
On Reversibility and Determinism in P Systems

Artiom Alhazov1,2, Kenichi Morita1

1 IEC, Department of Information Engineering
Graduate School of Engineering, Hiroshima University
Higashi-Hiroshima 739-8527 Japan
morita@iec.hiroshima-u.ac.jp

2 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Academiei 5, Chişinău MD-2028 Moldova
artiom@math.md

Summary. Membrane computing is a formal framework of distributed parallel comput-
ing. In this paper we study the reversibility and maximal parallelism of P systems from
the computability point of view. The notions of reversible and strongly reversible systems
are considered. The universality is shown for one class and a negative conjecture is stated
for a more restricted class of reversible P systems. For one class of strongly reversible P
systems, a very strong limitation is shown, and it is shown that this limitation does not
hold for a less restricted class.

Another concept considered is strong determinism, which is a syntactic property, as
opposed to the determinism typically considered in membrane computing. A limitation
is shown of one class, while a less restricted class is universal.

1 Introduction

Reversibility is an important property of computational systems. It has been well
studied for circuits of logical elements ([4]), circuits of memory elements ([8]),
cellular automata ([9]), Turing machines ([2], [11]), register machines ([7]). Re-
versibility as a syntactical property is closely related to the microscopic physical
reversibility, and hence it assumes better miniaturization possibilities for potential
implementation.

A slightly different view on reversible systems is given for type-0 grammars
([10]). In this case, the so-called uniquely parsable grammars are studied. In very
simple words, this property (still being syntactical) implies that the generation of
any word in the language is unique (modulo the order of applying the rules in case
when the composition of applying them is commutative). The advantage of having
such a property is that it is easier to analyze their behavior.

Clearly, this reason is valid even if the property of reversibility becomes un-
decidable (just like the property of determinism in certain membrane systems).

130 A. Alhazov, K. Morita

Moreover, reversibility essentially is backward determinism. Reversible P systems
already were considered ([5]), but the model is energy-based (so the parallelism is
invariant-driven rather than maximal) and the main result is the simulation of the
Fredkin gate and thus of reversible circuits (so construction of a universal system
in this way would use an infinite structure). In this paper we focus on the inter-
play between maximal parallelism and such fundamental notions as reversibility
and determinism, from the viewpoint of computability.

It is interesting that the description of some computational systems includes
the initial configuration (grammars, membrane systems), while it is not the case
for many others (cellular automata, Turing machines). We generalize reversibility
and determinism in such a way that these properties do not depend on the initial
configurations, and call them strong. Finally, we present a number of results. In
particular, we show that the power of strongly deterministic systems is weaker than
that of deterministic systems, and we conjecture that also the power of strongly
reversible systems is weaker than that of reversible systems.

2 Definitions

In this paper we illustrate the reversibility and determinism concepts on P sys-
tems with symport/antiport rules and one membrane, sometimes with promoters,
inhibitors or priorities. For simplicity, we also assume that the environment con-
tains an unbounded supply of all objects3. The system thus can be defined by
the alphabet, the initial multiset, the set of rules associated to the membrane
and the set of terminal objects. Throughout this paper we represent multisets by
strings. The union of multisets is defined by adding multiplicities of the symbols.
A comprehensive bibliography of membrane computing can be found at [13].

We write an antiport rule sending a multiset x out and bringing a multiset y in
as x/y, and the symport case corresponds to y = λ. If a rule has a promoter a, we
write it as x/y|a. If a rule has an inhibitor a, we write it as x/y|¬a. The priority
relationship is denoted by >. It is not difficult to generalize the definitions for the
models with multiple membranes and changing membrane structure, but it is not
important here.

