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Summary. Usually, the changes produced in the membrane structure of a P system are
considered side effects. The output of the computation is encoded as a multiset placed in a
specific region and the membrane structure in the halting configuration is not considered
important. In this paper we explore P systems where the target of the computation is the
construction of a new membrane structure according its set of rules. The new membrane
structure can be considered as the initial one of a new self-constructed P system. We
focus on the self-construction of recognizer P systems and illustrates the definition with
a study of the self-construction P systems working as decision trees for solving Machine
Learning decision problems.

1 Introduction

In many Membrane Computing models, changing the membrane structure of a P
system along the computation is a common process. The changes are produced via
division of membranes (based on cellular mitosis), via creation of new membranes
from objects (based on cellular autopoiesis, see [7]) or dissolution of membranes.
The rules producing such changes have been deeply studied and the capability of
the P systems for solving hard problems are linked to the use of such rules (see,
e.g., [4, 5, 16]).

Nonetheless, the changes of the membrane structure produced along a compu-
tation are not considered a target itself. The changes are usually produced in order
to compute an output, which is usually encoded as a multiset (or as a single dis-
tinguished object) in the corresponding output region. The membrane structure
obtained in the halting configuration is not important. It is merely a collateral
effect.

In this paper, we focus on P systems where the target of the computation
is exactly the opposite to the usual one. We study P systems whose aim is to
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develop a membrane structure. Such P systems will take a multiset as input and
they will change their membrane structure according to such input, the set of
rules and the non-deterministic choices, if any. The membrane structure obtained
in the halting configuration will be considered as the output of the computation.
This new membrane structure, together the remaining ingredients of the P system
(alphabet, set of labels, set of rules, . . . ) can be considered as a new P system,
able to receive a new input and perform a new computation. In this way, we will
consider that this second P system (which is similar to the original one, but with
a new initial membrane structure) has been self-constructed, since a (potentially)
complex membrane structure has been obtained from a simple one (maybe from
an initial membrane structure with the skin as unique membrane) according to
the application of their own rules. Of course, different final membrane structures
may be obtained from different inputs, but also with the same input due to the
non-determinism.

The self-construction of a complex membrane structure can be a target by itself,
as shown in [3, 6], but in this paper, the self-constructed P system is thought for
a second use. From this general target, we focus here on the self-construction of
recognizer P systems, i.e., the P system with this new membrane structure can
be now used as recognizer P systems for solving decision problems in the usual
way: An instance of the decision problem is provided to the P system as an input
encoded as an appropriate multiset and an object yes or no (but no both) is sent
to the environment in the last step of the computation.

In this way, two different uses for the P system are considered:

• Firstly, given a P system, a multiset is placed in the corresponding input mem-
brane and the computation starts. According to the input and the non deter-
ministic choice of applicable rules, the initial membrane structure is modified
along the computation. As usual, a halting configuration is reached if no more
rules can be applied. The self-construction of the recognizer P system is fin-
ished.

• Secondly, we consider a new computation of the P system, but in this stage,
the membrane structure obtained in the halting configuration of the previous
stage is considered as the initial one. This new computation also needs a new
input, which is placed in the corresponding input membrane. In this stage, the
output will be a specific object (yes or no, but no both) which is placed in the
output region in the halting configuration.

The paper is organized as follows: Next, we recall the definition of recognizer
P system used in this paper. In Section 3, our case study is presented, the self-
construction of a P system from a training set which works as a decision tree and
the classification (decision problem) of new instances as in Machine Learning the-
ory. We provide the formal framework, the general construction of the P systems,
an example and some theoretical considerations. Finally, Section 4 finishes the
paper with some conclusions.
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2 Recognizer P Systems

Recognizer P systems were introduced in [11] and they are the natural framework
to study and solve decision problems, i.e., problems were a Boolean total function
θX must be defined on a set of instances IX . Recognizer P systems are associated
in a natural way with P systems with input and with external output, i.e., each
instance of the problem is codified by a multiset placed in an input membrane. The
output of the computation (yes or no) is sent to the environment. Due to the non-
determinism, the definition of recognizer P system claims that the output of all the
computations must be the same. Since one can find slightly different approaches
in the literature (see [9, 15]), we recall the definition used in this paper:

Definition 1. A P system with input is a tuple (Π,Σ, iΠ), where: (a) Π is a
P system, with working alphabet Γ , with p membranes labelled by 1, . . . , p, and
initial multisets w1, . . . , wp associated with them; (b) Σ is an (input) alphabet
strictly contained in Γ ; the initial multisets are over Γ −Σ; and (c) iΠ is the label
of a distinguished (input) membrane.

