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Summary. Membrane systems (with symbol objects) are distributed controlled multiset
processing systems. Non-cooperative P systems with either promoters or inhibitors (of
weight not restricted to one) are known to be computationally complete. Since recently,
it is known that the power of the deterministic subclass of such systems is subregular. We
present new results on the weight of promoters and inhibitors, as well as for characterizing
the systems with priorities only.

1 Introduction

The most famous membrane computing model where determinism is a criterion of
universality versus decidability is the model of catalytic P systems, see [3] and [6].

It is also known that non-cooperative rewriting P systems with either promoters
or inhibitors are computationally complete, [2]. Moreover, the proof satisfies some
additional properties:

• Either promoters of weight 2 or inhibitors of weight 2 are enough.
• The system is non-deterministic, but it restores the previous configuration if

the guess is wrong, which leads to correct simulations with probability 1.

Recently, in [1] it was shown that the computational completeness cannot
be achieved by deterministic non-cooperative systems with promoters, inhibitors
and priorities (in maximally parallel or asynchronous mode, unlike the sequential
mode), and characterizations of the corresponding classes were obtained:
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NFIN ∪ coNFIN = NdetaOP asyn
1 (ncoo, pro1,∗, inh1,∗)

= NdetaOPmaxpar
1 (ncoo, pro1,∗)

= NdetaOPmaxpar
1 (ncoo, inh1,∗)

= NdetaOP asyn
1

(
ncoo, (pro∗,∗, inh∗,∗)∗ , pri

)
= NdetaOPmaxpar

1

(
ncoo, (pro∗,∗, inh∗,∗)∗ , pri

)
, but

NRE = NdetaOP sequ
1 (ncoo, pro1,1, inh1,1) .

A few interesting questions have been left open. For instance, what is the power
of P systems, e.g., in the maximally parallel mode, when we only use priorities, or
when we restrict the weight of the promoting/inhibiting multisets. These are the
questions we address in this paper.

2 Definitions

An alphabet is a finite non-empty set V of abstract symbols. The free monoid
generated by V under the operation of concatenation is denoted by V ∗; the empty
string is denoted by λ, and V ∗ \ {λ} is denoted by V +. The set of non-negative
integers is denoted by N; a set S of non-negative integers is called co-finite if N\S
is finite. The family of all finite (co-finite) sets of non-negative integers is denoted
by NFIN (coNFIN , respectively). The family of all recursively enumerable sets
of non-negative integers is denoted by NRE. In the following, we will use ⊆ both
for the subset as well as the submultiset relation.

Since flattening the membrane structure of a membrane system preserves both
determinism and the model, in the following we restrict ourselves to consider mem-
brane systems as one-region multiset rewriting systems.

A (one-region) membrane system (P system) is a tuple

Π = (O,Σ,w,R′) ,

where O is a finite alphabet, Σ ⊆ O is the input sub-alphabet, w ∈ O∗ is a string
representing the initial multiset, and R′ is a set of rules of the form r : u → v,
u ∈ O+, v ∈ O∗.

A configuration of the system Π is represented by a multiset of objects from O
contained in the region, the set of all configurations over O is denoted by C (O).
A rule r : u → v is applicable if the current configuration contains the multiset
specified by u. Furthermore, applicability may be controlled by context conditions,
specified by pairs of sets of multisets.

Definition 1. Let Pi, Qi be (finite) sets of multisets over O, 1 ≤ i ≤ m. A rule
with context conditions (r, (P1, Q1) , · · · , (Pm, Qm)) is applicable to a configuration
C if r is applicable, and there exists some j ∈ {1, · · · ,m} for which

• there exists some p ∈ Pj such that p ⊆ C and
• q ̸⊆ C for all q ∈ Qj.
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In words, context conditions are satisfied if there exists a pair of sets of multisets
(called promoter set and inhibitor set, respectively) such that at least one multiset
in the promoter set is a submultiset of the current configuration, and no multiset
in the inhibitor set is a submultiset of the current configuration.

Definition 2. A P system with context conditions and priorities on the rules is a
construct

Π = (O,Σ,w,R′, R,>) ,

where (O,Σ,w,R′) is a (one-region) P system as defined above, R is a set of rules
with context conditions and > is a priority relation on the rules in R; if rule r′ has
priority over rule r, denoted by r′ > r, then r cannot be applied if r′ is applicable.

Throughout the paper, we will use the word control to mean that at least one of
these features is allowed (context conditions or promoters or inhibitors only and
eventually priorities).