We can define a P system in the above-mentioned normal form as

Π = (O, T,w,R),

where O is the object alphabet, T is the terminal subalphabet, w is the initial
multiset, and R is the set of rules. In the accepting case, T is replaced by Σ, which
3 It is well-known that symport/antiport systems can be represented as cooperative

rewriting on objects of the form (object,region). It is also known that, in case the
environment contains an unbounded supply of all objects, a rewriting rule u → v is
equivalent to a symport/antiport rule u/v. Therefore, one-membrane full-environment
is a normal form for symport/antiport P systems. Clearly, symport-in rules are not
allowed. Moreover, transition into this normal form preserves properties we consider
in this paper, so in the following we only consider this case.

On Reversibility and Determinism in P Systems 131

is the input subalphabet, the computation starts when an arbitrary multiset over
Σ is added to w.

Consider a P system Π with alphabet O. In our setting, a configuration is
defined by the multiset of objects inside the membrane, represented by some string
u ∈ O∗. The space C of configurations (i.e., of multisets over O) is essentially
|O|-dimensional space with non-negative integer coordinates. We use the usual
definitions of maximally parallel transition ([12]): no rule is applicable together
with a chosen multiset of rules. It induces an infinite graph of C. Notice that the
halting configurations (and only them) have out-degree zero.

Throughout this paper by reachable we mean reachable from the initial config-
uration. We now define two properties; extending the requirement from reachable
configurations to all configuration, we obtain their strong variants (in case of ac-
cepting systems the initial configurations are obtained by adding to a fixed multiset
arbitrary multisets over a fixed subalphabet; the extension is natural).

Definition 1. We call Π strongly reversible if every configuration has in-degree
at most one. We call Π reversible if every reachable configuration has in-degree
at most one. We call Π strongly deterministic if every configuration has out-
degree at most one. It is common in membrane computing to call Π deterministic
if every reachable configuration has out-degree at most one.

A property equivalent to reversibility is determinism of a dual P system ([1]).
We underline that the not-strong properties refer to the actual computation of the
system, where the strong ones do not depend on the initial configuration.

By a computation we mean a sequence of (maximally parallel) transitions,
starting in the initial configuration, and ending in some halting configuration if
it is finite. The result of a halting computation is the number of terminal objects
inside the membrane when the system halts (or the number of input objects when
the system starts, in the accepting case). The set N(Π) of numbers generated by
a P system Π is the set of results of all its computations. The family of number
sets generated by reversible P systems with features α is denoted by NROP1(α)T ,
where α ⊆ {sym∗, anti∗, pro, inh, Pri} and the braces of the set notation are
omitted. Subscript T means that only terminal objects contribute to the result
of computations; if T = O, we omit specifying it in the description and we then
also omit the subscript T in the notation. To bound the weight (i.e., maximal
number of objects sent in a direction) of symport or antiport rules, the associated
∗ is replaced by the actual number. In the case of accepting systems, we write Na
instead of N , and subscript T has no meaning. For strongly reversible systems,
we replace in the notation R by Rs. For deterministic (strongly deterministic)
systems, we replace R by D (Ds, respectively).

2.1 Register machines

In this paper we consider register machines with increment, unconditional decre-
ment and test instructions, [7], see also [6].

A register machine is defined by a tuple M = (n,Q, q0, qf , I) where

132 A. Alhazov, K. Morita

• n is the number of registers;
• I is a set of instructions bijectively labeled by elements of Q;
• q0 ∈ Q is the initial label;
• qf ∈ Q is the final label.

The allowed instructions are:

• (q : i?, q′, q′′) - jump to instruction q′′ if the contents of register i is zero,
otherwise proceed to instruction q′;

• (q : i+, q′, q′′) - add one to the contents of register i and proceed to either
instruction q′ or q′′, non-deterministically;

• (q : i−, q′, q′′) - subtract one from the contents of register i and proceed to
either instruction q′ or q′′, non-deterministically;

• (qf : halt) - terminate the computation; it is a unique instruction with label
qf .

