
Improving Universality Results on Parallel
Enzymatic Numerical P Systems

Alberto Leporati, Antonio E. Porreca, Claudio Zandron, Giancarlo Mauri

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano-Bicocca
Viale Sarca 336/14, 20126 Milano, Italy
E-mail: {leporati,porreca,zandron,mauri}@disco.unimib.it

Summary. We improve previously known universality results on enzymatic numerical
P systems (EN P systems, for short) working in all-parallel and one-parallel modes. By
using a flattening technique, we first show that any EN P system working in one of these
modes can be simulated by an equivalent one-membrane EN P system working in the
same mode. Then we show that linear production functions, each depending upon at most
one variable, suffice to reach universality for both computing modes. As a byproduct, we
propose some small deterministic universal enzymatic numerical P systems.

1 Introduction

Numerical P systems have been introduced in [10] as a model of membrane systems
inspired both from the structure of living cells and from economics. Each region of
a numerical P system contains some numerical variables, that evolve from initial
values by means of programs. Each program consists of a production function and
a repartition protocol ; the production function computes an output value from
the values of some variables occuring in the same region in which the function
is located, while the repartition protocol distributes this output value among the
variables in the same region as well as in the neighbouring (parent and children)
ones.

In [10], and also in Chapter 23.6 of [11], some results concerning the computa-
tional power of numerical P systems are reported. In particular, it is proved that
nondeterministic numerical P systems with polynomial production functions char-
acterize the recursively enumerable sets of natural numbers, while deterministic
numerical P systems, with polynomial production functions having non-negative
coefficients, compute strictly more than semilinear sets of natural numbers.

Enzymatic Numerical P systems (EN P systems, for short) have been intro-
duced in [13] as an extension of numerical P systems in which some variables,
named the enzymes, control the application of the rules, similarly to what hap-
pens in P systems with promoters and inhibitors [1]. Although in [10] it is claimed

178 A. Leporati et al.

that numerical P systems have been inspired by economic and business processes,
the most promising application of their enzymatic version seems to be the simu-
lation of control mechanisms of mobile and autonomous robots [12, 2, 14, 15].

In [17, 16] some results concerning the computational power of enzymatic P
systems are reported. In particular, in [17] it is shown that EN P systems with
7 membranes and polynomial production functions of degree 5 involving at most
5 variables, working in the sequential mode (at each step, only one of the active
programs is applied in each membrane) are universal. The computational power of
EN P systems working in the so called one-parallel mode — programs are applied
in parallel in each membrane, but each variable can appear only in one of the
production functions — is also investigated, showing universality of these systems
with an unlimited number of membranes and linear production functions (that is,
polynomial functions of degree 1), each involving at most 2 variables. Finally, the
universality of (deterministic) EN P systems working in the all-parallel mode —
in each membrane all programs which can be applied are applied, possibly using
the same variable in many production functions — having 254 membranes and
polynomial production functions of degree 2 involving at most 253 variables, is
established. A considerable improvement of the last result has subsequently been
presented in [16], where it is proved that 4 membranes and linear production
functions involving at most 6 variables suffice to obtain universal deterministic
EN P systems working in the all-parallel mode.

In this paper we continue the study of the computational power of enzymatic
numerical P systems. In particular we first show that, given any EN P system Π
working either in the one-parallel or in the all-parallel mode, it is possible to build
an equivalent EN P system Π ′ whose structure consists of a single membrane.
This flattening technique already improves some of the above mentioned results,
reducing to 1 the number of membranes required by all-parallel or one-parallel
EN P systems to reach universality — albeit, despite this transformation, one-
parallel EN P systems still require an unbounded number of variables. Then, we
prove that for EN P systems working either in the all-parallel or in the one-parallel
mode one membrane and linear production functions — each involving at most 1
variable — suffice to reach universality. These results are all obtained by simulating
deterministic and/or nondeterministic register machines; by considering a small
deterministic universal register machine described in [6], we obtain as byproducts
some small deterministic universal EN P systems, working in the all-parallel mode.

A point to be considered is that the output of our EN P systems is defined as
the value of some specified variables in a final configuration, that is, a configuration
which is not changed by further applying programs. This allows us to simplify some
of our constructions, but it is a bit different from the way EN P systems produce
their output in most existing papers, where some specified output variables are
considered, and the output of the system is the set of all values assumed by these
variables during the entire computation. However, we prove that each of our EN
P systems can be easily modified in order to produce its output according to the
latter mode.

Universality Results on Parallel Enzymatic Numerical P Systems 179

The rest of the paper is organized as follows. In section 2 we recall the defi-
nitions of EN P systems and register machines, along with the terms, tools and
notation that will be used in the following. In section 3 we first show that any
EN P system working either in the all-parallel or in the one-parallel mode can
be “flattened” to one membrane, and then we prove our universality results on
one-membrane EN P systems working in all-parallel or in one-parallel modes. In
section 4 we show that the EN P systems used to obtain these results can be
modified in order to produce their output into separate variables, as it is usually
done in the literature. The conclusions and some directions for further work are
given in section 5.

2 Definitions and Mathematical Preliminaries

We denote by N the set of non-negative integers. An alphabet A is a finite non-
empty set of abstract symbols. Given A, the free monoid generated by A under
the operation of concatenation is denoted by A∗; the empty string is denoted by
λ, and A∗ − {λ} is denoted by A+. By |w| we denote the length of the word w
over A. If A = {a1, . . . , an}, then the number of occurrences of symbol ai in w is
denoted by |w|ai

; the Parikh vector associated with w with respect to a1, . . . , an is
(|w|a1 , . . . , |w|an

). The Parikh image of a language L over {a1, . . . , an} is the set
of all Parikh vectors of strings in L. For a family of languages FL, the family of
Parikh images of languages in FL is denoted by PsFL. The family of recursively
enumerable languages is denoted by RE; the family of all recursively enumerable
sets of k-dimensional vectors of non-negative integers can thus be denoted by
Ps(k)RE. Since numbers can be seen as one-dimensional vectors, we can replace
Ps(1) by N in the notation, thus obtaining NRE.

2.1 Enzymatic Numerical P Systems

An enzymatic numerical P system (EN P system, for short) is a construct of the
form:

Π = (m,H, µ, (V ar1, P r1, V ar1(0)), . . . , (V arm, P rm, V arm(0)))

where m ≥ 1 is the degree of the system (the number of membranes), H is an al-
phabet of labels, µ is a tree-like membrane structure with m membranes injectively
labeled with elements of H, V ari and Pri are respectively the set of variables and
the set of programs that reside in region i, and V ari(0) is the vector of initial
values for the variables of V ari. All sets V ari and Pri are finite. In the original
definition of EN P systems [13] the values assumed by the variables may be real,
rational or integer numbers; in what follows we will allow instead only integer
numbers. The variables from V ari are written in the form xj,i, for j running from
1 to |V ari|, the cardinality of V ari; the value assumed by xj,i at time t ∈ N is

180 A. Leporati et al.

denoted by xj,i(t). Similarly, the programs from Pri are written in the form Pl,i,
for l running from 1 to |Pri|.