Let m be a multiset over Σ. The initial configuration of (Π,Σ, iΠ) with input m
is (µ,w1, . . . , wiΠ ∪m, . . . wp).

Definition 2. A recognizer P system is a P system with input, (Π,Σ, iΠ), and
with external output such that:

1. The working alphabet contains two distinguished elements yes, no.
2. All its computations halt.
3. If C is a computation of Π, then either some object yes or some object no (but

not both) must have been released into the environment, and only in the last
step of the computation. We say that C is an accepting computation (respec-
tively, rejecting computation) if the object yes (respectively, no) appears in the
external environment associated to the corresponding halting configuration of
C.

3 A Case Study: Decision Trees

Decision trees is one of the most widely used structures in Computer Science. They
are used to classify an input by sorting it down the tree from the root to some
leaf node, which provides the classification of the instance. Instances are usually
written as sets of pairs ⟨Attribute, V alue⟩ and each node in the tree determines a
test of some attribute. Each branch descending from that node corresponds to one
of the possible value for this attribute. An instance is classified by starting at the
root node of the tree, testing the attribute specified in this node and moving down
the branch corresponding to the value of the instance in this attribute. The leaves
are labelled with values of the classification and they are the output associated
to the instances that reach them. In this way, if the possible classifications are
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Table 1. A classic example of training set adapted from [14].

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Y ES and NO, a decision tree can be thought as a Boolean mapping on the set of
instances which decides the classification of the instance according to the values
of the attributes.

Let us illustrate the process with a classic example adapted from [14]. It consists
on a database with fourteen days. Each day is represented by the values of the
attributes Outlook, Temperature, Humidity andWind. Each day has also associated
its classification with respect to the attribute PlayTennis (see Table 1). From a
learning point of view, the database can be seen as a training set. The target is
to generate a decision tree from this database which can be used to classify new
instances.

Figure 1 shows a decision tree consistent with the training set shown in Table 1,
i.e., a tree which classifies correctly all the examples in the training set. According
to this tree, a day with Outlook = Sunny, Temperature = Cool, Humidity =
Normal and Wind = Strong (which does not belong to the training set) will be
classified as Y ES.

3.1 The P System Model

The definition of self-construction in P system is independent of the P system
model, i.e., it can be considered in the framework of cell-like, tissue-like or what-
ever other graph structure and it can be adapted to different semantics. The unique
restriction that the P system must satisfy is the ability of modifying the initial
membrane structure according to the input. In this way, the concept can be con-
sidered in many scenarios.

In this paper, we will illustrate the definition with a P system model were the
data are encoded as strings [1, 13] and the changes in the membrane structure are
performed via membrane creation [5, 10].
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Fig. 1. An example of tree obtained from the training set shown in 1. The image is avail-
able from http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/mlbook.html.

Formally, a self-constructing P system with strings and membrane creation is
a construct of the form Π = (O,H,L,R) where:

1. O is the alphabet of objects;
2. H is a finite set of labels;
3. L is a finite languages over O;
4. R is a finite set of rules, of the following forms:

a) [wp + wq →
∑

k wk]h where h ∈ H, wp, wq and wk are strings over O.
These are 2-cooperative evolution rules: The simultaneous occurrence of
the strings wp and wq in the membrane h produces a finite set of strings
in the same membrane. As usual, wp and wq are consumed.

b) wp[ ]h → [wq]h where h ∈ H; wp and wq are strings over O. These are send-
in communication rules. A string is introduced in the membrane possibly
modified.

c) [wp]h → [ ]h wq where h ∈ H; wp and wq are strings over O. These are send-
out communication rules. A string is sent out of the membrane possibly
modified.

d) [a → [M ]h2 ]h1 where h1, h2 ∈ H, a ∈ O and M is a finite language over O.
These are creation rules. An object a placed in a membrane with label h1

creates a new membrane with label h2. This new membrane has associated
an initial finite language M .

