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Summary. P systems are computing models inspired by the structure and the function-
ing of the living cells; they are the basic computing devices of membrane computing, a
branch of natural computing. The present note is an overview of results and open prob-
lems related to the borderline between the computationally universal and non-universal
catalytic P systems. A short introduction to membrane computing is provided, to the
use of the reader not familiar with this research area.

1 A Glimpse to Membrane Computing

Along its evolution, computer science has continuously looked to biology in order
to find ideas (data structures, operations with them, ways to control these op-
erations, architectures for computing devices, etc.) useful for improving the use
of the existing electronic computers and for developing new computing tools. In
the last decades, this tendency became a well defined branch of computer science,
called natural computing. Besides the goal sketched above, a complementary one
is to understand and investigate the processes taking place in nature – especially
in biology – as computations.

Membrane computing is one of the research areas of natural computing, hav-
ing as the starting point the living cell, considered alone or as a part of more
complex structures, such as tissues and organs, including the brain. This direc-
tion of research was initiated in 1998 ([12]) and it developed rapidly: already in
2003, the Thompson Institute for Scientific Research, ISI, mentioned membrane
computing as a fast emerging research front in computer science, with [12] consid-
ered a “fast breaking paper” (see http://esi-topics.com). The literature of the
domain is now very large, including monographs, collective volumes, PhD theses,
research projects. An introduction to membrane computing can be found in [14],
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with a comprehensive presentation (at the level of year 2009) in [15]. Up-to-date
information (including information about the two yearly meetings in this area, the
February Brainstorming Week on Membrane Computing and the summer Confer-
ence on Membrane Computing) can be found at the domain website [16].

Very generally speaking, membrane computing deals with processing objects,
by means of bio-inspired operations, in the compartments of a cell-like or tissue-
like arrangement of membranes. Basically, (i) the objects are symbols from a given
alphabet (but they can also be strings or can have a more complex structure), (ii)
like in biochemistry, the objects are present in the multiset sense (each object has a
precise multiplicity in a given compartment), (iii) the operations are abstractions
of biochemical reactions or other types of operations inspired from the biology
of the cell (e.g., symport and antiport, for passing objects across membranes, or
operations with membranes – division, separation, phagocytosis, and so on); (iv)
the arrangement of membranes is either hierarchical, like in a cell, or “horizontal”,
like in tissues and other populations of cells (e.g., of bacteria). The operations
(reactions) are also called evolution rules, or, shortly, rules. Like in biochemistry,
in the basic model, the operations take place in a non-deterministic way (the rules
to apply and the objects to react are chosen non-deterministically), in parallel (si-
multaneously in all compartments, with the objects in each compartment evolving
in parallel, according to the local rules). Many variants were investigated, with re-
spect to the types of rules, the ways to use them, the arrangement of membranes.
Using the rules, we can pass from a configuration of the system to the next con-
figuration – and in this way we can define computations. What is obtained, called
a P system, was not initially meant as a model of the biological cell, to the use of
biologists, but a computing model, of interest for computability.

There are two basic theoretical issues to be addressed for any new computing
model, including the P systems: the computing power (competence), and the com-
puting efficiency (performance). Accordingly, two are the reference frameworks:
the Turing machines and their restrictions in what concerns the power, and the
complexity classes (in particular, the theoretical borderline between tractability
and intractability, between polynomial complexity and exponential complexity) in
what concerns the efficiency.

From both these two points of view, membrane computing proved to be suc-
cessful: many classes of P systems are equivalent in power with Turing machines
(hence, according to Turing-Church thesis, they can compute whatever an algo-
rithm can compute; we also call this property computational completeness or Tur-
ing universality), while many classes of P systems (especially those equipped with
the possibility of producing an exponential working space in polynomial time, e.g.,
by means of membrane division or string replication) can solve computationally
hard problems (typically, NP-complete problems, but also harder problems) in a
feasible time (typically, polynomial, but often even linear).

A basic question in both these research directions (power and efficiency) is to
find the borderline between universality and non-universality, in what concerns
the power, and between efficiency and non-efficiency. In this paper we recall some
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results about the first issue, namely, considering borderline results concerning the
universality of catalytic P systems – definitions will be given in the next section.

In parallel with the theoretical investigations, mainly dealing with the previ-
ously mentioned questions, power and efficiency, P systems proved to be useful
tools for several applications, starting with the very field where they originated –
biology and biomedicine. This is now one of the main trends of research in this area.
For the biologist, membrane computing has several attractive features: the models
are directly inspired from biology, they are easy to be understood, P systems deal
with discrete mathematical structures (as encountered in many situations in biol-
ogy, where traditional differential equations are not appropriate), they are easily
scalable and programmable, and have an emergent behavior (the evolution cannot
be predicted by examining the initial configuration and the evolution rules). For
other areas of application (computer graphics, approximate optimization, robot
control, etc.) the inherent parallelism, hence computational efficiency, is the cen-
tral attractive feature. We here do not give details about applications; the reader
is referred to the Handbook [15] and to the website mentioned above.

