
Towards P Colonies Processing Strings

Luděk Cienciala1, Lucie Ciencialová1, Erzsébet Csuhaj-Varjú2

1 Institute of Computer Science
and
Research Institute of the IT4Innovations Centre of Excellence,
Silesian University in Opava, Czech Republic
{ludek.cienciala, lucie.ciencialova,}@fpf.slu.cz

2 Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
csuhaj@inf.elte.hu

Summary. In this paper we introduce and study P colonies where the environment is
given as a string. These variants of P colonies, called Automaton-like P systems or APCol
systems, behave like automata: during functioning, the agents change their own states
and process the symbols of the string. After introducing the concept of APCol systems,
we examine their computational power. It is shown that the family of languages accepted
by jumping finite automata is properly included in the family of languages accepted by
APCol systems with one agent, and it is proved that any recursively enumerable language
can be obtained as a projection of a language accepted by an Automaton-like P colony
with two agents.

1 Introduction

P colonies were introduced in [13] as formal models of a computing device combin-
ing properties of membrane systems and distributed systems of formal grammars
called colonies. The concept was inspired by the structure and functioning of a com-
munity of living organisms in a shared environment (for more information consult
[14]).

In the basic model, the cells or agents are represented by a finite collection of
objects and rules for processing these objects. The agents are restricted in their
capabilities, i.e., only a limited number of objects, say, k objects, are allowed to be
inside any cell during the functioning of the system. These objects represent the
current state of the agents, in other terms the current contents of the cells. The
rules of the cells are either of the form a→ b, specifying that an internal object a
is transformed into an internal object b, or of the form c ↔ d, specifying that an
internal object c is exchanged by an object d in the environment. After applying
these rules in parallel, the state of the agent will consist of objects b, d. Each agent
is associated with a set of programs composed of such rules.

104 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú

The agents of a P colony perform a computation by synchronously applying
their programs to the objects representing the state of the agents and objects
in the environment. At the beginning of the computation, executed by a given
P colony of capacity k, i.e., where any agent has at most k symbols inside, the
environment contains arbitrarily many copies of a distinguished symbol e, called
the environmental symbol (and no more symbols); furthermore, each cell contains
k copies of e. When a halting configuration is reached, that is, when no more rules
can be applied, the result of the computation is read as the number of certain
types of objects in the environment.

P colonies have been extensively examined during the years. For example, it
was shown that these systems are computationally complete computing devices
even with very restricted size parameters and with other (syntactic or functioning)
restrictions [1, 2, 4, 5, 6, 7, 9, 10].

According to the the basic model, the impact of the environment on the be-
havior of the P colony is indirect. To describe the situation when the behavior of
the components of the P colony is influenced by direct impulses coming from the
environment step-by-step, the model was augmented with a string put on an input
tape to be processed by the P colony [3]. These strings corresponds to the impulse
sequence coming from the environment. In addition to their rewriting rules and
the rules for communicating with the environment, the agents have so-called tape
rules which are used for reading the next symbol on the input tape. This is done
by changing one of the objects of the current state of the agents to the object
corresponding to the current input symbol on the tape. The symbol is said to be
read if at least one agent applied its corresponding tape rule. The model, called a
P colony automaton or a PCol automaton, combines properties of standard finite
automata and standard P colonies. The P colony automaton starts working with
a string on its input tape (the input string) and with initial multisets of objects in
its cells. The input string is accepted if it is read by the system and the P colony is
in an accepting configuration (in an accepting state). It was shown that P colony
automata are able to describe the class of recursively enumerable languages, taking
various working mode into account.

In this paper we make one step further in combining properties of P colonies
and automata. While in the case of PCol automata the behaviour of the system
is influenced both by the string to be processed and the environment consisting
of multisets of symbols, in the case of Automaton-like P colonies or APCol sys-
tems, for short, introduced in this article, the whole environment is a string. The
interaction between the agents in the P colony and the environment is realized
by exchanging symbols between the objects of the agents and the environment
(communication rules), and the states of the agents may change both via com-
munication and evolution; the latter one is an application of a rewriting rule to
an object. The distinguished symbol, e (in the previous models the environmental
symbol) have a special role: whenever it is introduced in the string by communi-
cation, the corresponding input symbol is erased.

Towards P Colonies Processing Strings 105

The computation in APCol systems starts with an input string, representing
the environment, and with each agents having only symbols e in its state. Every
computational step means a maximally parallel action of the active agents: an
agent is active if it is able to perform at least one of its programs, and the joint
action of the agents is maximally parallel if no more active agent can be added
to the synchronously acting agents. The computation ends if the input string is
reduced to the empty word, there are no more applicable programs in the system,
and meantime at least one of the agents is in so-called final state.

