
An Application of the PCol Automata in Robot
Control

Miroslav Langer1, Luděk Cienciala1, Lucie Ciencialová1, Michal Perdek1, and
Alice Kelemenová1

Institute of Computer Science
and
Research Institute of the IT4Innovations Centre of Excellence,
Silesian University in Opava, Czech Republic
{miroslav.langer, ludek.cienciala, lucie.ciencialova, michal.perdek,

alice.kelemenova}@fpf.slu.cz

Summary. The P colonies were introduced in [6] as a variant of the bio-inspired com-
putational models called membrane systems or P systems. In [2] we divided agents into
the groups according the function they provide; we introduced the modularity on the
P colonies. PCol automata are an extension of the P colonies by the tape (see [1]).
This is an accepting computational device based on the very simple computational units.
In this paper we combine the approach of the modules in the P colonies and of the PCol
automata and we introduce the PCol automaton driven robot.

1 Introduction

Recently, the robotics has been more and more expanding and intervening in
various branches of science like biology, psychology, genetics, engineering, cogni-
tive science, neurology etc. An effort to create robots with an artificial intelligence
which are able to cogitate or solve various types of problems refers to hardware
and software limits. Many of these limits are managed to be eliminated by the in-
terdisciplinary approach which allows creating new concepts and technics suitable
for the robot control and facture of the new hardware.

Very robot control is often realised by the classical procedures known from the
control theory (see [9]), concepts inspired by the biology, evolution concepts (see
[5]) or with use of the decentralized approaches (see [8]).

The autonomous robot’s behaviour and its control are realized by the control
unit. Robots are equipped with the various types of sensors, cameras, gyroscopes
and further hardware which all together represents the robots perception. These
hardware components provide to the control unit the information about the actual
state of the environment in which the robot is present and also the information
about the internal states of the robot. After the transformation of these inputs

154 M. Langer et al.

there are generated a new data which are forwarded to the actuators like the
wheels, robotic arm etc. Thus the robot can pass the obstacle by using the sensors
and adjusting the speed of the particular wheels. So the objective of the control
unit is to transform input signals to the output signals which consequently affect
the behaviour of the robot. These changes in the behaviour cause that the robot
interacts with the environment and in the sight of the observer the robot seems
to be intelligent. Transformation of these signals can be done computationally
in various ways with use of the knowledge or fuzzy knowledge systems, artificial
neural networks, or just with use of the membrane systems or the P systems as it
will be shown in this paper.

The development, design and the realization of the new approaches and tech-
niques through which is possible to realize function of the control unit is one of
the key subject of the development of the artificial intelligence and the robotics.

P colonies were introduced in 2004 as abstract computing devices composed
from independent single membrane agents, reactively acting and evolving in
a shared environment. P colonies reflect motivation from colonies of grammar
systems, i.e. the idea of the devices composed from as simple as possible agents
placed in a common environment; the system, which produce nontrivial emergent
behaviour, using the environment only as the communication medium with no in-
ternal rules. P colonies consist of single cells “floating” in a common environment.
Sets of rules of cells are structured to simple programs in P colonies. Rules in
a program have to act in parallel in order to change all objects placed into the
cell, in one derivation step. Objects are grouped into cells or they can appear in
their completely passive environment in which these cells act. We assume that the
environment contains several copies of the basic environmental objects (denoted
in the formal definition of P colonies by e), as many as needed to perform a com-
putation. Moreover the environment can contain also finite number of non-basic
objects, and each entity contains a fixed (intuitively small) number of (possibly
identical) objects.

Cells as basic computing agents of P colonies are of as much as possible re-
stricted complexity and the capability. Each agent is associated with a small num-
ber of objects present inside it and with a set of rules forming programs for pro-
cessing these objects.

Two types of rules are considered, namely the evolution rules acting inside
agents, and the communication rules providing elementary interactions between
the agents and the environment.

