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Summary. It is well known that the polynomial complexity class of recognizer polar-
izationless P systems with active membranes, without dissolution and with division for
elementary and non-elementary membranes is exactly the complexity class P (see [6],
Th. 2). In this paper, we prove that if such P system model is endowed with antimatter
and annihilation rules, then NP problems can be solved. In this way, antimatter is a
frontier of tractability in Membrane Computing.

1 Introduction

Antimatter is material composed of antiparticles, which have the same mass as par-
ticles of ordinary matter but have opposite charge. Encounters between particles
and antiparticles lead to the annihilation of the objects, giving energy propor-
tional to the total matter and antimatter mass, in accord with the mass-energy
equivalence equation, E = mc2.

The term antimatter was first used by Arthur Schuster in 1898, (see [15]). He
hypothesized antiatoms, as well as whole antimatter solar systems, and discussed
the possibility of matter and antimatter annihilating each other. The modern the-
ory of antimatter began in 1928, with the papers [4, 5] by Paul Dirac. Dirac
realised that the relativistic version of the Schrödinger wave equation for elec-
trons predicted the possibility of antielectrons. These were discovered by Carl D.
Anderson in 1932 [1] and named positrons (a contraction of ”positive electrons”).

In Membrane Computing, the notion of antimatter has been previously as-
sociated to anti-spikes in the framework of Spiking Neural P Systems (see, e.g.,
[10, 11, 16, 18]). In this context, when a spike and anti-spike appear in the same
neuron, the annihilation occurs and both, spike and anti-spike, disappear.
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In this paper, we prove that antimatter is a frontier of tractability in Membrane
Computing. As detailed below, it is well known that the polynomial complexity
class of recognizer P systems with active membranes without polarizations, without
dissolution and with division of elementary and non-elementary division is exactly
the complexity class P (see [6], Th. 2). In such paper, it is proved that if the
described P system model is endowed with dissolution rules, then NP-complete
problems can be solved. In this way, dissolution is a frontier of tractability.

In this paper, we consider the polynomial complexity class of recognizer P
systems with active membranes without polarizations, without dissolution and
with division of elementary and non-elementary division (i.e., the class which is
equal toP) and we add antimatter and the corresponding annihilation rules. In this
new model, we show a semi-uniform family of P systems which solves the Subset
Sum problem. Since the Subset Sum Problem is NP-complete, this P system
family shows that antimatter is a new frontier of the tractability in Membrane
Computing

The paper is organized as follows: In the next section, we recall some basics on
recognizer P systems, complexity classes and a previous result about dissolution
as a frontier of tractability. Section 3 is devoted to the concept of antimatter in
Membrane Computing. In Section 4, a solution to the Subset Sum problem by
using antimatter and annihilation rules is shown. The paper finishes with some
conclusions.

2 Recognizer P Systems

First of all, we recall the main notions related to recognizer P systems and com-
plexity in Membrane Computing. For a detailed description, see, e.g., [12, 14].

The main syntactic ingredients of a cell–like P system are the membrane struc-
ture, the multisets, and the evolution rules. A membrane structure consists of sev-
eral membranes arranged hierarchically inside a main membrane (the skin). Each
membrane identifies a region inside the system. When a membrane has no mem-
brane inside, it is called elementary. The objects can be described by symbols or by
strings of symbols, in such a way that multisets of objects are placed in the regions
of the membrane structure. The objects can evolve according to given evolution
rules, associated with the regions.

The semantics of the cell–like membrane systems is defined through a non–
deterministic and synchronous model. A configuration of a cell–like membrane
system consists of a membrane structure and a family of multisets of objects asso-
ciated with each region of the structure. At the beginning, there is a configuration
called the initial configuration of the system. In each time unit we can transform
a given configuration in another configuration by applying the evolution rules to
the objects placed inside the regions of the configurations, in a non–deterministic,
maximally parallel manner (the rules are chosen in a non–deterministic way, and
in each region all objects that can evolve must do it). In this way, we get transi-
tions from one configuration of the system to the next one. A computation of the
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system is a (finite or infinite) sequence of configurations such that each configu-
ration –except the initial one– is obtained from the previous one by a transition.
A computation which reaches a configuration where no more rules can be applied
to the existing objects and membranes, is called a halting computation. The result
of a halting computation is usually defined through the multiset associated with
a specific output membrane (or the environment) in the final configuration.

