar to string rewriting rules, the array productions can be classified ac-
cording to their form. We consider here only two types of rules, context-free and
regular. Remember that all rules we work with are isotonic (the shapes of the left
hand side and the right hand side are identical, only the marking, by blank or
non-blank symbols, differs). Thus, a context-free rule is an isotonic one with only
one non-blank pixel in its left hand side.
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Note that we have not distinguished between terminal and nonterminal sym-
bols, like in Chomsky grammars; for regular rules we need such a distinction. Thus,
a regular rule over the alphabets T and N , N being the nonterminal one, is a rule

of one of the following forms: A # → a B, # A → B a,
#
A

→ B
a
,
A
#

→ a
B
, A →

B, A → a, where A,B ∈ N and a ∈ T .
Because in what follows we work, like in [6], in a Chomsky framework, with

terminal and nonterminal symbols, we also impose that in a context-free rule the
single non-blank pixel in the left hand side is marked with a nonterminal symbol.

Before introducing the array P systems, we recall a notion useful below: two-
dimensional right-linear grammars.

Such a grammar [2] is a constructG = (Vh, Vv, Vi, T, S,Rh, Rv), where Vh, Vv, Vi

are the horizontal, vertical, and intermediate alphabets of nonterminals, Vi ⊆ Vv,
T is the terminal alphabet, S ∈ Vh is the axiom, Rh is the finite set of horizontal
rules, of the forms X → AY,X → A, for X,Y ∈ Vh, A ∈ Vi, and Rv is the finite
set of vertical rules, of the forms A → aB,A → a, for A,B ∈ Vv, a ∈ T .

A derivation in G has two phases, an horizontal one, which uses rules from
Rh, and a vertical one, which uses rules from Rv. The horizontal derivation is as
usual in a string grammar. In the vertical phase, the rules are used in parallel,
downwards, with the restriction that the terminal rules are used simultaneously
for all vertical nonterminals. Thus, in the end, a rectangle is obtained, filled with
symbols in T . The set of all rectangles generated in this way by G is denoted by
L(G) and the family of all languages of this form is denoted by 2RLG.

Two array languages which will be used below are LR, of all hollow rectangles
with the edges marked with a (one element of this language is shown in Fig. 1),
and LS , of all hollow squares with the edges marked with a.

a a a a a a a a a
a a
a a
a a
a a a a a a a a a

Fig. 1. A hollow rectangle in LR.

3 Parallel Array P Systems

We pass now to define the parallel array P systems. Such a device (of degreem ≥ 1)
is a construct

Π = (V, T,#, µ, F1, . . . , Fm, R1, . . . , Rm, io),

where: V is the total alphabet, T ⊆ V is the terminal alphabet, # is the blank
symbol, µ is a membrane structure with m membranes labeled in a one-to-one way
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with 1, 2, . . . ,m, F1, . . . , Fm are finite sets of arrays over V associated with the m
regions of µ, R1, . . . , Rm are finite sets of array rewriting rules over V associated
with the m regions of µ; the rules have attached targets here, out, in (in general,
here is omitted), hence they are of the form W1 → W2(tar); finally, io is the label
of a membrane of µ specifying the output region.

In what follows, we only consider array P systems with regular (REG) and
context-free (CF) rules – with the symbols in V − T considered as nonterminals.

A computation in an array P system is defined in the same way as in a symbol
object P system, with the following details. Each array from a compartment of
the system must be rewritten by the rules in that compartment. The rewriting is
parallel, with two types of parallelism: (1) the total one, indicated by allP, which
means that all nonterminal symbols from the array are rewritten, and (2) the
maximal one, indicated by maxP, which means that a multiset of rules is applied
which is maximal, no further rule can be added to it. For any two rules used
simultaneously, no pixel of their left hand sides may overlap (i.e., cover the same
pixel of the rewritten array).

An important point appears here in what concerns the target indications of the
rules: in each compartment, in a step we apply a multiset of rules with the same
target indication. This is a very strong restriction, because it refers to all arrays
from the compartment. In this paper, we work under this restriction. A weaker
and somewhat more natural condition, which remains to be investigated (e.g., are
the results proved below valid also in this case?), is to impose the restriction to
use rules with the same target separately for each rewritten array (thus, separate
arrays may be rewritten by rules with different targets). Of course, the two variants
coincide for systems with only one axiom in the initial configuration.

The arrays obtained by an allP or a maxP rewriting are placed in the region
indicated by the target associated with the used rules, in the usual way in mem-
brane computing. It is important to stress the fact that all arrays from a given
compartment travel together during a computation.

A computation is successful only if it halts; that is, it reaches a configuration
where no rule can be applied to the existing arrays. The result of a halting compu-
tation consists of the arrays composed only of symbols from T placed in the region
with label io in the halting configuration. The set of all such arrays computed (we
also say generated) by a system Π is denoted by A(Π).