In the sequential mode (sequ), a computation step consists in the non-
deterministic application of one applicable rule r, replacing its left-hand side
(lhs (r)) with its right-hand side (rhs (r)). In the maximally parallel mode
(maxpar), a multiset of applicable rules may be chosen non-deterministically to
be applied in parallel to the underlying configuration to disjoint submultisets, pos-
sibly leaving some objects idle, under the condition that no further applicable rule
can be added to that multiset (i.e., no supermultiset of the chosen multiset is
applicable to the same configuration). Maximal parallelism is the most common
computation mode in membrane computing, see also Definition 4.8 in [5]. In the
asynchronuous mode (asyn), any positive number of applicable rules may be cho-
sen non-deterministically to be applied in parallel to the underlying configuration,
to disjoint submultisets. The computation step between two configurations C and
C ′ is denoted by C → C ′, thus yielding the binary relation ⇒: C (O) × C (O). A
computation halts when there are no rules applicable to the current configuration
(halting configuration) in the corresponding mode.

The computation of a generating P system starts with w, and its result is |x|
if it halts, an accepting system starts with wx, x ∈ Σ∗, and we say that |x| is
its results – is accepted – if it halts. The set of numbers generated/accepted by a
P system working in the mode α is the set of results of its computations for all
x ∈ Σ∗ and denoted by Nα

g (Π) and Nα
a (Π), respectively. The family of sets of

numbers generated/accepted by a family of (one-region) P systems with context
conditions and priorities on the rules with rules of type β working in the mode
α is denoted by NδOPα

1

(
β, (prok,l, inhk′,l′)d , pri

)
with δ = g for the generating

and δ = a for the accepting case; d denotes the maximal number m in the rules
with context conditions (r, (P1, Q1) , · · · , (Pm, Qm)); k and k′ denote the maximum
number of promoters/inhibitors in the Pi and Qi, respectively; l and l′ indicate
the maximum of weights of promotors and inhibitors, respectively. If any of these
numbers k, k′, l, l′ is not bounded, we replace it by ∗. As types of rules we are
going to distinguish between cooperative (β = coo) and non-cooperative (i.e., the
left-hand side of each rule is a single object; β = ncoo) ones.
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In the case of accepting systems, we also consider the idea of determinism,
which means that in each step of any computation at most one (multiset of)
rule(s) is applicable; in this case, we write deta for δ.

In the literature, we find a lot of restricted variants of P systems with con-
text conditions and priorities on the rules, e.g., we may omit the priorities or
the context conditions completely. If in a rule (r, (P1, Q1) , · · · , (Pm, Qm)) we have
m = 1, we say that (r, (P1, Q1)) is a rule with a simple context condition, and
we omit the inner parentheses in the notation. Moreover, context conditions only
using promoters are denoted by r|p1,··· ,pn , meaning (r, {p1, · · · , pn} , ∅), or, equiva-
lently, (r, (p1, ∅) , · · · , (pn, ∅)); context conditions only using inhibitors are denoted
by r|¬q1,··· ,¬qn , meaning (r, λ, {q1, · · · , qn}), or r|¬{q1,··· ,qn}. Likewise, a rule with
both promoters and inhibitors can be specified as a rule with a simple context con-
dition, i.e., r|p1,··· ,pn,¬q1,··· ,¬qn stands for (r, {p1, · · · , pn} , {q1, · · · , qn}). Finally,
promoters and inhibitors of weight one are called atomic.

Remark 1. If we do not consider determinism, then (the effect of) the rule
(r, (P1, Q1) , · · · , (Pm, Qm)) is equivalent to (the effect of) the collection of rules
{(r, Pj , Qj) | 1 ≤ j ≤ m}, no matter in which mode the P system is working (ob-
viously, the priority relation has to be adapted accordingly, too).

Remark 2. Let (r, {p1, · · · , pn} , Q) be a rule with a simple context condition; then
we claim that (the effect of) this rule is equivalent to (the effect of) the collection
of rules

{(r, {pj} , Q ∪ {pk | 1 ≤ k < j}) | 1 ≤ j ≤ m}

even in the the case of a deterministic P system: If the first promoter is chosen
to make the rule r applicable, we do not care about the other promoters; if the
second promoter is chosen to make the rule r applicable, we do not allow p1 to
appear in the configuration, but do not care about the other promoters p3 to pm;
in general, when promoter pj is chosen to make the rule r applicable, we do not
allow p1 to pj−1 to appear in the configuration, but do not care about the other
promoters pj+1 to pm; finally, we have the rule {(r, {pm} , Q ∪ {pk | 1 ≤ k < m})}.
If adding {pk | 1 ≤ k < j} to Q has the effect of prohibiting the promotor pj from
enabling the rule r to be applied, this makes no harm as in this case one of the
promoters pk, 1 ≤ k < j, must have the possibility for enabling r to be applied.
By construction, the domains of the new context conditions now are disjoint, so
this transformation does not create (new) non-determinism. In a similar way, this
transformation may be performed on context conditions which are not simple.
Therefore, without restricting generality, the set of promoters may be assumed to
be a singleton. In this case, we may omit the braces of the multiset notation for
the promoter multiset and write (r, p,Q).