Let us recall that a decision problemX is a pair (IX , θX) where IX is a language
over a finite alphabet (the elements are called instances) and θX is a predicate
(a total Boolean function) over IX . Let X = (IX , θX) be a decision problem. A
polynomial encoding ofX is a pair (cod, s) of polynomial time computable functions
over IX such that for each instance w ∈ IX , s(w) is a natural number representing
the size of the instance and cod(w) is an multiset representing an encoding of the
instance. Polynomial encodings are stable under polynomial time reductions

2.1 The P systems Model

A P system with active membranes without polarizations, without dissolution and
with division of elementary and non-elementary division is a P system with Γ as
working alphabet, with H as the finite set of labels for membranes, and where the
rules are of the following forms:

(a) [ a → u ]h for h ∈ H, a ∈ Γ , u ∈ Γ ∗. This is an object evolution rule, associated
with a membrane labelled with h: an object a ∈ Γ belonging to that membrane
evolves to a string u ∈ Γ ∗.

(b) a [ ]h → [ b ]h for h ∈ H, a, b ∈ Γ . An object from the region immediately
outside a membrane labelled with h is introduced in this membrane, possibly
transformed into another object.

(c) [ a ]h → b [ ]h for h ∈ H, a, b ∈ Γ . An object is sent out from membrane
labelled with h to the region immediately outside, possibly transformed into
another object.

(d) [ a ]h → [ b ]h [ c ]h for h ∈ H, a, b, c ∈ Γ . An elementary membrane can be
divided into two membranes with the same label, possibly transforming some
objects.

(e) [ [ ]h1 [ ]h2 ]h0 → [ [ ]h1 ]h0 [ [ ]h2 ]h0 , where h0, h1, h2 are labels. They are division
rules for non–elementary membranes. If the membrane with label h0 contains
other membranes than those with labels h1, h2, then such membranes and their
contents are duplicated and placed in both new copies of the membrane h0; all
membranes and objects placed inside membranes h1, h2, as well as the objects
from membrane h0 placed outside membranes h1 and h2, are reproduced in
the new copies of membrane h0.

These rules are applied according to the following principles:

• All the rules are applied in parallel and in a maximal manner. In one step,
one object of a membrane can be used by only one rule (chosen in a non–
deterministic way), but any object which can evolve by one rule of any form,
must evolve.
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• If at the same time a membrane labelled with h is divided by a rule of type (d)
or (e) and there are objects in this membrane which evolve by means of rules
of type (a), then we suppose that first the evolution rules of type (a) are used,
and then the division is produced. Of course, this process takes only one step.

• The rules associated with membranes labelled with h are used for all copies of
this membrane. At one step, a membrane can be the subject of only one rule
of types (b)-(e).

We denote by AM0
−d,+ne the class of all recognizer P systems with active mem-

branes without polarizations, without dissolution and with division of elementary
and non-elementary division. We keep the subscript −d in order to stress that no
dissolution rules are used in this model.

2.2 Polynomial complexity classes in recognizer P systems

Let Π = (Π(w))w∈IX be a family of recognizer membrane systems and let R be a
class of recognizer P systems without input membrane. A decision problem X =
(IX , θX) is solvable in a semi-uniform way and in polynomial time by the family
Π = (Π(w))w∈IX of P systems of type R, and we denote this by X ∈ PMC∗

R, if Π
is polynomially uniform by Turing machines, that is, there exists a deterministic
Turing machine working in polynomial time which constructs the system Π(w)
from the instance w ∈ IX ; and Π is polynomially bounded, that is, there exists
a polynomial function p(n) such that for each w ∈ IX , all computations of Π(w)
halt in at most p(|w|) steps. It is said that Π is sound with regard to X if for each
instance of the problem w ∈ IX , if there exists an accepting computation of Π(w),
then θX(w) = 1 and Π is complete with regard to X if for each instance of the
problem w ∈ IX , if θX(w) = 1, then every computation of Π(w) is an accepting
computation.