After defining the model, we examined the computational power of APCol sys-
tems. We proved that the family of languages accepted by jumping finite automata
is properly included in the family of languages accepted by APCol systems with
one agent and it was shown that any recursively enumerable language can be ob-
tained as a projection of a language accepted by an Automaton-like P colony with
two agents. We also provided several examples to demonstrate the behaviour of
an APCol system.

2 Definitions

Throughout the paper we assume the reader to be familiar with the basics of the
formal language theory and membrane computing. For further details we refer to
[11] and [17].

For an alphabet Σ, the set of all words over Σ (including the empty word, ε),
is denoted by Σ∗. We denote the length of a word w ∈ Σ∗ by |w| and the number
of occurrences of the symbol a ∈ Σ in w by |w|a.

A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : V → N ; f assigns to each
object in V its multiplicity in M . The set of all multisets with the set of objects V
is denoted by V ◦. The set V ′ is called the support of M and denoted by supp(M).
The cardinality of M , denoted by |M |, is defined by |M | =

∑
a∈V f(a). Any

multiset of objects M with the set of objects V ′ = {a1, . . . an} can be represented
as a string w over alphabet V ′ with |w|ai

= f(ai); 1 ≤ i ≤ n. Obviously, all words
obtained from w by permuting the letters can also represent the same multiset M ,
and ε represents the empty multiset.

In the following we introduce the concept of an Automaton-like P colony (an
APCol system, for short) where the environment of the agents is given in the form
of a string.

As in the case of standard P colonies, agents of the APCol systems contain
objects, each being an element of a finite alphabet. With every agent, a set of
programs is associated. There are two types of rules in the programs. The first
one, called an evolution rule, is of the form a → b. It means that object a inside
of the agent is rewritten (evolved) to the object b. The second type of rules, called a
communication rule, is in the form c↔ d. When this rule is performed, the object
c inside the agent and a symbol d in the string are exchanged, so, we can say that

106 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú

the agent rewrites symbol d to symbol c in the input string. If c = e, then the
agent erases d from the input string and if d = e, symbol c is inserted into the
string.

An Automaton-like P colony works successfully, if it is able to reduce the given
string to ε, i.e., to enter a configuration where at least one agent is in accepting
state and the processed string is the empty word.

Definition 1. An Automaton-like P colony (an APCol system, for short) is a
construct

Π = (O, e,A1, . . . , An), where

• O is an alphabet; its elements are called the objects,
• e ∈ O, called the basic object,
• Ai, 1 ≤ i ≤ n, are agents. Each agent is a triplet Ai = (ωi, Pi, Fi), where

– ωi is a multiset over O, describing the initial state (content) of the agent,
|ωi| = 2,

– Pi = {pi,1, . . . , pi,ki} is a finite set of programs associated with the agent,
where each program is a pair of rules. Each rule is in one of the following
forms:
· a→ b, where a, b ∈ O, called an evolution rule,
· c↔ d, where c, d ∈ O, called a communication rule,

– Fi ⊆ O∗ is a finite set of final states (contents) of agent Ai.

In the following we explain the work of an Automaton-like P colony; to help
the easier reading we provide only the necessary formal details.

During the work of the APCol system, the agents perform programs. Since
both rules in a program can be communication rules, an agent can work with
two objects in the string in one step of the computation. In the case of program
〈a↔ b; c↔ d〉, a substring bd of the input string is replaced by string ac. If the
program is of the form 〈c↔ d; a↔ b〉, then a substring db of the input string is
replaced by string ca. This means that the agent can act only in one place in the
one step of the computation and what happens to the string depends both on the
order of the rules in the program and on the interacting objects. In particular, we
have the following types of programs with two communication rules:

• 〈a↔ b; c↔ e〉 - b in the string is replaced by ac,
• 〈c↔ e; a↔ b〉 - b in the string is replaced by ca,
• 〈a↔ e; c↔ e〉 - ac is inserted in a non-deterministically chosen place in the

string,
• 〈e↔ b; e↔ d〉 - bd is erased from the string,
• 〈e↔ d; e↔ b〉 - db is erased from the string,
• 〈e↔ e; e↔ d〉; 〈e↔ e; c↔ d〉, . . . - these programs can be replaced by pro-

grams of type 〈e→ e; c↔ d〉.

At the beginning of the work of the APCol system (at the beginning of the
computation), there is an input string placed in the environment, more precisely,
the environment is given by a string ω of objects which are different from e.

Towards P Colonies Processing Strings 107

This string represents the initial state of the environment. Consequently, an initial
configuration of the Automaton-like P colony is an (n+1)-tuple c = (ω;ω1, . . . , ωn)
where w is the initial state of the environment and the other n components are
multisets of strings of objects, given in the form of strings, the initial states the of
agents.