As for subtract instructions, the computation is blocked if the contents of
the corresponding register is zero. Without restricting generality, we can assume
that a test of a register always precedes its subtraction. (A popular model where
test and subtraction are combined in a conditional subtraction instruction is not
suitable for defining reversibility.) A configuration of a register machine is defined
by the current instruction and the contents of all registers, which are non-negative
integers.

If q′ = q′′ for every instruction (q : i+, q′, q′′) and for every instruction (q :
i−, q′, q′′), then the machine is called deterministic. Clearly, this is necessary and
sufficient for the global transition (partial) mapping not to be multi-valued.

A register machine is called reversible if there is more than one instruction
leading to some instruction q, then exactly two exist, they test the same register,
one leads to q if the register is zero and the other one leads to q if the regis-
ter is positive. It is not difficult to check that this requirement is a necessary
and sufficient condition for the global transition mapping to be injective. Let us
formally state the reversibility of a register machine: for any two different instruc-
tions (q1 : i1α1, q

′
1, q
′′
1) and (q2 : i2α2, q

′
2, q
′′
2), it holds that q′1 6= q′2 and q′′1 6= q′′2 .

Moreover,
if q′1 = q′′2 or q′′1 = q′2, then α1 = α2 =? and i1 = i2.

It has been shown ([7]) that reversible register machines are universal (a
straightforward simulation of, e.g., reversible Turing Machines [2], would not be
reversible). It follows that non-deterministic reversible register machines can gen-
erate any recursively enumerable set of non-negative integers as a value of the first
register by all its possible computations starting from all registers having zero
value.

3 Examples and universality

We now present a few examples to illustrate the definitions.

On Reversibility and Determinism in P Systems 133

Example 0: Consider a P system Π0 = ({a, b}, a, {a/ab}). It is strongly re-
versible (for a preimage, remove as many copies of b as there are copies of a, in
case it is possible and there is at least one copy of a), but no halting configuration
is reachable. Therefore, ∅ ∈ NRsOP1(anti2).

Example 1: Consider a P system Π1 = ({a, b, c}, a, {a/ab, a/c}). It generates
the set of positive integers since the reachable halting configurations are cb∗, and
it is reversible (for the preimage, replace c with a or ab with b), but not strongly
reversible (e.g., aa⇒ cc and ac⇒ cc). Hence, N+ ∈ NROP (anti2).

Example 2: Consider a P system Π2 = ({a, b}, aa, {aa/ab, ab/bbb}). It is re-
versible (aa has in-degree 0, while ab and bbb have in-degree 1, and no other configu-
ration is reachable), but not strongly reversible (e.g., aab⇒ abbb and aabb⇒ abbb).

Example 3: Any P system containing a rule x/λ, x ∈ O+ is not reversible.
Therefore, symport rules cannot be actually used in reversible P systems with one
membrane.

Example 4: Any P system containing rules x1/y, x2/y that applied at least one
of them in some computation is not reversible.

We now show that reversible P systems with either inhibitors or priorities are
universal.

Theorem 1. NROP1(anti2, P ri)T = NROP1(anti2, inh)T = NRE.

Proof. We reduce the theorem statement to the claim that such P systems simulate
the work of any reversible register machine M = (n,Q, q0, qf , I). Consider a P
system

Π = (O, {r1}, q0, R), where
O = {ri | 1 ≤ i ≤ n} ∪Q,
R = {q/q′ri, q/q′′ri | (q : i+, q′, q′′) ∈ I}
∪ {qri/q′, qri/q′′ | (q : i−, q′, q′′) ∈ I} ∪Rt,

Rt = {q/q′′|¬ri , qri/q
′ri | (q : i?, q′, q′′) ∈ I}.

Inhibitors can be replaced by priorities by redefining Rt as follows.

Rt = {qri/q′ri > q/q′′ | (q : i?, q′, q′′) ∈ I}.