Let R be a class of recognizer P systems with input membrane. A decision
problem X = (IX , θX) is solvable in a uniform way and polynomial time by a
family Π = (Π(n))n∈N, of P systems from R, and we denote this by X ∈ PMCR,
if the family Π is polynomially uniform by Turing machines, i.e., there exists a
polynomial encoding1 (cod, s) from IX toΠ such that the familyΠ is polynomially
bounded with regard to (X, cod, s); that is, there exists a polynomial function p,
such that for each u ∈ IX every computation of Π(s(u)) with input cod(u) is
halting and, moreover, it performs at most p(|u|) steps; and the family Π is sound
and complete with regard to (X, cod, s). It is easy to see that the classes PMC∗

R
and PMCR are closed under polynomial–time reduction and complement.

According to these formal definitions, in [6] it is proved that the polyno-
mial complexity class of recognizer P systems with active membranes with-
out polarizations, without dissolution and with division of elementary and non-
elementary division is exactly the complexity class P. With the standard notation,
P = PMCAM0

−d,+ne
= PMC∗

AM0
−d,+ne

.

1 See [12, 14] for the details.
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3 Antimatter

In this paper, we will use the physical inspiration of antimatter in the framework of
cell-like P systems. In such way, given two object a and b from the alphabet Γ , an
annihilation rule of a and b is written as [ab → λ]h. The meaning of the rule follows
the idea of annihilation: If a and b occur simultaneously in the same membrane with
label h, then both are consumed (disappear) and nothing is produced (denoted
by the empty string λ). Let us remark that both objects a and b are objects
from Γ and they can trigger any other rule of type (a) - (d) described above, not
only annihilation rules. Nonetheless, in order to make the readability easier, if b
annihilates the object a then b will be called the antiparticle of a and we will write
a instead of b.

With respect to the semantics, let us notice that this rule must be applied as
many times as possible in each membrane, according to the maximal parallelism,
i.e., if m copies of a and n copies of a occur simultaneously in a membrane of label
h, with m ≥ n and the rule [aa → λ]h is defined in the P system, then the rule is
applied n times, n copies of a and a are consumed and m− n copies of a are not
affected by this rule.

Finally, a last consideration about the application of the annihilation rule. Ac-
cording to the non-determinism, if an object a can trigger more than one rule of
types (a) - (d), then one rule of the applicable ones is non-deterministically cho-
sen. Nonetheless, annihilation rules introduce a novelty. According to the physical
intuition, if a and a occur simultaneously in the same membrane h and the anni-
hilation rule [aa → λ]h is defined, then it is applied, regardless other options. In
this sense, any annihilation rule has priority on the other types of rules.

For example, let us consider the rules R1 ≡ [a → cd]h, R2 ≡ [a]h → b [ ]h
and R3 ≡ [aa → λ]h defined on a membrane with label e. If the multiset inside
the membrane is ab, then R1 and R2 are applicable and one of then must be
non-deterministically chosen. Nevertheless, if the multiset is aba, then R3 must be
applied since it is an annihilation rule. If the multiset is a3ba2, then the annihilation
rule is applied twice, by consuming two copies of a and a and the third a is
consumed by one rule of R1 or R2 non-deterministically chosen.