We will consider that the self-constructing P system with strings and mem-
brane creation always has a unique membrane (the skin) in the initial membrane
structure, such membrane is the input membrane and the output region is the en-
vironment. The multiset L is placed in the skin at the initial configuration. Rules
are applied according to the following principles:

• Rules are used as usual in the framework of Membrane Computing, that is, in a
maximal parallel way. In one step, each string in a membrane can only be used
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for one rule (non deterministically chosen when there are several possibilities),
but any string which can evolve by a rule of any form must do it (with the
restrictions below indicated).

• All the strings which are not involved in any of the operations to be applied
remain unchanged.

• The rules associated with the label h are used for all membranes with this
label, irrespective of whether or not the membrane is an initial one or it was
obtained by creation.

• Several rules can be applied to different objects in the same membrane simul-
taneously.

3.2 Self-constructing P Systems for Decision Trees Learning

Next, we will provide a family of self-constructing P system with strings and mem-
brane creation for Decision Trees Learning. Such self-constructed P system will
receive instances of the problem and will output yes or no, i.e., they are tools for
solving decision problems.

In a first stage, the P system takes a finite language, codifying a training set,
as input. Each example in the training set will be encoded as a string. The set
of these strings will be the initial language L and it will be placed in the unique
initial membrane of the P system, as defined above. After a finite number of steps,
the computation halts and the membrane structure has been (probably) modified.
The P system with this halting membrane structure is the recognizer P system
which has been self-constructed according with the training set provided as input.
The self-constructed recognizer P system with the membrane structure obtained
in the halting configuration is now prepared to receive an instance of the decision
problem and will provide an answer yes or not.

Let us start by considering a training set D = {(v1, c1), . . . , (vn, cn)} where, for
each i ∈ {1, . . . , n}, vi is a tuple of pairs ⟨Attribute, V alue⟩ and ci = {Y ES, NO}
is the classification for a concept1. We will consider a set of attributes ATR =
{A1, . . . , Ak} and, for each i ∈ {1, . . . , k}, V ALi = {v1i , . . . , v

ji
i } is the set of values

of the attribute Ai. We will consider that the sets V ALi are disjoint pairwise.
We will also consider V AL = V AL1 ∪ . . . ∪ V ALk and Γ = ATR ∪ V AL ∪
{Y ES, NO}. The set Γ will be called a training set alphabet. Notice that many
different training sets can have the same alphabet Γ .

By using this notation, we will represent each example (vi, ci) as a string
over the set Γ and a training set can be considered as a finite language over
this set. The example (vi, ci) will be represented by the string of 2k + 1 symbols
A1v

i
1A2v

i
2 . . . Akv

i
kci, where vij is the value of the attribute Aj in the i− th exam-

ple of the training set and ci ∈ {Y ES, NO} is the value of the classification. For
example, the string

1 A formal description of the principles of Machine Learning is out of the scope of this
paper. A detailed introduction can be found in, e.g., [8].
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Outlook Sunny TemperatureHotHumidity HighWindWeakNO

is the representation of the first example of Table 1.
In the first stage, the finite language codifying the training set is placed in

the skin and the self-construction starts. When it finishes, the halting membrane
structure is prepared for accepting new inputs and deciding on it. The new input
will be similar to the encoding of an example, but the last object of the string will
be ? instead of Y ES or NO. For example, in order to know the classification of a
day not with Outlook = Sunny, Temperature = Cool, Humidity = Normal and
Wind = Strong, the string

Outlook Sunny TemperatureCool Humidity NormalWindStrong ?

will be placed in the input membrane (the skin) and a new computation will start.
Next we provide the formal definition of a self-constructing P system with

strings and membrane creation associated to a training set Γ . The P system is a
4-uple Π = (O,H,L,R) where:

1. O = Γ ∪ {Y ESaux, Y ESact, ?, NOaux, NOact, new} is the alphabet of ob-
jects;

2. H = {skin} ∪ V AL. The possible labels are the values of the attributes plus
the initial label skin;

3. L = {Y ESaux, NOaux} Two strings, each of them with only one object, are
placed in the skin in the initial configuration;

4. We split the set R of rules into two groups, the rules used in the self-
construction stage and the rules used in the decision stage:

Rules for the self-construction stage.