A configuration of an Automaton-like P colony Π is given by (w;w1, . . . , wn),
where |wi| = 2, 1 ≤ i ≤ n, wi represents all the objects placed inside the i-th
agent and w ∈ (O − {e})∗ is the string to be processed.

At each step of the (parallel) computation every agent attempts to find one
of its programs to use. If the number of applicable programs is higher than one,
the agent non-deterministically chooses one of them. At one step of computation,
the maximal possible number of agents have to be active, i.e., have to perform a
program.

By applying programs, the Automaton-like P colony passes from one config-
uration to another configuration. A sequence of configurations started from the
initial configuration is called a computation. A configuration is halting if the AP-
Col system has no applicable program. A computation is called accepting if and
only if at least one agent is in final state and the string to be processed is ε.
Hence, the string w is accepted by the Automaton-like P colony Π if there exists
a computation by Π such that it starts in the initial configuration (ω;ω1, . . . , ωn)
and the computation ends by halting in the configuration (ε;w1, . . . , wn), where
at least one of wi ∈ Fi for 1 ≤ i ≤ n.

3 Computational power of Automaton-like P colonies

The behaviour of Automaton-like P colonies is similar to the functioning of
jumping finite automata. The jumping finite automaton is a quintuple M =
(Q,Σ, δ, q0, F) where the meaning of Q,Σ, δ, q0 and F is the same as in the case of
traditional finite automaton with ε-steps (the set of states, the input alphabet, the
transition function, the initial state, and the set of final states). The dissimilarity
of the two computing devices is in the way of performing a computational step.
The computation starts in a random cell of the input tape. After reading the input
symbol in the cell and changing the state of the automaton, the reading head is
allowed to jump to some random location on the tape. If the symbol is read, then it
is erased from the tape. The notion of a jumping finite automaton was introduced
in [15], we refer to this seminal article for the precise details.

Although non-trivial languages can be recognized by jumping finite automata,
the following languages cannot be accepted by them: L1 = {ab}, L2 = {anbn |
n ≥ 0}, L3 = {anbncn | n ≥ 0}. But, jumping finite automata accept L4 =
{ab, ba}, L5 = {w ∈ {a, b}∗ | |w|a = |w|b}, L6 = {w ∈ {a, b, c}∗ | |w|a = |w|b =
|w|c}. It is shown that the family of languages accepted by jumping finite automata
is included in the family of context-sensitive languages.

108 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú

Theorem 1. For every jumping finite automaton M = (q,Σ, δ, q0, F) we can con-
struct an Automaton-like P colony Π = (O, e,A) such that L(M) = L(Π) holds.

Proof. Let M = (q,Σ, δ, q0, F) be a jumping finite automaton. We construct an
Automaton-like P colony Π with one agent A which simulates every computation
of M and only that. The simulation is as follows:

• The current state of M is stored as object inside the agent of Π, i.e., it corre-
sponds to a state of the agent.

• One step of computation of M (except of ε-step) is simulated by two compu-
tation steps of Π. In the first step, the agent changes the object corresponding
to the state of M and replaces the symbol on the tape by object e - erases
the symbol has been read from the input string. In the second step, the agent
prepares itself for the simulation of the next step of computation of M - it
rewrites the consumed symbol from the tape to e.

Formally, we construct the Automaton-like P colony Π = (A, e,B) as follows:

1. O = Q ∪Σ ∪ {e};
2. A = (q0e, P1, {qfe | qf ∈ F});
3. P1 = {
〈q → q′, e↔ a〉 for every q, q′ ∈ Q, a ∈ Σ such that q′ ∈ δ (q, a)
〈q′ → q′, a→ e〉 for every q′ ∈ Q, a ∈ Σ
〈q → q′, e→ e〉 for every q, q′ ∈ Q such that q′ ∈ δ (q, ε)
}

The Automaton-like P colony starts processing an input string w in initial
configuration (q0e;w) that corresponds to the initial configuration of jumping finite
automaton M (q0, w).

If M is in the configuration (q, uav), q ∈ Q, u, v ∈ Σ∗, a ∈ Σ and it per-
forms computational step reaching state q′ such that q′ ∈ δ (q, a), then it enters
configuration (q′, uv). If the APCol system Π is in the corresponding configura-
tion (qe;uav), then the agent has an applicable program 〈q → q′, e↔ a〉. After
executing this program, Π enters configuration (q′a;uv) and in the next step the
program 〈q′ → q′, a→ e〉 must be performed. The configuration of Π is (q′e, uv)
that corresponds to configuration of M . Then the APCol system Π is prepared to
simulate the next step of computation of jumping finite automaton M .