Formally, a P systems with active membranes, without polarizations, without
dissolution, with division of elementary and non-elementary membranes and with
annihilation rules is a construct of the form Π = (O,H, µ,w1, . . . , wm, R) where:

1. m ≥ 1 is the initial degree of the system;
2. O is the alphabet of objects;
3. H is a finite set of labels for membranes;
4. µ is a membrane structure consisting of m membranes labelled with elements

of H;
5. w1, . . . , wm are strings over O, describing the multisets of objects placed in the

m regions of µ;
6. R is a finite set of rules of the types (a) - (e) describe in the Section 2.1 and

the following type of rules:
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(f) [ aa → λ ]h for h ∈ H, a a ∈ Γ . This is an annihilation rule, associated
with a membrane labelled with h: the pair of objects a a ∈ Γ belonging
simultaneously to that membrane disappear.

By following with the standard notation, we denote by AM0
−d,+ne,+ant the

class of these P systems, where −d denotes that dissolution rules are not used,
+ne denotes the use of elementary and non elementary division and we add +ant
to denote the use of antimatter and annihilation rules.

4 Solving the Subset Sum Problem

In this paper we show that the class of decision problems solvable in polynomial
time in a semi–uniform way by families of recognizer P systems in AM0

−d,+ne,+ant

contains the standard complexity class NP. Formally, we will prove the following
theorem

Theorem 1. NP ⊆ PMC∗
AM0

−d,+ne,+ant

We will prove it by the construction of a semi-uniform family of such P systems
that solves the Subset Sum Problem in a linear time. It is well known that the
Subset Sum problem is the following one: Given a finite set A, a weight function,
w : A → N, and a constant k ∈ N, determine whether or not there exists a subset
B ⊆ A such that w(B) = k. This problem has been widely studied in Membrane
Computing (see, e.g., [2, 3, 7, 8, 9, 13, 17]).

Let us start by considering a tuple u = (n, (w1, . . . , wn), k) to represent an
instance of the problem, where n stands for the size of A = {a1, . . . , an}, wi =
w(ai), and k is the constant given as input for the problem.

As usual, the idea of the design is better understood if we divide the solution
to the problem into several stages:

• Generation stage: for every subset of A, a membrane is generated via membrane
division.

• Weight calculation stage: in each membrane the weight of the associated subset
is calculated.

• Checking stage: for each membrane it is checked whether or not the weight of
its associated subset is exactly k. This stage cannot start before the previous
ones are over.

• Output stage: when the previous stage has been completed in all membranes,
the system sends out the answer to the environment.

For each instance u = (n, (w1, . . . , wn), k) of the Subset Sum problem we consider
the P system Π(u) defined as follows:

• Working alphabet:



Antimatter as a Frontier of Tractability 161

Γ (u) = {a, a, b, c1, c2, c2, d0, . . . , d2n+3, e1, . . . , en}
∪ {p1, . . . , pn, k2n+4, k2n+5, r2n+2, . . . , r2n+6}
∪ {yes2n+8, . . . , yes2n+k+12, yes2n+8, yes2n+k+12}
∪ {z2n+4, . . . , z2n+7, no1, . . . , no2n+k+10, no2n+k+10, no2n+k+11}
∪ {yes, no}

• Initial membrane structure: µ = [ [ [ [ ]0 ]1 ]2 ]3.
• Initial Multisets: w0 = d0, w1 = ∅, w2 = ∅ and w3 = no0.
• The set of evolution rules, R(u), consists of the following rules.

Generation stage

(a) [d2i → pi+1d2i+1]0 for i ∈ {0, . . . , n− 1}
[d2i+1 → d2i+2]0 for i ∈ {0, . . . , n− 1}
[d2n → d2n+1]0
[d2n+1 → d2n+2r2n+2]0

The goal of the counter di is to control the apparition of the object pi only in
the odd steps. These pi will produce the division of elementary membranes.

(b) [pi]0 → [ei]0 [b]0 for i ∈ {1, . . . , n}

The object pi triggers the rule for division of elementary membranes: in one
membrane is placed the object ei and in the other the object b.

(c) [ [ ]i [ ]i ]i+1 → [ [ ]i ]i+1 [ [ ]i ]i+1 for i ∈ {0, 1, 2}.