R1. [xY ES + Y ESaux → xY ES + Y ESact ]h
[xNO +NOaux → xNO +NOact ]h

}
for h ∈ H.

where x is a string over Γ composed by pairs (Attribute, V alue). If the string
xY ES and Y ESaux occur simultaneously in the same membrane, then xY ES
remains unchanged, but Y ESaux is consumed and Y ESact is produced.
Analogously for the NO case.

R2. [Y ESact +NOact → new]h for h ∈ H.
If the strings Y ESact and NOact are placed simultaneously in the same
membrane, both are consumed and the string new is produced.

R3. [new + xAiy → xAiy + v1 + . . .+ vs]h for h ∈ H.
If the strings new and xAiy occur in the same membrane (where xAiy is a
string including the object Ai, which denotes an attribute), then the string
new is consumed, the string xAiy remains unchanged and all the strings vij
from V ALi are produced. Let us notice that this set of rules produces a high
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degree of non-determinism. On the one hand, many different strings xAiy can
simultaneously occur in the same membrane and, on the other hand, several
Ai may be chosen from the same string. Nonetheless, since there can exists at
most only one string new in each membrane at each time unit, only one of
these rules will be applied.

R4. [v → [Y ESaux NOaux]v ]h for h ∈ H
Each string v ∈ V AL creates a new membrane. Such membrane will have v
as a label and it will contain the strings Y ESaux and NOaux.

R5. xAivy [ ]v → [xy ]v for Ai ∈ ATR and v ∈ V ALi

Each string xAivy (where Ai is an object which denotes an attribute and v
is the next symbol in the string, denoting one of the values of Ai) out of a
membrane with label v will be sent into the membrane. The application of
the rule will transform the string into xy, which is xAivy after deleting the
substring Aiv. These rules are applied in parallel and several strings can cross
out the same membrane simultaneously.

Rules for the decision stage.

R6. xAvy? [ ]v → [xy? ]v for v ∈ V AL.
If a string ended with ? and containing an object v ∈ V AL is out of a
membrane with label v, then the string is sent into the membrane. The
application of the rule also produces a change in the string since the object v
and the previous object in the string (the object A denoting the corresponding
attribute) are deleted.

R7. [x? + Y ESact → Y ESout + Y ESact ]h
[x? +NOact → NOout +NOact ]h

}
for h ∈ H.

where x is a string over Γ composed by pairs (Attribute, V alue). If the string
x? and Y ESact occur simultaneously in the same membrane, then Y ESact

remains unchanged, but x? is consumed and Y ESout is produced. Analogously
for the NO case.

R8. [Y ESout ]h → [ ]h Y ESout

[NOout ]h → [ ]h NOout

}
for h ∈ H.

when an object Y ESout (resp. NOout) is produced, the decision is made. This
set of rules sends such object from the membrane where is produced to the
environment. Such objects are the answers to the decision problem
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Outlook sunny Temperature hotHumidity highWindweakNO
Outlook sunny Temperature hotHumidity highWind strong NO
Outlook overcast Temperature hotHumidity highWindweak Y ES
Outlook rain TemperaturemildHumidity highWindweak Y ES
Outlook rain Temperature coolHumidity normalWindweak Y ES
Outlook rain Temperature coolHumidity normalWind strong NO
Outlook overcast Temperature cool Humidity normalWind strong Y ES
Outlook sunny TemperaturemildHumidity highWindweakNO
Outlook sunny Temperature cool Humidity normalWindweak Y ES
Outlook rain TemperaturemildHumidity normalWindweak Y ES
Outlook sunny TemperaturemildHumidity normalWind strong Y ES
Outlook overcast TemperaturemildHumidity highWind strong Y ES
Outlook overcast Temperature hotHumidity normalWindweak Y ES
Outlook rain TemperaturemildHumidity highWind strong NO

Fig. 2. Finite language encoding the training set from Table 1.