If the automaton M is in the configuration (q, u), q ∈ Q, u ∈ Σ∗ and it per-
forms computational step reaching state q′ such that q′ ∈ δ (q, ε), then it enters
configuration (q′, u). If the APCol system Π is in the corresponding configuration
(qe;u), then the agent has applicable program 〈q → q′, e→ e〉. After execution of
this program the system is in the configuration (q′;u). This configuration corre-
sponds to configuration of the jumping finite automaton M .

The automaton M accepts input string w iff it passes from the initial configu-
ration (q0, w) to one of final configuration (qf , ε). This computation corresponds
to computation in Π that starts in the initial configuration (q0e;w) and ends in
one of final configurations (qfe; ε). The computation of Π is halting if and only

Towards P Colonies Processing Strings 109

if the computation in M is halting, too. Hence the Automaton-like P colony Π
accepts string w if only if jumping finite automaton M accepts w. ut

Now we show that Automaton-like P colonies are able to accept languages that
jumping finite automata cannot.

Example 1. Let Π1 = ({a, b, p} , e, A) be an Automaton-like P colony with one
agent A = (ee, P, {pp}). Let the programs of the agent be the following:

1. 〈e↔ a; e↔ b〉
2. 〈a→ p; b→ p〉

Let (ee, w) , w ∈ {a, b}∗ be the initial configuration of Π1. There is only one appli-
cable program in this configuration, namely, program 1. This program is applicable
only if ab is substring of w. Let w = u·ab·v, u, v ∈ {a, b}∗. After the first step of the
computation the configuration of Π1 is (ab, uv). In this configuration the second
program 〈a→ p; b→ p〉 is applicable and the APCol system enters configuration
(pp, uv). Because of presence of two copies of object p in the state of the agent,
there is no applicable program in the APCol system and the computation halts.

The language accepted by Π1 is L(Π1) = {ab}.

Example 2. Let Π2 = ({a, b, q} , e, B) be an Automaton-like P colony with one
agent B = (ee, P, {qe}). The programs of the agent are following:

1. 〈e↔ a; e↔ b〉
2. 〈a→ q; b→ e〉
3. 〈q → q; e↔ a〉
4. 〈q → q; e↔ b〉
5. 〈q → q; a→ e〉
6. 〈q → q; b→ e〉

Let (ee, w) , w ∈ {a, b}∗ be the initial configuration of Π2. There is only one
applicable program in this configuration, program 1. This program is applicable
only if ab is substring of w. Let w = u·ab·v, u, v ∈ {a, b}∗. After the first step of the
computation the configuration of Π2 is (ab, uv). In this configuration the second
program 〈a→ q; b→ e〉 is applicable and the APCol system enters configuration
(qe, uv). Because of presence of one copy of object q inside the agent, it uses
program 3 (or 4) and, consequently, program 5 (or 6). By use of these programs,
the agent erases every object a and b from the string.

The language accepted by Π2 is L(Π2) = {u·ab·v | u, v ∈ {a, b}∗}.

By the following example, we present a very simple Automaton-like P colony
with only one agent with two programs that accepts the context-free language
L = {anbn | n ≥ 0}.

Example 3. Let Π3 = ({a, b} , e, B) be an Automaton-like P colony with one agent
A = (ee, P, {ee}). The programs of the agent are the following:

1. 〈e↔ a; e↔ b〉

110 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú

2. 〈a→ e; b→ e〉

Let (ee, w) , w ∈ {a, b}∗ be the initial configuration of Π. There is only one
applicable program in this configuration, program 1. This program is applicable
only if ab is substring of w. Let w = u · ab · v, u, v ∈ {a, b}∗. After the first
step of the computation the configuration of the APCol system is (ab, uv). In
this configuration the second program 〈a→ e; b→ e〉 is applicable and Π3 enters
configuration (ee, uv). This means that in two step of computation agent erases
substring ab from a string. The computation ends when no substring ab occurs in
the input string, thus any accepted word must be of the form anbn, n ≥ 0.

An interesting question is if we can construct an Automaton-like P colony
which accepts the language L = {anbncn | n ≥ 0}.

Example 4. Let Π4 = ({a, b, B} , e, A1, A2, {((ee), (bB))}) be an Automaton-like
P colony with two agents A1 = (eB, P1, {ee}) and A2 = (bB, P2, {bB}). The
programs of the agents are the following:

Set of programs P1:
1. 〈e↔ a;B ↔ b〉
2. 〈a→ e; b→ B〉
3. 〈a→ e; b→ e〉
4. 〈e↔ B; e↔ c〉
5. 〈B → e; c→ e〉
6. 〈e↔ a; e→ F 〉
7. 〈e↔ b; e→ F 〉

Set of programs P2:
A. 〈b↔ B;B ↔ b〉

It can be shown that L(Π4) = {anbncn | n ≥ 0}. Instead of the formal proof,
we provide the sketch of the main idea. Π4 functions as follows:

1. the first agent is an ”eraser” - it erases substrings from the input string - it
replaces string ab by B and erases substring Bc.