This is the set of rules for the division of non-elementary membranes.

These three first set of rules produce the membrane structure needed for com-
puting the solution. Notice that the objects pi produce the division of the elemen-
tary membranes for i ∈ {1, . . . , n} and therefore, in the configuration C2i there are
2i elementary membranes. Let us also remark that the division of the elementary
membranes is propagated by the rules of division on non elementary membranes,
so in the configuration C2n+2, the skin, labelled by 3, contains 2n membranes la-
belled by 2. Each of them contains one membrane labelled by 1, and each of these
membranes labelled by 1 contains one elementary membrane labelled by 0.

Weight calculation stage

(d) [ei → awi ]0 for i ∈ {1, . . . , n}

After the application of the membrane division rule by the object pi, in one
membrane is placed the object ei and in the other the object b. Since the
division is produced by pi with i ∈ {1, . . . , n} this means that each of the
2n elementary membranes receive a possible subset of {e1, . . . , en}. Object b
remain inactive whereas the objects ei evolve in the next step to as many
objects s as the weight wi. In such way, each elementary membrane contains
as many objects s as the weight of the associated subset.
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(e) [d2n+2 → d2n+3]0
[d2n+3 → ak+1]0

When the generation stage has finished, the object d2n+3 produces k+1 copies
of the object a. These objects will interact with the object a by producing
annihilation according to the following rule.

(f) [aa → λ]0
[a]0 → b [ ]0

These are the key rules this stage. The rules [ei → swi ]0 from the set b have
generated as many copies of objects a as the weight of the subset encoded in
the membrane. On the other hand, the rule [d2n+3 → ak+1]0 has generated
k + 1 copies of the object a.

• If the weight of the subset encoded in the membrane (number of objects a)
is greater than or equal to k+1 (number of objects a), then all the objects
a are consumed by the annihilation rules.

• If the weight of the subset encoded in the membrane (number of objects
a) is equal to k, then the annihilation rule is applied k times and k copies
of a and a are consumed. The remaining copy of a triggers the rule [a]0 →
b [ ]0 and one object b appears in the corresponding membrane 1 in the
configuration C2n+5.

• Finally, if the weight of the subset encoded in the membrane (number
of objects a) is lower than k, then all the copies of a are consumed by
the annihilation rule, but p objects a are not affected by this rule, where
p ∈ {2, . . . , k+1}. These objects will trigger the rule [a]0 → b [ ]0, by due to
the semantics of the P systems with active membranes, only one object can
cross the membrane in each step and therefore, one object b will appear
in the membrane 1 at the configuration C2n+5 whereas p − 1 copies of a
remain in the membrane 0.

(g) [r2n+2]0 → r2n+3 [ ]0
[r2n+3 → r2n+4k2n+4z2n+4]1

[r2n+4]1 → r2n+5 [ ]1
[k2n+4 → k2n+5]1
[z2n+4 → z2n+5]1

The object r2n+2 produced by the last rule of the set (a) is the starting point
for this set of rules. Its purpose is to place the counters ri, zi and ki in the
right membranes before starting the checking stage. Notice that the starting
indices have been chosen for improving the readability. In this configuration
C2n+5, an object z2n+5 and an object k2n+5 are placed in each membrane with
label 1 and one object r2n+5 is placed on each membrane with label 2.

Checking stage
This stage is quite technical. The aim is that each elementary membrane pro-

duces an object yes2n+k+9 in a membrane labelled by 2 in the configuration
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C2n+k+9 if and only if in the configuration C2n+5 one and only one object a
is placed in the elementary membrane.

(h) [b → c1c2]1 [k2n+5 → c2]1
[c1 → c2]1 [z2n+5 → z2n+6]1
[c2c2 → λ]1 [z2n+6 → z2n+7]1
[c2]1 → yes2n+8 [ ]1 [z2n+7 → c2]1

Each object a in the elementary membrane is sent out, step by step, trans-
formed into a b object. Since there exists one elementary membrane where the
empty subset is encoded with zero objects a, then such elementary membrane
contains k+1 objects a and the process of sending out these objects will take
k+1 steps. Notice also that a new annihilation process (of the objects c2 and
c2) is also considered.

