
Solving SAT with Active Membranes
and Pre-Computed Initial Configurations

Bogdan Aman, Gabriel Ciobanu

Romanian Academy, Institute of Computer Science
Blvd. Carol I no.11, 700506 Iaşi, Romania
baman@iit.tuiasi.ro, gabriel@info.uaic.ro

Summary. In this paper we provide algorithms for solving the SAT problem using P
systems with active membranes with neither polarization nor division rules. The semi-
uniform solutions are given under the assumption that initial configurations (either al-
phabet or structure) of exponential size are pre-computed by well-defined P systems (P
systems with replicated rewriting and P systems with active membranes and membrane
creation, respectively) working in polynomial time. An important observation is that we
specify how the pre-computed initial configurations are constructed.

1 Introduction

Membrane computing is inspired by the architecture and the behaviour of liv-
ing cells. Various classes of membrane systems (also called P systems) have been
defined in [9], while several applications of these systems are described in [3].
Membrane systems are characterised by three features: (i) a membrane structure
consisting of a hierarchy of membranes (which are either disjoint or nested), with
an unique top membrane called the skin; (ii) multisets of objects associated with
membranes; (iii) rules for processing the objects and membranes. When mem-
brane systems are seen as computing devices, two main research directions are
usually considered: computational power in terms of the classical notion of Tur-
ing computability (e.g., [1]), and efficiency in algorithmically solving NP-complete
problems in polynomial time (e.g., [2]). Thus, membrane systems define classes of
computing devices which are both powerful and efficient.

Under the assumption that P ̸= NP, efficient solutions to NP-complete prob-
lems cannot be obtained without introducing features which enhance the efficiency
of the system ways to exponentially grow the workspace during the computation,
nondeterminism, and so on). For instance, some pre-computed resources are used
in [4, 6].

In this paper we consider P systems with active membranes [7], and show
that they can provide simple semi-uniform solutions to the SAT problem without
using neither polarization nor division, but using exponential size pre-computed

64 B. Aman, G. Ciobanu

initial configurations (either alphabet or structure). An important observation is
that we specify how our pre-computed initial configurations are constructed in
a polynomial number of steps by additional well-defined P systems (P systems
with replicated rewriting and P systems with active membranes and membrane
creation, respectively).

2 Preliminaries

We consider polarizationless P systems with active membranes [7]. The original
definition also includes division rules, rules that are not needed here.

Definition 1. A polarizationless P system with active membranes is a tuple
Π = (Γ,Λ, µ, w1, . . . , wd, R), where:

• d ≥ 1 is the initial degree;
• Γ is a finite non-empty alphabet of objects;
• Λ is a finite set of labels for membranes;
• µ is a membrane structure (i.e., a rooted unordered tree, usually represented

by nested brackets) in which each membrane is labelled by an element of Λ in
a one-to-one way;

• w1, . . . , wd are strings over Γ , describing the initial multisets of objects placed
in a number of d membranes of µ;

• R is a finite set of rules over Γ :

1. [a→ w]h object evolution rules
An object a is rewritten into the multiset w, if a is placed inside a membrane
labelled by h.

2. a[]h → [b]h send-in communication rules
An object a is sent into a membrane labelled by h, becoming b.

3. [a]h → b[]h send-out communication rules
An object a, placed into a membrane labelled by h, is sent out of membrane
h and becomes b.

4. [a]h → b dissolution rules
A membrane h containing an object a is disslved, while object a is rewritten
to b.

Each configuration Ci of a P system with active membranes and input objects
is described by the membrane structure, together with the multisets of objects
located in the corresponding membranes. The initial configuration of such a system
is denoted by C0. An evolution step Ci ⇒ Ci+1 from a configuration Ci to a new
configuration Ci+1 is done according to the following principles:

• Each object is involved in at most one rule per step, while each membrane
could be involved in several rules.

• The application of rules is maximally parallel: all rules that can be applied are
applied.

Solving SAT with Active Membranes and Pre-Computed Resources 65

• When several conflicting rules could be applied at the same time, a nondeter-
ministic choice is performed; this implies that multiple configurations can be
reached as the result of an evolution step.

• In each evolution step, all evolution rules are applied inside the most inner
membranes, followed by all communication rules involving the membranes
themselves. This process is then repeated to the membranes containing them,
and so on towards the skin membrane.

• Objects sent out from the skin membrane represent the computation result.