Each of the evolution rules is able to rewrite one object in the agent into an-
other object which will remain inside this agent. Evolution rule is denoted by
a → b. The communication rules consist in the mutual exchanging of one object
inside the agent, and one object in its environment. We denote communication
rule by c↔ d, where the object appearing in the agent is written in the left side of
the relation ↔. Moreover checking rules are considered to extend the abilities of
agents follows: assume that communication rule can be chosen from two possibil-
ities with the first one having higher priority. The rule associated with the agent

An Application of the PCol Automata in Robot Control 155

with greater priority has to be active. The agent checks the possibility to execute
the communication rule having higher priority. Otherwise, the second communi-
cation rule can be treated. We denote a checking rule being a pair c↔ d/c

′ ↔ d
′
.

A P colony with checking rules will be called also a P colony with priority.
The program of an agent allows changing all objects in the cell simultaneously

and deterministically by different rules, so the number of objects in an agent is
identical with the number of rules in each of its programs.

P colony starts a computation with given objects in the environment and in
each agent. We associate a result with a halting computation, in the form of the
number of copies of a distinguished object in the environment. Both parallel as
well as sequential computational mode of P colonies is discussed depending on the
amount of agents acting in one derivation step. In the first case, each agent which
can apply any of its programs has to choose one non-deterministically, and apply
it; in the sequential case one agent, non-deterministically chosen, is allowed to act.
P colonies are computationally complete, i.e. all the number sets computable by
Turing machines are computable also by P colonies. This gives the interpretation
that the environment is essential as a medium for communication and for storing
information during the computation, even with no structure and no information in
the environment at the beginning of the computation. The power of cooperating
agents of a very restricted form can be dramatically different from the power of
individual agents. For overview on P colonies we refer to [7], [3], [4].

Pcol automaton was introduced in order to describe the situation, when
P colonies behave according to the direct signals from the environment (see [1]).
This modification of the P colony is constructed in order to recognize input strings.
In addition to the writing and communicating rules usual for a P colony cells in
Pcol automata have also tape rules. Tape rules are used for reading next symbol on
the input tape and changing an object in cell(s) to the read symbol. Depending on
the way how tape rules and other rules can take a part in derivation process several
computation modes are treated. After reading the whole input word, computation
ends with success if the Pcol automaton reaches one of its accepting configura-
tions. So, in accordance with finite automata, Pcol automata are string accepting
devices based on the P colony computing mechanisms.

Agents can be grouped to different modules specified for some activities as
illustrated in [2] for P colonies. This approach will be used in the present paper
for Pcol automata illustrated in the case of robot control.
Throughout the paper we assume that the reader is familiar with the basics of the
formal language theory.

2 Preliminaries on the P colonies

P colony is a computing device composed from the environment and the indepen-
dent organisms called agents or cells. The agents live in the environment. Each
agent is represented by a collection of objects embedded in a membrane, which

156 M. Langer et al.

is constant during the computation. A set of programs, which are composed from
the rules, is associated with each agent. The rule can be either evolution rule or
communication rule. The evolution rules are of the form a → b. It means that the
object a inside the agent is rewritten (evolved) to the object b. The communication
rules are of the form c↔ d. When the communication rule is performed, the object
c inside the agent and the object d in the environment swap their places. Thus
after execution of the rule, the object d appears inside the agent and the object c
is placed in the environment.

In [6] the set of programs was extended by the checking rules. These rules give
an opportunity to the agents to opt between two possibilities. The rules are in the
form r1/r2. If the checking rule is performed, then the rule r1 has higher priority
to be executed over the rule r2. It means that the agent checks whether the rule
r1 is applicable. If the rule can be executed, then the agent is compulsory to use
it. If the rule r1 cannot be applied, then the agent uses the rule r2.

The environment contains several copies of the basic environmental object de-
noted by e. The number of the copies of e in the environment is sufficient, it means
that each agent which wants to receive the symbol e from the environment using
the communication rule will receive it.

We will handle parallel model of P colonies with checking rules (denoted by
NPCOLparK) in this paper. At each step of the parallel computation each agent
tries to apply one usable program. If the number of applicable programs is higher
than one, then the agent chooses one of the rules nondeterministically and the
maximal possible number of agents is active at each step of the computation. Each
P colony is characterised by three characteristics; the capacity k, the degree n and
the height h; denoted by NPCOLparK(k, n, h). The capacity k is the number of
the objects inside each agent, the degree n is the number of agents in the P colony,
the height h is the maximal number of programs associated with the agent of the
P colony.