(i) [r2n+5 → r2n+6]2 [yes2n+8 → b]2
[r2n+6 → yes2n+8]2 [yes2n+8 yes2n+8 → λ]2

The counter ri produces the object yes2n+8 in the membrane 2 exactly in
the configuration C2n+7. If in this time there is an object yes2n+8 in the
membrane, both are annihilated. If not, yes2n+8 evolves to b. The purpose is
this set of rules is to control the evolution of the object yes2n+8. If it appears
in a membrane labelled by 2 in the configuration C2n+7, it will be annihilated.
If it appears later, it will survive.

(j) [yes2n+8+i → yes2n+8+(i+1)]2 for i ∈ {0, . . . , k − 1}

The objects yesi evolves in the membrane 2 waiting for the end of this stage.
As pointed above, the k+1 objects a from the membrane encoding the empty
subset take k + 1 steps to cross out the membrane.

The result of the checking stage can be summarized in the following lemma.

Lemma 1. In each of the 2n membrane structures [ [ [ ]0 ]1 ]2 at configuration
C2n+k+8:

• Membranes 0 and 1 are inactive. No rules can be applied inside them.
• Membrane 2 contains one object yes2n+k+8 if and only if the number of objects

a in the membrane 0 at the configuration C2n+4 is exactly k. In other words,
if it corresponds to a subset of weight k.

This lemma will be proved in the Appendix.

Output stage

(k) [noi → noi+1]3 for i ∈ {0, . . . , 2n+ k + 9}
[no2n+k+10]3 → no [ ]3

From the initial configuration, the counter noi is evolving2. If the evolution
is not interrupted, an object no is sent out as answer of the computation. In

2 Of course, this counter also evolves in the previous stages, but it has not been men-
tioned for the sake of simplicity.
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this design, if an object yes2n+k+8 occurs in a membrane labelled by 2, then
the counter noi is stopped and yes will be sent out as the answer. Nonethe-
less, more than one of such objects yes2n+k+8 can be produced in different
membranes. Dealing with this possibility needs to add some technical rules.

(l) [yes2n+k+8]2 → yes2n+k+9 [ ]2
[yes2n+k+9 → no2n+k+10 yes2n+k+10]3
[yes2n+k+10 → yes2n+k+11]3
[yes2n+k+11 → yes2n+k+12]3
[yes2n+k+12 yes2n+k+12 → λ]3
[yes2n+k+12]3 → yes [ ]3

This set of rules, together with the next one, controls the output of the system.
The key ideas are that the object yes2n+k+9 produces an object no2n+k+10,
which stops the counter noi and yes2n+k+12]3 sends out the answer yes in the
last step of computation.

(m) [no2n+k+9 → no2n+k+10]3
[no2n+k+10]3 → no [ ]3
[no2n+k+10no2n+k+10 → λ]3
[no2n+k+10 → no2n+k+11]3
[no2n+k+11 → yes2n+k+12]3

This is the last set of rules in our design. Let us remark that the object
no2n+k+11 sends to the environment the object no as an answer if no object
no2n+k+11 is produced. If this object is produced, then the annihilation occurs
and the object no is never sent out. The result of this checking stage is summed
up in the following lemma.

Lemma 2. If any of the 2n membranes with label 2 contains an object
yes2n+k+8 in the configuration C2n+k+8, then the P system halts at the config-
uration C2n+k+13 and sends yes to the environment in the last step of compu-
tation. Otherwise, the P system halts at the configuration C2n+k+11 and sends
no to the environment in the last step of computation.

This lemma will be proved in the Appendix and it finishes the proof of Th. 1.