2 Catalytic P Systems

We now introduce the model we consider in this paper, the cell-like P systems,
in the catalytic form, stressing once again that, from the biological reality, we
abstract a mathematical model suitable for computability investigations, thus ig-
noring many biological details.

The basic ingredients of a (cell-like) P system are the following ones:

1. The membrane structure is a hierarchical arrangement of membranes, under-
stood as 3D vesicles; a membrane without any other membrane inside is said
to be elementary; each membrane defines a region/compartment, the space be-
tween the membrane and the immediately inner membranes, if any; the space
outside the “skin” membrane is called the environment. Each membrane can
be labeled, and the label will identify both the membrane and its region. The
membrane structure can be represented by a rooted tree (with a membrane in
each node and the skin in the root), hence also by an expression of correctly
nested labeled parentheses. Sometimes we also use Euler-Venn diagrams (dis-
joint sets included in a unique external set, the skin one).

2. The objects are placed in the compartments of the membrane structure, in
the form of multisets (sets with multiplicities associated with the elements).
In membrane computing, the multisets are usually represented by strings, like
in formal language theory, with the multiplicity of a symbol corresponding to
the number of occurrences of that symbol in the string; thus, a string and all
its permutations represent the same multiset. For instance, a2bc4ab represents
the multiset which contains 3 copies of a, 2 copies of b, and 4 copies of c.

3. The evolution rules are multiset rewriting rules similar to reactions in chem-
istry/biochemistry. The basic form is u → v, where u and v are multisets
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of objects from a given set O. The use of such a rule means “consuming”
the objects of u and “producing” the objects of v. (Note that we do not pay
attention to conservation lows, we work with arbitrary multisets, the only re-
striction is that u is not empty.) In order to link the regions of a system, the
objects produced by a rule u → v can have associated target indications, of
the forms here, out, in, with the meaning that an object with the target here
remains in the same region where the rule is applied, an object with the target
out is sent out of the respective membrane (in this way, objects can also be
sent to the environment, when the rule is applied in the skin region), while an
object with the target in is sent to one of the immediately inner membranes,
non-deterministically chosen (if there is no such membrane, i.e., if the rule is
associated with an elementary membrane, then the rule u → v with v con-
taining an object (a, in) cannot be applied). The indication here in general is
omitted when writing the rules.

Both the objects and the rules are associated with compartments of the system;
the rules in a given region (“reactor”) can be applied only to the objects from the
same region.

The way of using the rules which we consider here is the non-deterministic
maximally parallel one: the rules to be applied are chosen non-deterministically,
but in such a way that the choice is maximal, i.e., we apply a multiset of rules
(each rule can be applied several times) which is maximal, no further rule can be
added to it so that the obtained multiset is still applicable to the existing objects.

The membranes and the objects present in the compartments of a system at
a given time form a configuration; starting from a given initial configuration and
using the rules as explained above, we get transitions among configurations; a
sequence of transitions forms a computation. A computation is halting if it reaches
a configuration where no rule can be applied. With a halting computation we
associate a result, in the form of the number of objects present in a specified
elementary membrane in the halting configuration.

Thus, a (cell-like) P system can be formalized as a construct

Π = (O,µ,w1, . . . , wm, R1, . . . , Rm, io)

where O is the alphabet of objects, µ is the membrane structure (with m mem-
branes), w1, . . . , wm are multisets of objects present in the m regions of µ at the
beginning of a computation, R1, . . . , Rm are finite sets of evolution rules, associ-
ated with the regions of µ, and io is the label of an elementary membrane, used
as the output membrane.

There are many variations of this basic model. For instance, if a rule u→ v has
at least two objects in u, then it is called cooperative; if u is a single object, then the
rule is non-cooperative; an intermediate case is that of catalytic P systems, whose
rules are of the form ca→ cv, where c is a special object which never evolves and
never passes through a membrane (both these restrictions can be relaxed), but it
just assists object a to become the multiset v. A catalytic P system is written in
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the form Π = (O,C, µ,w1, . . . , wm, R1, . . . , Rm, io), where all components are as
above and C ⊂ O is the set of catalysts.