2.1 Modularity in the therms of P colonies

The research of the P colonies suggested that particular agents are providing the
same function during the computation. This served as the inspiration to introduce
the modules in the P colonies. In the [2] we grouped agents of the P colony simu-
lating computation of the register machine into the modules. The agents providing
subtraction were classified into the subtraction module, agents providing addition
were sorted into the addition module, agents controlling the computation were
grouped into the control module, etc. The program of simulated register machine
is stored in the control module, so changing the program of the register machine
does not mean reprograming all the agents of the P colony but the change of the
control module.

The inspiration to introduce modularity was found in living organisms where
group of cells providing one function evolved into the organs and whole organism
is composed by these organs.

An Application of the PCol Automata in Robot Control 157

In this paper, this approach to define modules will be used for the robot control.
One module for each module of the robot (sensors, actuators) will be defined. For
planning the robots action will be used the tape; PCol automaton.

2.2 PCol automata

By extending the P colony by the input tape we obtain a string accepting/ rec-
ognizing device; the PCol automaton (see [1]). The input tape contains the input
string which can be read by the agents. The input string is the sequence of the
symbols. To access the tape the agents use special tape rules (T-rules). The rules
not accessing the tape are called non-tape rules (N-rules). The computation and
use of the T-rules is very similar to the use of the rules in the P colonies. Once
any of the agents uses its T-rule, the actual symbol on the tape is considered as
read. The only difference between the tape and the environmental symbol is that
the tape symbol can access arbitrary many agents at the same time.

Definition 1. PCol automaton of the capacity k and with n agents, k, n ≥ 1 is
a construct

Π = (A, e, VE , (O1, P1) , . . . (On, Pn) , F), where

• A is a finite set, an alphabet of the PCol automaton, its elements are called
objects;

• e is an environmental object, e ∈ A;
• VE is a multiset over A− {e} defining the initial content of the environment;
• (Oi, Pi), 1 ≤ i ≤ n is an i-th agent

– Oi is a multiset over A defining the initial content of the agent, |Oi| = k,
– Pi is a finite set of the programs,Pi = Ti ∪ Ni, Ti ∩ Ni = ∅, where every

program is formed from k rules of the following types:
· the tape rules (T-rules for short)
· a

T→ b are called the rewriting T-rules;
· a

T↔ b are called the communicating T-rules;
· the non-tape rules (N-rules for short)
· a→ b are called the rewriting N-rules;
· c↔ d are called the communicating N-rules;

· Ti is a set of tape programs (T-programs for short) consisting from one
T-rule and k − 1 N-rules.

· Ni is a set of non-tape programs (N-programs for short) consisting only
from N-rules.

• F is a set of accepting configurations of the PCol automaton, each state is
a (n+ 1)-tuple (vE ; v1, . . . , vn), where:
– vE ⊆ (A−{e})∗ is a multiset of the objects different from the object e placed

in the environment;
– vi, 1 ≤ i ≤ n is a content of the i-th agent;

158 M. Langer et al.

The configuration of the PCol automaton is (n+2)-tuple (wT ;wE ;w1, . . . , wn),
where wT ∈ A∗ the unprocessed (unread) part of the input string, wE ∈ (A− {e})∗
is a multiset of the objects different from the object e placed in the environment
of the PCol automaton and wi, 1 ≤ i ≤ n is a content of the i-th agent.

The computation starts in the starting configuration defined by the input string
on the tape the initial content of the environment and the initial content of the
agents. Actual symbol on the input tape we consider as read iff at least one agent
uses its T-program in the particular derivation step.

We define the rule r in following way:

r =
(
a

T/−→ b

)
⇒

left (r) = a
right (r) = b
export (r) = ε
import (r) = ε

r = (c
T/←→ d)⇒

left (r) = ε
right (r) = ε
export (r) = c
import (r) = d

For each configuration (wE , w1, . . . , wn) we define set of applicable programs
P(wE ,w1,...,wn):

• ∀p, p′ ∈ P, p 6= p′, p ∈ Pi, p
′ ∈ Pj ⇒ i 6= j

• for each p ∈ P and p ∈ Pi left(p) ∪ export(p) = wi

•
⋃

p∈P

import(p) ⊆ wE

For each configuration (wE , w1, . . . , wn) we define set of all sets of applicable
programs P(wE ,w1,...,wn)