3.3 An example

As an example of self-construction P systems for Decision Tree Learning, let us
consider the training set from Table 1. According to the encoding previously de-
scribed, such training set can be written as shown in Fig. 2.

Let us consider an initial configuration C0 which has only one membrane with
label skin. Such membrane contains the language codifying the training set from
Fig. 2, together with Y ESaux and NOaux. From this initial configuration only two
rules from R1 are applied. The application of such rules consumes Y ESaux and
NOaux and produces Y ESact and NOact. In the second step of the computation,
only the rule fromR2 is applied. The objects Y ESact andNOact are consumed and
new appears in the skin. In this way, the configuration C2 has only one membrane,
the skin, where the codification of the training set and the object new are placed.

From this configuration C2, one and only one of the rules from R3 is non-
deterministically chosen and applied. In the choice, one of the strings encoding
an example from the training set is taken and in this string, one of the objects
encoding an attribute is also selected. Let us suppose that the string

Outlook sunny Temperature hotHumidity highWindweakNO

is chosen and the object Outlook is selected. The application of the rule consumes
the object new, keeps unchanged the string encoding the example and three new
objects rain, sunny and overcast appear. Therefore, the configuration C3 has only
one membrane, the skin, where the codification of the training set and the objects
rain, sunny and overcast are placed.

In the next step, the changes in the membrane structure start. The objects
rain, sunny and overcast create new membranes. Each membrane has the objects
Y ESaux and NOaux inside and the corresponding value rain, sunny or overcast
as label, i.e.,
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C4 =

[
TS [Y ESaux NOaux ]rain

[Y ESaux NOaux ]sunny [Y ESaux NOaux ]overcast

]
skin

where TS represents the language encoding the training set. In the next step,
rules from R5 are applied. All the strings in the skin are sent into the new mem-
branes with slight changes. These new strings in the elementary membranes are
the following. The set TRsunny of strings in the membrane with label sunny is

Temperature hotHumidity highWindweakNO
Temperature hotHumidity highWind strong NO
TemperaturemildHumidity highWindweakNO
Temperature cool Humidity normalWindweak Y ES
TemperaturemildHumidity normalWind strong Y ES

the set TRrain of strings in the membrane with label rain is

TemperaturemildHumidity highWindweak Y ES
Temperature cool Humidity normalWindweak Y ES
Temperature cool Humidity normalWind strong NO
TemperaturemildHumidity normalWindweak Y ES
TemperaturemildHumidity highWind strong NO

and, finally the set TRovercast of strings in the membrane with label overcast is

Temperature hotHumidity highWindweak Y ES
Temperature cool Humidity normalWind strong Y ES
TemperaturemildHumidity highWind strong Y ES
Temperature hotHumidity normalWindweak Y ES

In the configuration C5, the membrane with label sunny has five strings en-
coding examples and two objects Y ESaux and NOaux. The situation is similar to
the initial configuration, where the membrane skin had fourteen strings encoding
examples. Let us consider that from the configuration C8, the chosen rule from
R3 takes the string

Temperature hotHumidity highWindweakNO

and the object Humidity. In C9, two new membranes appear inside the membrane
with label sunny, one of them with membrane high and the other one with label
normal. In the configuration C10, this new membrane with label high contains
the objects Y ESaux and NOaux and the set of strings TRsunny+high

Temperature hotWindweakNO
Temperature hotWind strong NO
TemperaturemildWindweakNO
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analogously, the new membrane with label normal contains the objects Y ESaux

and NOaux and the set of strings TRsunny+normal

Temperature coolWindweak Y ES
TemperaturemildWind strong Y ES

In a similar process, if the chosen rule fromR3 in the membrane with label rain
selects an object Wind from the taken string, then, such membrane will have two
new membranes inside in the configuration C10. One on them, with label strong
will contain the objects Y ESaux and NOaux and the set of strings TRrain+strong