2. The second agent moves object B over that part of the input string which
contains objects b.

3. The computation is accepting if every object from the input string is erased
and the state of the first agent consists of only objects e.

We show an example of an accepting computation of Π4 over the string w =
aaabbbccc.

Towards P Colonies Processing Strings 111

step string agent A1 agent A1

of computation content applicable programs content applicable programs

0. aaabbbccc eB 1. Bb
1. aaBbbccc ab 2., 3. Bb A.
2. aabBbccc eB 1. Bb A.
3. aBbBccc ab 2., 3. Bb A.
4. abBBccc eB 1. Bb
5. BBBccc ab 2.,3. Bb
6. BBBccc ee 4. Bb
7. BBcc Bc 5. Bb
8. BBcc ee 4. Bb
9 Bc Bc 5. Bb

10. Bc ee 4. Bb
11. ε Bc 5. Bb
12. ε ee Bb

The next example is a non-accepting computation over the string w =
aaabbbccc on the next table.

step string agent A1 agent A1

of computation content applicable programs content applicable programs

0. aaabbbccc eB 1. Bb
1. aaBbbccc ab 2., 3. Bb A.
2. aabBbccc eB 1. Bb A.
3. aBbBccc ab 2.,3. Bb A.
4. abBBccc ee 6., 7. Bb
5. bBBccc Fe Bb

The Automaton-like P colony processes the string u = aabcbc in the following
computations.

step string agent A1 agent A1

of computation content applicable programs content applicable programs

0. aabcbc eB 1. Bb
1. aBcbc ab 2., 3. Bb A.
2. aBcbc eB Bb

112 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú

step string agent A1 agent A1

of computation content applicable programs content applicable programs

0. aabcbc eB 1. Bb
1. aBcbc ab 2.,3. Bb
2. aBcbc ee 4. Bb
3. abc Bc 5. Bb
4. abc ee 6., 7. Bb
5. bc Fa Bb

By the previous examples we obtain the following corollary.

Corollary 1. The family of languages accepted by Automaton-like P colonies with
one agent properly includes the family of languages accepted by jumping finite
automata.

Automaton-like P colonies with one agent are able to simulate jumping finite
automata. If we add one more agent, we can construct Automaton-like P colonies
simulating the work of two-counter machines. For details on two-counter machines
consult [11, 16].

A two-counter machine is a 3-tape Turing machine M = (Σ ∪ {Z,B}, Q,R)
where:

• Σ is an finite set of symbols - alphabet of input symbols,
• Z is the symbol marking the beginning of second and third tape (first and

second counter),
• B is the blank symbol,
• Q is a finite set of states with two distinguished elements q0, qf ∈ Q, q0 is the

initial state and qf is the final state of M ,
• R is a set of transition rules.

The first tape of the machine is the input tape and second and third tapes
are called storage tapes. All tapes are read-only and the storage tapes are semi-
infinite. At the beginning of the storage tape symbol Z is found and the rest of
the tape is empty (it contains only symbols B). The input tape contains the input
word and occurrences of B.

The transition rules have the form x = 〈b, q, c1, c2, q′, e1, e2, g〉 where:

• b ∈ Σ ∪ {B} is the symbol scanned by the input head on the input tape,
• q, q′ ∈ Q is the state of the two-counter machine,
• c1, c2 ∈ {Z,B} are the symbols scanned on the storage tapes,
• e1, e2 ∈ {−1, 0,+1} describe the move of the heads on the storage tapes,
• g ∈ {0,+1} describe the move of the input head.

This rule can be performed by M if symbol scanned on input tape is b, M is in
the state q and symbols read from storage tapes are c1, c2. By applying this rule
M enters state q′ and the heads move in according to g, e1, e2. If the value is −1,
then the head moves to the left, if the value is +1, then the head moves to the
right, and, if its value is 0, then the head stays at the same position. The head on

Towards P Colonies Processing Strings 113

input tape can never move to the left and if symbol on read from storage tape is
Z, then the head must not to move to the left, too.

The integer stored in a counter is number of all blank symbols laying between
the storage head (and under it) and symbol Z on the storage tape. If the head
scans symbol Z, then the counter has value 0.

The state of M , the contents of the tapes, and the position of heads on the
tapes together define configuration of M . The two-counter machine is in an initial
configuration if it is in initial state, on the first tape it has the input word, on
the second and third tape it has a word from ZB∗, and the heads are scanning
the first symbol of the tapes. The two-counter machine M is in the accepting
configuration if the input head reads the last non-blank symbol on the input tape
and the machine is in the final state; in this case the input word is accepted.