For the configuration (wE , w1, . . . , wn) and the input symbol a we define:

• t-transition, ⇒a
t : If there is at least one set of applicable programs P ∈ P

such that each p ∈ P is the T-program with T-rule of the form x
T→ a or

x
T↔ a, x ∈ A and P is the maximal set (there does not exists other set P ′ ∈ P

where |P ′| > |P | fulfilling stated conditions).
• n-transition, ⇒n: If there is at least one set of applicable programs P ∈ P

such that each pi ∈ P is the N-program and P is the maximal set.
• tmin-transition ⇒a

tmin: If there is at least one set of applicable programs
P ∈ P such that there exists at least one program P is the T-program and it
is in the form x

T→ a or x T↔ a, x ∈ A, it can contain also the N-programs and
P is the maximal set.

• tmax-transition ⇒a
tmax: If there is at least one set of applicable programs

P ∈ P such that P = PN ∪PT where PN is a set of nontape programs and PT is
a maximal set of applicable tape programs of the form x

T→ a or x T↔ a, x ∈ A,
and P = PN ∪ PT is maximal;

We denote

An Application of the PCol Automata in Robot Control 159

(wE , w1, . . . , wn)⇒a/
trans (w′E , w

′
1, . . . , w

′
n),

trans = {t, n, tmin, tmax}
where: for each j, 1 ≤ j ≤ n for which there exists p ∈ P ∧ p ∈ Pj , w′j =
right(p) ∪ import(p), if there does not exists p ∈ P ∧ p ∈ Pj so w′j = wj ; w′E =
wE −

⋃
p∈P

import(p) ∪
⋃

p∈P

export(p).

PCol automaton works in the t(tmax, tmin) mode of computation if it uses only
t- (tmax-, tmin-) transitions. PCol automaton works in the nt (ntmax or ntmin)
mode of computation if at any computation step it may use a t- (tmax- or tmin-)
transition or an n-transition. A special case of the nt mode is called initial, denoted
by init, if the computation of the automaton is divided in two phases: first it reads
the input strings using t-transitions and after reading all the input symbols it uses
n-transitions to finish the computation.

The computation ends by (types of acceptance):

halting (halt) - there does not exist an applicable set of programs corresponding
to the computation mode. Computation is successful if it ends and the whole
input tape is read.

reading the last input symbol (lastsym) - the computation (successfully)
ends if the last input symbol is read and there does not exist set of appli-
cable programs corresponding to the computation mode. The computation is
unsuccessful if it ends before reading the last symbol from the input tape.

final state reached (finstate) - the computation ends whenever the last symbol is
read as far as the automaton would not stop further. The computation is suc-
cessful if the input tape is read and PCol automaton reaches the configuration
from the set of the final states F .

The language accepted by the PCol automaton Π is defined as a set of the
words for which there exist successful computation in particular mode and type of
acceptance.

Definition 2. L(Π,mod, acc) = {w ∈ A∗|w is accepted by the computation in the
mode mod with type of acceptance acc },

where mod ∈ {t, nt, tmax, ntmax, tmin, ntmin, init} and acc ∈ {halt,
lastsym, finstate}.

3 Robot control using the PCol automaton

Main advantage of using PCol automaton in the controlling robot behaviour is the
parallel proceeding of the data done by very primitive computational units using
very simple rules.

By conjunction modularity and PCol automaton we obtain a powerful tool to
control robot behaviour. PCol automaton is parallel computation device. Collat-
erally working autonomous units sharing common environment provide fast com-
putation device. Dividing agents into the modules allows us to compound agents

160 M. Langer et al.

controlling single robot sensors and actuators. All the modules are controlled by
the main controlling unit. Input tape gives us an opportunity to plan robot ac-
tions. Each input symbol represents a single instruction which has to be done by
the robot, so the input string is the sequence of the actions which guides the robot
to reach his goal; performing all the actions.