Note that a computation which produces a terminal array (hence no rule can be
applied to it), but still can rewrite another array, is not halting; if the rewriting of
one array continues forever, no matter how many terminal arrays were produced,
then no result is obtained.

We denote by PAPm(axk, α, β) the family of all array languages A(Π) gener-
ated by systems Π as above, with at most m membranes, at most k initial arrays
in its compartments (Σm

i=1card(Fi) ≤ k), with rules of type α ∈ {REG,CF},
working in the β ∈ {allP,maxP} mode. When m or k is not bounded, then it is
replaced with ∗.
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The following results were proved in [6] (pri indicates the use of a priority
relation on the rules):

Lemma 1 (Lemma 3 in [6]). 2RLG ⊆ PAP3(ax1, CF, allP ).

Lemma 2 (Lemma 4 in [6]). PAP3(ax1, CF, allP )− 2RLG ̸= ∅.

Lemma 3 (Theorem 3 in [6]). LR ∈ PAP2(ax1, REG, allP, pri).

Lemma 4 (Theorem 4 in [6]). LS ∈ PAP3(ax1, REG, allP, pri).

In what follows, we will improve all these results in terms of the number of
membranes in the first two lemmas and avoiding the priority relation in the last
two lemmas (these two results are obtained at the price of using more than one
axioms or using the maxP way of applying the rules).

4 Results

The first two lemmas above can be easily improved.

Proposition 1. 2RLG ⊆ PAP2(ax1, CF, β), β ∈ {allP,maxP}.

Proof. Let G = (Vh, Vv, Vi, T, S, Th, Rv) be a two-dimensional right-linear gram-
mar. We construct the array P system Π indicated in Figure 2. The horizontal
derivation is done in membrane 2. When the horizontal phase is completed, the
array is moved to the skin membrane, where the vertical phase is performed. Af-
ter the use of terminal rules, the array is moved back into the inner membrane.
If it is not terminal, then the computation continues forever, by means of the
rules A → A,A ∈ Vi. These rules are also introduced in order to make the maxP
computations to be allP computations. The equality L(G) = A(Π) is clear. ⊓⊔

Proposition 2. PAP2(ax1, CF, β)− 2RLG ̸= ∅, β ∈ {allP,maxP}.

Proof. Let us consider the array P system from Figure 3. From the axiom AB,
we generate a string XnY n (A goes to the left, simultaneously with B going to
the right), then, like in a two-dimensional right-linear grammar, in the skin region
we go vertically, marking the pixels with a in the columns of X and with b in the
columns of Y . We obtain (moved in the central membrane) a rectangle with the
same number of columns marked with a and with b, which is not in the family
2RLG (the same example was used also in [6]). The system works identically in
the allP and maxP modes. ⊓⊔

Removing the priority from the other two results from [6] can be done, but
making use of the possibility of having two axioms in the initial configuration
of the systems. One of them will generate the desired arrays, the other one will
generate “twin” arrays, which control the computation of the former arrays.
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X# → AY , for X → AY ∈ Rh

A → A, for A ∈ Vi

X → A(out), for X → A ∈ Rh

A → A(out), for A ∈ Vi

A
#

→ a
B
, for A → aB ∈ Rv

A → a(in), for A → a ∈ Rv

Fig. 2. The array P system from the proof of Proposition 1
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X → X

Y → Y

A → X(out)

B → Y (out)

X
#

→ a
X

Y
#

→ b
Y

X → a(in)

Y → b(in)

Fig. 3. The array P system from the proof of Proposition 2

Proposition 3. LR ∈ PAP2(ax2, REG, β), β ∈ {allP,maxP}.

Proof. We consider the array P system from Figure 4. The axioms and the rules
are written on two columns, in the left one those which lead to the desired arrays,
in the right one those handling the “twin” (control) arrays. The rules are similar,
with the right column ones dealing with primed nonterminal symbols.
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The axiom in the left column is placed in the skin region, the one in the right
column is placed in the inner membrane. In the first step, we move the inner
axiom to the skin membrane, while removing the subscript 0 from all symbols
A,B,A′, B′. Now we start the generation of the hollow rectangles.

The bottom horizontal line of the arrays is generated in the skin membrane,
by moving B and B′ to the right. At a given step, we switch to moving vertically,
with the arrays moved to membrane 2. We go upwards, synchronously, then the
arrays are again moved to the skin membrane, with D and D′ being the current
nonterminals. Both D and D′ go to left and, at some moment, D is replaced with
a (hence the “left” array is terminal (but we do not know whether the rectangle
is completed). Moved again in membrane 2, the left array remains idle, while
the right one can be rewritten – and, because of the parallelism, this must be
done – if (and only if) D′ has a non-marked pixel in its left. This happens if
and only if the terminal array is not a complete hollow rectangle. The symbol D′′

will go up indefinitely, hence the computation never halts. Thus, only the halting
computations produce elements in the language LR. ⊓⊔

A similar result can be obtained for the language of hollow squares.