We end this section with a simple example, illustrating the architecture and
the functioning of a (cell-like) P system, as well as the usual way of graphically
representing a P system. Figure 1 indicates the initial configuration (including the
rules) of a system which computes the function n −→ n2, for any natural number
n ≥ 1: we introduce the number n in the initial configuration, in the form of n
copies of the object a present in the skin region, and we get the result as the
number of copies of object f present in membrane 2 when the computation halts.
Besides catalytic and non-cooperating rules, the system also contains a rule with
promoters, e → e(f, in)|b: the object e evolves to ef only if at least one copy of
object b is present in the same region.
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Fig. 1. A P system with catalysts and promoters

Formally, the system is given as follows:

Π = (O,C, µ,w1, w2, R1, R2, io) where
O = {a, b, d, e, c, f} (the set of objects),
C = {c} (the set of catalysts),
µ = [ [ ]

2
]
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(membrane structure),
w1 = can (initial objects in region 1),
w2 = ∅ (initial objects in region 2),
R1 = {a→ be, cb→ cd, e→ e(f, in)|b} (rules in region 1),
R2 = ∅ (rules in region 2),
io = 2 (the output region).

The system starts working by using the rule a → be, which has to be applied
in parallel to all copies of a; hence, in one step, all objects a are replaced by n
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copies of b and n copies of e. From now on, the other two rules from region 1 can
be used. The catalytic rule cb → cd can be used only once in each step, because
the catalyst is present in only one copy. This means that in each step one copy
of b is replaced by d. Simultaneously (because of the maximal parallelism), the
rule e → e(f, in)|b should be applied as many times as possible and this means
n times, because we have n copies of e. Note the important difference between
the promoter b, which allows using the rule e → e(f, in)|b, and the catalyst c:
the catalyst is involved in the rule, it is counted when applying the rule, while
the promoter makes possible the use of the rule, but it is not counted; the same
(copy of one) object can promote any number of rules. Moreover, the promoter can
evolve at the same time by means of another rule (the catalyst is never changed).

In this way, in each step we change one b to d and we produce n copies of f
(one for each copy of e); the copies of f are sent to membrane 2 (the indication in
from the rule e → e(f, in)|b). The computation should continue as long as there
are applicable rules. This means exactly n steps: in n steps, the rule cb → cd
will exhaust the objects b and in this way neither this rule can be applied, nor
e → e(f, in)|b, because its promoter does no longer exist. The computation halts
and in membrane 2, considered as the output membrane, we get n2 copies of object
f .

3 The Power of Catalytic P Systems

We start now to recall results about the computing power of catalytic P systems.
Let us denote by NPm(catr) the family of sets of numbers computed (gener-

ated, in the above sense) by P systems with at most m membranes, using catalytic
or non-cooperative rules, containing at most r catalysts. We also denote by NRE
the family of Turing computable sets of natural numbers (“recursively enumer-
able”, hence the abbreviation), and by NREG the family of semilinear sets of
numbers (recognized by finite automata). When all the rules of a system are cat-
alytic, we say that the system is purely catalytic, and the corresponding families
of sets of numbers are denoted by NPm(pcatr). When the number of membranes
is not bounded by a specified m (it can be arbitrarily large), then the subscript m
is replaced with ∗.

The following fundamental results are known:

Theorem 1. (i) NP2(cat2) = NRE, [5];
(ii) NREG = NP∗(pcat1) ⊆ NP∗(pcat2) ⊆ NP2(pcat3) = NRE, [7], [8].

Two intriguing open problems appear here, related to the borderline between
universality and non-universality: (1) are catalytic P systems with only one catalyst
universal? (2) are purely catalytic P systems with two catalysts universal?

We here consider only the first question. In the membrane computing com-
munity, the belief is that the answer is negative, one catalyst is not enough in
order to equal the power of Turing machines. Preliminary results, supporting this
conjecture, can be found, e.g., in [3].
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On the other hand, in the membrane computing literature there are many
results which show that P systems with only one catalyst are universal if further
ingredients are added. Many results of this type can be found in [4], while recent
developments can be found in [6] and [10]. We now recall several of these results,
without always giving the place where they were reported first; such information
can be found in the bibliography of [4]. The overall impression is that “one catalyst
is almost universal”: features which look “innocent” at the first sight are enough
to lead P systems with one catalyst to universality.

4 Universality for P Systems with One Catalyst

Inspired from biochemistry and/or from computability theory, we may add various
ingredients to P systems as defined above.

For instance, we may assume that some rules are “more active” than other
rules, hence they have priority in being applied. This corresponds to considering a
partial order relation among the rules in each compartment of a P system. It was
proved already in [12] that NP2(cat1, pri) = NRE, where pri indicates the use of
priorities.