Remark 3. As in a P system (O,Σ,w,R′, R,>) the set of rules R′ can easily be
deduced from the set of rules with context conditions R, we omit R′ in the de-
scription of the P system. Moreover, for systems having only rules with a simple
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context condition, we omit d in the description of the families of sets of numbers
and simply write

NδOPα
1 (β, prok,l, inhk′,l′ , pri) .

Moreover, each control mechanism not used can be omitted, e.g., if no priorities
and only promoters are used, we only write NδOPα

1 (β, prok,l).

3 Results

3.1 Recent results

We first recall from [1] the bounding operation over multisets, with a parameter
k ∈ N as follows:

for u ∈ O∗, bk(u) = v with |v|a = min(|u|a , k) for all a ∈ O.

The mapping bk “crops” the multisets by removing copies of every object a
present in more than k copies until exactly k remain. For two multisets u, u′,
bk (u) = bk (u

′) if for every a ∈ O, either |u|a = |u′|a < k, or |u|a ≥ k and

|u′|a ≥ k. Mapping bk induces an equivalence relation, mapping O∗ into (k + 1)
|O|

equivalence classes. Each equivalence class corresponds to specifying, for each a ∈
O∗, whether no copy, one copy, or · · · k − 1 copies, or “k copies or more” are
present. We denote the range of bk by {0, · · · , k}O.

Lemma 1. [1] Context conditions are equivalent to predicates defined on bound-
ings.

Theorem 1. [1] Priorities are subsumed by conditional contexts.

Remark 4. It is worth to note, see also [4], that if no other control is used, the
priorities can be mapped to sets of atomic inhibitors. Indeed, a rule is inhibited
precisely by the left side of each higher priority rule. This is straightforward in
case when the priority relation is assumed to be a partial order.

If it is not, then both the semantics of computation in P systems and the
reduction of priorities to inhibitors is a bit more complicated, but the claim still
holds.

Fix an arbitrary deterministic controlled non-cooperative P system. Take k as
the maximum of size of all multisets in all context conditions. Then, the bounding
does not influence applicability of rules, and bk (u) is halting if and only if u is
halting. We recall that bounding induces equivalence classes preserved by any
computation.

Lemma 2. [1] Assume u → x and v → y. Then bk (u) = bk (v) implies bk (x) =
bk (y).

Corollary 1. [1] If bk (u) = bk (v), then u is accepted if and only if v is accepted.



32 A. Alhazov, R. Freund

Finally, the “at most NFIN ∪ coNFIN” part of characterizing

NdetaOPmaxpar
1

(
ncoo, (pro∗,∗, inh∗,∗)∗ , pri

)
(the main theorem of [1]) is shown with the following argument:

Each equivalence class induced by bounding is completely accepted or
completely rejected. If no infinite equivalence class is accepted, then the
accepted set is finite (containing numbers not exceeding (k − 1) · |O|). If
at least one infinite equivalence class is accepted, then the rejected set is
finite (containing numbers not exceeding (k − 1) · |O|).

3.2 Priorities only

We start with an example how to deterministically rewrite an object t depending
on the presence or absence of object a.

Example 1.

Π = ({a,A,A′, t, t′, t+, t−}, {a}, tA,R,R,>), where

R = {1 : t → t′, 2 : a → λ, 3 : A → A′, 4 : t′ → t+, 5 : t′ → t−, 6 : A′ → λ},
> = {a → λ > A → A′, A → A′ > t′ → t−, A′ → λ > t′ → t+}.

Indeed, object t waits for one step by becoming t′, while A has to change to
A′ or wait, depending on the presence of a. Then, object t′ becomes either t+
or t−, depending on whether A or A′ is present. Notice, e.g., how adding either
rule t+ → t+ or rule t− → t− leads to a system accepting {0} or N \ {0}. Of
course, accepting only zero could instead be done by a trivial one-rule system, but
this example is important because such a deciding subsystem can be used, with
suitable delays, as a building block for checking combinations of presence/absence
of multiple symbols.

We now proceed with characterizing systems with priorities only.