5 Conclusions

In this paper, we present a new frontier of tractability in Membrane Computing by
adding annihilation rules and the concept of antimatter to a P system model with
active membranes with division and without dissolution. Let us remark that the
presented design makes use of a singularity in the semantics of the annihilation rule.
According to the physical intuition, in presence of the antiparticle a, the particle
a has no option and both are annihilated. The translation of this intuition is a
priority relation with respect to the remaining applicable rules. An open problem
is to know if removing this priority feature from the model, it is still possible to
solve NP problems.
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Solving subset sum in linear time by using tissue P systems with cell division. In:
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11. Pan, L., Păun, Gh.: Spiking neural P systems with anti-spikes. International Journal
of Computers, Communications & Control IV(3), 273–282 (September 2009)
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Appendix

Firstly, we will prove Lemma 1.

Proof. The proof is by inspection of the cases. In order to simplify the notation,
we will omit the occurrences of objects a and b in the membrane 0, since they
do not trigger any rule. The process is deterministic, so we will not remark the
applied rules. They can be easily found in the corresponding set.

Case 1. Let us suppose that the weight of the encoded set is greater than
k. In this case, the rule [a]0 → b [ ]0 is no applied and there are no objects a in
membrane 0 and no object b in the membrane 1 at the configuration C2n+5. With
the considerations claimed above, the evolution of the membrane structure is

C2n+5 ≡ [ [ [ ]0 k2n+5 z2n+5 ]1 r2n+5 ]2
C2n+6 ≡ [ [ [ ]0 c2 z2n+6 ]1 r2n+6 ]2
C2n+7 ≡ [ [ [ ]0 z2n+7 ]1 yes2n+8 yes2n+8 ]2
C2n+8 ≡ [ [ [ ]0 c2 ]1 ]2
. . . . . .
C2n+k+8 ≡ [ [ [ ]0 c2 ]1 ]2

In this case, the computation stops at the configuration C2n+8. Since no more
rules are applied, the result holds for C2n+k+8.

Case 2. Let us suppose that the weight of the encoded set is exactly equal to k.
In this case, in the configuration C2n+5 there are one object b in the corresponding
membrane 1 and no objects in the membrane 0.

C2n+5 ≡ [ [ [ a ]0 b k2n+5 z2n+5 ]1 r2n+5 ]2
C2n+6 ≡ [ [ [ ]0 c1c2 c2 z2n+6 ]1 r2n+6 ]2
C2n+7 ≡ [ [ [ ]0 c2 z2n+7 ]1 yes2n+8 ]2
C2n+8 ≡ [ [ [ ]0 c2 ]1 b yes2n+8 ]2
. . . . . .
C2n+k+8 ≡ [ [ [ ]0 c2 ]1 b yes2n+k+8 ]2
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Case 3. Let us suppose that the weight of the encoded set is lower than k. In
this case, in the configuration C2n+5 there are p−1 objects a in the corresponding
membrane 0 and one b in the membrane 1 with p ∈ {2, . . . , k + 1}. . We split this
case into three subcases.

Case 3a: p = 2

C2n+5 ≡ [ [ [ a ]0 b k2n+5 z2n+5 ]1 r2n+5 ]2
C2n+6 ≡ [ [ [ ]0 b c1c2 c2 z2n+6 ]1 r2n+6 ]2
C2n+7 ≡ [ [ [ ]0 c1 c2 c2 z2n+7 ]1 yes2n+8 ]2
C2n+8 ≡ [ [ [ ]0 c2 c2 ]1 b ]2
C2n+9 ≡ [ [ [ ]0 ]1 b ]2
. . . . . .
C2n+k+8 ≡ [ [ [ ]0 ]1 b ]2

Case 3b: p = 3

C2n+5 ≡ [ [ [ a2 ]0 b k2n+5 z2n+5 ]1 r2n+5 ]2
C2n+6 ≡ [ [ [ a ]0 b c1c2 c2 z2n+6 ]1 r2n+6 ]2
C2n+7 ≡ [ [ [ ]0 b c1 c2 c2 z2n+7 ]1 yes2n+8 ]2
C2n+8 ≡ [ [ [ ]0 c1 c2 c