Two-counter machine are computationally complete computing devices [11, 8].

Theorem 2. Let Σ be an alphabet, L ⊆ Σ∗ be a recursively enumerable language.
Let L′ = S ·L ·E, where S,E /∈ Σ. Then there exists an Automaton-like P colony
Π with two agents such that L′ = L(Π) holds.

Proof. Let M = (Σ ∪ {Z,B}, Q,R) be a two-counter machine accepting language
L. We construct an Automaton-like P colony Π = (O, e,A1, A2) which accepts
S · L · E, where:

• O = Σ ∪ {e, Z1, Z2, B1, B2, D,G,E, S, S
′, S, S,Q,Q,Q,M,M,M, } ∪

∪ {AB | A ∈ Σ ∪ {Z1, Z2, B1, B2},
B ∈ {T, T1, T2, H+1, H0, I+1, I−1, I0, J+1, J−1, J0} ∪

∪ {q, q, q, q | q ∈ Q}}
• A1 = (S′G,P1, {M A

H , where A ∈ Σ ∪ {e}, H ∈ {H+1, H0}})
• A2 = (Z1

T1

Z2

T2
, P2, {Qe})

The sets of programs are the following:
For the first part of computation, programs are needed to initialize the simula-

tion. They generate the initial contents of the counters and mark the first symbols
on each tape, i.e., the symbols under the reading heads (for example, replace a by
a
T).

The programs for initialization of the simulation:
A1 : A2 :

1. 〈S′ ↔ S;G↔ a〉 1.
〈

Z1

T1
↔ e; Z2

T2
↔ S′

〉
2.
〈
S → S; a→ a

T

〉
2. 〈S′ → D; e→ e〉

3.
〈
S → S; a

T ↔ G
〉

4.
〈
S → q0;G→ a

H

〉
∀a ∈ Σ, H ∈ {H+1, H0}

Let the input word of the two-counter machine be w = av, a ∈ Σ, w, v ∈ Σ∗.
At the beginning of the computation the input tape contains the word SavE.

114 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú

Agent A1 uses the program 1. and replaces first two symbols Sa by string S′G.
In the second step, both agents work. Agent A1 rewrites objects Sa to objects
S a

T (inside it), and the second agent A2 replaces symbol S′ by string Z1

T1

Z2

T2
. In

the third step agent A1 replaces symbol G by symbol a
T and rewrites object S by

object S. Agent A2 changes its state from (S′e) to De. Agent A2 is prepared to
continue the simulation, otherwise agent A1 has to do one more step. At the last

step of the initialization, agent A1 uses program 4. and it rewrites SG to q0
a
H .

(SavE;S′G, Z1

T1

Z2

T2
)⇒ (S′GvE;Sa, Z1

T1

Z2

T2
)⇒ (Z1

T1

Z2

T2
GvE;S a

T , S
′e)⇒

⇒ (Z1

T1

Z2

T2

a
T vE;SG,De)⇒ (Z1

T1

Z2

T2

a
T vE; q0

a
H , De)

The second group of programs is to simulate the execution of the transition
rules of the two-counter machine. Let 〈b, q, c1, c2, q′, e1, e2, g〉 be a transition rule,
where b ∈ Σ ∪ {B}, q, q′ ∈ Q, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}, g ∈ {0,+1}.
Agent A1 has programs to check whether the reading heads are over the corre-
sponding symbols, i.e., symbols b, c1 and c2, and to note the string moves of the
reading heads by replacing b

T , c1
T1

and c2
T2

by b
g , c1

e1
and c2

e2
.

A1 :

5.
〈
q → q; b

g ↔
b
T

〉
10.
〈
qj → qj+1; c22

Je2
→ c22

Je2

〉
; j ∈ {1, 2}

6.
〈
q → q1; b

T →
c11

Ie1

〉
11.
〈
q3 → q; c22

Je2
↔ c22

T2

〉
7.
〈
qi → qi+1; c11

Ie1
→ c11

Ie1

〉
; 1 ≥ i ≥ 5 12.

〈
q → q1; c2

T2
→ a

H

〉
8.
〈
q6 → q; c11

Ie1
↔ c11

T1

〉
13.
〈
qk → qk+1; a

H →
a
H

〉
; k ∈ {1, 2}

9.
〈
q → q1; c11

T1
→ c22

Je2

〉
14.
〈
q3 → q′; a

H →
a
H

〉
∀a ∈ Σ ∪ {B}, H ∈ {H+1, H0}
Agent A1 performs some “waiting” steps to let the second agent execute the

movement of reading heads. At the last steps of this part of the computation agent
A1 in some way “precomputes” the symbol to be read in the next step. This symbol
is non-deterministically chosen from the set Σ ∪ {B}. If the precomputed symbol
does not match the symbol on the tape in the next step, the computation halts
in a non-accepting configuration. The second agent has programs to perform the
movement of the reading heads.