Temperature cool Humidity normalNO
TemperaturemildHumidity highNO

The second new membrane, with label weak will contain the objects Y ESaux

and NOaux and the set of strings TRrain+weak

TemperaturemildHumidity high Y ES
Temperature cool Humidity normal Y ES
TemperaturemildHumidity normal Y ES

Let us consider now the membrane with label overcast in the configuration C5.
It contains the objects Y ESaux and NOaux and the set of strings TRovercast. In
the next step, the object Y ESaux is transformed into Y ESact by application of one
rule from R1, but NOaux keeps unchanged, since there is no string with NO as the
last object. This means that no more rules can be applied and the computation in
this membrane finishes. The same reasoning is valid for the remaining membranes
where all the strings end in Y ES or NO. In this way, the configuration C11 is a
halting one and the decision P systems is already constructed (see Fig. 3).

This self-constructed recognizer P system can be used now for deciding on new
instances. Let us consider a new computation. The target is to obtain a Boolean
answer as a classification for the day with Outlook = Sunny, Temperature =
Cool, Humidity = Normal and Wind = Strong. In such way, the string

Outlook Sunny TemperatureCool Humidity NormalWindStrong ?

will be placed in the input membrane (the skin) and this is the unique string in
the skin in the new configuration C0. The corresponding rule from R6 is applied
and the string is sent to the membrane with label sunny slightly modified:

TemperatureCool Humidity NormalWindStrong ?

In the next step, a new rule from R6 is applied and the string
TemperatureCoolWindStrong ? is placed in the membrane with label normal
in the configuration C2. Since Y ESact occurs in this membrane, the string is con-
sumed and Y ESout appears in the configuration C3. By three applications of rules
from R7, the object Y ESout is sent to the environment and the configuration C6

is a halting configuration. The answer Y ESout is sent to the environment in the
last step of the computation and it is the answer corresponding to the input in
this recognizer P system.
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Fig. 3. Halting configuration for the self-constructed P system.

3.4 Theoretical Foundations

Next, we provide several considerations about the algorithm provided in the pre-
vious section. The first one is related to the training set provided as input. It
must be carefully checked in order to avoid noise, i.e., it is not acceptable that
the same instance appears with two different classifications in the same training
set. Following the example from Table 1, we do not accept that two days with the
same values for the attributes Outlook, Temperature, Humidity and Wind have
different classifications for PlayTennis.

If the training set is free of noise, then the self-construction of the recognizer P
system (first use) and the classification of new instances (second use) halt after a
finite number of steps. A deeper question is the predictive power of the recognizer
P system on new instances. A detailed study of such question is out of the scope of
this paper. Nonetheless, let us briefly notice that usually, more than one decision
tree is derivable from a training set and they may be not equivalent. From a
Membrane Computing point of view, it is clear that the non-determinism produced
by the set of rules R3 produces a big amount of possible halting configurations.

As an illustrative example, let us consider a training set on wooden toy blocks
with two attributes Color and Shape and the classification for BelongsToEddy
shown in Table 2. Figure 4 shows two different trees consistent with the training
set from Table 2. Both are consistent, since they classify correctly all the instances
of the training set, but they are not equivalent. For example, the classification of
a green and squared block, an instance which does not belongs to the training set,
depends on the chosen tree. In Machine Learning, the followed criterion is entia
non sunt multiplicanda praeter necessitatem, known as Ockham’s razor2 which
states that among competing hypotheses, the one with the fewest assumptions

2 Due to William of Ockham (1287 − 1347), see [8] for details.
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Table 2. An example of training set for toy blocks.

Block Color Shape BelongsToEddy

B1 Red Square Yes
B2 Red Triangle Yes
B3 Green Triangle No
B4 Green Circle No

should be selected. In this paper, we consider that all the trees consistent with
the training set can be a solution of the problem and do not apply any bias for
selecting a specific one.

The theoretical correctness, from a Machine Learning point of view, can be
summed up in the following theorem.

Theorem 1. Let us consider a non-empty training set D without noise. Let us
consider that the instances in D has k attributes. Let Π be the self-constructing P
system associated to D as shown above.