The programs allow the system to evolve the values of variables during com-
putations. Each program is composed of two parts: a production function and a
repartition protocol. The former can be any function using variables from the region
that contains the program. Usually only polynomial functions are considered, since
these are sufficient to reach the computational power of Turing machines, as proved
in [17]. Using the production function, the system computes a production value,
from the values of its variables at that time. This value is distributed to variables
from the region where the program resides, and to variables in its upper (parent)
and lower (children) compartments, as specified by the repartition protocol. For-
mally, for a given region i, let v1, . . . , vni

be all these variables; let x1,i, . . . , xki,i be
some variables from V ari, let Fl,i(x1,i, . . . , xki,i) be the production function of a
given program Pl,i ∈ Pri, and let cl,1, . . . , cl,ni be natural numbers. The program
Pl,i is written in the following form:

Fl,i(x1,i, . . . , xki,i)→ cl,1|v1 + cl,2|v2 + · · ·+ cl,ni
|vni

(1)

where the arrow separates the production function from the repartition protocol.
Let Cl,i =

∑ni

s=1 cl,s be the sum of all the coefficients that occur in the repartition
protocol. If the system applies program Pl,i at time t ≥ 0, it computes the value

q =
Fl,i(x1,i(t), . . . , xki,i(t))

Cl,i

that represents the “unitary portion” to be distributed to variables v1, . . . , vni

proportionally with coefficients cl,1, . . . , cl,ni
. So each of the variables vs, for 1 ≤

s ≤ ni, will receive the amount q · cl,s. An important observation is that variables
x1,i, . . . , xki,i involved in the production function are reset to zero after computing
the production value, while the other variables from V ari retain their value. The
quantities assigned to each variable from the repartition protocol are added to the
current value of these variables, starting with 0 for the variables which were reset
by a production function. As pointed out in [17], a delicate problem concerns the
issue whether the production value is divisible by the total sum of coefficients Cl,i.
As it is done in [17], in this paper we assume that this is the case, and we deal
only with such systems; see [10] for other possible approaches.

Besides programs (1), EN P systems may also have programs of the form

Fl,i(x1,i, . . . , xki,i)|ej,i
→ cl,1|v1 + cl,2|v2 + · · ·+ cl,ni

|vni

where ej,i is a variable from V ari different from x1,i, . . . , xki,i and from v1, . . . , vni
.

Such a program can be applied at time t only if ej,i(t) > min(x1,i(t), . . . , xki,i(t)).
Stated otherwise, variable ej,i operates like an enzyme, that enables the execu-
tion of the program, but — like it happens also with catalysts — it is neither
consumed nor modified by the execution of the program. However, in EN P sys-
tems enzymes can evolve by means of other programs, that is, enzymes can receive
“contributions” from other programs and regions.

Universality Results on Parallel Enzymatic Numerical P Systems 181

A configuration of Π at time t ∈ N is given by the values of all the vari-
ables of Π at that time; in a compact notation, we can write it as the sequence
(V ar1(t), . . . , V arm(t)), where m is the degree of Π. The initial configuration can
thus be described as the sequence (V ar1(0), . . . , V arm(0)). The system Π evolves
from an initial configuration to other configurations by means of computation
steps, in which one or more programs of Π (depending upon the mode of compu-
tation) are executed. In [17], at each computation step the programs to be executed
are chosen in the so called sequential mode: one program is nondeterministically
chosen in each region, among the programs that can be executed at that time.
Another possibility is to select the programs in the so called all-parallel mode: in
each region, all the programs that can be executed are selected, with each variable
participating in all programs where it appears. Note that in this case EN P systems
become deterministic, since nondeterministic choices between programs never oc-
cur. A variant of parallelism, analogous to the maximal one which is often used
in membrane computing, is the so called one-parallel mode: in each region, all the
programs which can be executed can be selected, but the actual selection is made
in such a way that each variable participates in only one of the chosen programs.
We say that the system reaches a final configuration if and when it happens that
no applicable set of programs produces a change in the current configuration. In
such a case, a specified set of variables contains the output of the computation.
Of course, a computation may never reach a final configuration. Note that in the
usual definition of EN P systems the output of a computation is instead defined
as the collection of values taken by a specified set of variables during the whole
computation. In what follows we prove our results both by considering outputs in
the final configurations, and by the latter notion of producing the output.

EN P systems can be used to compute functions, in the so called computing
mode, by considering some input variables and output variables. The initial values
of the input variables are considered the actual arguments of the function, while the
value of the output variables in the final configuration (provided that the system
reaches it) is viewed as the output of the computed function. If the system never
reaches a final configuration, then the computed function is undefined for the spec-
ified input values. By neglecting input variables, (nondeterministic) EN P systems
can also be used in the generating mode, whereas by neglecting output variables we
can use (deterministic or nondeterministic) EN P systems in the accepting mode,
where the input is accepted if the system reaches a final configuration.

A technical detail to take care of is the fact that normally we would like to
characterize families of sets of natural numbers (sometimes including and some-
times excluding zero), while the input and output variables of EN P systems may
also assume negative values. The systems we will propose are designed to produce
only non-negative numbers in the output variables when the input variables (if
present) are assigned with non-negative numbers. So if the systems are used in
the intended way, they always produce meaningful (and correct) results. Another
possibility, mentioned in [17] but not considered here, is to filter the output values
so that only the positive ones are considered as output.

182 A. Leporati et al.

When using EN P systems in the generating or accepting modes, we denote
by ENPm(polyn(r), app mode) the family of sets of (possibly vectors of) non-
negative integer numbers which are computed by EN P systems of degree m ≥ 1,
using polynomials of degree at most n ≥ 0 with at most r ≥ 0 arguments as
production functions; the fact that the programs are applied in the sequential,
one-parallel or all-parallel mode is denoted by assigning the value seq, oneP or
allP to the app mode parameter, respectively. When app mode ∈ {seq, oneP} and
the P system is deterministic, we write det after the app mode parameter; this
specification is not needed for all-parallel EN P systems, since they are always
deterministic. If one of the parameters m, n, r is not bounded by a constant value,
we replace it by ∗.

With this notation, we can summarize the characterizations of NRE proved in
[17] as follows:

NRE = ENP7(poly5(5), seq) = ENP∗(poly1(2), oneP)

= ENP254(poly2(253), allP)

whereas the improvement of the last equality given in [16] can be written as NRE =
ENP4(poly1(6), allP).

In section 3 we further improve the results concerning EN P systems working
in the all-parallel and in the one-parallel modes: in both cases, we will obtain
characterizations of NRE by using just one membrane, and linear production
functions that use each at most one variable.

2.2 Register Machines

In what follows we will simulate register machines, so we briefly recall their defi-
nition and some of their computational properties.

An n–register machine is a construct M = (n, P,m), where n > 0 is the
number of registers, P is a finite sequence of instructions bijectively labelled with
the elements of the set {0, 1, . . . ,m − 1}, 0 is the label of the first instruction to
be executed, and m− 1 is the label of the last instruction of P . Registers contain
non-negative integer values. The instructions of P have the following forms:

• j : (inc(r), k, l), with 0 ≤ j < m, 0 ≤ k, l ≤ m and 1 ≤ r ≤ n.
This instruction, labelled with j, increments the value contained in register r,
then nondeterministically jumps either to instruction k or to instruction l.

• j : (dec(r), k, l), with 0 ≤ j < m, 0 ≤ k, l ≤ m and 1 ≤ r ≤ n.
If the value contained in register r is positive then decrement it and jump
to instruction k. If the value of r is zero then jump to instruction l (without
altering the contents of the register).

A deterministic n-register machine is an n-register machine in which all inc
instructions have the form j : (inc(r), k, k); in what follows, we will write these
instructions simply as j : (inc(r), k).

Universality Results on Parallel Enzymatic Numerical P Systems 183

A configuration of an n-register machine M is described by the contents of each
of its registers and by the program counter, that indicates the next instruction to
be executed. Computations start by executing the first instruction of P (labelled
with 0), and possibly terminate when the instruction currently executed jumps to
label m (we may equivalently assume that P includes the instruction m : halt,
explicitly stating that the computation must halt).