Since there is a bijection between the configurations of Π containing one sym-
bol from Q and the configurations of M , the reversibility of Π follows from the
correctness of the simulation, the reversibility of M and from the fact that the
number of symbols from Q is preserved by transitions of Π.

The universality leads to the following undecidability.

Corollary 1. It is undecidable whether a system from the class of P systems with
either inhibitors or priorities is reversible.

134 A. Alhazov, K. Morita

Proof. We recall that the halting problem for register machines is undecidable.
Add instructions qf/F1, qf/F2, F1/F , F2/F to the construction presented above,
where F1, F2, F are new objects; the system is now reversible if and only if some
configuration containing F is reachable, i.e., when the underlying register machine
does not halt, which is undecidable.

A more restricted property of strong reversibility is much easier to check, since
checking that at most one preimage exists for any configuration is no longer related
to the reachability. However, the problem of specifying an algorithmic criterion for
strong reversibility is currently open.

4 Limitations

The construction in the theorem above uses both cooperation and additional con-
trol. It is natural to ask whether both inhibitors and priorities can be avoided.
Yet, consider the following situation. Let (p : i?, s, q′′), (q : i?, q′, s) ∈ I. It is usual
for reversible register machines to have this, since the preimage of configuration
containing a representation of instruction s depends on register i. Nevertheless, P
systems with maximal parallelism without additional control can only implement
a zero-test by try-and-wait-then-check strategy. In this case, the object containing
the information about the register p finds out the result of checking after a pos-
sible action of the object related to the register. Therefore, when the instruction
represented in the configuration of the system changes to s, it obtains an erroneous
preimage representing instruction q. This leads to the following

Conjecture 1. Reversible P systems without priorities and without inhibitors are
not universal.

Now consider strongly reversible P systems. The following theorem establishes
a very serious limitation on such systems if no additional control is used.

Theorem 2. In strongly reversible P systems without inhibitors and without prior-
ities, every configuration is either halting or induces only infinite computation(s).

Proof. If the right-hand side of every rule contains a left-hand side of some rule,
then the claim holds. Otherwise, let x/y be a rule of the system such that y does not
contain the left-hand side of any rule. Then x⇒ y and y is a halting configuration.
It is not difficult to see that xy ⇒ yy (objects y are idle) and xx ⇒ yy (the rule
can be applied twice). Therefore, such a system is not strongly reversible, which
proves the theorem.

Therefore, the strongly reversible systems without additional control can only gen-
erate singletons, i.e., NRsOP1(anti∗)T = {{n} | n ∈ N}, and only in a degenerate
way, i.e., without actual computing.

On Reversibility and Determinism in P Systems 135

It turns out that the theorem above does not hold if inhibitors are used.
Consider a system Π3 = ({q, f, a}, q, {q/qaa|¬f}, {q/f |¬f}). If at least one ob-
ject f is present or no objects q are present, such a configuration is a halting
one. Otherwise, all objects q are used by the rules of the system. Therefore,
the only possible transitions in the space of all configurations are of the form
qm+nap−2m ⇒ qmfnap, m+ n > 0, p ≥ 2m and the system is strongly reversible.
Notice that N(Π) = {2k+ 1 | k ≥ 0}, since starting from q we apply the first rule
for k ≥ 0 steps and eventually the second rule.

5 Strong determinism

The concept of determinism common to membrane computing essentially means
that such a system, starting from the fixed configuration, has a unique computa-
tion. As it will be obvious later, this property is often not decidable. Of course,
this section only deals with accepting systems.

First, we recall from [3] that deterministic symport/antiport P systems with
restrictions mentioned in the preliminaries (one membrane, infinite supply of all
objects in the environment) are still universal, by simulation of register machines.

In general, if a certain class of non-deterministic P systems is universal even
in a deterministic way, then the determinism is undecidable for that class. This
applies to our model of one-membrane all-objects-in-environment P systems with
symport/antiport, similarly to Corollary 1.