In the example considered in Section 2 we have also used another feature, the
promoters: rules can have associated objects which act as promoters, the rule can
be applied only if at least one copy of each of the associated promoters is present.
The promoters can evolve at the same time, but by other rules than those they
promote. Similarly, rules can have associated inhibitors, objects whose presence
forbids the application of the rule. Catalytic P systems with only one catalyst,
using either promoters or inhibitors (one object only associated with a rule, not
larger multisets), are universal.

Slightly more sophisticated is the control of the evolution of a P system by
means of controlling the membrane permeability, [13]. This is achieved by using
two operations, associated with usual multiset processing rules: decreasing the
thickness (hence increasing the permeability) and increasing the thickness (hence
decreasing the permeability) of membranes. Specifically, rules of the forms u→ vδ
and u→ vτ are used. Initially, each membrane is supposed to be of thickness one.
A membrane of thickness one behaves as a usual membrane, objects can be moved
across it by means of target indications in and out. A membrane of thickness 0
is dissolved, its objects are left free into the surrounding region and its rules are
“lost” (specific biochemistry is active in each membrane, hence, by dissolving a
membrane, the respective “reactor” disappears). If a membrane has thickness 2,
then it is impermeable, no object can pass across it (hence the rules which ask
for such a passage cannot be used). The symbols δ, τ indicate the decrease and
the increase, respectively, of the thickness by one. The thickness cannot be greater
than 2, a rule u→ vτ used in such a membrane will lead to a membrane with the
same thickness. As already expected, the use of the operations δ, τ (the control
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of membrane permeability) again leads to the universality of P systems with one
catalyst.

The previous idea actually is part of a larger research area in membrane com-
puting, dealing with the possibility to also evolve the membrane structure during
a computation. There are many biologically inspired operations of this type. Here
we mention only one, the membrane creation, [11]. Besides usual non-cooperating
and catalytic rules, we also use rules of the form ca → c[ v ]

i
, with the meaning

that object a, with the help of catalyst c, produces a new membrane, with the
label i, having inside the multiset v; of course, the catalyst is reproduced. Also
this feature leads to universality in the case of P systems with only one catalyst.

If instead of “standard” catalysts we use catalysts with additional features,
then again we obtain universality. Two such extensions were considered: bistable
catalysts and mobile catalysts, [9]. In the first case, the catalyst can oscillate
between two states (and this is the only possible transformation the catalysts can
have), in the latter case the catalyst can pass through membranes like any other
object, by means of target indications in and out.

Several similar results were recently obtained in [6] and [10].

One of them is the target restriction. This restriction has two components, one
at the syntactic level (in each rule u→ v, all target indications which appear in v
are identical), and one at the semantic level (in each step of a computation, in each
membrane one uses rules with the same target indication in their right hand mem-
ber; in different membranes, different target indications may be used, while the
choice of rules to apply is done as in general P systems, in the non-deterministic
maximally parallel way). Interesting enough, the universality of target restricted
one catalyst P systems is obtained in [6] by means of P systems with 7 mem-
branes (it is an open problem whether or not the number of membranes can be
diminished).

Another restriction considered in [6] is the time-varying: a sequence U1, . . . , Up

of sets of rules is given, the computation starts with a step when rules from the
set U1 are used, then we use rules from U2, and so on; after step p, when rules
from Up are used, we return to U1 and continue (in step pn + i, n ≥ 0, one uses
rules from set Ui). The universality of time-varying P systems is obtained for one
catalyst P systems with only one membrane, having the period p equal to 6.

In [10], so-called label restricted P systems are considered: each rule has a
label, which can be a symbol from a given alphabet, or it can be the empty label;
a computation is label restricted if in each transition one applies only rules with
the same label, possibly also rules with the empty label. Although this restriction
does not look too strong, it is sufficient to get universality of P systems with only
one catalyst.
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5 Final Remarks

This paper is only a hint to one of the research directions in membrane comput-
ing. After a brief introduction to membrane computing, we have recalled several
cases where P systems with only one catalyst are computationally equivalent with
Turing machines. Various ingredients were considered: a priority relation among
rules, promoters, inhibitors, the control of membrane permeability, mobile cata-
lysts, bistable catalysts, membrane creation, label restricted transitions, selection
of rules by the target indications, time varying sets of rules. Such results are of
interest in view of the conjecture that P systems with only one catalyst are not
universal (two catalysts are known to lead to universality).

Several problems remain open. For instance, because the conjecture is that
purely catalytic P systems with two catalysts are not universal, all the results
mentioned above for the one catalyst case should also be examined for the purely
catalytic P systems with two catalysts.

Furthermore, other additional features remain to be considered, with the aim
of increasing the power of P systems with one catalyst – for instance, inspired
from the regulated rewriting area [2] or the grammar systems area [1] in formal
language theory.
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ical Approach to Distribution and Cooperation. Gordon and Breach, London, 1994.
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