Towards P Colonies Processing Strings 115

A2 :
the movement of reading head on the input tape

15.
〈
D ↔ b

H0
; e→ b

T

〉
17.
〈
D ↔ b

H+1
; e↔ a

〉
19.
〈
D ↔ b

H+1
; e↔ E

〉
16.
〈

b
H0
→ e; b

T ↔ D
〉

18.
〈

b
H+1
→ b; a→ a

T

〉
20.
〈

b
H+1
→ b;E → B′

〉
21. 〈b↔ D;B′ ↔ e〉

22.
〈
D ↔ B′; e→ B

T

〉
23.
〈
B′ → E; B

T →
B
T

〉
24.
〈

B
T ↔ D;E ↔ e

〉
∀a ∈ Σ, H ∈ {H+1, H0}

In the first column there are programs for the case when the reading head does
not move - g = 0. In the second and third column there are programs for executing
the move of the head to the right - g = +1. In the third column there are programs
to do movement to the right when the reading head is on the last symbol of the
string, so the head have to move to the blank symbol after the string.

A2 :
the movement of reading head on the first counter, X ∈ {Z1, B1}
25.
〈
D ↔ X

I0
; e→ X

T1

〉
27.
〈
D ↔ X

I+1
; e→ B1

T1

〉
30.
〈
D ↔ Y ; e↔ X

I−1

〉
26.
〈

X
I0
→ e; X

T1
↔ D

〉
28.
〈

X
I+1
→ X; B1

T1
→ B1

T1

〉
31.
〈
Y → Y

T1
; X
I−1
→ e

〉
29.
〈
X ↔ D; B1

T1
↔ e

〉
28.
〈

Y
T1
↔ D; e↔ e

〉
A2 :

the movement of reading head on the second counter, X ∈ {Z2, B2}
32.
〈
D ↔ X

J0
; e→ X

T2

〉
34.
〈
D ↔ X

J+1
; e→ B2

T2

〉
37.
〈
D ↔ Y ; e↔ X

J−1

〉
33.
〈

X
J0
→ e; X

T2
↔ D

〉
35.
〈

X
J+1
→ X; B2

T2
→ B2

T2

〉
38.
〈
Y → Y

T2
; X
J−1
→ e

〉
36.
〈
X ↔ D; B2

T2
↔ e

〉
39.
〈

Y
T2
↔ D; e↔ e

〉
The programs devoted to reading heads on the counters are similar to the ones

for the reading head on the input tape. The programs in the first columns are for
staying at the same place, the second columns for movement to the right, and the
last columns for the movement of the reading head to the left.

Now we finish the simulation of execution of the transition rules. The last group
of programs is to finish the computation after the two-counter machine M comes
to final state. M accepts the string on the input tape only if it is in the final state
and the reading head on the input tape is in the position on the last non-blank
symbol. The Automaton-like P colony Π ends computation by halting. The string
is accepted by Π only if the input tape is empty after halting in the final state
of at least one agent. So, after reaching the final state of M the Automaton-like
P colony Π has to erase the symbols on and before the reading head (symbol of

116 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú

the type a
T and all symbols placed on the left from this symbol - the contents

of both counters) on the input tape, symbols B and finally the symbol E, which
determines the end of the string w. If there is some non-erased symbol left on
the input tape, then the two-counter machine does not accept the word w, too,
because the reading head in not on the last non-blank symbol of the input tape.

A1 :
erasing the last symbol over the reading head on the input tape
a ∈ Σ,H ∈ H0, H+1

32.
〈
qf ↔M ; a

H ↔
a
T

〉
34.
〈
M →M ;Q↔ a

H

〉
33.
〈
M →M ; a

T → Q
〉

35.
〈
M →M ; a

H → e
〉

A2 :
erasing symbols on the counters and at the end of the tape

Z ∈ {Z1, Z2, B1, B2,
Z1

T1
, Z2

T2
, B1

T1
, B2

T2
, B,E}

36.
〈
D → Q; e→ Q

〉
38.
〈
Q↔ q; e↔ Z

〉
37.
〈
Q→ Q;Q↔ e

〉
39.
〈
Q→ Q;Z → e

〉
The computation of Π starts in the initial configuration which corresponds to

the initial configuration of two-counter machine M . After the initialization, the
simulation of execution of particular transition rules runs in the same way as they
are applied by M . The computation of Π halts in accepting configuration only
if M processes the whole input string and ends computation in the one of final
states. ut

By the previous theorem we obtain the following corollary:

Corollary 2. Any recursively enumerable language can be obtained as a projection
of a language accepted by an Automaton-like P colony with two agents.