Corollary 2. It is undecidable whether a given P system with symport/antiport
rules is deterministic.

Proof. Consider an arbitrary register machine M . There is a deterministic P sys-
tem Π simulating M . Without restricting generality we assume that an object qf
appears in the configuration of Π if and only if it halts. Add instructions qf/F1

and qf/F2 to the set of rules, where F1, F2 are new objects; the system is now
deterministic if and only if some configuration with qf is reachable, i.e., when the
underlying register machine does not halt, which is undecidable.

On the contrary, the strong determinism we now consider means that a system
has no choice of transitions from any configuration. We now claim that it is a
syntactic property. To formulate the claim, we need the following notions. We call
the domain of a rule x/y, x/y|a or x/y|¬a the set of objects in x (the multiplicities
of objects in x are not relevant for the results in this paper). We say that two rules
are mutually excluded by promoter/inhibitor conditions if the inhibitor of one is
either the promoter of the other rule, or is in the domain of the other rule.

Theorem 3. A P system is strongly deterministic if and only if any two rules with
intersecting domains are either mutually excluded by promoter/ inhibitor condi-
tions, or are in a priority relation.

136 A. Alhazov, K. Morita

Proof. Clearly, any P system with only one rule is strongly deterministic, because
the degree of parallelism is defined by exhausting the objects from the domain of
this rule.

The forward implication of the theorem holds because the rules with non-
intersecting domains do not compete for the objects, while mutually excluding
promoter/inhibitor conditions eliminate all competing rules except one, and so
does the priority relation. In the result, for any configuration the set of objects is
partitioned in disjoint domains of applicable rules, and the number of applications
of different rules can be computed independently.

We now proceed with the converse implication. Assume that rules p, p′ of the
system intersect in the domain, are not in a priority relation, and are not mutually
excluded by the promoter/inhibitor conditions. Let x, x′ be the multisets of objects
to be sent out by rules p, p′, respectively. Then consider the multiset C, which is the
minimal multiset including x, x′, and the configuration C ′, defined as the minimal
multiset including C ′ and promoters of p, p′, if any.

Starting from C ′, there are enough objects for applying either p or p′. Since the
rules neither are mutually excluded nor are in a priority relation, both rules are
applicable. However, both cannot be applied together because the rules intersect
in the domain and thus the multiset C is strictly included in the union of x, x′ (and
C ′ is only different from C if either promoter of p, p′ does not belong to C). The
sufficiency of the condition of this theorem follows from contradicting the strong
determinism.

Corollary 3. A P system without promoters, inhibitors, and without priority is
strongly deterministic if and only if the domains of all rules are disjoint.

We show an interesting property of strongly deterministic P systems without
additional control. To define it, we use the following notion for deterministic P
systems. Let C ⇒ρ1 C1 ⇒ρ2 C2 · · · ⇒ρn Cn, where ρi are multisets of applied
rules, 1 ≤ i ≤ n. We define the multiset of rules applied starting from configuration
C in n steps as

m(C, n) =
n⋃
i=1

ρi.

We write lhs(x/y) = x and rhs(x/y) = y, and extend this notation to the multiset
of rules by taking the union of the correspoding multisets. For instance, if C ⇒ρ C1,
then C1 = C ∪ rhs(ρ) \ lhs(ρ).

Lemma 1. Consider a strongly deterministic P system Π without promoters, in-
hibitors and without priorities. Consider also two configurations C,C ′ with C (C ′

and a number n. Then, m(C, n) ⊆ m(C ′, n).

Proof. We prove the statement by induction. It holds for n = 1 step because
strongly deterministic systems are deterministic, and if the statement did not
hold, then neither would the determinism.