Theorem 2. NdetaOPmaxpar
1 (ncoo, pri) = {Nk,Nk ∪ {0} | k ≥ 0} ∪ {{0}, ∅}.

Proof. We already know that the priorities correspond to sets of atomic inhibitors.
This means that each system accepts a union of some equivalence classes induced
by bounding b1 (i.e., checking presence/absence). Note that various combinations
of “= 0” and “≥ 1” yield numeric sets {0} and Nk (where k > 0 is the number of
different symbols present). The family of all unions of these sets is

Fpri = {Nk,Nk ∪ {0} | k ≥ 0} ∪ {{0}, ∅}.

It follows that NdetaOPmaxpar
1 (ncoo, pri) ⊆ Fpri.

We proceed with the converse inclusion. Let Π0 = ({a, t}, {a}, t, R,R,>), then
R = {t → t} and empty relation > yields ∅. To accept {0}, we instead take
R = {a → a} and empty relation >.
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Now suppose we want to accept Nk. It would suffice to count that we have at
least one of each objects a1, · · · , ak (we recall that we need to accept at least one
input of size j for each j ≥ k, or reject the input if j > k). To accept Nk ∪ {0}
instead, we may first perform a simultaneous check for the absence of all input
symbols.

Using the idea from Example 1, we construct the system

Π1 = (O,Σ = {ai,0 | 1 ≤ i ≤ k}, tA0,0 · · ·Ak,0, R,R,>), where

O = {ai,j | 1 ≤ i ≤ k, 0 ≤ j ≤ i+ 1} ∪ {Ai,j | 0 ≤ i ≤ k, 0 ≤ j ≤ i+ 2}
∪ {t, z, p} ∪ {ti | 0 ≤ i ≤ i+ 1},

R = {1 : ai,j → ai,j+1 | 1 ≤ i ≤ k, 0 ≤ j ≤ i}
∪ {2 : Ai,j → Ai,j+1 | 1 ≤ i ≤ k, 0 ≤ j ≤ i+ 1}
∪ {3 : t → t0, 4 : t0 → z, 5 : t0 → t1, 6 : p → p}
∪ {7 : ti → ti+1, 8 : ti → p | 1 ≤ i ≤ k},

> = {ai,0 → ai,1 > A0,0 → A0,1 | 1 ≤ i ≤ k}
∪ {A0,0 → A0,1 > t0 → z, A0,1 → A0,2 > t0 → t1}
∪ {ai,i → ai,i+1 > Ai,i → Ai,i+1 | 1 ≤ i ≤ k}
∪ {Ai,i → Ai,i+1 > ti → p, Ai,i+1 → Ai,i+2 > ti → ti+1}.

Such system accept exactly Nk ∪ {0}. Indeed, after first step, A0,0 is present if all
input symbols were absent, otherwise A0,1 is present instead. For any i, 1 ≤ i ≤ k,
after step 1+ i, object Ai,i is present if input symbol ai,0 was present in the input,
and otherwise Ai,i+1 is present instead. These “decision symbols” are used by ti,
0 ≤ i ≤ k, to build the “presence picture”. We recall that it suffices to accept when
all input symbols are present, or when none of them is present. In the first case,
t0 becomes z, and the computation only continues by rules from groups 1 and 2,
leading to halting. Let us assume that the first s of the input symbols are present,
s < k. Then, t0 becomes t1, and then · · · , ts, and then the absence of ts+1 will
change ts into p, leading to an infinite computation. Finally, if all input symbols
are present, then the computation will halt with tk+1.

It remains to notice that accepting Nk, k ≥ 1, can be done by simply adding a
rule z → z. �

3.3 Promoters or inhibitors of weight 2

We start from examples, illustrating deterministic choice of rewriting p, depending
on whether object a is absent, occurs exactly once, or occurs multiple times.

Example 2. Symbols A, B are primed if input is present (multiple input symbols
are present). Then primed and unprimed symbols form mutually exclusive condi-
tions.
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Π = (O = {p, p′, p′′, p>, p1, p0, A,B, a}, Σ = {a}, pAB,R′, R), where

R′ = {1 : p → p′, 2 : A → A′, 3 : B → B′,

4 : p′ → p>, 5 : p′ → p′′, 6 : p′′ → p1, 7 : p′′ → p0},
R′ = {1 : p → p′, 2 : A → A′|a, 3 : B → B′|aa,

4 : p′ → p>|B , 5 : p′ → p′′|B′ , 6 : p′′ → p1|A, 7 : p′′ → p0|A′}.

Example 3. Notice that if we replace all promoters by inhibitors with the same
context, the effect of blocking rules will be reversed, but the result will be the same.
Indeed, the role of A′ and B′ will switch from found a and found aa, respectively,
to not found a and not found aa, respectively.