It is well known that register machines provide a simple universal computa-
tional model, and that machines with three registers suffice to characterize NRE
[8]. More precisely, we can use register machines in the computing, generating or
accepting mode, obtaining the following results [3, 4, 5]. For the computing mode,
we have:

Proposition 1. For any partial recursive function f : Nα → Nβ (α, β > 0), there
exists a deterministic register machine M with (max{α, β}+ 2) registers comput-
ing f in such a way that, when starting with n1 to nα in registers 1 to α, M has
computed f (n1, . . . , nα) = (r1, . . . , rβ) if it halts in the final label m with registers
1 to β containing r1 to rβ , and all other registers being empty; if f(n1, . . . , nα) is
undefined then the final label of M is never reached.

In accepting register machines, a vector of non-negative integers is accepted if
and only if the register machine halts:

Proposition 2. For any recursively enumerable set L ⊆ Ps(α)RE of vectors of
non-negative integers there exists a deterministic register machine M with (α+ 2)
registers accepting L in such a way that, when starting with n1 to nα in registers
1 to α, M has accepted (n1, . . . , nα) ∈ L if and only if it halts in the final label m
with all registers being empty.

To generate vectors of non-negative integers, we need nondeterministic register
machines:

Proposition 3. For any recursively enumerable set L ⊆ Ps(β)RE of vectors of
non-negative integers there exists a non-deterministic register machine M with
(β + 2) registers generating L, i.e., when starting with all registers being empty,
M generates (r1, . . . , rβ) ∈ L if it halts in the final label m with registers 1 to β
containing r1 to rβ , and all other registers being empty.

3 Universality of EN P Systems

As stated above, our aim is to improve the universality results shown in [17, 16],
concerning all-parallel and one-parallel EN P systems. We first prove that these P
systems can be “flattened”.

Theorem 1. Let Π be any computing (or generating, or accepting) EN P system
of degree m ≥ 1, working in the all-parallel or in the one-parallel mode. Then there
exists an EN P system Π ′ of degree 1 that computes (resp., generates, accepts) the
same function (resp., family of sets) using the same rule application mode.

184 A. Leporati et al.

Proof. Let Π = (m,H, µ, (V ar1, P r1, V ar1(0)), . . . , (V arm, P rm, V arm(0))) be an
EN P system, computing a function f : Nα → Nβ (α, β ≥ 0) and working in
the all-parallel mode. All the other cases (one-parallel, generating and accepting
modes) can be simply deduced from the following argumentation.

Note that each variable xj,i ∈ V ari and each program Pl,i ∈ Pri already
indicates in one of its indexes the region that contains it. We build a new EN
P system Π ′ of degree 1, by putting all the variables and all the programs of Π
— keeping both indexes, also in the variables occurring in programs — in the
membrane of Π ′. Clearly, this establishes a bijection between the variables (resp.,
programs) of Π and the corresponding variables (resp., programs) of Π ′, since the
presence of both indexes in Π ′ allows one to keep track of the region of Π from
which each variable and each program comes from. So any program Pl,i of Π still
operates on the correct variables when transformed and put into Π ′, regardless of
whether or not it uses an enzyme. Also input and output variables are preserved,
and so the only issue is related with the mode used to select the programs to be
applied. If Π works in the sequential mode, then at each computation step only (at
most) one program is selected in each region; this means that globally Π executes
a set of programs which cannot be captured in Π ′ by any of the sequential, one-
parallel and all-parallel modes. Instead, if Π works in the all-parallel mode then at
each computation step all the programs that can be executed are selected, and the
same happens in Π ′ by letting it work in the all-parallel mode. The same applies
when Π and Π ′ work in the one-parallel mode, and so the claim of the theorem
follows. ut

This result already allows to improve the universality results shown in [17, 16]
for all-parallel and one-parallel EN P systems, obtaining the following characteri-
zations of NRE:

NRE = ENP1(poly1(6), allP) = ENP1(poly1(2), oneP)

However — as stated in the Introduction — despite this simplification, one-parallel
EN P systems still require an unbounded number of variables, since each “new”
variable in Π ′ is indexed with the region of Π it comes from.

Anyhow, we can improve both results. We start with the first equality, con-
cerning all-parallel EN P systems.

Theorem 2. Each partial recursive function f : Nα → Nβ (α > 0, β ≥ 0) can
be computed by a one-membrane EN P system working in the all-parallel mode,
having linear production functions that use each at most one variable.

Proof. Since all-parallel EN P systems are deterministic, we prove the statement by
simulating deterministic register machines. Let M = (n, P,m) be such a machine
with n registers, computing f by means of program P . The initial instruction
of P has the label 0 and the machine halts if and when the program counter
assumes the value m. Observe that according to the result stated in Proposition 1,
n = max{α, β}+2 is enough. The input values x1, . . . , xα are expected to be in the

Universality Results on Parallel Enzymatic Numerical P Systems 185

first α registers before the computation starts, and the values of f(x1, . . . , xα) —
if any — are expected to be in registers 1 to β at the end of a halting computation.
Moreover, without loss of generality, we may assume that at the beginning of a
computation all the registers except possibly the registers 1 to α contain zero.

We construct the EN P system ΠM = (1, H, µ, (V ar1, P r1, V ar1(0))) of degree
1, where:

• H = {s} is the label of the only membrane (the skin) of ΠM ;
• µ = []s is the membrane structure;
• V ar1 = {r1, . . . , rn} ∪ {p0, . . . , pm};
• Pr1 = {2pj → 1|ri + 1|pk for all instructions j : (inc(i), k) ∈ P} ∪ {−pj →

1|ri, ri + 2|pj → 1|ri + 1|pl, pj → 1|pk, ri − 1|pj → 1|pk for all instructions
j : (dec(i), k, l) ∈ P};

• V ar1(0) is the vector of initial values of the variables of V ar1, obtained by
putting:
– ri = xi for all 1 ≤ i ≤ α;
– ri = 0 for all α+ 1 ≤ i ≤ n;
– p0 = 1;
– pj = 0 for all 1 ≤ j ≤ m.

The value of register i, for 1 ≤ i ≤ m, is contained in variable ri. The input
values x1, . . . , xα are introduced into the P system as the initial values of vari-
ables r1, . . . , rα. Variables p0, . . . , pm are used to indicate the value of the program
counter; at the beginning of each computation step, the variable corresponding to
the value of the program counter of M will assume value 1, while all the others
will be equal to zero.

The simulation of M by ΠM works as follows. Each increment instruction
j : (inc(i), k) is simulated in one step by the execution of the program

2pj → 1|ri + 1|pk

This program is executed at every computation step of ΠM ; however, when pj = 0
it has no effect: pj is once again set to zero, and a contribution of zero is distributed
among variables ri and pk. All variables are thus unaffected in this case. When
pj = 1, the production value 2pj = 2 is distributed among ri and pk, giving a
contribution of 1 to each of them. Hence the value of ri is incremented, the value
of pk passes from 0 to 1, while the value of pj is zeroed. All the other variables are
unaffected, and the system is now ready to simulate the next instruction of M .

Each decrement instruction j : (dec(i), k, l) is simulated in one step by the
parallel execution of the following programs:

− pj → 1|ri (2)
ri + 2|pj → 1|ri + 1|pl (3)
pj → 1|pk (4)
ri − 1|pj → 1|pk (5)

186 A. Leporati et al.

If pj = 0, programs (3) and (5) are not enabled (since by construction ri ≥ 0 and
thus pj ≤ ri), while programs (2) and (4) distribute a contribution of zero to ri
and pk; before doing so, variable pj is set to zero, thus leaving its value unchanged.
Hence, the case in which pj = 0 causes no problems to the overall simulation.

Now assume that pj = 1 and ri > 0. In this case, the value of ri should be
decremented and the computation should continue with instruction k. Program
(2) correctly decrements ri, and program (4) passes the value of pj = 1 to pk, thus
correctly pointing at the next istruction of M to be simulated. The execution of
both programs sets the value of pj to zero, which is also correct. Programs (3) and
(5) have no effect since to be executed it should be pj > ri, that is, ri < 1 (which
means ri = 0, since ri ≥ 0 by construction).