We construct a PCol automaton with four modules: Control unit, Left actua-
tor controller, Right actuator controller and Infra-red receptor. Entire automaton
is amended by the input and output filter. The input filter codes signals from the
robots receptors and spread the coded signal into the environment. In the environ-
ment there is the coded signal used by the agents. The output filter decodes the
signal from the environment which the actuator controllers sent into it. Decoded
signal is forwarded to the robots actuators.

The control unit is the main module which controls the computation. It reads
the sequence of the actions from the input tape. According to the type of the action
read from the tape it asks the data from the sensors modules by sending particular
objects into the environment. If the answer from the sensors allows to perform
the action, the control unit sends the command to the actuator controllers to
perform demanded action. After sending the command to the actuator controllers
the control unit waits for the announcement of the successful or the unsuccessful
performance of the demanded action from the actuator controllers. If the action
was fulfilled then the control unit continues in reading the input tape and performs
following action.

The infra-red receptors consume all the symbols released into the environment
by the input filter. It releases actual information from the sensors on demand of the
control unit. The infra-red receptors remove unused data from the environment.

The left and right actuator controllers wait for the activating signal from the
control unit. After obtaining the activating signal the controllers try to provide
demanded action by sending special objects - coded signal for the output filter
into the environment. When the action is performed successfully the actuators
send the announcement of the successful end of the action to the control unit, the
announcement of the unsuccessful end of the action otherwise.

Let us introduce the formal definition of the mentioned PCol automaton: Π =
(A, e, VE , (O1, P1) , . . . (O7, P7) , ∅), where
A = {0L, 0R, 1L, 1R, e, FF , FF , FL, FL, FR, FR, GF , GL, GR, IF , IL, IR,MF ,

ML,MR, NF , NF , NL, NL, NR, NR, R,RT ,WF ,WL,WR,WT },
VE = {e},

Control Unit:

An Application of the PCol Automata in Robot Control 161

O1 = { T, e},
P1 = { < RT

T→MF ; e→ e >; < GFMF →MFMF >; < MFMF → ee >;
< e↔ GF /e↔ R;MF →MF >; < RMF → eWT >;
< RT

T→ML; e→ e >; < GLML →MLML >; < MLML → ee >;
< e↔ GL/e↔ R;ML →ML >; < RML → eWT >;
< RT

T→MR; e→ e >; < GRMR →MRMR >; < MRMR → ee >;
< e↔ GR/e↔ R;MR →MR >; < RMR → eWT >;
< ee→ eWT >; < WT → e; e↔ RT > }

O2 = { T, e},
P2 = { < RT

T→MF ; e→ IF >; < IF ↔ e;MF →WF >;
< WF → e; e↔ FF /e↔ NF >; < FF → GF ; e→ e >;
< GF ↔ e; e→WT >; < RT

T→ML; e→ IL >;
< IL ↔ e;ML →WL >; < WL → e; e↔ FL/e↔ NL >;
< FL → GL; e→ e >; < GL ↔ e; e→WT >; < RT

T→MR; e→ IR >;
< IR ↔ e;MR →WR >; < WR → e; e↔ FR/e↔ NR >;
< FR → GR; e→ e >; < GR ↔ e; e→WT >; < R↔ e; e→WT >;
< WT → e; e↔ RT > }

Infra-red module:
O3 = { e, e},
P3 = { < e↔ FF ; e→ FF >; < FF ↔ IF /FF → e;FF → e >;

< e↔ NF ; e→ NF >; < NF ↔ IF /NF → e;NF → e >;
< IF e→ ee;>}

O4 = { e, e},
P4 = { < e↔ FL; e→ FL >;

< FL ↔ IL/FL → e;FL → e >; < e↔ NL; e→ NL >;
< NL ↔ IL/NL → e;NL → e >; < ILe→ ee;>}

O5 = { e, e},
P5 = { < e↔ FR; e→ FR >;

< FR ↔ IR/FR → e;FR → e >; < e↔ NR; e→ NR >;
< NR ↔ IR/NR → e;NR → e >; < IRe→ ee;>}

Left Actuator controller:
O6 = { e, e},
P6 = { < e↔MF ; e→ 1L >; < MF → RT ; 1L ↔ e >;

< e↔MR; e→ 1L >; < MR → RT ; 1L ↔ e >;
< e↔ML; e→ 0L >; < ML → RT ; 0L ↔ e >;
< RT ↔ e; e→ e >}