A halting evolution of such a system Π is a finite sequence of configurations
−→
C =

(C0, . . . , Ck), such that C0 ⇒ C1 ⇒ . . . ⇒ Ck, and no rules can be applied any

more in Ck. A non-halting evolution
−→
C = (Ci | i ∈ N) consists of infinite evolution

C0 ⇒ C1 ⇒ . . ., where the applicable rules are never exhausted.

3 Solving the SAT Problem with Active Membranes

At the beginning of 2005, Gh. Păun wrote:
“My favourite question (related to complexity aspects in P systems with active

membranes and with electrical charges) is that about the number of polarizations.
Can the polarizations be completely avoided? The feeling is that this is not possible
- and such a result would be rather sound: passing from no polarization to two
polarizations amounts to passing from non-efficiency to efficiency.”

This conjecture (problem F in [8]) can be formally described in terms of mem-
brane computing complexity classes as follows:

P = PMCAM0(+d,−n,+e,+c)

where

• PMCR indicates that the result holds for P systems with input membrane;
• +d indicates that dissolution rules are permitted;
• −n indicates that only division rules for elementary membranes are allowed;
• +e indicates that evolution rules are permitted;
• +c indicates that communication rules are permitted.

The SAT problem checks the satisfiability of a propositional logic formula in
conjunctive normal form (CNF). Let {x1, x2, . . . , xn} be a set of propositional
variables. A formula in CNF is of the form φ = C1 ∧C2 ∧ · · · ∧Cm where each Ci,
1 ≤ i ≤ m is a disjunction of the form Ci = y1 ∨ y2 ∨ · · · ∨ yr (r ≤ n), where each
yj is either a variable xk or its negation ¬xk.

We present some attempts to solve this conjecture by providing algorithms
solving the SAT problem using P systems with active membranes with neither po-
larizations nor division, but using exponential pre-computed initial configurations
constructed by additional P systems in polynomial time.

66 B. Aman, G. Ciobanu

3.1 Solving SAT Problem by Using a Pre-Computed Alphabet

In this section, we propose a polynomial time solution to the SAT problem using
the polarizationless P systems with active membranes, without division, but with a
pre-computed alphabet. For any instance of SAT we construct effectively a system
of membranes that solves it. Formally, we prove the following result:

Theorem 1. The SAT problem can be solved by a polarizationless P system
with active membranes and without division, but with an exponential alphabet
pre-computed in linear time with respect to the number of variables and the number
of clauses, i.e.,

P = PMCAM0(+d,+e,+c,pre(α)) .
where pre(α) indicates that a pre-computed alphabet is permitted.

Proof. Let us consider a propositional formula
φ = C1 ∧ C2 ∧ · · · ∧ Cm

where each Ci, 1 ≤ i ≤ m is a disjunction of the form
Ci = y1 ∨ y2 ∨ · · · ∨ yr (r ≤ n),

where each yj is either a variable xk or its negation ¬xk.
We construct a P system with active membranes able to check the satisfiability

of φ. The P system is given by Π = (Γ,Λ, µ, w1, . . . , wd, R), where:

• V = {zi | 0 ≤ i ≤ max{m,n}} ∪
∪ {si | i = t1 . . . tn, tj ∈ {0, 1} and 1 ≤ j ≤ n} ∪ {yes, no}.

The alphabet {si | i = t1 . . . tn, tj ∈ {0, 1} and 1 ≤ j ≤ n} to be placed inside
the input membrane 0 can be generated, starting from an object s, using the
rules:

– s→ s0s1;
– si → si0si1, for i = t1 . . . tk where tj ∈ {0, 1} and 1 ≤ j ≤ k < n.

Thus all the possible assignments for the n variable {x1, x2, . . . , xn} are created.
The rules are applied until the length k of i in the second rule equals n. For
example, s100 over {x1, x2, x3} represents the assignment x1 = 1, x2 = 0 and
x3 = 0 (1 stands for true, while 0 stands for false). The input alphabet can
be computed in linear (polynomial) time by using an additional device, for
instance P systems with replicated rewriting [5].

• Λ = {0, c1, . . . , cm, h}, with ci = z1 . . . zn, 1 ≤ i ≤ m where
– zj = 1 if xj appears in Ci;
– zj = 0 if ¬xj appears in Ci;
– zj = ⋆ if neither xj nor ¬xj appear in Ci.
For example c1 = 1 ⋆ 0 over the set of variables {x1, x2, x3} represents the
disjunction c1 = x1 ∨ ¬x3.

• µ = [[[. . . [[[]0]c1]c2 . . .]cm−1
]cm]h.