Now assume that pj = 1 and ri = 0. In this case, the value of ri should be kept
equal to zero, and the computation should continue with instruction l. Program
(2) sends a contribution of −1 to ri, while program (4) sets — incorrectly — pk to
1; both programs set pj to zero. This time, however, programs (3) and (5) are also
executed. Both set the value of ri to zero. After that, program (3) adds 1 to ri, thus
canceling the effect of program (2); as a result, the value assumed by ri after the
execution of the two programs is zero. Program (3) also makes pl assume the value
1, thus correctly pointing to the next instruction of M to be simulated. Finally,
program (5) gives a contribution of −1 to pk, canceling the effect of program (4);
the resulting value of pk will thus be 0.

It follows from the description given above that after the simulation of each
instruction of M the value of every variable ri equals the contents of register i, for
1 ≤ i ≤ n, while the only variable among p0, . . . , pm equal to 1 indicates the next
instruction of M to be simulated. When the program counter of M reaches the
value m, the corresponding variable pm assumes value 1. Since no program contains
the variable pm either in the production function or among the enzymes that
enable or disable the execution of the program, ΠM reaches a final configuration;
the result of the computation is contained in variables r1, . . . , rβ . ut

By taking β = 0 in the previous proof, we get the following result concerning
the accepting variant of EN P systems working in the all-parallel mode.

Corollary 1. For any L ∈ Ps(α)RE there exists a one-membrane EN P system,
having linear production functions each depending upon at most one variable, that
accepts L by working in the all-parallel mode.

Proof. We consider a register machine M with (α + 2) registers accepting L ac-
cording to Proposition 2, and we construct the one-membrane EN P system ΠM

that accepts L following the construction given in the proof of Theorem 2. The
input values x1, . . . , xα expected to be in the first α registers in M are assigned as
initial values to variables r1 to rα in ΠM , whereas the initial values of variables
rα+1 to rn are 0. The P system ΠM accepts this input if and only if it reaches a
final configuration. ut

By putting α = 1 in Corollary 1, we obtain the following characterization:

Universality Results on Parallel Enzymatic Numerical P Systems 187

0 : (dec(2), 1, 2) 1 : (inc(8), 0)

2 : (inc(7), 3) 3 : (dec(6), 2, 4)

4 : (dec(7), 5, 3) 5 : (inc(6), 6)

6 : (dec(8), 7, 8) 7 : (inc(2), 4)

8 : (dec(7), 9, 0) 9 : (inc(7), 10)

10 : (dec(5), 0, 11) 11 : (dec(6), 12, 13)

12 : (dec(6), 14, 15) 13 : (dec(3), 18, 19)

14 : (dec(6), 16, 17) 15 : (dec(4), 18, 20)

16 : (inc(5), 11) 17 : (inc(3), 21)

18 : (dec(5), 0, 22) 19 : (dec(1), 0, 18)

20 : (inc(1), 0) 21 : (inc(4), 18)

Fig. 1. The small universal deterministic register machine defined in [6]

NRE = ENP1(poly1(1), allP)

A direct consequence of Theorem 2 is that there exists a small universal all-
parallel EN P system that computes every possible partial recursive function.

Theorem 3. There exists a universal all-parallel EN P system of degree 1, having
31 variables and 61 programs.

Proof. We consider the small universal deterministic register machine Mu de-
scribed in [6], and illustrated in Figure 1. This machine has n = 8 registers and
m = 22 instructions, and can be used to compute any unary partial recursive
function f : N→ N as follows. Let (ϕ0, ϕ1, . . .) be a fixed admissible enumeration
of the unary partial recursive functions. Since Mu is universal, there exists a recur-
sive function g such that for all natural numbers y, z it holds ϕy(z) = Mu(g(y), z).
Hence, to compute f(x) we first consider the index y of f in the above enumera-
tion of unary recursive functions. Then we put g(y) and x in registers 2 and 3 of
Mu, respectively, and we start the computation; the value of f(x) will be found in
register 1 if and when Mu halts.

By following the arguments given in the proof of Theorem 2 we construct the
all-parallel EN P system ΠMu

= (1, H, µ, (V ar1, P r1, V ar1(0))) of degree 1, where:

• H = {s} is the label of the only membrane (the skin) of Π;
• µ = []s is the membrane structure;
• V ar1 = {r1, . . . , r8} ∪ {p0, . . . , p22};
• Pr1 = {2pj → 1|ri + 1|pk for all instructions j : (inc(i), k) listed in Figure

1} ∪ {−pj → 1|ri, ri + 2|pj → 1|ri + 1|pl, pj → 1|pk, ri − 1|pj → 1|pk for all
instructions j : (dec(i), k, l) listed in Figure 1};

188 A. Leporati et al.

• V ar1(0) is the vector of initial values of the variables of V ar1, obtained by
putting:
– r2 = g(y), the “code” associated to function f ;
– r3 = x, the input of f ;
– r1 = r4 = r5 = r6 = r7 = r8 = 0;
– p0 = 1;
– pi = 0 for all 1 ≤ i ≤ 22.

This system simulates the operation of Mu, as described in the proof of Theo-
rem 2. Hence, if and when the computation reaches a final configuration, variable
r1 contains the value of f(x).

The number of increment and decrement instructions of Mu are 9 and 13,
respectively. Each increment instruction is translated to 1 program of ΠMu while
each decrement instruction produces 4 programs, for a total of 61 programs. The
variables are n+m+ 1 = 31. ut

We now turn to EN P systems working in the one-parallel mode. We start
proving the following theorem.

Theorem 4. Each partial recursive function f : Nα → Nβ (α, β ≥ 0) can be
computed by a one-membrane EN P system working in the one-parallel mode,
having linear production functions that use each at most two variables.

Proof. We proceed like in the proof of Theorem 2, with the difference that here
we simulate both deterministic and nondeterministic register machines. Let M =
(n, P,m) be a nondeterministic register machine with n = max{α, β}+2 registers,
that computes f by means of program P . As usual, the input values x1, . . . , xα
are expected to be in the first α registers before the computation starts, all the
other registers being empty. If and when the computation of M halts, the values
of f(x1, . . . , xα) will be found in registers 1 to β.

We construct the one-membrane EN P system ΠM = (1, H, µ, (V ar1, P r1,
V ar1(0))), where:

• H = {s} is the label of the only membrane (the skin) of ΠM ;
• µ = []s is the membrane structure;
• V ar1 = {r1, . . . , rn} ∪ {p0, . . . , pm} ∪ {q0, . . . , qm} ∪ {zj,1, zj,2, zj,3 for all in-

structions j : (inc(i), k, l) ∈ P} ∪ {zj,1, zj,2, zj,3, zj,4, zj,5 for all instructions
j : (dec(i), k, l) ∈ P};

• Pr1 = {zj,1+3|pj
→ 1|ri+1|pk+1|qk, zj,1+3|pj

→ 1|ri+1|pl+1|ql, zj,2−1|pj
→

1|qj , zj,3−1|qj
→ 1|pj for all instructions j : (inc(i), k, l) ∈ P}∪{zj,1−1|pj

→
1|ri, ri + 3|pj → 1|ri + 1|pl + 1|ql, zj,2 + 2pj |ri → 1|pj + 1|pk, zj,3 + 2qj |ri →
1|qj + 1|qk, zj,4 − 1|pj → 1|qj , zj,5 − 1|qj → 1|pj} for all instructions j :
(dec(i), k, l) ∈ P};

• V ar1(0) is the vector of initial values of the variables of V ar1, obtained by
putting:
– ri = xi for all 1 ≤ i ≤ α;

Universality Results on Parallel Enzymatic Numerical P Systems 189

– ri = 0 for all α+ 1 ≤ i ≤ n;
– p0 = q0 = 1;
– pj = qj = 0 for all 1 ≤ j ≤ m;
– zj,1 = zj,2 = zj,3 = 0 for all 0 ≤ j < m such that j : (inc(i), k, l) ∈ P ;
– zj,1 = zj,2 = zj,3 = zj,4 = zj,5 = 0 for all 0 ≤ j < m such that j :

(dec(i), k, l) ∈ P .