(C1) In the self-constructing stage, in any possible computation, there exists p ∈
{0, . . . , k} such that C1+5p is a halting configuration. Therefore, each compu-
tation gives at most 1 + 5k steps.

(C2) Any computation in the decision stage gives 2p + 2 steps with p ∈ {0, . . . , k}
and sends to the environment Y ESact or NOact (but no both) in the last step
of computation.

(C3) The recognizer P system obtained at the end of any computation of the self-
constructing stage is consistent with the training set.

The proof of this Theorem is provided in the Appendix A.

Color Shape

Color

TriangleSquare Circle
Red Green

Yes No

Red Green

Yes No

Yes No

Fig. 4. Two trees consistent with the training set from Table 2. Notice that the classifi-
cation for a green and squared block is different in both trees.
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4 Conclusions

In this paper, we consider the process of modifying the membrane structure of
the membranes as a target itself. This idea can be found in the literature (see,
e.g., [3, 6]) but in this paper proposes a new point of view. The new membrane
structure (potentially complex), which has been built according P system rules,
is the initial membrane structure for a new computation. In this sense, we talk
about self-construction. This self-construction of P systems can be adapted to
many different scenarios and it is independent of the P system model. In such
way, this proposal open a new research line, since the adaptation of this idea to
different Membrane Computing models need a deeper study.

As an illustrative example, we have considered the well-known problem of con-
structing decision trees and their use as classifiers in the framework of Membrane
Computing. This is also a contribution of this paper, since it provides a new bridge
between Membrane Computing and Machine Learning. The purpose has been to
illustrate the self-construction of P systems with a simple encoding that allows to
translate easily the ideas from Machine Learning into Membrane Computing. In
this way, the chosen codification allows a simple description of the process but it
is far from being the most efficient. Different codifications will allow more efficient
computations and further research must be done in this way.
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A Appendix

Next, we provide the proof of the Theorem 1. In order to fix the notation, we
will call examples to the strings xC, where c is a string (maybe empty) of pairs
Attribute Value and C ∈ {Y ES,NO}. First of all, we will prove the first statement:

In the self-constructing stage, in any possible computation, there
exists p ∈ {0, . . . , k} such that C1+5p is a halting configuration.
Therefore, each computation gives at most 1 + 5k steps.

(C1)

In this self-construction stage the strings x? are not supplied to the system
and, hence Y ESout or NOout are not produced. In this way, we do not care about
the set of rules R6, R7 and R8 because they cannot be applied. The proof is
based on the following lemmas.
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Lemma 1. Let us consider an elementary membrane at the step n such that there
are no strings in its father membrane (it can also be the skin in the initial configu-
ration) and its content is Y ESaux, NOaux, and a non-empty set of examples such
that all of them end with Y ES or all of them end with NO. Then, the computation
in this membrane finishes at step n+ 1.

Proof. Let us consider that all the examples end with Y ES (the case NO is
analogous). In the described conditions, only one rule can be applied (from R1)
and in the step n + 1, the membrane contains the same set of examples and
Y ESact and NOaux. It is easy to check that no more rules can be applied and the
computation finishes at this step.

From this lemma, we obtain that if all the examples in the initial set provided to
the skin in the initial configuration end with Y ES or NO, then the computation
of the self-constructing stage end after one computation step.

Lemma 2. All the examples inside a membrane have the same length.

Proof. It is trivial to check that it is true in the initial configuration, since if the
training set has k attributes, then, all the initial examples have length 2k+1. For
the next steps, we only need to consider that the rules which sends examples from
one membrane into other belongs tho the set R5, the application of these rules
always decreases the length of the example in two units and all the examples arrive
to the membrane simultaneously.

Lemma 3. Let us consider an initial training set without noise. If in a membrane
there is at least one example of length 1, then all of them are Y ES or all of them
are NO.

Proof. By, Lemma 2, we can consider that all the examples in the membrane have
length 1. If the training set has k attributes, then all the examples in the initial
configuration have length 2k + 1 and, by construction, these examples of length 1
came from these original one after deleting two objects k times. In this process, if
two examples are sent to the same membrane, then both share the same value for
one attribute. If both examples are in the same membrane after k deletions, then
they share the values of the k attributes and, since their no noise, the classification
must be the same.