Proposition 4. LS ∈ PAP2(ax2, REG, β), β ∈ {allP,maxP}.

Proof. We consider the array P system from Figure 5, again with the axioms and
the rules written on two columns, with the same significance as above. In the first
step, we move the axiom from the skin region to the inner membrane, while also
removing the subscript 0.

In the inner membrane we start constructing the squarea, from the left bottom
corner, growing here the left and the bottom edges. At some moment, the two
arrays are moved to the skin membrane, where the upper and the right edges
are constructed. The work on the “left” array is terminated at the moment when
the arrays are moved to the inner membrane. We check here whether or not the
square is completed. It is not completed if and only if the nonterminal B′′ has
a non-marked pixel above it. If this is the case, the computation will continue
forever, with B′′′ going to the right, hence the computation never halts. Checking
all details remains as an exercise for the reader. ⊓⊔

The maxP mode of using the rules is, intuitively speaking, able of “appearance
checking”, which is known to be a powerful feature of regulated grammars. This is
confirmed also in our framework: we can generate the languages LR, LS by means
of array P systems with only one axiom, at the price of using context-free rules –
actually, in the construction below we have only three non-regular rules, of rather
simple forms – used in the maxP mode.

Proposition 5. LR ∈ PAP2(ax1, CF,maxP ).

Proof. We consider the array P system from Figure 6. We start in the skin mem-
brane, growing the bottom edge. At some moment, we pass to growing the vertical
edges, and the array is moved to the inner membrane.
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a
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#
B

→ B
a
(in)

#D → Da

D → a(in)

A′ → A′

B′# → aB′

#
A′ → A′

a
(in)

#
B′ → B′

a
(in)

#D′ → D′a

D′ → D′(in)

#
A

→ A
a

#
B

→ B
a

A → a(out)

B → D(out)

#
A′ → A′

a

#
B′ → B′

a

A′ → a(out)

B′ → D′(out)

#D′ → D′′a

#
D′′ → D′′

a

A′
0 → A′(out)

B′
0 → B′(out)

Fig. 4. The array P system from the proof of Proposition 3

After the array is moved to the inner membrane, the symbol B introduces two
nonterminals, X and B′. The latter one will grow the right hand edge, the symbol
X waits unchanged until the array is moved back to the skin membrane. Here we
both grow the upper edge, by means of the nonterminal C, and we change X to
Y , which is moved to the left, simultaneously with the symbol C.

At any moment, C is replaced with D and Y with Y ′ and the array is sent
to membrane 2. Here we check whether the rectangle is completed. D is replaced
with a. The symbol Y ′ can be rewritten if and only if it has a non-marked pixel
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B′′ → B′′(in)

Fig. 5. The array P system from the proof of Proposition 4

in its left hand place. If this is the case, hence the rectangle is not complete, the
symbol Z is introduced; if not, the rule #Y ′ → Z#(out) cannot be applied (the
maxP mode of using the rules allows rewriting only some nonterminals). Anyway,
the array is moved back to the skin region (at least the rule D → a(out) is used).
If Y ′ is still present, then it is simply erased by the rule Y ′ → #. Symbol Z cannot
be removed, hence the computation leads to a terminal array if and only if the
rectangle is completed. ⊓⊔

It remains as an exercise for the reader to use the same idea in order to prove
that LS ∈ PAP2(ax1, CF,maxP}. On the other hand, we see no way to replace
maxP with allP in these two results: LR ∈ PAP2(ax1, CF,maxP ) and LS ∈
PAP2(ax1, CF,maxP ).
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a
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X

#
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a

A → a(out)

B′ → C(out)

D → a(out)

#Y ′ → Z#(out)

Fig. 6. The array P system from the proof of Proposition 5

5 Concluding Remarks

The goal of this note was, on the one hand, to make explicit the features involved
in an array P system (especially, the number of axioms and the two types of
parallelism), and to make use of them in order to improve some of the results in [6],
in particular, to get rid of the powerful ingredient of the priority relation. Further
research efforts are necessary, to clarify the computing power of parallel array P
systems. For instance, we have the families PAPm(axk, α, β), for m ≥ 1, k = 1,
α ∈ {CF,REG}, β ∈ {allP,maxP}. What are the relations among them? Do the
parameters m and k induce infinite hierarchies? Besides CF and REG one can
also consider non-erasing CF rules (no restriction in this respect was considered
here).

A natural question is whether or not parallel array P systems are universal.
(The sequential ones considered in [1] are universal.)

Rather natural is the possibility, already mentioned, to impose the use of rules
with the same target for each array, separately, thus making possible that two
arrays from a given region can go in different places after rewriting. A related
issue is to consider other ways to control the communication, such as the t mode
from grammar systems area, already investigated, for the sequential case, for array
P systems in [5].
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Finally, we mention the problem of considering Lindenmayer-like array P sys-
tems, that is, pure (without nonterminals) or extended (with all symbols to be
rewritten, but accepting only terminal arrays).
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