Just like in the proof of Theorem 2, the value of register i, for 1 ≤ i ≤ n, is
contained in variable ri, and the input values x1, . . . , xα are introduced into the P
system as the initial values of variables r1, . . . , rα. This time, however, the system
uses both variables p0, . . . , pm and q0, . . . , qm to indicate the value of the program
counter of M , so that when simulating the j-th instruction of P variables pj and
qj are both set to 1, while all the others are zero. This double representation of
the program counter will allow us to set its value while also using it as an enzyme:
precisely, variable pj will be used as an enzyme to update the value of qj , and
vice versa. The auxiliary variables zj,1, . . . , zj,5, when defined, are used during the
simulation of inc and dec instructions, and are always set to zero.

The simulation of M by ΠM works as follows. Each increment instruction
j : (inc(i), k, l) is simulated in one step by the execution of the following programs:

zj,1 + 3|pj → 1|ri + 1|pk + 1|qk (6)
zj,1 + 3|pj → 1|ri + 1|pl + 1|ql (7)
zj,2 − 1|pj → 1|qj (8)
zj,3 − 1|qj → 1|pj (9)

These programs are not executed when pj = qj = 0, since variables zj,1, zj,2 and
zj,3 are zero, hence in this case they have no effect. When pj = qj = 1, instead,
programs (8) and (9) as well as one among programs (6) and (7) are executed,
since variable zj,1 makes these latter programs compete in the one-parallel mode
of application. Assume that program (6) wins the competition (a similar argument
holds if (7) wins instead): its effect is incrementing ri and setting pk and qk to 1,
thus correctly pointing to the next instruction of M to be simulated. The effect of
programs (8) and (9) is giving a contribution of −1 to both pj and qj , whose final
value will thus be zero. All the other variables are unaffected. If M is deterministic,
then the simulation of the instruction j : (inc(i), k) is performed by using the same
programs without (7). In this case no competition occurs between the programs,
and so the simulation is deterministic.

Each decrement instruction j : (dec(i), k, l) is simulated in one step by the
execution of the following programs:

190 A. Leporati et al.

zj,1 − 1|pj
→ 1|ri (10)

ri + 3|pj
→ 1|ri + 1|pl + 1|ql (11)

zj,2 + 2pj |ri
→ 1|pj + 1|pk (12)

zj,3 + 2qj |ri
→ 1|qj + 1|qk (13)

zj,4 − 1|pj
→ 1|qj (14)

zj,5 − 1|qj
→ 1|pj (15)

If pj = qj = 0 then programs (10), (11), (14) and (15) are not enabled, while
programs (12) and (13) are enabled only if ri > 0. However, in this case they
set to 0 variables pj and qj (thus leaving their value unaltered), and distribute a
contribution of zero to pj , qj , pk and qk, thus producing no effect. All the other
variables are left unchanged, so no problems occur to the overall simulation.

Now assume that pj = qj = 1 and ri > 0. In this case, the value of ri should
be decremented and the computation should continue with instruction k. Program
(10) correctly decrements ri, whereas program (11) is not executed since ri ≥ pj .
Programs (12) and (13) set to 1 variables pk and qk (thus pointing at the next
instruction of M to be simulated), and send a contribution of 1 to variables pj and
qj , after setting their value to zero. On the other hand, programs (14) and (15)
send a contribution of −1 to pj and qj , so that their final value will be zero.

Now assume that pj = qj = 1 and ri = 0. In this case, the value of ri should
be kept equal to zero, and the computation should continue with instruction l.
Program (10) sends a contribution of −1 to ri. This time, however, program (11)
is also executed; its effect is sending a contribution of 1 to ri, after setting it to
zero (so that its final value will be zero), and setting to 1 the value of variables pl
and ql. Programs (12) and (13) are inactive, and hence are not executed. Finally,
programs (14) and (15) send a contribution of −1 to pj and qj , so that their final
value will be zero.

It follows from the description given above that after the simulation of each
instruction of M the value of every variable ri equals the contents of register i,
for 1 ≤ i ≤ n, while variables p0, . . . , pm and q0, . . . , qm correctly indicate the
next instruction of M to be simulated. When the program counter of M reaches
the value m, the corresponding variables pm and qm assume value 1. Since no
program contains these variables either in the production function or among the
enzymes, the simulation reaches a final configuration; the result of the computation
is contained in variables r1, . . . , rβ . ut

By taking β = 0 and α ≥ 1 in the previous proof, we obtain the following result
concerning the accepting variant of EN P systems working in the one-parallel mode.

Corollary 2. For any L ∈ Ps(α)RE there exists a one-membrane EN P system,
having linear production functions each depending upon at most two variables, that
accepts L by working in the one-parallel mode.

On the other hand, by taking α = 0 and β ≥ 1 we get the following charac-
terization of Ps(β)RE by the generating variant of EN P systems working in the
one-parallel mode.

Universality Results on Parallel Enzymatic Numerical P Systems 191

Corollary 3. For any L ∈ Ps(β)RE there exists a one-membrane (nondetermin-
istic) EN P system, having linear production functions each depending upon at
most two variables, that generates L by working in the one-parallel mode.

By putting α = 1 and β = 0 in Corollary 2, and α = 0 and β = 1 in Corollary
3, we obtain the following characterization:

NRE = ENP1(poly1(2), oneP)

Another consequence of Theorem 4 is that there exists the small universal
deterministic one-parallel EN P system mentioned in the following theorem.

Theorem 5. There exists a universal one-parallel deterministic EN P system of
degree 1, having 146 variables and 105 programs.

Proof. The system mentioned in the statement simulates the small universal de-
terministic register machine Mu reported in Figure 1, and is built according to
the description given in the proof of Theorem 4, as we have done in the proof of
Theorem 3. The number of increment and decrement instructions of Mu are 9 and
13, respectively. Each increment and each decrement instruction is translated to
3 and 6 programs of the small universal EN P system, respectively, for a total of
105 programs. As for variables, 8 are used to simulate the registers of Mu, and
46 are used to denote the value of its program counter; moreover, there are 3 and
5 auxiliary variables for each increment and each decrement instruction, respec-
tively, for a total of 146 variables. ut

Let us note that, since the EN P system mentioned in the statement of Theorem
5 is deterministic, it also works in the all-parallel mode, albeit in this case the
system described in Theorem 3 is smaller.

By looking at the operation of the EN P system described in the proof of
Theorem 4, we can see that the only programs whose production functions depend
upon two variables are programs (12) and (13). Further, if we remove variables zj,2
and zj,3 from these programs the simulation of register machine M continues to
work correctly, except in the case when ri = 1 and pj = qj = 1. Hence if ri could
only assume even values (so that the value 2v denotes the fact that the contents of
the i-th register of M is v) we could get rid of variables zj,2 and zj,3 in programs
(12) and (13), thus obtaining a one-parallel EN P system whose linear production
functions each depend on just one variable. This is exactly what we do in the next
theorem, where 2N denotes the set of even natural numbers.

Theorem 6. Each partial recursive function f : (2N)α → (2N)β (α, β ≥ 0) can
be computed by a one-membrane EN P system working in the one-parallel mode,
having linear production functions that use each at most one variable.