R′ = {1 : p → p′, 2 : A → A′|¬a, 3 : B → B′|¬aa,

4 : p′ → p>|¬B , 5 : p′ → p′′|¬B′ , 6 : p′′ → p1|¬A, 7 : p′′ → p0|¬A′}.

We now proceed with characterizing systems with context of weight two. Notice
that we already know that their power does not exceed NFIN ∪ coNFIN .

Theorem 3. NdetaOPmaxpar
1 (ncoo, pro2) =

NdetaOPmaxpar
1 (ncoo, inh2) = NFIN ∪ coNFIN.

Proof. We use the technique from Example 2 for all input symbols and combine the
extracted information. Consider an arbitrary finite set M , and let max(M) = n.
We will use the following strategy: to accept a number j ∈ M , we will accept an
input multiset with exactly j symbols appearing once, and nothing else. To accept
the complement of M , we split it into sets M ′′ = {j | j > n} and M ′ = {j | j ≤
n, j /∈ M}. While M ′ is treated similarly to M , it only remains to accept M ′′,
which is covered by equivalence classes when all symbols are present, and at least
one is present more than once.

Π = (O,Σ = {ai | 1 ≤ i ≤ n}, tA1 · · ·AnB1 · · ·Bn, R
′, R), where

O = {ti,j , Ti,j , t
′
i,j , T

′
i,j | 1 ≤ i ≤ n+ 1, 0 ≤ j ≤ n}

∪ {Ai, A
′
i, Bi, B

′
i | 1 ≤ i ≤ n} ∪ {t,#},

R′ = {ti,j → Ti+1,j+1, Ti,j → Ti+1,j+1, ti,j → t′i,j , Ti,j → T ′
i,j ,

t′i,j → ti+1,j+1, T ′
i,j → Ti+1,j+1, t′i,j → ti+1,j , T ′

i,j → Ti+1,j ,

Ai → A′
i, Bi → B′

i | 1 ≤ i ≤ n} ∪ {t → t1,0 # → #}
∪ {Ti,n+1 → # | 1 ≤ i ≤ n} ∪ {ti,n+1 → # | i /∈ M},

R = {ti,j → Ti+1,j+1|Bi , Ti,j → Ti+1,j+1|Bi , ti,j → t′i,j |B′
i
, Ti,j → T ′

i,j |B′
i
,

t′i,j → ti+1,j+1|Ai , T ′
i,j → Ti+1,j+1|Ai , t′i,j → ti+1,j |A′

i
, T ′

i,j → Ti+1,j |A′
i
,

Ai → A′
i|ai , Bi → B′

i|aiai | 1 ≤ i ≤ n} ∪ {t → t1,0, # → #}
∪ {Ti,n+1 → # | 1 ≤ i ≤ n} ∪ {ti,n+1 → # | i /∈ M}.
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The meaning of Ti,n+1 is that exactly i input symbols are present, and at least one
of them is present multiple times. The meaning of ti,n+1 is that the input consisted
of exactly i different symbols. This is how an arbitrary finite set is accepted. To
accept instead of M its complement, replace i /∈ M by i ∈ M and remove rule
Tn,n+1 → #. Therefore, deterministic P systems with promoters of weight two
accept exactly NFIN ∪ coNFIN .

For the inhibitor counterpart, notice that the computation of the number of
different symbols present, as well as checking if any symbol is present multiple
times, stays correct by simply changing promoters to the inhibitors with the same
condition, just like in Example 3. Rules processing objects ti,n+1 and Ti,n+1 will
have an opposite effect, accepting the complement of the set accepted by the
system with promoters, again yielding NFIN ∪ coNFIN . �

It is still open whether only inhibitors in the rules or only promoters in the
rules are sufficient to yield NFIN ∪ coNFIN with the asynchronuous mode, too.

4 Conclusion

We have shown the characterizations of deterministic non-cooperative P systems
with inhibitors of weight 2, with promoters of weight 2, and with priorities. The
first two cases did not reduce the accepting power with respect to unrestricted
weight.
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Cooperation, and Life, Springer, Lecture Notes in Computer Science 6610, 2011,
35–53.



36 A. Alhazov, R. Freund

5. R. Freund, S. Verlan: A Formal Framework for Static (Tissue) P Systems. Membrane
Computing, 8th International Workshop, WMC 2007 Thessaloniki, 2007, Revised
Selected and Invited Papers (G. Eleftherakis, P. Kefalas, Gh. Pŭn, G. Rozenberg, A.
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