• w0 = z0.
• wi = λ, for all i ∈ Λ\{0}.
• The set R contains the following rules:

Solving SAT with Active Membranes and Pre-Computed Resources 67

1. [z0]0 → z0
After the input is placed inside membrane 0, membrane 0 is dissolved, and
its content is released in the upper membrane labelled with c1.

2. [si]cj → si[]cj
if i and j have at least one position with the same value (either 0 or 1);
[si]cm → yes
if i and m have at least one position with the same value (either 0 or 1).

An assignment si is sent out of a membrane cm if there is at least one
position in i and j that is equal, namely an assignment to a variable xk
such that it makes Cj true. Once an object yes is generated, another object
yes cannot be created because membrane cm was dissolved and the rule
[si]cm → yes cannot be applied. For example, if c1 = 1 ⋆ 0 and s101 (as
described above), then this means that s101 satisfies the clause coded by
c1 = 1 ⋆ 0 since both have 1 on their first position, and this is enough to
make true a disjunction.

3. [z0 → z1]c1
[zi]ci → []cizi+1, for 1 ≤ i ≤ m− 1
[zm]cm → no
The object z0 waits a step after membrane 0 is dissolved in order to allow
the other objects si to go through the cj membranes. The object zi then is
communicated through the cj membranes. Once zm reached the membrane
cm, if membrane cm still exists (i.e., the rule [si]cm → yes was not applied),
then the answer no is generated. Once an object yes or no is generated, other
objects yes or no cannot be created because membrane cm was dissolved,
and neither rule [si]cm → yes nor [zm]cm → no can be applied.

4. [yes]h → yes[]h
[no]h → no[]h
The answer yes or no regarding the satisfiability is sent out of the skin.

3.2 Solving SAT Problem Using a Pre-Computed Initial Structure

In this section, we propose a polynomial time solution to the SAT problem using
the polarizationless P systems with active membranes and without division, but
with a pre-computed structure. For any instance of SAT we construct effectively
a system of membranes that solves it. We also enforce another principle needed
to perform an evolution step: each membrane can be subject to at most one com-
munication rule per step. This principle is needed when generating all possible
assignments to be verified. Formally, we prove the following result:

Theorem 2. The SAT problem can be solved by a polarizationless P system with
active membranes and without division, but with an initial exponential structure
pre-computed in linear time with respect to the number of variables and the number
of clauses, i.e.,

P = PMCAM0(+d,+e,+c,pre(µ)) .
where pre(µ) indicates that a pre-computed structure is permitted.

68 B. Aman, G. Ciobanu

Proof. Let us consider a propositional formula
φ = C1 ∧ C2 ∧ · · · ∧ Cm

where each Ci, 1 ≤ i ≤ m is a disjunction of the form
Ci = y1 ∨ y2 ∨ · · · ∨ yr (r ≤ n),

where each yj is either a variable xk or its negation ¬xk.
We construct a P system with active membranes able to check the satisfiability

of φ. The P system is given by Π = (Γ,Λ, µ, w1, . . . , wd, R), where:

• V = {ai, ti, t′i, fi, f ′i | 1 ≤ i ≤ n} ∪ {zi | 0 ≤ i ≤ 4× n+ 2×m} ∪ {yes, no}.
• Λ = {0, . . . , n, c1, . . . , cm, h}, 1 ≤ i ≤ m.
• µ = [[[[. . .]2[. . .]2]1[[. . .]2[. . .]2]1]0]h, where

– each membrane i contains two membranes i+ 1 for 0 ≤ i ≤ n− 1;
– each membrane n contains a membrane structure [[. . . []cm . . .]c1]c0 ;
– membrane 0 is the input membrane.

Graphically, the membrane structure µ can be represented as a tree:

This membrane structure can be generate in linear (polynomial) time with
respect to the number of variables and the number of clauses. This is done by
using an additional device that starts from a membrane structure [[]0]h, with
object 0 placed inside membrane 0 and rules of the form:

– [i→ (i+ 1)′ (i+ 1)′]i, for 0 ≤ i ≤ n− 1
– i′ → [i]i, for 1 ≤ i ≤ n
– n→ [c2]c1
– ck → [ck+1]ck , for 2 ≤ k ≤ m− 1
– cm → []cm .