Proof. The proof is similar to the one given for Theorem 4. The one-parallel EN
P system ΠM that simulates the nondeterministic register machine M = (n, P,m)
is now defined as follows:

192 A. Leporati et al.

ΠM = (1, H, µ, (V ar1, P r1, V ar1(0)))

where:

• H = {s} is the label of the only membrane (the skin) of ΠM ;
• µ = []s is the membrane structure;
• V ar1 = {r1, . . . , rn} ∪ {p0, . . . , pm} ∪ {q0, . . . , qm} ∪ {zj,1, zj,2, zj,3 for all 0 ≤

j < m};
• Pr1 = {zj,1+4|pj

→ 2|ri+1|pk+1|qk, zj,1+4|pj
→ 2|ri+1|pl+1|ql, zj,2−1|pj

→
1|qj , zj,3−1|qj → 1|pj for all instructions j : (inc(i), k, l) ∈ P}∪{zj,1−2|pj →
1|ri, ri+4|pj → 2|ri+1|pl+1|ql, 2pj |ri → 1|pj+1|pk, 2qj |ri → 1|qj+1|qk, zj,2−
1|pj
→ 1|qj , zj,3 − 1|qj

→ 1|pj} for all instructions j : (dec(i), k, l) ∈ P};
• V ar1(0) is the vector of initial values of the variables of V ar1, obtained by

putting:
– ri = 2xi for all 1 ≤ i ≤ α;
– ri = 0 for all α+ 1 ≤ i ≤ n;
– p0 = q0 = 1;
– pj = qj = 0 for all 1 ≤ j ≤ m;
– zj,1 = zj,2 = zj,3 = 0 for all 0 ≤ j < m.

As stated above, now the value of ri is the double of the value of register i,
for 1 ≤ i ≤ n. So, in particular, the double of the input values x1, . . . , xα are
introduced into the P system as the initial values of variables r1, . . . , rα. Once
again, like in the proof of Theorem 4, the system uses both variables p0, . . . , pm
and q0, . . . , qm to indicate the value of the program counter of M , so that when
simulating the j-th instruction of P variables pj and qj are both equal to 1, while
all the others are zero. The value of variables zj,1, zj,2, zj,3 is always zero during
the entire computation.

Each increment instruction j : (inc(i), k, l) of M is simulated in one step by
the execution of the following programs:

zj,1 + 4|pj
→ 2|ri + 1|pk + 1|qk (16)

zj,1 + 4|pj
→ 2|ri + 1|pl + 1|ql (17)

zj,2 − 1|pj
→ 1|qj (18)

zj,3 − 1|qj
→ 1|pj (19)

The simulation is analogous to the one described in the proof of Theorem 4, with
the difference that instead of incrementing ri the system now adds 2 to it; to do so,
the production value computed by the first two programs must be 4 instead of 3.
Nondeterminism is given by the fact that, when pj = qj = 1, variable zj,1 makes
programs (16) and (17) compete in the one-parallel mode. If the machine M to be
simulated is deterministic, then program (17) disappears, and so the simulation
becomes deterministic.

Each decrement instruction j : (dec(i), k, l) is simulated in one step by the
execution of the following programs:

Universality Results on Parallel Enzymatic Numerical P Systems 193

zj,1 − 2|pj
→ 1|ri (20)

ri + 4|pj
→ 2|ri + 1|pl + 1|ql (21)

2pj |ri
→ 1|pj + 1|pk (22)

2qj |ri
→ 1|qj + 1|qk (23)

zj,2 − 1|pj
→ 1|qj (24)

zj,3 − 1|qj
→ 1|pj (25)

The simulation is analogous to the one described in the proof of Theorem 4, with
small differences.

The case when pj = qj = 0 operates just like in the proof of Theorem 4:
programs (20), (21), (24) and (25) are not active, while programs (22) and (23) are
executed only if ri > 0; however, in such a case, a contribution of 0 is distributed
to variables pj , qj , pk, qk after setting pj and qj to zero.

Now assume that pj = qj = 1 and ri > 0. Program (20) correctly decrements ri
(subtracting 2 from its value), whereas program (21) is not executed since ri > pj .
Programs (22) and (23) set to 1 variables pk and qk (thus pointing at the next
instruction of M to be simulated), and send a contribution of 1 to variables pj and
qj , after setting their value to zero. On the other hand, programs (24) and (25)
send a contribution of −1 to pj and qj , so that their final value will be zero.

Now assume that pj = qj = 1 and ri = 0. In this case, the value of ri should
be kept equal to zero, and the computation should continue with instruction l.
Program (20) sends a contribution of −2 to ri. This time, however, program (21)
is also executed; its effect is sending a contribution of 2 to ri, after setting it to
zero (so that its final value will be zero), and setting to 1 the value of variables pl
and ql. Programs (22) and (23) are inactive, and hence are not executed. Finally,
programs (24) and (25) send a contribution of −1 to pj and qj , so that their final
value will be zero.

It follows from the description given above that the simulation is correct, and
that after the simulation of each instruction the value of variable ri is exactly the
double of the contents of register i, for 1 ≤ i ≤ n. If and when the program counter
of M reaches the value m, the corresponding variables pm and qm assume value 1
and the computation reaches a final configuration; the result of the computation
is then contained in variables r1, . . . , rβ . ut

Let 2NRE denote the family of recursively enumerable sets of even natural
numbers: 2NRE = {{2x | x ∈ X} | X ∈ NRE}. By taking β = 0 and α ≥ 1
(resp., α = 0 and β ≥ 1) in the previous proof one obtains a characterization of
the recursively enumerable sets of vectors of even natural numbers by accepting
(resp., generating) one-parallel EN P systems. In particular, by putting β = 0 and
α = 1 or α = 0 and β = 1, we obtain:

2NRE = ENP1(poly1(1), oneP)

As a byproduct of Theorem 6 we also obtain a small universal deterministic EN
P system that computes any partial recursive function f : 2N→ 2N, by simulating

194 A. Leporati et al.

the universal deterministic register machine illustrated in Figure 1. With respect to
the small EN P system described in the proof of Theorem 5 we have removed two
auxiliary variables from the programs that simulate each decrement instruction,
hence the new system consists of 105 programs and 120 variables. As discussed
after the proof of Theorem 5, this small EN P system is deterministic too and
hence it also works in the all-parallel mode; however, it works only with even
natural numbers as inputs and outputs.

Of course one would desire a characterization of NRE (instead of 2NRE)
by one-parallel EN P systems having linear production functions, each depending
upon just one variable. We can actually obtain such a characterization by using the
EN P system ΠM described in the proof of the previous theorem as a subroutine.
The idea is to produce a new one-parallel EN P system Π ′M that, given a vector
from Nα as input, prepares a corresponding input vector for ΠM by doubling its
components. Then ΠM is used to compute the output vector from Nβ , if it exists.
At this point Π ′M should take this output and halve each component, to produce its
output. To avoid this further step, we proceed as follows: while preparing the input
for ΠM , Π ′M also makes a copy of its input into additional variables si, for 1 ≤
i ≤ n. Then we modify the programs of ΠM in such a way that, while simulating a
(possibly nondeterministic) register machine M , it keeps in si the contents of the
registers, and in ri the doubles of such contents. So the programs use variables ri
to correctly perform the simulation, while at the end of the computation the result
will be immediately available in variables si. The details are given in the proof of
the following theorem, where the systems ΠM and Π ′M are combined together.

Theorem 7. Each partial recursive function f : Nα → Nβ (α ≥ 0, β ≥ 0) can
be computed by a one-membrane EN P system working in the one-parallel mode,
having linear production functions that use each at most one variable.