4 Conclusions

We introduced the concept on an Automata-like P colony (an APCol system)
- a variant of P colonies that works on a string. The agents communicate with
the environment alike standard P colonies: they process symbols in the string. As
P colony automata, the concept is a notion combining properties of P colonies
and classical automata. The main difference in the two notions is in the way of
interaction between the agents (the cells) and the environment. We compared
the computational power of Automata-like P colonies and that of jumping finite
automata, and proved that APCol systems are strictly powerful than jumping
finite automata. We also provided a representation of the recursively enumerable
language class in terms of APCol systems. The question of exact description of
the computational power of Automata-like P colonies is still open.

Towards P Colonies Processing Strings 117

Remark 1. This work was partially supported by the European Regional Develop-
ment Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/-
02.0070), by SGS/24/2011 and by project OPVK no. CZ.1.07/2.2.00/28.0014. and
in part by the Hungarian Scientific Research Fund, “OTKA”, project K75952.

References

1. L. Ciencialová, L. Cienciala, Variation on the theme: P colonies. In: Proc. 1st Intern.
Workshop on Formal Models. (D. Kolăr, A. Meduna, eds.), Ostrava, 2006, 27–34.

2. L. Ciencialová, E. Csuhaj-Varjú, A. Kelemenová, Gy. Vaszil, Variants of P colonies
with very simple cell structure. International Journal of Computers, Communication
and Control 4(3) (2009), 224–233.

3. L. Ciencala, L. Ciencialová, E. Csuhaj-Varjú, Gy. Vaszil, PCol Automata: Recog-
nizing strings with P colonies. In: Proc. BWMC 2010, Sevilla, 2010, Ed. by M. A.
Martnez-del-Amor et al. Fnix Editora, Sevilla, 2010, 65-76.

4. L. Cienciala, L. Ciencialová, A. Kelemenová, Homogeneous P colonies. Computing
and Informatics 27 (2008), 481–496.

5. L. Cienciala, L. Ciencialová, A. Kelemenová, On the number of agents in P colonies.
In: Membrane Computing. 8th International Workshop, WMC 2007. Thessaloniki,
Greece, June 25-28, 2007. Revised Selected and Invited Papers. (G. Eleftherakis et.
al, eds.), LNCS 4860, Springer-Verlag, Berlin-Heidelberg, 2007, 193–208.

6. E. Csuhaj-Varjú, J. Kelemen, A. Kelemenová, Gh. Păun, Gy. Vaszil, Computing with
cells in environment: P colonies. Journal of Multi-Valued Logic and Soft Computing
12 (2006), 201–215.

7. E. Csuhaj-Varjú, M. Margenstern, Gy. Vaszil, P colonies with a bounded number of
cells and programs. In: Membrane Computing. 7th International Worskhop, WMC
2006, Leiden, The Netherlands, July 17-21, 2006. Revised, Selected and Invited Pa-
pers. (H-J. Hoogeboom et. al, eds), LNCS 4361, Springer-Verlag, Berlin-Heidelberg,
(2007), 352–366.

8. P. C. Fischer, Turing machines with restricted memory access. Information and Con-
trol, 9, 364–379, 1966.

9. R. Freund, M. Oswald, P colonies working in the maximally parallel and in the
sequential mode. Pre-Proc. In: 1st Intern. Workshop on Theory and Application of
P Systems. (G. Ciobanu, Gh. Păun, eds.), Timisoara, Romania, 2005, 49–56.

10. R. Freund, M. Oswald, P colonies and prescribed teams. International Journal of
Computer Mathematics 83 (2006), 569–592.

11. Hopcroft, J.E., Ullman, J.D., Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading, Mass., 1979.

12. J. Kelemen, A. Kelemenová, A grammar-theoretic treatment of multi-agent systems.
Cybernetics and Systems 23 (1992), 621–633.

13. J. Kelemen, A. Kelemenová, Gh. Păun, Preview of P colonies: A biochemically in-
spired computing model. In: Workshop and Tutorial Proceedings. Ninth International
Conference on the Simulation and Synthesis of Living Systems (Alife IX). (M. Bedau
et al., eds.), Boston Mass., 2004, 82–86.

14. A. Kelemenová, P Colonies. Chapter 23.1, In: The Oxford Handbook of Membrane
Computing. (Gh. Păun, G. Rozenberg, A. Salomaa, eds.), Oxford University Press,
2010, 584–593.

118 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú

15. A. Meduna, P. Zemek, Jumping Finite Automata. Int. J. Found. Comput. Sci. 23,
2012, pp. 1555–1578.

16. M. Minsky, Computation – Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, NJ, 1967.

17. Gh. Păun, G. Rozenberg, A. Salomaa, eds.,The Oxford Handbook of Membrane
Computing. Oxford University Press, 2010.