Assume the statement holds for n− 1 steps, and

On Reversibility and Determinism in P Systems 137

C ⇒ρ1 C1 ⇒ρ2 C2 · · · ⇒ρn Cn,

C ′ ⇒ρ′
1 C ′1 ⇒ρ′

2 C ′2 · · · ⇒ρ′
n C ′n.

Then, after n− 1 steps the difference between the configurations can be described
by C ′n−1 = Cn−1 ∪D1 ∪D2 \D3, where

• D1 = C ′ \ C,
• D2 = rhs(m(C ′, n− 1) \m(C, n− 1)),
• D3 = lhs(m(C ′, n− 1) \m(C, n− 1)).

Therefore, Cn−1 \ C ′n−1 (D3. Because of the strong determinism property, these
objects will either be consumed by some rules from m(C ′, n− 1) \m(C, n− 1), or
remain idle. Therefore, m(Cn−1, 1) ⊆ m(C ′n−1, 1) ∪ (m(C ′, n − 1) \m(C, n − 1)).
It follows that m(C, n) ⊆ m(C ′, n), concluding the proof.

Example 5: For a P system Π = ({a}, a, {p : a3/a}),

a15 ⇒p5 a5 ⇒p a4 ⇒p a.

a14 ⇒p4 a6 ⇒p2 a2.

We now establish an upper bound for the power of strongly deterministic P
systems without additional control: any P system without promoters, inhibitors
or priorities accepts either the set of all non-negative integers, or a finite set of all
numbers bounded by some number.

Theorem 4. NaDsOP1(sym∗, anti∗) = {{k | 0 ≤ k ≤ n} | n ∈ N} ∪ {∅,N}.

Proof. A computation starting from a configuration C is not accepting if it does not
halt, i.e., if limn→∞m(C, n) = ∞. Due to Lemma 1, if the computation starting
from C is accepting, then any computation starting from a submultiset C ′ ⊆
C would also be accepting. This also implies that if the computation starting
from C is not accepting, then neither is any computation starting from a multiset
containing C. Therefore, the set of numbers accepted by a strongly deterministic P
system without additional control can be identified by the largest number of input
objects leading to acceptance, unless the system accepts all numbers or none.

The converse can be shown by the following P systems.

• System ({a}, {a}, a, {a/a}) accepts ∅ because of the infinite loop in its compu-
tation;

• system ({a}, {a}, a, {a/λ}) accepts N, i.e., anything, because it halts after eras-
ing everything in one step; and

• for any n ∈ N there is a system ({a}, {a}, λ, {an+1/an+1}) accepting {k | 0 ≤
k ≤ n}, because the system starts in a final configuration if and only if the
input does not exceed n, and enters an infinite loop otherwise.

Theorem 4 shows that the computational power of strongly deterministic P
systems without additional control is, in a certain sense, degenerate (it is subreg-
ular). We now show that the use of promoters and inhibitors lead to universality
of even the strongly deterministic P systems.

138 A. Alhazov, K. Morita

Theorem 5. NaDsOP1(sym∗, anti∗, pro, inh) = NRE.

Proof. We reduce the theorem statement to the claim that such P systems simulate
the work of any deterministic register machine M = (n,Q, q0, qf , I). Without
restricting generality, we assume that every subtracting instruction is preceded by
the testing instruction. Consider a P system

Π = (O, {r1}, q0, R), where
O = {ri, di | 1 ≤ i ≤ n} ∪ {q, q1 | q ∈ Q},
R = {q/q′ri | (q : i+, q′, q′) ∈ I}
∪ {q/q1di, q1/q′, diri/λ | (q : i−, q′, q′) ∈ I}
∪ {q/q′|ri

, q/q′′|¬ri
| (q : i?, q′, q′′) ∈ I}.

All rules using objects q, q′ have disjoint domains, except the ones in the last line,
simulating the zero/non-zero test. However, they exclude each other by the same
object which serves as promoter and inhibitor. Subtraction of register i is handled
by producing object di, which will “annihilate” (i.e., be deleted together with)
with ri. Therefore, different instructions subtracting the same ri are implemented
by the same rule diri/λ, hence all rules using objects di, ri have different domains.
It follows from Theorem 3 that the system is strongly deterministic, concluding
the proof.