Proof. Like in the proofs of Theorems 4 and 6, we build a one-parallel EN P
system ΠM = (1, H, µ, (V ar1, P r1, V ar1(0))) that simulates a nondeterministic
register machine M = (n, P,m) that computes f , as follows:

• H = {s} is the label of the only membrane (the skin) of ΠM ;
• µ = []s is the membrane structure;
• V ar1 = {r1, . . . , rn}∪ {s1, . . . , sn}∪ {t1, . . . , tn}∪ {p}∪ {p0, . . . , pm}∪ {q0, . . .,

qm} ∪ {zj,1, zj,2, zj,3 for all 0 ≤ j < m};
• Pr1 = {3ti → 2|ri+1|si for all 1 ≤ i ≤ α}∪{2p→ 1|p0 +1|q0}∪{zj,1 +5|pj →

2|ri + 1|si + 1|pk + 1|qk, zj,1 + 5|pj
→ 2|ri + 1|si + 1|pl + 1|ql, zj,2 − 1|pj

→
1|qj , zj,3−1|qj

→ 1|pj for all instructions j : (inc(i), k, l) ∈ P}∪{zj,1−3|pj
→

2|ri + 1|si, ri + 5|pj
→ 2|ri + 1|si + 1|pl + 1|ql, 2pj |ri

→ 1|pj + 1|pk, 2qj |ri
→

1|qj + 1|qk, zj,2 − 1|pj → 1|qj , zj,3 − 1|qj → 1|pj} for all instructions j :
(dec(i), k, l) ∈ P};

• V ar1(0) is the vector of initial values of the variables of V ar1, obtained by
putting:
– ti = xi (the input values of f) for all 1 ≤ i ≤ α;
– ti = 0 for all α+ 1 ≤ i ≤ n;

Universality Results on Parallel Enzymatic Numerical P Systems 195

– ri = si = 0 for all 1 ≤ i ≤ n;
– p = 1;
– pj = qj = 0 for all 0 ≤ j ≤ m;
– zj,1 = zj,2 = zj,3 = 0 for all 0 ≤ j < m.

The input values x1, . . . , xα of f are introduced into the P system as the initial
values of variables t1, . . . , tα. Moreover, the value of variable p is set to 1. In the
first step of its computation, the P system will copy the values of t1, . . . , tα to
s1, . . . , sα, and the double of these values to variables r1, . . . , rα. So doing, after
the simulation of each instruction of M variables s1, . . . , sn will contain the values
of the registers of M , while r1, . . . , rn will contain their doubles. While making
these copies, the value of variable p is copied to both p0 and q0, in order to start
the simulation of M . The simulation proceeds much like in the way described
in the proof of Theorem 6; the programs there illustrated are here modified in
order to deal with the new variables. If and when the simulation reaches a final
configuration, variables s1, . . . , sβ contain the result of the computation.

The initialization step is performed by executing the following programs:

3ti → 2|ri + 1|si for all 1 ≤ i ≤ α
2p→ 1|p0 + 1|q0

Each increment instruction j : (inc(i), k, l) of M is simulated in one step by
the execution of the following programs:

zj,1 + 5|pj
→ 2|ri + 1|si + 1|pk + 1|qk (26)

zj,1 + 5|pj
→ 2|ri + 1|si + 1|pl + 1|ql (27)

zj,2 − 1|pj
→ 1|qj (28)

zj,3 − 1|qj
→ 1|pj (29)

The simulation is analogous to the one described in the proof of Theorem 6, with
the difference that when adding 2 to ri the system now also increments si; to do
so, the production value computed by the first two programs must be 5 instead
of 4. Once again, if the machine M to be simulated is deterministic then program
(27) disappears and the simulation itself becomes deterministic.

Each decrement instruction j : (dec(i), k, l) is simulated in one step by the
execution of the following programs:

zj,1 − 3|pj → 2|ri + 1|si (30)
ri + 5|pj → 2|ri + 1|si + 1|pl + 1|ql (31)
2pj |ri → 1|pj + 1|pk (32)
2qj |ri → 1|qj + 1|qk (33)
zj,2 − 1|pj → 1|qj (34)
zj,3 − 1|qj → 1|pj (35)

196 A. Leporati et al.

The simulation is analogous to the one described in the proof of Theorem 6, with
the only difference that when subtracting or adding 2 to ri by programs (30) and
(31), respectively, the system now also decrements or increments si, respectively.

It can be easily checked that the simulation is correct, and that after simulating
each instruction of M the values of variable si (resp., ri) is equal to the contents
(resp., the double of the contents) of register i, for 1 ≤ i ≤ n. If and when the
program counter of M reaches the value m, the corresponding variables pm and
qm assume value 1 and the computation reaches a final configuration; the result
of the computation can then be recovered from variables s1, . . . , sβ . ut

By taking β = 0 and α ≥ 1 in the previous proof, we obtain the following result
concerning the accepting variant of EN P systems working in the one-parallel mode.

Corollary 4. For any L ∈ Ps(α)RE there exists a one-membrane EN P system,
having linear production functions each depending upon at most one variable, that
accepts L by working in the one-parallel mode.

On the other hand, by taking α = 0 and β ≥ 1 we get the following charac-
terization of Ps(β)RE by the generating variant of EN P systems working in the
one-parallel mode.

Corollary 5. For any L ∈ Ps(β)RE there exists a one-membrane (nondetermin-
istic) EN P system, having linear production functions each depending upon at
most one variable, that generates L by working in the one-parallel mode.

By putting α = 1 and β = 0 in Corollary 4, and α = 0 and β = 1 in Corollary
5, we obtain the following characterization:

NRE = ENP1(poly1(1), oneP)

Moreover, it can be easily checked that when the register machine M simulated
in Theorem 7 and in Corollary 4 is deterministic, the simulating EN P system
ΠM works in the all-parallel mode. This means that the above construction leads
to a further characterization of NRE by all-parallel recognizing EN P systems
having linear production functions of one variable, alternative to the one obtained
by Theorem 2.

Another consequence of Theorem 7 is that there exists a further small universal
one-parallel deterministic EN P system, as stated in the following theorem.

Theorem 8. There exists a universal one-parallel deterministic EN P system of
degree 1, having 137 variables and 108 programs.

Proof. The system mentioned in the statement simulates the small universal de-
terministic register machine Mu reported in Figure 1, and is built according to
the description given in the proof of Theorem 7, as we have done in the proofs of
Theorems 3 and 5. The number of increment and decrement instructions of Mu

are 9 and 13, respectively, and each of them is translated to 3 and 6 programs

Universality Results on Parallel Enzymatic Numerical P Systems 197

of the small universal EN P system, respectively. The initialization step requires
further α+1 = 3 programs, since Mu is fed with two input values: the “code” of f
and its input. We thus obtain a total of 108 programs. As for variables, 8 · 3 = 24
are used to simulate the registers of Mu, and 46 are used to denote the value of
its program counter; moreover, there are 3 auxiliary variables for each instruction
of M , and one variable (p) which used to trigger the start of the simulation, for a
total of 137 variables. ut

Since the universal register machine Mu simulated in Theorem 8 is determin-
istic, the simulating small EN P system is deterministic too, and works both in
the all-parallel as well as in the one-parallel mode. By comparing the number of
variables and programs in all “small” EN P systems described in this paper, we see
that the smallest is the one described in Theorem 3, containing only 31 variables
and 61 programs. However such a small EN P system is not able to work in the
one-parallel mode, hence in case we are forced to do so we must resort to one of the
others described in this paper; the choice will depend upon the parameter (number
of variables or number of programs) we want to minimize, as well as whether we
are willing to work with even inputs and outputs. It is left as an open problem
to prove that these are the smallest possible universal EN P systems, or finding
instead smaller ones. Designing sets of programs that simulate consecutive inc and
dec instructions of Mu, as it has already been done in [9] and several other times
in the literature, could be a hint for finding smaller systems.