2
2 ]1 b ]2

C2n+9 ≡ [ [ [ ]0 c2 c2 ]1 b ]2
C2n+10 ≡ [ [ [ ]0 ]1 b ]2
. . . . . .
C2n+k+8 ≡ [ [ [ ]0 ]1 b ]2

Case 3c: p ≥ 4

C2n+4+1 ≡ [ [ [ ap−1 ]0 k2n+5 z2n+5 ]1 r2n+5 ]2
C2n+4+2 ≡ [ [ [ ap−2 ]0 b c1c2 c2 z2n+6 ]1 r2n+6 ]2
C2n+4+3 ≡ [ [ [ ap−3 ]0 b c1 c2 c2 z2n+7 ]1 yes2n+8 ]2
C2n+4+4 ≡ [ [ [ ap−4 ]0 b c1 c2 c

2
2 ]1 b ]2

. . . . . .
C2n+4+i ≡ [ [ [ ap−i ]0 b c1 c2 c

2
2 ]1 b ]2

. . . . . .
C2n+4+(p−1) ≡ [ [ [ a ]0 b c1 c2 c

2
2 ]1 b ]2

C2n+4+p ≡ [ [ [ ]0 b c1 c2 c
2
2 ]1 b ]2

C2n+4+p+1 ≡ [ [ [ ]0 c1 c2 c
2
2 ]1 b ]2

C2n+4+p+2 ≡ [ [ [ ]0 c2 c2 ]1 b ]2
C2n+4+p+3 ≡ [ [ [ ]0 ]1 b ]2

Notice that in one of the elementary membranes, the empty set is encoded.
It means that in each computation, in one of the 2n membranes, p = k + 1 (the
greater value). In this case, C2n+4+(k+1)+3 = C2n+k+8.

Next, we provide the proof of the Lemma 2.

Proof. The proof is also by inspection of the cases. As in the previous proof, the
computations are deterministic, and we do not remark the applied rules.
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Case 1: Let us consider that there exists exactly one membrane with label 2
contains an object yes2n+k+8 in the configuration C2n+k+8. By application of the
rule [yes2n+k+8]2 → yes2n+k+9 [ ]2, an object yes2n+k+9 arrives to the membrane
2 in the configuration C2n+k+9. Next, we show the evolution of this membrane.

C2n+k+9 ≡ [ yes2n+k+9 no2n+k+9 ]3
C2n+k+10 ≡ [ yes2n+k+10 no2n+k+10 no2n+k+10 ]3
C2n+k+11 ≡ [ yes2n+k+11 ]3
C2n+k+12 ≡ [ yes2n+k+12 ]3
C2n+k+13 ≡ yes [ ]3

Case 2: Let us consider that there exist t membranes (t ≥ 2) with label 2
containing an object yes2n+8 in the configuration C2n+k+8. By application of the
rule [yes2n+k+8]2 → yes2n+k+9 [ ]2, t objects yes2n+k+9 arrive to the membrane 2
in the configuration C2n+k+9. Next, we show the evolution of this membrane.

C2n+k+9 ≡ [ yest2n+k+9 no2n+k+9 ]3
C2n+k+10 ≡ [ yest2n+k+10 no

p
2n+k+10 no2n+k+10 ]3

C2n+k+11 ≡ [ yest2n+k+11 no
t−1
2n+k+11 ]3

C2n+k+12 ≡ [ yest2n+k+12 yes
t−1
2n+k+13]3

C2n+k+13 ≡ yes [ ]3

Case 3: Finally, let us consider that there do not exist membranes with label
2 containing an object yes2n+8 in the configuration C2n+k+8.

C2n+k+9 ≡ [no2n+k+9 ]3
C2n+k+10 ≡ [no2n+k+10 ]3
C2n+k+11 ≡ no [ ]3