6 Conclusions

We outlined the concepts of reversibility, strong reversibility and strong determin-
ism for P systems, concentrating on the case of symport/antiport rules (possibly
with control such as priorities or inhibitors) with one membrane, assuming that
the environment contains an unbounded supply of all objects, see Table 1. We
added the universality of the usual deterministic systems without control from [3]
for comparison.

We showed that reversible P systems with control are universal, and we con-
jectured that this result does not hold without control. Moreover, the strongly
reversible P systems without control do not halt unless the starting configuration
is halting, but this is no longer true if inhibitors are used.

We also gave a syntactic characterization for the strong determinism property.
Moreover, we showed that a corresponding system without control either accepts
all natural numbers, or a finite set of numbers. With the help of promoters and
inhibitors the corresponding systems become universal.

Showing related characterizations might be quite interesting. Many other prob-
lems are still open, e.g., cells with “C” and “?” in Table 1. Another interesting
problem is to formulate reversibility for P systems with active membranes and to
characterize their power.

On Reversibility and Determinism in P Systems 139

Property npro, ninh, nPri Pri inh pro, inh

D(acc) U U U U
Ds(acc) E (Th. 4) ? ? U (Th. 5)
R(gen) C (Conj. 1) U (Th. 1) U (Th. 1) U (Th. 1)
Rs(gen) E (Th. 2) C C C

Table 1. The power of P systems with different properties, depending on the features.
U - universal, E - degenerate, ? - open, C - conjectured to be non-universal.

Acknowledgments

Artiom Alhazov gratefully acknowleges the support of the Japan Society for
the Promotion of Science and the Grant-in-Aid for Scientific Research, project
20·08364. He also acknowledges the support by the Science and Technology Cen-
ter in Ukraine, project 4032.

References

1. O. Agrigoroaiei, G. Ciobanu: Dual P Systems, Membrane Computing - 9th Interna-
tional Workshop, LNCS 5391, 95–107, 2009.

2. C.H. Bennett: Logical Reversibility of Computation, IBM Journal of Research and
Development 17, 1973, 525-532.

3. C. Calude, Gh. Păun: Bio-steps beyond Turing, BioSystems 77, 2004, 175–194.
4. E. Fredkin, T. Toffoli: Conservative Logic, Int. J. Theoret. Phys. 21, 1982, 219-253.
5. A. Leporati, C. Zandron, G. Mauri: Reversible P Systems to Simulate Fredkin Cir-

cuits, Fundam. Inform. 74(4), 2006, 529–548.
6. M.L. Minsky: Computation: Finite and Infinite Machines, Prentice-Hall, Englewood

Cliffs, NJ, 1967.
7. K. Morita: Universality of a Reversible Two-Counter Machine, Theoret. Comput. Sci.

168 (1996) 303-320.
8. K. Morita: A Simple Reversible Logic Element and Cellular Automata for Reversible

Computing, Proc. 3rd Int. Conf. on Machines, Computations, and Universality,
LNCS 2055, Springer-Verlag, 2001, 102-113.

9. K. Morita: Simple Universal One-Dimensional Reversible Cellular Automata, J. Cel-
lular Automata 2, 2007, 159-165.

10. K. Morita, N. Nishihara, Y. Yamamoto, Zh. Zhang: A Hierarchy of Uniquely Parsable
Grammar Classes and Deterministic Acceptors, Acta Inf. 34(5), 1997, 389–410.

11. K. Morita, Y. Yamaguchi: A Universal Reversible Turing Machine, Proc. 5th Int.
Conf. on Machines, Computations, and Universality, LNCS 4664, Springer-Verlag,
2007, 90-98.

12. Gh. Păun: Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.
13. P systems webpage. http://ppage.psystems.eu/.