4 Producing Output in Separate Variables

In all EN P systems described above, the output is considered to be the value
of some specified variables in the final configuration, if and when this is reached.
This is different from how EN P systems produce their output in most existing
papers: usually, some separate output variables are considered, and the output of
the system is defined as the set of all values assumed by these variables during the
entire computation. In this section we prove that each of our EN P systems can
be easily modified in order to produce its output according to this latter way.

Theorem 9. The EN P systems used in Theorems 2, 4, 6 and 7 can be modified
so that their output is produced into separate variables.

Proof. Let ΠM = (1, H, µ, (V ar1, P r1, V ar1(0)) be one of the EN P systems men-
tioned in the statement, simulating a register machine M computing the partial
recursive function f : Nα → Nβ . Let x1, . . . , xβ denote the output variables of
ΠM , that is, variables r1, . . . , rβ for Theorems 2, 4, 6 and variables s1, . . . , sβ in
Theorem 7. Note that, by construction, these variables contain the value of f if
and when a final configuration is reached, and this happens if and only if pm (the
variable indicating label m of the program of M) assumes value 1.

We modify ΠM by introducing the following new variables:

198 A. Leporati et al.

• {y1, . . . , yβ}, whose values are kept identical to x1, . . . , xβ until pm becomes 1
(if this happens);

• {z1, . . . , zβ}, as the new output variables;
• {u1, . . . , uβ}, as flags;

and programs:

βpm → 1|u1 + . . .+ 1|uβ (36)
ui → 1|yi for all 1 ≤ i ≤ β (37)
xi|yi → zi for all 1 ≤ i ≤ β (38)

Moreover, each program already present in ΠM that changes the value of an output
variable xi is modified in order to also apply the same change to the new variable
yi, as done in the proof of Theorem 7. So doing, after simulating each instruction
of M the values of variables xi and yi will be the same for all 1 ≤ i ≤ β. Since
y1, . . . , yβ never appear in the production functions of these modified programs,
no change is caused to the behavior of ΠM .

All new variables are initialized to zero before the computation starts. Dur-
ing the first computation step variables y1, . . . , yα are initialized to the values of
x1, . . . , xα, as in the initialization step of Theorem 7. The computation then pro-
ceeds as prescribed by the programs of ΠM . If and when the computation reaches
a final configuration then program (36) is executed, with the effect of zeroing pm
and setting u1, . . . , uβ to 1. When this happens, by programs (37) the values of
y1, . . . , yβ are incremented, thus becoming larger than the values of x1, . . . , xβ .
This means that programs (38) can now be applied, with the effect of copying
the values of the original output variables x1, . . . , xβ to the new output variables
z1, . . . , zβ .

On the other hand, note that before and after reaching a final configuration
of ΠM the value of variables z1, . . . , zβ is never affected. In fact, when pm = 0
program (36) has no effect, since it distributes a contribution of 0 to u1, . . . , uβ ,
leaving their value unaltered. This happens both before pm becomes 1, and after
executing program (36). Programs (37) increment the values of y1, . . . , yβ only
once, when u1 = . . . = uβ = 1, otherwise they produce no effect. Finally, programs
(38) are first executed as soon as the values of y1, . . . , yβ become larger than that
of x1, . . . , xβ , after which they distribute a contribution of zero to z1, . . . , zβ .

So the only value assumed by the new output variables z1, . . . , zβ , besides zero,
is the output value of M . ut

5 Conclusions and Directions for Further Work

In this paper we have studied the computational power of enzymatic numerical P
systems working in the all-parallel and one-parallel modes.

We have improved some previously known universality results, in terms of
number of membranes and number of variables used in the production functions.

Universality Results on Parallel Enzymatic Numerical P Systems 199

So, by using a flattening technique, we have first shown that every EN P system
working either in the all-parallel or in the one-parallel mode can be simulated by
an equivalent one-membrane EN P system working in the same mode. Then we
have shown that linear production functions, each depending upon at most one
variable, suffice to reach universality for both computing modes. As a byproduct
we have obtained several small universal deterministic EN P systems, the smallest
one having only 31 variables and 61 programs.

It is left open whether smaller universal EN P systems exist. It is also left open
whether the known universality result on sequential EN P systems contained in
[17] — a characterization of NRE by sequential EN P systems of degree 7, whose
production functions are polynomials of degree at most 5, each depending upon
at most 5 variables — can be improved.

Acknowledgements

The ideas exposed in this paper emerged during the Eleventh Brainstorming Week
on Membrane Computing (BWMC 2013), held in Seville from February 4th to
February 8th, 2013.

This research was partially funded by Lombardy Region under project NEDD.

References

1. P. Bottoni, C. Mart́ın-Vide, Gh. Păun, G. Rozenberg: Membrane systems with pro-
moters/inhibitors. Acta Informatica 38(10):695–720, 2002.

2. C. Buiu, C.I. Vasile, O. Arsene: Development of membrane controllers for mobile
robots. Information Sciences 187:33–51, 2012.

3. R. Freund, M. Oswald: GP systems with forbidding context. Fundamenta Informat-
icae 49(1-3):81–102, 2002.

4. R. Freund, Gh. Păun: On the number of non-terminals in graph-controlled, pro-
grammed, and matrix grammars. In: M. Margenstern, Y. Rogozhin (Eds.), Universal
Machines and Computations, Chişinău, 2001, LNCS 2055, Springer-Verlag, 2001, pp.
214–225.

5. R. Freund, Gh. Păun: From regulated rewriting to computing with membranes: col-
lapsing hierarchies. Theoretical Computer Science 312:143–189, 2004.

6. I. Korec: Small universal register machines. Theoretical Computer Science 168:267–
301, 1996.

7. Y. Matijasevitch: Hilbert’s tenth problem. MIT Press, Cambridge, London, 1993.
8. M.L. Minsky: Computation. finite and infinite machines. Prentice Hall, Englewood

Cliffs, New Jersey, 1967.
9. A. Păun, Gh. Păun: Small universal spiking neural P systems. Biosystems 90(1):48–

60, 2007.
10. Gh. Păun, R. Păun: Membrane computing and economics: numerical P systems.

Fundamenta Informaticae 73:213–227, 2006.
11. Gh. Păun, G. Rozenberg, A. Salomaa (eds.): The Oxford handbook of membrane

computing. Oxford University Press, 2010.

200 A. Leporati et al.

12. A.B. Pavel: Membrane controllers for cognitive robots. Master’s thesis, Department
of Automatic Control and System Engineering, Politechnica University of Bucharest,
Romania, 2011.

13. A.B. Pavel, O. Arsene, C. Buiu: Enzymatic numerical P systems – A new class of
membrane computing systems. IEEE Fifth International Conference on Bio-Inspired
Computing: Theory and Applications (BIC-TA), IEEE, 2010, pp. 1331–1336.

14. A.B. Pavel, C. Buiu: Using enzymatic numerical P systems for modeling mobile robot
controllers. Natural Computing 11(3):387–393, 2012.

15. A.B Pavel, C.I. Vasile, I. Dumitrache: Robot localization implemented with enzy-
matic numerical P systems. In: T.J. Prescott et al. (Eds.), Proceedings of Living
Machines 2012, Barcelona, Spain, July 9–12, 2012, LNAI 7375, Springer-Verlag, 2012,
pp. 204–215.

16. C.I. Vasile, A.B. Pavel, I. Dumitrache: Universality of enzymatic numeri-
cal P systems. International Journal of Computer Mathematics, 2013. DOI:
10.1080/00207160.2012.748897

17. C.I. Vasile, A.B. Pavel, I. Dumitrache, Gh. Păun: On the power of enzymatic numer-
ical P systems. Acta Informatica 49(6):395–412, 2012.