• w0 = a1z0.
• wi = λ, for all i ∈ Λ\{0}.
• The set R contains the following rules:

1. [zi → zi+1]0, for all 0 ≤ i < 4× n+ 2×m
These rules count the time needed for producing the truth assignments for
the n variables inside the membranes labelled by n (3 × n steps), then to

Solving SAT with Active Membranes and Pre-Computed Resources 69

dissolve the membranes labelled by cj , 1 ≤ j ≤ m (2 ×m steps), and for
an y object to reach the membrane labelled by 0 (n steps).

2. [ai → tifi]i−1, for 1 ≤ i ≤ n
ti[]i → [ti]i, for 1 ≤ i ≤ n
fi[]i → [fi]i, for 1 ≤ i ≤ n
[ti → t′it

′
iai+1]i, for 1 ≤ i ≤ n− 1

t′i[]k → [ti]k, for i+ 1 ≤ k ≤ n
[ti → t′it

′
i]k, for i+ 1 ≤ k ≤ n− 1

[fi → f ′if
′
iai+1]i, for 1 ≤ i ≤ n− 1

f ′i []k → [fi]k, for i+ 1 ≤ k ≤ n
[fi → f ′if

′
i]k, for i+ 1 ≤ k ≤ n− 1

In membranes n we create all possible assignments for the n variable
{x1, x2, . . . , xn}. It starts from an object a1 placed initially in membrane
labelled by 0. Each ai is used to create ti and fi that are then send in one
of the two membranes labelled by i placed in membrane i− 1. In fact each
membrane i receives either ti or fi, and this is possible because a membrane
can be involved in only one communication rule of an evolution step. After
an object ti or fi reaches a membrane i, it generates two new copies of it
to be sent inside membranes i+1 together with an object ai+1 that is used
then to construct the assignments over variable xi+1.

3. ti[]cj → [ti]cj , if xi appears in Cj

[ti]cj → ti, for 1 ≤ i ≤ n, 1 ≤ j < m
[ti]cm → y, for 1 ≤ i ≤ n
fi[]cj → [ti]cj , if ¬xi appears in Cj

[fi]cj → fi, for 1 ≤ i ≤ n, 1 ≤ j ≤ m
[fi]cm → y, for 1 ≤ i ≤ n.

An assignment ti (fi) is sent into a membrane cj if there is an assignment
to a variable xk (¬xk) such that it makes Cj true. Once all membranes
labelled by ci are dissolved inside a membrane labelled by n, an object y is
generated.

4. [y]k → []ky, for k ∈ Λ\{0, h}
[y]0 → yes
[z4×n+2×m]0 → no.
The object z0 waits for 4 × n + 2 × m steps in order to allow dissolving
the membrane labelled by 0 if this still exists (i.e., the rule [y]0 → yes was
not applied), then the answer no is generated. Once an object yes or no is
generated, other objects yes or no cannot be created because membrane cm
was dissolved, and neither rule [y]0 → yes nor [z4×n+2×m]0 → no can be
applied.

5. [yes]h → yes[]h
[no]h → no[]h.
The answer yes or no regarding the satisfiability is sent out of the skin.

70 B. Aman, G. Ciobanu

Example 1. We illustrate this algorithm and the evolution of a system Π con-
structed for the propositional formula ψ = (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2).

Thus, m=n=2. The initial configuration of the systems, constructed by an
additional device that starts from a membrane structure [[]0]h, with object 0
placed inside membrane 0 and rules of the form:

• [0 → 1′ 1′]0 and [1 → 2′ 2′]1
• 1′ → [1]1 and 2′ → [2]2
• 2 → [c2]c1 and c2 → []c2 .

The obtained structure is
[[[[[[]c2]c1]2[[[]c2]c1]2]1[[[[]c2]c1]2[[[]c2]c1]2]1a1z0]0]h

Graphically, the membrane structure µ can be represented as a tree:

Using the set R of rules 1÷ 5, the computation proceeds as follows:
[[[[[[]c2]c1]2[[[]c2]c1]2]1[[[[]c2]c1]2[[[]c2]c1]2]1a1z0]0]h

⇒ [[[[[[]c2]c1]2[[[]c2]c1]2]1[[[[]c2]c1]2[[[]c2]c1]2]1t1f1z1]0]h
⇒ [[[[[[]c2]c1]2[[[]c2]c1]2t1]1[[[[]c2]c1]2[[[]c2]c1]2f1]1z2]0]h
⇒ [[[[[[]c2]c1]2[[[]c2]c1]2t