Right Actuator controller:
O7 = { e, e},
P7 = { < e↔MF ; e→ 1R >; < MF → RT ; 1R ↔ e >;

< e↔MR; e→ 0R >; < MR → RT ; 0R ↔ e >;
< e↔ML; e→ 1R >; < ML → RT ; 1R ↔ e >;
< RT ↔ e; e→ e >}

162 M. Langer et al.

Fig. 1. Simulator

Fig. 2. Starting position

Fig. 3. Ending position

An Application of the PCol Automata in Robot Control 163

The robot driven by this very simple PCol automaton is able to follow the
instruction on the tape safely without crashing into any obstacle. If the instruction
cannot be proceeded, the robot stops. This solution is suitable for known robots
environment. Following the instructions on the tape (picture 1) the robot can
move from its starting position (picture 2) to the final destination (picture 3). If
the environment is changed before or during the journey, the robot cannot reach
the final place but it also will not crash.

4 Conclusion

We have shown the basic possibilities of controlling the robot using the PCol
automaton and modular approach. With respect to the fact that P colonies are
computationally complete device (see [2]) the further research will be dedicated to
the more precise control and the possibilities of processing the information from
other sensors, especially from the camera. Fulfilling more complex tasks and more
autonomous behaviour (e.g. attempt go round the obstacle if it is not possible to
go in demanded direction, skipping unrealizable tasks, etc.) is also direction of the
further research.

By extending the robot by the acting modules like e.g. mechanic tongs the
robot can fulfil more complicated tasks. To control such a device by the PCol
automaton we just need to add a new control module and extend set of programs
of the main control unit. Such an extension is thanks to the modularity very easy.

Remark 1.
This work was partially supported by the European Regional Development Fund
in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070), by
SGS/7/2011 and by project OPVK no. CZ.1.07/2.2.00/28.0014.

References

1. Cienciala, L., Ciencialová, L. Csuhaj-Varjú, Vazsil, G.: PCol Automata: Recognizing
Strings with P colonies. Eight Brainstormung Week on Membrane Computing (In
Mart́ınez del Amor, M. A., Păun, G., Hurtado de Mendoza, I. P., Riscon-Núnez, A.
(eds.)), Sevilla, 2010, pp. 65–76.

2. Cienciala, L., Ciencialová, L., Langer, M.: Modularity in P Colonies with Checking
Rules. In: Revised Selected Papers 12 th International Conference CMC 2011 (Gheo-
rge, M., Păun, Gh., Rozenber, G., Salomaa, A., Verlan, S. eds.), Springer, LNCS 7184,
2012, pp. 104-120.

3. Csuhaj-Varjú, E., Kelemen, J., Kelemenová, A., Păun, Gh., Vaszil, G.: Cells in en-
vironment: P colonies, Multiple-valued Logic and Soft Computing, 12, 3-4, 2006, pp.
201–215.

4. Csuhaj-Varjú, E., Margenstern, M., Vaszil, G.: P Colonies with a bounded number
of cells and programs. Pre-Proceedings of the 7th Workshop on Membrane Computing
(H. J. Hoogeboom, Gh. Păun, G. Rozenberg, eds.), Leiden, The Netherlands, 2006,
pp. 311–322.

164 M. Langer et al.

5. Floreano, D. and Mattiussi, C.: Bio-inspirated Artificial Inteligence: Theories, Meth-
ods, and Technologies, MIT Press, 2008.

6. Kelemen, J., Kelemenová, A.: On P colonies, a biochemically inspired model of compu-
tation. Proc. of the 6th International Symposium of Hungarian Researchers on Com-
putational Intelligence, Budapest TECH, Hungary, 2005, pp. 40–56.

7. Kelemenová, A.: P Colonies. In: The Oxford Handbook of Membrane Computing eds.
Gh.Paun, G. Rozengerg, A. Salomaa Oxford University Press, Oxford, 2009, 584–593

8. Weiss, G.: Multiagent systems. A modern approach to distributed artificial intelligence,
MIT Press, Cambridge, Massachusetts, 1999

9. Wit, C. C., Bastin, G., Siciliano, B.: Theory of Robot Control, Springer-Verlag New
York, 1996.