Lemma 4. Let us consider an elementary membrane h at the step n such that
there are no strings in its father membrane (it can also be the skin in the initial
configuration) and its content is Y ESaux, NOaux, and a non-empty set of examples
of length l such that at least one of them ends with Y ES and at least one of them
ends with NO. Then, at step n + 5, the membrane h does not contains strings.
It only contains elementary membranes such that contain Y ESaux, NOaux and
examples of length l − 2.
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Proof. In the described conditions, at the step n + 1 the membrane contains the
set of examples plus Y ESact and NOact (by R1); at the step n + 2, it contains
the set of examples and new (by R2); at n + 3, it contains the set of examples
plus v1,. . . ,vs, where v1,. . . ,vs are the values of one of the attributes (by R3).
By application of rules from R4, at the step n + 4, the membrane contains the
set of examples plus s elementary membranes, one for each value. Each of these
membranes contains the strings Y ESaux and NOaux. Finally, rules from R5 are
applied and all the examples from the membrane h are sent into the elementary
membranes by deleting two objects.

Finally, the Statement 1, can be proved from these lemmas.

Proof. Proof of the Statement 1. If the training set has k attributes, then the
examples placed in the skin in the initial configuration have length 2k + 1. Two
cases are possible:

• If all of them have the same classification, i.e., all of them end with Y ES or
all of them end with NO, then, by Lemma 1, the computation finishes in the
configuration C1.

• If all of them do not have the same classification, then the conditions of Lemma
2 hold and the configuration C5 has elementary membranes with Y ESaux,
NOaux and examples of length 2(k− 1)− 1. Each of these membranes is in the
same conditions that the skin in the initial configuration, but the length of the
examples has decreased in two units. This process goes on and each elementary
membrane stops after 1 + 5p steps with p ∈ {0, . . . , k}. Lemma 3 is considered
to ensure that all the examples in the elementary membrane end in Y ES or
NO and then, the computation halts as shown in Lemma 1.

Next, we will prove the second statement of the theorem. Now the P system
has been self-constructed. Only elementary membranes have strings. As shown in
Lemma 1, in the halting configuration, these membrane have a set of examples and
the pair Y ESaux and NOact or Y ESact and NOaux, depending of the classification
of the examples. Any computation in the decision stage starts by placing a string
x? as input in the skin, where v is a string of pairs Attribute Value. Since all the
examples in each membrane have the same classification and no more examples
are supplied, then the rules from sets R1 to R5 cannot be applied. Only rules
from R6, R7 and R8 must be considered. The statement is the following

Any computation in the decision stage gives 2p + 2 steps with
p ∈ {0, . . . , k} and sends to the environment Y ESact or NOact

(but no both) in the last step of computation.
(C2)

Proof. First of all, let us notice that rules from R6, R7 and R8 cannot be applied
simultaneously, because the conditions of applicability are disjoint and only one
string x? is provided as input in the skin in each computation. From this obser-
vation, rules from R7 are firstly applied p times with p ∈ {0, . . . , k}. After these
p steps, the elementary membrane where Y ESact or NOact is placed and in the
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step p+ 1, the object Y ESact or NOact (but no both) is produced. After p steps
more, in the step 2p + 1, Y ESact or NOact arrives to the skin by application of
rules from R8. In the following step, 2p + 2, the object Y ESact or NOact is sent
out to the environment and the computation halts.

In the third statement, we consider the self-constructed P system and take an
example from the training set xC, with C ∈ {Y ES,NO} and replace C by ?. The
statement claims that if we provide x? to the P system in the decision stage, we
obtain the same classification that the original one. The statement is

The recognizer P system obtained at the end of any computation
of the self-constructing stage is consistent with the training set.

(C3)

Proof. In order to fix ideas, let us consider that the original example was xY ES.
The other case is analogous. By rules from R6, x? will be sent to an elementary
membrane where all the examples have the same classification. One of these exam-
ples was originally the xY ES and Y ESact occurs in this elementary membrane.
Then, by application of one rule from R7 and later with rules from R8, the object
Y ESout is sent to the environment.