′
1t

′
1a2]1[[[[]c2]c1]2[[[]c2]c1]2f

′
1f

′
1a2]1z3]0]h

⇒ [[[[[[]c2]c1t1]2[[[]c2]c1t1]2t2f2]1[[[[]c2]c1f1]2[[[]c2]c1f1]2t2f2]1z4]0]h
⇒ [[[[[[]c2]c1t1t2]2[[[]c2]c1t1f2]2]1[[[[]c2]c1f1t2]2[[[]c2]c1f1f2]2]1z5]0]h
⇒ [[[[[[]c2t1]c1t2]2[[[]c2t1]c1f2]2]1[[[[]c2t2]c1f1]2[[[]c2]c1f1f2]2]1z6]0]h
⇒ [[[[[]c2t1t2]2[[]c2t1f2]2]1[[[]c2t2f1]2[[[]c2]c1f1f2]2]1z7]0]h
⇒ [[[[[]c2t1t2]2[[f2]c2t1]2]1[[[f1]c2t2]2[[[]c2]c1f1f2]2]1z8]0]h
⇒ [[[[[]c2t1t2]2[yt1]2]1[[yt2]2[[[]c2]c1f1f2]2]1z9]0]h
⇒ [[[[[]c2t1t2]2[t1]2y]1[[t2]2[[[]c2]c1f1f2]2y]1z10]0]h
⇒ [[[[[]c2t1t2]2[t1]2]1[[t2]2[[[]c2]c1f1f2]2]1yyz11]0]h
⇒ [[[[]c2t1t2]2[t1]2]1[[t2]2[[[]c2]c1f1f2]2]1yz12yes]h
⇒ [[[[]c2t1t2]2[t1]2]1[[t2]2[[[]c2]c1f1f2]2]1yz12]hyes

It can be noticed that even the object z has now the subscript 4×n+2×m =
4× 2 + 2× 2 = 12, it cannot generate a no object because membrane labelled by
0 was already dissolved by an y object in the previous step. Also, even another y
object reached the membrane labelled by 0, it cannot generate an yes object
because membrane labelled by 0 was already dissolved by another y object in a
previous step.

Solving SAT with Active Membranes and Pre-Computed Resources 71

4 Conclusion

In this paper we deal with a question presented by Păun in 2005: Can the polariza-
tions be completely avoided? (related to complexity aspects of P systems with active
membranes and with electrical charges). We answer positively to this question: we
do not use polarizations in solving the SAT problem, but use a pre-computed initial
configuration involving either exponential alphabet or exponential structure.

We proved P = PMCAM0(+d,+e,+c,pre(α)) and P = PMCAM0(+d,+e,+c,pre(µ))

by providing two algorithms for solving the SAT problem using polarizationless
P system with active membranes and without division. For the former equality,
the provided algorithm is using an exponential alphabet pre-computed in linear
time by a P system with replicated rewriting, while the later one is using an initial
exponential structure pre-computed in linear time with respect to the number of
variables and the number of clauses by P systems with membrane creation.

References

1. B. Aman, G.Ciobanu. Turing Completeness Using Three Mobile Membranes. Lecture
Notes in Computer Science 5715, 42–55 (2009).

2. B. Aman, G. Ciobanu. Mobility in Process Calculi and Natural Computing. Natural
Computing Series, Springer (2011).

3. G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez (Eds.). Applications of Membrane Com-
puting. Springer (2006).

4. T.-O. Ishdorj, A. Leporati, L. Pan, X. Zeng, X. Zhang. Deterministic Solutions to
QSAT and Q3SAT by Spiking Neural P Systems with Pre-Computed Resources.
Theoretical Computer Science 411(25), 2345–2358 (2010).

5. S.N. Krishna, R. Rama. P Systems with Replicated Rewriting. Journal of Automata,
Languages and Combinatorics 6(3), 345–350 (2001).

6. A. Leporati, M.A. Gutiérrez-Naranjo. Solving Subset Sum by Spiking Neural P
Systems With Pre-Computed Resources. Fundamenta Informaticae 87(1), 61–77
(2008).

7. Gh. Păun. P Systems With Active Membranes: Attacking NP-complete Problems.
Journal of Automata, Languages and Combinatorics 6, 75–90 (2001).

8. Gh. Păun. Further Twenty Six Open Problems in Membrane Computing. Third
Brainstorming Week on Membrane Computing (M.A. Gutiérrez et al. eds.), Fénix
Editora, Sevilla, 249–262 (2005).

9. Gh. Păun, G. Rozenberg, A. Salomaa (Eds.). The Oxford Handbook of Membrane
Computing, Oxford University Press (2010).

